1 /* 2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 3 * 4 * This code is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License version 2 only, as 6 * published by the Free Software Foundation. Oracle designates this 7 * particular file as subject to the "Classpath" exception as provided 8 * by Oracle in the LICENSE file that accompanied this code. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 */ 24 25 /* 26 * This file is available under and governed by the GNU General Public 27 * License version 2 only, as published by the Free Software Foundation. 28 * However, the following notice accompanied the original version of this 29 * file: 30 * 31 * Written by Doug Lea with assistance from members of JCP JSR-166 32 * Expert Group and released to the public domain, as explained at 33 * http://creativecommons.org/publicdomain/zero/1.0/ 34 */ 35 36 package java.util.concurrent.locks; 37 38 import java.util.ArrayList; 39 import java.util.Collection; 40 import java.util.Date; 41 import java.util.concurrent.TimeUnit; 42 43 /** 44 * Provides a framework for implementing blocking locks and related 45 * synchronizers (semaphores, events, etc) that rely on 46 * first-in-first-out (FIFO) wait queues. This class is designed to 47 * be a useful basis for most kinds of synchronizers that rely on a 48 * single atomic {@code int} value to represent state. Subclasses 49 * must define the protected methods that change this state, and which 50 * define what that state means in terms of this object being acquired 51 * or released. Given these, the other methods in this class carry 52 * out all queuing and blocking mechanics. Subclasses can maintain 53 * other state fields, but only the atomically updated {@code int} 54 * value manipulated using methods {@link #getState}, {@link 55 * #setState} and {@link #compareAndSetState} is tracked with respect 56 * to synchronization. 57 * 58 * <p>Subclasses should be defined as non-public internal helper 59 * classes that are used to implement the synchronization properties 60 * of their enclosing class. Class 61 * {@code AbstractQueuedSynchronizer} does not implement any 62 * synchronization interface. Instead it defines methods such as 63 * {@link #acquireInterruptibly} that can be invoked as 64 * appropriate by concrete locks and related synchronizers to 65 * implement their public methods. 66 * 67 * <p>This class supports either or both a default <em>exclusive</em> 68 * mode and a <em>shared</em> mode. When acquired in exclusive mode, 69 * attempted acquires by other threads cannot succeed. Shared mode 70 * acquires by multiple threads may (but need not) succeed. This class 71 * does not "understand" these differences except in the 72 * mechanical sense that when a shared mode acquire succeeds, the next 73 * waiting thread (if one exists) must also determine whether it can 74 * acquire as well. Threads waiting in the different modes share the 75 * same FIFO queue. Usually, implementation subclasses support only 76 * one of these modes, but both can come into play for example in a 77 * {@link ReadWriteLock}. Subclasses that support only exclusive or 78 * only shared modes need not define the methods supporting the unused mode. 79 * 80 * <p>This class defines a nested {@link ConditionObject} class that 81 * can be used as a {@link Condition} implementation by subclasses 82 * supporting exclusive mode for which method {@link 83 * #isHeldExclusively} reports whether synchronization is exclusively 84 * held with respect to the current thread, method {@link #release} 85 * invoked with the current {@link #getState} value fully releases 86 * this object, and {@link #acquire}, given this saved state value, 87 * eventually restores this object to its previous acquired state. No 88 * {@code AbstractQueuedSynchronizer} method otherwise creates such a 89 * condition, so if this constraint cannot be met, do not use it. The 90 * behavior of {@link ConditionObject} depends of course on the 91 * semantics of its synchronizer implementation. 92 * 93 * <p>This class provides inspection, instrumentation, and monitoring 94 * methods for the internal queue, as well as similar methods for 95 * condition objects. These can be exported as desired into classes 96 * using an {@code AbstractQueuedSynchronizer} for their 97 * synchronization mechanics. 98 * 99 * <p>Serialization of this class stores only the underlying atomic 100 * integer maintaining state, so deserialized objects have empty 101 * thread queues. Typical subclasses requiring serializability will 102 * define a {@code readObject} method that restores this to a known 103 * initial state upon deserialization. 104 * 105 * <h3>Usage</h3> 106 * 107 * <p>To use this class as the basis of a synchronizer, redefine the 108 * following methods, as applicable, by inspecting and/or modifying 109 * the synchronization state using {@link #getState}, {@link 110 * #setState} and/or {@link #compareAndSetState}: 111 * 112 * <ul> 113 * <li>{@link #tryAcquire} 114 * <li>{@link #tryRelease} 115 * <li>{@link #tryAcquireShared} 116 * <li>{@link #tryReleaseShared} 117 * <li>{@link #isHeldExclusively} 118 * </ul> 119 * 120 * Each of these methods by default throws {@link 121 * UnsupportedOperationException}. Implementations of these methods 122 * must be internally thread-safe, and should in general be short and 123 * not block. Defining these methods is the <em>only</em> supported 124 * means of using this class. All other methods are declared 125 * {@code final} because they cannot be independently varied. 126 * 127 * <p>You may also find the inherited methods from {@link 128 * AbstractOwnableSynchronizer} useful to keep track of the thread 129 * owning an exclusive synchronizer. You are encouraged to use them 130 * -- this enables monitoring and diagnostic tools to assist users in 131 * determining which threads hold locks. 132 * 133 * <p>Even though this class is based on an internal FIFO queue, it 134 * does not automatically enforce FIFO acquisition policies. The core 135 * of exclusive synchronization takes the form: 136 * 137 * <pre> 138 * Acquire: 139 * while (!tryAcquire(arg)) { 140 * <em>enqueue thread if it is not already queued</em>; 141 * <em>possibly block current thread</em>; 142 * } 143 * 144 * Release: 145 * if (tryRelease(arg)) 146 * <em>unblock the first queued thread</em>; 147 * </pre> 148 * 149 * (Shared mode is similar but may involve cascading signals.) 150 * 151 * <p id="barging">Because checks in acquire are invoked before 152 * enqueuing, a newly acquiring thread may <em>barge</em> ahead of 153 * others that are blocked and queued. However, you can, if desired, 154 * define {@code tryAcquire} and/or {@code tryAcquireShared} to 155 * disable barging by internally invoking one or more of the inspection 156 * methods, thereby providing a <em>fair</em> FIFO acquisition order. 157 * In particular, most fair synchronizers can define {@code tryAcquire} 158 * to return {@code false} if {@link #hasQueuedPredecessors} (a method 159 * specifically designed to be used by fair synchronizers) returns 160 * {@code true}. Other variations are possible. 161 * 162 * <p>Throughput and scalability are generally highest for the 163 * default barging (also known as <em>greedy</em>, 164 * <em>renouncement</em>, and <em>convoy-avoidance</em>) strategy. 165 * While this is not guaranteed to be fair or starvation-free, earlier 166 * queued threads are allowed to recontend before later queued 167 * threads, and each recontention has an unbiased chance to succeed 168 * against incoming threads. Also, while acquires do not 169 * "spin" in the usual sense, they may perform multiple 170 * invocations of {@code tryAcquire} interspersed with other 171 * computations before blocking. This gives most of the benefits of 172 * spins when exclusive synchronization is only briefly held, without 173 * most of the liabilities when it isn't. If so desired, you can 174 * augment this by preceding calls to acquire methods with 175 * "fast-path" checks, possibly prechecking {@link #hasContended} 176 * and/or {@link #hasQueuedThreads} to only do so if the synchronizer 177 * is likely not to be contended. 178 * 179 * <p>This class provides an efficient and scalable basis for 180 * synchronization in part by specializing its range of use to 181 * synchronizers that can rely on {@code int} state, acquire, and 182 * release parameters, and an internal FIFO wait queue. When this does 183 * not suffice, you can build synchronizers from a lower level using 184 * {@link java.util.concurrent.atomic atomic} classes, your own custom 185 * {@link java.util.Queue} classes, and {@link LockSupport} blocking 186 * support. 187 * 188 * <h3>Usage Examples</h3> 189 * 190 * <p>Here is a non-reentrant mutual exclusion lock class that uses 191 * the value zero to represent the unlocked state, and one to 192 * represent the locked state. While a non-reentrant lock 193 * does not strictly require recording of the current owner 194 * thread, this class does so anyway to make usage easier to monitor. 195 * It also supports conditions and exposes 196 * one of the instrumentation methods: 197 * 198 * <pre> {@code 199 * class Mutex implements Lock, java.io.Serializable { 200 * 201 * // Our internal helper class 202 * private static class Sync extends AbstractQueuedSynchronizer { 203 * // Reports whether in locked state 204 * protected boolean isHeldExclusively() { 205 * return getState() == 1; 206 * } 207 * 208 * // Acquires the lock if state is zero 209 * public boolean tryAcquire(int acquires) { 210 * assert acquires == 1; // Otherwise unused 211 * if (compareAndSetState(0, 1)) { 212 * setExclusiveOwnerThread(Thread.currentThread()); 213 * return true; 214 * } 215 * return false; 216 * } 217 * 218 * // Releases the lock by setting state to zero 219 * protected boolean tryRelease(int releases) { 220 * assert releases == 1; // Otherwise unused 221 * if (getState() == 0) throw new IllegalMonitorStateException(); 222 * setExclusiveOwnerThread(null); 223 * setState(0); 224 * return true; 225 * } 226 * 227 * // Provides a Condition 228 * Condition newCondition() { return new ConditionObject(); } 229 * 230 * // Deserializes properly 231 * private void readObject(ObjectInputStream s) 232 * throws IOException, ClassNotFoundException { 233 * s.defaultReadObject(); 234 * setState(0); // reset to unlocked state 235 * } 236 * } 237 * 238 * // The sync object does all the hard work. We just forward to it. 239 * private final Sync sync = new Sync(); 240 * 241 * public void lock() { sync.acquire(1); } 242 * public boolean tryLock() { return sync.tryAcquire(1); } 243 * public void unlock() { sync.release(1); } 244 * public Condition newCondition() { return sync.newCondition(); } 245 * public boolean isLocked() { return sync.isHeldExclusively(); } 246 * public boolean hasQueuedThreads() { return sync.hasQueuedThreads(); } 247 * public void lockInterruptibly() throws InterruptedException { 248 * sync.acquireInterruptibly(1); 249 * } 250 * public boolean tryLock(long timeout, TimeUnit unit) 251 * throws InterruptedException { 252 * return sync.tryAcquireNanos(1, unit.toNanos(timeout)); 253 * } 254 * }}</pre> 255 * 256 * <p>Here is a latch class that is like a 257 * {@link java.util.concurrent.CountDownLatch CountDownLatch} 258 * except that it only requires a single {@code signal} to 259 * fire. Because a latch is non-exclusive, it uses the {@code shared} 260 * acquire and release methods. 261 * 262 * <pre> {@code 263 * class BooleanLatch { 264 * 265 * private static class Sync extends AbstractQueuedSynchronizer { 266 * boolean isSignalled() { return getState() != 0; } 267 * 268 * protected int tryAcquireShared(int ignore) { 269 * return isSignalled() ? 1 : -1; 270 * } 271 * 272 * protected boolean tryReleaseShared(int ignore) { 273 * setState(1); 274 * return true; 275 * } 276 * } 277 * 278 * private final Sync sync = new Sync(); 279 * public boolean isSignalled() { return sync.isSignalled(); } 280 * public void signal() { sync.releaseShared(1); } 281 * public void await() throws InterruptedException { 282 * sync.acquireSharedInterruptibly(1); 283 * } 284 * }}</pre> 285 * 286 * @since 1.5 287 * @author Doug Lea 288 */ 289 public abstract class AbstractQueuedSynchronizer 290 extends AbstractOwnableSynchronizer 291 implements java.io.Serializable { 292 293 private static final long serialVersionUID = 7373984972572414691L; 294 295 /** 296 * Creates a new {@code AbstractQueuedSynchronizer} instance 297 * with initial synchronization state of zero. 298 */ AbstractQueuedSynchronizer()299 protected AbstractQueuedSynchronizer() { } 300 301 /** 302 * Wait queue node class. 303 * 304 * <p>The wait queue is a variant of a "CLH" (Craig, Landin, and 305 * Hagersten) lock queue. CLH locks are normally used for 306 * spinlocks. We instead use them for blocking synchronizers, but 307 * use the same basic tactic of holding some of the control 308 * information about a thread in the predecessor of its node. A 309 * "status" field in each node keeps track of whether a thread 310 * should block. A node is signalled when its predecessor 311 * releases. Each node of the queue otherwise serves as a 312 * specific-notification-style monitor holding a single waiting 313 * thread. The status field does NOT control whether threads are 314 * granted locks etc though. A thread may try to acquire if it is 315 * first in the queue. But being first does not guarantee success; 316 * it only gives the right to contend. So the currently released 317 * contender thread may need to rewait. 318 * 319 * <p>To enqueue into a CLH lock, you atomically splice it in as new 320 * tail. To dequeue, you just set the head field. 321 * <pre> 322 * +------+ prev +-----+ +-----+ 323 * head | | <---- | | <---- | | tail 324 * +------+ +-----+ +-----+ 325 * </pre> 326 * 327 * <p>Insertion into a CLH queue requires only a single atomic 328 * operation on "tail", so there is a simple atomic point of 329 * demarcation from unqueued to queued. Similarly, dequeuing 330 * involves only updating the "head". However, it takes a bit 331 * more work for nodes to determine who their successors are, 332 * in part to deal with possible cancellation due to timeouts 333 * and interrupts. 334 * 335 * <p>The "prev" links (not used in original CLH locks), are mainly 336 * needed to handle cancellation. If a node is cancelled, its 337 * successor is (normally) relinked to a non-cancelled 338 * predecessor. For explanation of similar mechanics in the case 339 * of spin locks, see the papers by Scott and Scherer at 340 * http://www.cs.rochester.edu/u/scott/synchronization/ 341 * 342 * <p>We also use "next" links to implement blocking mechanics. 343 * The thread id for each node is kept in its own node, so a 344 * predecessor signals the next node to wake up by traversing 345 * next link to determine which thread it is. Determination of 346 * successor must avoid races with newly queued nodes to set 347 * the "next" fields of their predecessors. This is solved 348 * when necessary by checking backwards from the atomically 349 * updated "tail" when a node's successor appears to be null. 350 * (Or, said differently, the next-links are an optimization 351 * so that we don't usually need a backward scan.) 352 * 353 * <p>Cancellation introduces some conservatism to the basic 354 * algorithms. Since we must poll for cancellation of other 355 * nodes, we can miss noticing whether a cancelled node is 356 * ahead or behind us. This is dealt with by always unparking 357 * successors upon cancellation, allowing them to stabilize on 358 * a new predecessor, unless we can identify an uncancelled 359 * predecessor who will carry this responsibility. 360 * 361 * <p>CLH queues need a dummy header node to get started. But 362 * we don't create them on construction, because it would be wasted 363 * effort if there is never contention. Instead, the node 364 * is constructed and head and tail pointers are set upon first 365 * contention. 366 * 367 * <p>Threads waiting on Conditions use the same nodes, but 368 * use an additional link. Conditions only need to link nodes 369 * in simple (non-concurrent) linked queues because they are 370 * only accessed when exclusively held. Upon await, a node is 371 * inserted into a condition queue. Upon signal, the node is 372 * transferred to the main queue. A special value of status 373 * field is used to mark which queue a node is on. 374 * 375 * <p>Thanks go to Dave Dice, Mark Moir, Victor Luchangco, Bill 376 * Scherer and Michael Scott, along with members of JSR-166 377 * expert group, for helpful ideas, discussions, and critiques 378 * on the design of this class. 379 */ 380 static final class Node { 381 /** Marker to indicate a node is waiting in shared mode */ 382 static final Node SHARED = new Node(); 383 /** Marker to indicate a node is waiting in exclusive mode */ 384 static final Node EXCLUSIVE = null; 385 386 /** waitStatus value to indicate thread has cancelled. */ 387 static final int CANCELLED = 1; 388 /** waitStatus value to indicate successor's thread needs unparking. */ 389 static final int SIGNAL = -1; 390 /** waitStatus value to indicate thread is waiting on condition. */ 391 static final int CONDITION = -2; 392 /** 393 * waitStatus value to indicate the next acquireShared should 394 * unconditionally propagate. 395 */ 396 static final int PROPAGATE = -3; 397 398 /** 399 * Status field, taking on only the values: 400 * SIGNAL: The successor of this node is (or will soon be) 401 * blocked (via park), so the current node must 402 * unpark its successor when it releases or 403 * cancels. To avoid races, acquire methods must 404 * first indicate they need a signal, 405 * then retry the atomic acquire, and then, 406 * on failure, block. 407 * CANCELLED: This node is cancelled due to timeout or interrupt. 408 * Nodes never leave this state. In particular, 409 * a thread with cancelled node never again blocks. 410 * CONDITION: This node is currently on a condition queue. 411 * It will not be used as a sync queue node 412 * until transferred, at which time the status 413 * will be set to 0. (Use of this value here has 414 * nothing to do with the other uses of the 415 * field, but simplifies mechanics.) 416 * PROPAGATE: A releaseShared should be propagated to other 417 * nodes. This is set (for head node only) in 418 * doReleaseShared to ensure propagation 419 * continues, even if other operations have 420 * since intervened. 421 * 0: None of the above 422 * 423 * The values are arranged numerically to simplify use. 424 * Non-negative values mean that a node doesn't need to 425 * signal. So, most code doesn't need to check for particular 426 * values, just for sign. 427 * 428 * The field is initialized to 0 for normal sync nodes, and 429 * CONDITION for condition nodes. It is modified using CAS 430 * (or when possible, unconditional volatile writes). 431 */ 432 volatile int waitStatus; 433 434 /** 435 * Link to predecessor node that current node/thread relies on 436 * for checking waitStatus. Assigned during enqueuing, and nulled 437 * out (for sake of GC) only upon dequeuing. Also, upon 438 * cancellation of a predecessor, we short-circuit while 439 * finding a non-cancelled one, which will always exist 440 * because the head node is never cancelled: A node becomes 441 * head only as a result of successful acquire. A 442 * cancelled thread never succeeds in acquiring, and a thread only 443 * cancels itself, not any other node. 444 */ 445 volatile Node prev; 446 447 /** 448 * Link to the successor node that the current node/thread 449 * unparks upon release. Assigned during enqueuing, adjusted 450 * when bypassing cancelled predecessors, and nulled out (for 451 * sake of GC) when dequeued. The enq operation does not 452 * assign next field of a predecessor until after attachment, 453 * so seeing a null next field does not necessarily mean that 454 * node is at end of queue. However, if a next field appears 455 * to be null, we can scan prev's from the tail to 456 * double-check. The next field of cancelled nodes is set to 457 * point to the node itself instead of null, to make life 458 * easier for isOnSyncQueue. 459 */ 460 volatile Node next; 461 462 /** 463 * The thread that enqueued this node. Initialized on 464 * construction and nulled out after use. 465 */ 466 volatile Thread thread; 467 468 /** 469 * Link to next node waiting on condition, or the special 470 * value SHARED. Because condition queues are accessed only 471 * when holding in exclusive mode, we just need a simple 472 * linked queue to hold nodes while they are waiting on 473 * conditions. They are then transferred to the queue to 474 * re-acquire. And because conditions can only be exclusive, 475 * we save a field by using special value to indicate shared 476 * mode. 477 */ 478 Node nextWaiter; 479 480 /** 481 * Returns true if node is waiting in shared mode. 482 */ isShared()483 final boolean isShared() { 484 return nextWaiter == SHARED; 485 } 486 487 /** 488 * Returns previous node, or throws NullPointerException if null. 489 * Use when predecessor cannot be null. The null check could 490 * be elided, but is present to help the VM. 491 * 492 * @return the predecessor of this node 493 */ predecessor()494 final Node predecessor() throws NullPointerException { 495 Node p = prev; 496 if (p == null) 497 throw new NullPointerException(); 498 else 499 return p; 500 } 501 502 /** Establishes initial head or SHARED marker. */ Node()503 Node() {} 504 505 /** Constructor used by addWaiter. */ Node(Node nextWaiter)506 Node(Node nextWaiter) { 507 this.nextWaiter = nextWaiter; 508 U.putObject(this, THREAD, Thread.currentThread()); 509 } 510 511 /** Constructor used by addConditionWaiter. */ Node(int waitStatus)512 Node(int waitStatus) { 513 U.putInt(this, WAITSTATUS, waitStatus); 514 U.putObject(this, THREAD, Thread.currentThread()); 515 } 516 517 /** CASes waitStatus field. */ compareAndSetWaitStatus(int expect, int update)518 final boolean compareAndSetWaitStatus(int expect, int update) { 519 return U.compareAndSwapInt(this, WAITSTATUS, expect, update); 520 } 521 522 /** CASes next field. */ compareAndSetNext(Node expect, Node update)523 final boolean compareAndSetNext(Node expect, Node update) { 524 return U.compareAndSwapObject(this, NEXT, expect, update); 525 } 526 527 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe(); 528 private static final long NEXT; 529 static final long PREV; 530 private static final long THREAD; 531 private static final long WAITSTATUS; 532 static { 533 try { 534 NEXT = U.objectFieldOffset 535 (Node.class.getDeclaredField("next")); 536 PREV = U.objectFieldOffset 537 (Node.class.getDeclaredField("prev")); 538 THREAD = U.objectFieldOffset 539 (Node.class.getDeclaredField("thread")); 540 WAITSTATUS = U.objectFieldOffset 541 (Node.class.getDeclaredField("waitStatus")); 542 } catch (ReflectiveOperationException e) { 543 throw new Error(e); 544 } 545 } 546 } 547 548 /** 549 * Head of the wait queue, lazily initialized. Except for 550 * initialization, it is modified only via method setHead. Note: 551 * If head exists, its waitStatus is guaranteed not to be 552 * CANCELLED. 553 */ 554 private transient volatile Node head; 555 556 /** 557 * Tail of the wait queue, lazily initialized. Modified only via 558 * method enq to add new wait node. 559 */ 560 private transient volatile Node tail; 561 562 /** 563 * The synchronization state. 564 */ 565 private volatile int state; 566 567 /** 568 * Returns the current value of synchronization state. 569 * This operation has memory semantics of a {@code volatile} read. 570 * @return current state value 571 */ getState()572 protected final int getState() { 573 return state; 574 } 575 576 /** 577 * Sets the value of synchronization state. 578 * This operation has memory semantics of a {@code volatile} write. 579 * @param newState the new state value 580 */ setState(int newState)581 protected final void setState(int newState) { 582 state = newState; 583 } 584 585 /** 586 * Atomically sets synchronization state to the given updated 587 * value if the current state value equals the expected value. 588 * This operation has memory semantics of a {@code volatile} read 589 * and write. 590 * 591 * @param expect the expected value 592 * @param update the new value 593 * @return {@code true} if successful. False return indicates that the actual 594 * value was not equal to the expected value. 595 */ compareAndSetState(int expect, int update)596 protected final boolean compareAndSetState(int expect, int update) { 597 return U.compareAndSwapInt(this, STATE, expect, update); 598 } 599 600 // Queuing utilities 601 602 /** 603 * The number of nanoseconds for which it is faster to spin 604 * rather than to use timed park. A rough estimate suffices 605 * to improve responsiveness with very short timeouts. 606 */ 607 static final long SPIN_FOR_TIMEOUT_THRESHOLD = 1000L; 608 609 /** 610 * Inserts node into queue, initializing if necessary. See picture above. 611 * @param node the node to insert 612 * @return node's predecessor 613 */ enq(Node node)614 private Node enq(Node node) { 615 for (;;) { 616 Node oldTail = tail; 617 if (oldTail != null) { 618 U.putObject(node, Node.PREV, oldTail); 619 if (compareAndSetTail(oldTail, node)) { 620 oldTail.next = node; 621 return oldTail; 622 } 623 } else { 624 initializeSyncQueue(); 625 } 626 } 627 } 628 629 /** 630 * Creates and enqueues node for current thread and given mode. 631 * 632 * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared 633 * @return the new node 634 */ addWaiter(Node mode)635 private Node addWaiter(Node mode) { 636 Node node = new Node(mode); 637 638 for (;;) { 639 Node oldTail = tail; 640 if (oldTail != null) { 641 U.putObject(node, Node.PREV, oldTail); 642 if (compareAndSetTail(oldTail, node)) { 643 oldTail.next = node; 644 return node; 645 } 646 } else { 647 initializeSyncQueue(); 648 } 649 } 650 } 651 652 /** 653 * Sets head of queue to be node, thus dequeuing. Called only by 654 * acquire methods. Also nulls out unused fields for sake of GC 655 * and to suppress unnecessary signals and traversals. 656 * 657 * @param node the node 658 */ setHead(Node node)659 private void setHead(Node node) { 660 head = node; 661 node.thread = null; 662 node.prev = null; 663 } 664 665 /** 666 * Wakes up node's successor, if one exists. 667 * 668 * @param node the node 669 */ unparkSuccessor(Node node)670 private void unparkSuccessor(Node node) { 671 /* 672 * If status is negative (i.e., possibly needing signal) try 673 * to clear in anticipation of signalling. It is OK if this 674 * fails or if status is changed by waiting thread. 675 */ 676 int ws = node.waitStatus; 677 if (ws < 0) 678 node.compareAndSetWaitStatus(ws, 0); 679 680 /* 681 * Thread to unpark is held in successor, which is normally 682 * just the next node. But if cancelled or apparently null, 683 * traverse backwards from tail to find the actual 684 * non-cancelled successor. 685 */ 686 Node s = node.next; 687 if (s == null || s.waitStatus > 0) { 688 s = null; 689 for (Node p = tail; p != node && p != null; p = p.prev) 690 if (p.waitStatus <= 0) 691 s = p; 692 } 693 if (s != null) 694 LockSupport.unpark(s.thread); 695 } 696 697 /** 698 * Release action for shared mode -- signals successor and ensures 699 * propagation. (Note: For exclusive mode, release just amounts 700 * to calling unparkSuccessor of head if it needs signal.) 701 */ doReleaseShared()702 private void doReleaseShared() { 703 /* 704 * Ensure that a release propagates, even if there are other 705 * in-progress acquires/releases. This proceeds in the usual 706 * way of trying to unparkSuccessor of head if it needs 707 * signal. But if it does not, status is set to PROPAGATE to 708 * ensure that upon release, propagation continues. 709 * Additionally, we must loop in case a new node is added 710 * while we are doing this. Also, unlike other uses of 711 * unparkSuccessor, we need to know if CAS to reset status 712 * fails, if so rechecking. 713 */ 714 for (;;) { 715 Node h = head; 716 if (h != null && h != tail) { 717 int ws = h.waitStatus; 718 if (ws == Node.SIGNAL) { 719 if (!h.compareAndSetWaitStatus(Node.SIGNAL, 0)) 720 continue; // loop to recheck cases 721 unparkSuccessor(h); 722 } 723 else if (ws == 0 && 724 !h.compareAndSetWaitStatus(0, Node.PROPAGATE)) 725 continue; // loop on failed CAS 726 } 727 if (h == head) // loop if head changed 728 break; 729 } 730 } 731 732 /** 733 * Sets head of queue, and checks if successor may be waiting 734 * in shared mode, if so propagating if either propagate > 0 or 735 * PROPAGATE status was set. 736 * 737 * @param node the node 738 * @param propagate the return value from a tryAcquireShared 739 */ setHeadAndPropagate(Node node, int propagate)740 private void setHeadAndPropagate(Node node, int propagate) { 741 Node h = head; // Record old head for check below 742 setHead(node); 743 /* 744 * Try to signal next queued node if: 745 * Propagation was indicated by caller, 746 * or was recorded (as h.waitStatus either before 747 * or after setHead) by a previous operation 748 * (note: this uses sign-check of waitStatus because 749 * PROPAGATE status may transition to SIGNAL.) 750 * and 751 * The next node is waiting in shared mode, 752 * or we don't know, because it appears null 753 * 754 * The conservatism in both of these checks may cause 755 * unnecessary wake-ups, but only when there are multiple 756 * racing acquires/releases, so most need signals now or soon 757 * anyway. 758 */ 759 if (propagate > 0 || h == null || h.waitStatus < 0 || 760 (h = head) == null || h.waitStatus < 0) { 761 Node s = node.next; 762 if (s == null || s.isShared()) 763 doReleaseShared(); 764 } 765 } 766 767 // Utilities for various versions of acquire 768 769 /** 770 * Cancels an ongoing attempt to acquire. 771 * 772 * @param node the node 773 */ cancelAcquire(Node node)774 private void cancelAcquire(Node node) { 775 // Ignore if node doesn't exist 776 if (node == null) 777 return; 778 779 node.thread = null; 780 781 // Skip cancelled predecessors 782 Node pred = node.prev; 783 while (pred.waitStatus > 0) 784 node.prev = pred = pred.prev; 785 786 // predNext is the apparent node to unsplice. CASes below will 787 // fail if not, in which case, we lost race vs another cancel 788 // or signal, so no further action is necessary. 789 Node predNext = pred.next; 790 791 // Can use unconditional write instead of CAS here. 792 // After this atomic step, other Nodes can skip past us. 793 // Before, we are free of interference from other threads. 794 node.waitStatus = Node.CANCELLED; 795 796 // If we are the tail, remove ourselves. 797 if (node == tail && compareAndSetTail(node, pred)) { 798 pred.compareAndSetNext(predNext, null); 799 } else { 800 // If successor needs signal, try to set pred's next-link 801 // so it will get one. Otherwise wake it up to propagate. 802 int ws; 803 if (pred != head && 804 ((ws = pred.waitStatus) == Node.SIGNAL || 805 (ws <= 0 && pred.compareAndSetWaitStatus(ws, Node.SIGNAL))) && 806 pred.thread != null) { 807 Node next = node.next; 808 if (next != null && next.waitStatus <= 0) 809 pred.compareAndSetNext(predNext, next); 810 } else { 811 unparkSuccessor(node); 812 } 813 814 node.next = node; // help GC 815 } 816 } 817 818 /** 819 * Checks and updates status for a node that failed to acquire. 820 * Returns true if thread should block. This is the main signal 821 * control in all acquire loops. Requires that pred == node.prev. 822 * 823 * @param pred node's predecessor holding status 824 * @param node the node 825 * @return {@code true} if thread should block 826 */ shouldParkAfterFailedAcquire(Node pred, Node node)827 private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { 828 int ws = pred.waitStatus; 829 if (ws == Node.SIGNAL) 830 /* 831 * This node has already set status asking a release 832 * to signal it, so it can safely park. 833 */ 834 return true; 835 if (ws > 0) { 836 /* 837 * Predecessor was cancelled. Skip over predecessors and 838 * indicate retry. 839 */ 840 do { 841 node.prev = pred = pred.prev; 842 } while (pred.waitStatus > 0); 843 pred.next = node; 844 } else { 845 /* 846 * waitStatus must be 0 or PROPAGATE. Indicate that we 847 * need a signal, but don't park yet. Caller will need to 848 * retry to make sure it cannot acquire before parking. 849 */ 850 pred.compareAndSetWaitStatus(ws, Node.SIGNAL); 851 } 852 return false; 853 } 854 855 /** 856 * Convenience method to interrupt current thread. 857 */ selfInterrupt()858 static void selfInterrupt() { 859 Thread.currentThread().interrupt(); 860 } 861 862 /** 863 * Convenience method to park and then check if interrupted. 864 * 865 * @return {@code true} if interrupted 866 */ parkAndCheckInterrupt()867 private final boolean parkAndCheckInterrupt() { 868 LockSupport.park(this); 869 return Thread.interrupted(); 870 } 871 872 /* 873 * Various flavors of acquire, varying in exclusive/shared and 874 * control modes. Each is mostly the same, but annoyingly 875 * different. Only a little bit of factoring is possible due to 876 * interactions of exception mechanics (including ensuring that we 877 * cancel if tryAcquire throws exception) and other control, at 878 * least not without hurting performance too much. 879 */ 880 881 /** 882 * Acquires in exclusive uninterruptible mode for thread already in 883 * queue. Used by condition wait methods as well as acquire. 884 * 885 * @param node the node 886 * @param arg the acquire argument 887 * @return {@code true} if interrupted while waiting 888 */ 889 // Android-removed: @ReservedStackAccess from OpenJDK 9, not available on Android. 890 // @ReservedStackAccess acquireQueued(final Node node, int arg)891 final boolean acquireQueued(final Node node, int arg) { 892 try { 893 boolean interrupted = false; 894 for (;;) { 895 final Node p = node.predecessor(); 896 if (p == head && tryAcquire(arg)) { 897 setHead(node); 898 p.next = null; // help GC 899 return interrupted; 900 } 901 if (shouldParkAfterFailedAcquire(p, node) && 902 parkAndCheckInterrupt()) 903 interrupted = true; 904 } 905 } catch (Throwable t) { 906 cancelAcquire(node); 907 throw t; 908 } 909 } 910 911 /** 912 * Acquires in exclusive interruptible mode. 913 * @param arg the acquire argument 914 */ doAcquireInterruptibly(int arg)915 private void doAcquireInterruptibly(int arg) 916 throws InterruptedException { 917 final Node node = addWaiter(Node.EXCLUSIVE); 918 try { 919 for (;;) { 920 final Node p = node.predecessor(); 921 if (p == head && tryAcquire(arg)) { 922 setHead(node); 923 p.next = null; // help GC 924 return; 925 } 926 if (shouldParkAfterFailedAcquire(p, node) && 927 parkAndCheckInterrupt()) 928 throw new InterruptedException(); 929 } 930 } catch (Throwable t) { 931 cancelAcquire(node); 932 throw t; 933 } 934 } 935 936 /** 937 * Acquires in exclusive timed mode. 938 * 939 * @param arg the acquire argument 940 * @param nanosTimeout max wait time 941 * @return {@code true} if acquired 942 */ doAcquireNanos(int arg, long nanosTimeout)943 private boolean doAcquireNanos(int arg, long nanosTimeout) 944 throws InterruptedException { 945 if (nanosTimeout <= 0L) 946 return false; 947 final long deadline = System.nanoTime() + nanosTimeout; 948 final Node node = addWaiter(Node.EXCLUSIVE); 949 try { 950 for (;;) { 951 final Node p = node.predecessor(); 952 if (p == head && tryAcquire(arg)) { 953 setHead(node); 954 p.next = null; // help GC 955 return true; 956 } 957 nanosTimeout = deadline - System.nanoTime(); 958 if (nanosTimeout <= 0L) { 959 cancelAcquire(node); 960 return false; 961 } 962 if (shouldParkAfterFailedAcquire(p, node) && 963 nanosTimeout > SPIN_FOR_TIMEOUT_THRESHOLD) 964 LockSupport.parkNanos(this, nanosTimeout); 965 if (Thread.interrupted()) 966 throw new InterruptedException(); 967 } 968 } catch (Throwable t) { 969 cancelAcquire(node); 970 throw t; 971 } 972 } 973 974 /** 975 * Acquires in shared uninterruptible mode. 976 * @param arg the acquire argument 977 */ doAcquireShared(int arg)978 private void doAcquireShared(int arg) { 979 final Node node = addWaiter(Node.SHARED); 980 try { 981 boolean interrupted = false; 982 for (;;) { 983 final Node p = node.predecessor(); 984 if (p == head) { 985 int r = tryAcquireShared(arg); 986 if (r >= 0) { 987 setHeadAndPropagate(node, r); 988 p.next = null; // help GC 989 if (interrupted) 990 selfInterrupt(); 991 return; 992 } 993 } 994 if (shouldParkAfterFailedAcquire(p, node) && 995 parkAndCheckInterrupt()) 996 interrupted = true; 997 } 998 } catch (Throwable t) { 999 cancelAcquire(node); 1000 throw t; 1001 } 1002 } 1003 1004 /** 1005 * Acquires in shared interruptible mode. 1006 * @param arg the acquire argument 1007 */ doAcquireSharedInterruptibly(int arg)1008 private void doAcquireSharedInterruptibly(int arg) 1009 throws InterruptedException { 1010 final Node node = addWaiter(Node.SHARED); 1011 try { 1012 for (;;) { 1013 final Node p = node.predecessor(); 1014 if (p == head) { 1015 int r = tryAcquireShared(arg); 1016 if (r >= 0) { 1017 setHeadAndPropagate(node, r); 1018 p.next = null; // help GC 1019 return; 1020 } 1021 } 1022 if (shouldParkAfterFailedAcquire(p, node) && 1023 parkAndCheckInterrupt()) 1024 throw new InterruptedException(); 1025 } 1026 } catch (Throwable t) { 1027 cancelAcquire(node); 1028 throw t; 1029 } 1030 } 1031 1032 /** 1033 * Acquires in shared timed mode. 1034 * 1035 * @param arg the acquire argument 1036 * @param nanosTimeout max wait time 1037 * @return {@code true} if acquired 1038 */ doAcquireSharedNanos(int arg, long nanosTimeout)1039 private boolean doAcquireSharedNanos(int arg, long nanosTimeout) 1040 throws InterruptedException { 1041 if (nanosTimeout <= 0L) 1042 return false; 1043 final long deadline = System.nanoTime() + nanosTimeout; 1044 final Node node = addWaiter(Node.SHARED); 1045 try { 1046 for (;;) { 1047 final Node p = node.predecessor(); 1048 if (p == head) { 1049 int r = tryAcquireShared(arg); 1050 if (r >= 0) { 1051 setHeadAndPropagate(node, r); 1052 p.next = null; // help GC 1053 return true; 1054 } 1055 } 1056 nanosTimeout = deadline - System.nanoTime(); 1057 if (nanosTimeout <= 0L) { 1058 cancelAcquire(node); 1059 return false; 1060 } 1061 if (shouldParkAfterFailedAcquire(p, node) && 1062 nanosTimeout > SPIN_FOR_TIMEOUT_THRESHOLD) 1063 LockSupport.parkNanos(this, nanosTimeout); 1064 if (Thread.interrupted()) 1065 throw new InterruptedException(); 1066 } 1067 } catch (Throwable t) { 1068 cancelAcquire(node); 1069 throw t; 1070 } 1071 } 1072 1073 // Main exported methods 1074 1075 /** 1076 * Attempts to acquire in exclusive mode. This method should query 1077 * if the state of the object permits it to be acquired in the 1078 * exclusive mode, and if so to acquire it. 1079 * 1080 * <p>This method is always invoked by the thread performing 1081 * acquire. If this method reports failure, the acquire method 1082 * may queue the thread, if it is not already queued, until it is 1083 * signalled by a release from some other thread. This can be used 1084 * to implement method {@link Lock#tryLock()}. 1085 * 1086 * <p>The default 1087 * implementation throws {@link UnsupportedOperationException}. 1088 * 1089 * @param arg the acquire argument. This value is always the one 1090 * passed to an acquire method, or is the value saved on entry 1091 * to a condition wait. The value is otherwise uninterpreted 1092 * and can represent anything you like. 1093 * @return {@code true} if successful. Upon success, this object has 1094 * been acquired. 1095 * @throws IllegalMonitorStateException if acquiring would place this 1096 * synchronizer in an illegal state. This exception must be 1097 * thrown in a consistent fashion for synchronization to work 1098 * correctly. 1099 * @throws UnsupportedOperationException if exclusive mode is not supported 1100 */ tryAcquire(int arg)1101 protected boolean tryAcquire(int arg) { 1102 throw new UnsupportedOperationException(); 1103 } 1104 1105 /** 1106 * Attempts to set the state to reflect a release in exclusive 1107 * mode. 1108 * 1109 * <p>This method is always invoked by the thread performing release. 1110 * 1111 * <p>The default implementation throws 1112 * {@link UnsupportedOperationException}. 1113 * 1114 * @param arg the release argument. This value is always the one 1115 * passed to a release method, or the current state value upon 1116 * entry to a condition wait. The value is otherwise 1117 * uninterpreted and can represent anything you like. 1118 * @return {@code true} if this object is now in a fully released 1119 * state, so that any waiting threads may attempt to acquire; 1120 * and {@code false} otherwise. 1121 * @throws IllegalMonitorStateException if releasing would place this 1122 * synchronizer in an illegal state. This exception must be 1123 * thrown in a consistent fashion for synchronization to work 1124 * correctly. 1125 * @throws UnsupportedOperationException if exclusive mode is not supported 1126 */ tryRelease(int arg)1127 protected boolean tryRelease(int arg) { 1128 throw new UnsupportedOperationException(); 1129 } 1130 1131 /** 1132 * Attempts to acquire in shared mode. This method should query if 1133 * the state of the object permits it to be acquired in the shared 1134 * mode, and if so to acquire it. 1135 * 1136 * <p>This method is always invoked by the thread performing 1137 * acquire. If this method reports failure, the acquire method 1138 * may queue the thread, if it is not already queued, until it is 1139 * signalled by a release from some other thread. 1140 * 1141 * <p>The default implementation throws {@link 1142 * UnsupportedOperationException}. 1143 * 1144 * @param arg the acquire argument. This value is always the one 1145 * passed to an acquire method, or is the value saved on entry 1146 * to a condition wait. The value is otherwise uninterpreted 1147 * and can represent anything you like. 1148 * @return a negative value on failure; zero if acquisition in shared 1149 * mode succeeded but no subsequent shared-mode acquire can 1150 * succeed; and a positive value if acquisition in shared 1151 * mode succeeded and subsequent shared-mode acquires might 1152 * also succeed, in which case a subsequent waiting thread 1153 * must check availability. (Support for three different 1154 * return values enables this method to be used in contexts 1155 * where acquires only sometimes act exclusively.) Upon 1156 * success, this object has been acquired. 1157 * @throws IllegalMonitorStateException if acquiring would place this 1158 * synchronizer in an illegal state. This exception must be 1159 * thrown in a consistent fashion for synchronization to work 1160 * correctly. 1161 * @throws UnsupportedOperationException if shared mode is not supported 1162 */ tryAcquireShared(int arg)1163 protected int tryAcquireShared(int arg) { 1164 throw new UnsupportedOperationException(); 1165 } 1166 1167 /** 1168 * Attempts to set the state to reflect a release in shared mode. 1169 * 1170 * <p>This method is always invoked by the thread performing release. 1171 * 1172 * <p>The default implementation throws 1173 * {@link UnsupportedOperationException}. 1174 * 1175 * @param arg the release argument. This value is always the one 1176 * passed to a release method, or the current state value upon 1177 * entry to a condition wait. The value is otherwise 1178 * uninterpreted and can represent anything you like. 1179 * @return {@code true} if this release of shared mode may permit a 1180 * waiting acquire (shared or exclusive) to succeed; and 1181 * {@code false} otherwise 1182 * @throws IllegalMonitorStateException if releasing would place this 1183 * synchronizer in an illegal state. This exception must be 1184 * thrown in a consistent fashion for synchronization to work 1185 * correctly. 1186 * @throws UnsupportedOperationException if shared mode is not supported 1187 */ tryReleaseShared(int arg)1188 protected boolean tryReleaseShared(int arg) { 1189 throw new UnsupportedOperationException(); 1190 } 1191 1192 /** 1193 * Returns {@code true} if synchronization is held exclusively with 1194 * respect to the current (calling) thread. This method is invoked 1195 * upon each call to a non-waiting {@link ConditionObject} method. 1196 * (Waiting methods instead invoke {@link #release}.) 1197 * 1198 * <p>The default implementation throws {@link 1199 * UnsupportedOperationException}. This method is invoked 1200 * internally only within {@link ConditionObject} methods, so need 1201 * not be defined if conditions are not used. 1202 * 1203 * @return {@code true} if synchronization is held exclusively; 1204 * {@code false} otherwise 1205 * @throws UnsupportedOperationException if conditions are not supported 1206 */ isHeldExclusively()1207 protected boolean isHeldExclusively() { 1208 throw new UnsupportedOperationException(); 1209 } 1210 1211 /** 1212 * Acquires in exclusive mode, ignoring interrupts. Implemented 1213 * by invoking at least once {@link #tryAcquire}, 1214 * returning on success. Otherwise the thread is queued, possibly 1215 * repeatedly blocking and unblocking, invoking {@link 1216 * #tryAcquire} until success. This method can be used 1217 * to implement method {@link Lock#lock}. 1218 * 1219 * @param arg the acquire argument. This value is conveyed to 1220 * {@link #tryAcquire} but is otherwise uninterpreted and 1221 * can represent anything you like. 1222 */ 1223 // Android-removed: @ReservedStackAccess from OpenJDK 9, not available on Android. 1224 // @ReservedStackAccess acquire(int arg)1225 public final void acquire(int arg) { 1226 if (!tryAcquire(arg) && 1227 acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) 1228 selfInterrupt(); 1229 } 1230 1231 /** 1232 * Acquires in exclusive mode, aborting if interrupted. 1233 * Implemented by first checking interrupt status, then invoking 1234 * at least once {@link #tryAcquire}, returning on 1235 * success. Otherwise the thread is queued, possibly repeatedly 1236 * blocking and unblocking, invoking {@link #tryAcquire} 1237 * until success or the thread is interrupted. This method can be 1238 * used to implement method {@link Lock#lockInterruptibly}. 1239 * 1240 * @param arg the acquire argument. This value is conveyed to 1241 * {@link #tryAcquire} but is otherwise uninterpreted and 1242 * can represent anything you like. 1243 * @throws InterruptedException if the current thread is interrupted 1244 */ acquireInterruptibly(int arg)1245 public final void acquireInterruptibly(int arg) 1246 throws InterruptedException { 1247 if (Thread.interrupted()) 1248 throw new InterruptedException(); 1249 if (!tryAcquire(arg)) 1250 doAcquireInterruptibly(arg); 1251 } 1252 1253 /** 1254 * Attempts to acquire in exclusive mode, aborting if interrupted, 1255 * and failing if the given timeout elapses. Implemented by first 1256 * checking interrupt status, then invoking at least once {@link 1257 * #tryAcquire}, returning on success. Otherwise, the thread is 1258 * queued, possibly repeatedly blocking and unblocking, invoking 1259 * {@link #tryAcquire} until success or the thread is interrupted 1260 * or the timeout elapses. This method can be used to implement 1261 * method {@link Lock#tryLock(long, TimeUnit)}. 1262 * 1263 * @param arg the acquire argument. This value is conveyed to 1264 * {@link #tryAcquire} but is otherwise uninterpreted and 1265 * can represent anything you like. 1266 * @param nanosTimeout the maximum number of nanoseconds to wait 1267 * @return {@code true} if acquired; {@code false} if timed out 1268 * @throws InterruptedException if the current thread is interrupted 1269 */ tryAcquireNanos(int arg, long nanosTimeout)1270 public final boolean tryAcquireNanos(int arg, long nanosTimeout) 1271 throws InterruptedException { 1272 if (Thread.interrupted()) 1273 throw new InterruptedException(); 1274 return tryAcquire(arg) || 1275 doAcquireNanos(arg, nanosTimeout); 1276 } 1277 1278 /** 1279 * Releases in exclusive mode. Implemented by unblocking one or 1280 * more threads if {@link #tryRelease} returns true. 1281 * This method can be used to implement method {@link Lock#unlock}. 1282 * 1283 * @param arg the release argument. This value is conveyed to 1284 * {@link #tryRelease} but is otherwise uninterpreted and 1285 * can represent anything you like. 1286 * @return the value returned from {@link #tryRelease} 1287 */ 1288 // Android-removed: @ReservedStackAccess from OpenJDK 9, not available on Android. 1289 // @ReservedStackAccess release(int arg)1290 public final boolean release(int arg) { 1291 if (tryRelease(arg)) { 1292 Node h = head; 1293 if (h != null && h.waitStatus != 0) 1294 unparkSuccessor(h); 1295 return true; 1296 } 1297 return false; 1298 } 1299 1300 /** 1301 * Acquires in shared mode, ignoring interrupts. Implemented by 1302 * first invoking at least once {@link #tryAcquireShared}, 1303 * returning on success. Otherwise the thread is queued, possibly 1304 * repeatedly blocking and unblocking, invoking {@link 1305 * #tryAcquireShared} until success. 1306 * 1307 * @param arg the acquire argument. This value is conveyed to 1308 * {@link #tryAcquireShared} but is otherwise uninterpreted 1309 * and can represent anything you like. 1310 */ acquireShared(int arg)1311 public final void acquireShared(int arg) { 1312 if (tryAcquireShared(arg) < 0) 1313 doAcquireShared(arg); 1314 } 1315 1316 /** 1317 * Acquires in shared mode, aborting if interrupted. Implemented 1318 * by first checking interrupt status, then invoking at least once 1319 * {@link #tryAcquireShared}, returning on success. Otherwise the 1320 * thread is queued, possibly repeatedly blocking and unblocking, 1321 * invoking {@link #tryAcquireShared} until success or the thread 1322 * is interrupted. 1323 * @param arg the acquire argument. 1324 * This value is conveyed to {@link #tryAcquireShared} but is 1325 * otherwise uninterpreted and can represent anything 1326 * you like. 1327 * @throws InterruptedException if the current thread is interrupted 1328 */ acquireSharedInterruptibly(int arg)1329 public final void acquireSharedInterruptibly(int arg) 1330 throws InterruptedException { 1331 if (Thread.interrupted()) 1332 throw new InterruptedException(); 1333 if (tryAcquireShared(arg) < 0) 1334 doAcquireSharedInterruptibly(arg); 1335 } 1336 1337 /** 1338 * Attempts to acquire in shared mode, aborting if interrupted, and 1339 * failing if the given timeout elapses. Implemented by first 1340 * checking interrupt status, then invoking at least once {@link 1341 * #tryAcquireShared}, returning on success. Otherwise, the 1342 * thread is queued, possibly repeatedly blocking and unblocking, 1343 * invoking {@link #tryAcquireShared} until success or the thread 1344 * is interrupted or the timeout elapses. 1345 * 1346 * @param arg the acquire argument. This value is conveyed to 1347 * {@link #tryAcquireShared} but is otherwise uninterpreted 1348 * and can represent anything you like. 1349 * @param nanosTimeout the maximum number of nanoseconds to wait 1350 * @return {@code true} if acquired; {@code false} if timed out 1351 * @throws InterruptedException if the current thread is interrupted 1352 */ tryAcquireSharedNanos(int arg, long nanosTimeout)1353 public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout) 1354 throws InterruptedException { 1355 if (Thread.interrupted()) 1356 throw new InterruptedException(); 1357 return tryAcquireShared(arg) >= 0 || 1358 doAcquireSharedNanos(arg, nanosTimeout); 1359 } 1360 1361 /** 1362 * Releases in shared mode. Implemented by unblocking one or more 1363 * threads if {@link #tryReleaseShared} returns true. 1364 * 1365 * @param arg the release argument. This value is conveyed to 1366 * {@link #tryReleaseShared} but is otherwise uninterpreted 1367 * and can represent anything you like. 1368 * @return the value returned from {@link #tryReleaseShared} 1369 */ 1370 // Android-removed: @ReservedStackAccess from OpenJDK 9, not available on Android. 1371 // @ReservedStackAccess releaseShared(int arg)1372 public final boolean releaseShared(int arg) { 1373 if (tryReleaseShared(arg)) { 1374 doReleaseShared(); 1375 return true; 1376 } 1377 return false; 1378 } 1379 1380 // Queue inspection methods 1381 1382 /** 1383 * Queries whether any threads are waiting to acquire. Note that 1384 * because cancellations due to interrupts and timeouts may occur 1385 * at any time, a {@code true} return does not guarantee that any 1386 * other thread will ever acquire. 1387 * 1388 * <p>In this implementation, this operation returns in 1389 * constant time. 1390 * 1391 * @return {@code true} if there may be other threads waiting to acquire 1392 */ hasQueuedThreads()1393 public final boolean hasQueuedThreads() { 1394 return head != tail; 1395 } 1396 1397 /** 1398 * Queries whether any threads have ever contended to acquire this 1399 * synchronizer; that is, if an acquire method has ever blocked. 1400 * 1401 * <p>In this implementation, this operation returns in 1402 * constant time. 1403 * 1404 * @return {@code true} if there has ever been contention 1405 */ hasContended()1406 public final boolean hasContended() { 1407 return head != null; 1408 } 1409 1410 /** 1411 * Returns the first (longest-waiting) thread in the queue, or 1412 * {@code null} if no threads are currently queued. 1413 * 1414 * <p>In this implementation, this operation normally returns in 1415 * constant time, but may iterate upon contention if other threads are 1416 * concurrently modifying the queue. 1417 * 1418 * @return the first (longest-waiting) thread in the queue, or 1419 * {@code null} if no threads are currently queued 1420 */ getFirstQueuedThread()1421 public final Thread getFirstQueuedThread() { 1422 // handle only fast path, else relay 1423 return (head == tail) ? null : fullGetFirstQueuedThread(); 1424 } 1425 1426 /** 1427 * Version of getFirstQueuedThread called when fastpath fails. 1428 */ fullGetFirstQueuedThread()1429 private Thread fullGetFirstQueuedThread() { 1430 /* 1431 * The first node is normally head.next. Try to get its 1432 * thread field, ensuring consistent reads: If thread 1433 * field is nulled out or s.prev is no longer head, then 1434 * some other thread(s) concurrently performed setHead in 1435 * between some of our reads. We try this twice before 1436 * resorting to traversal. 1437 */ 1438 Node h, s; 1439 Thread st; 1440 if (((h = head) != null && (s = h.next) != null && 1441 s.prev == head && (st = s.thread) != null) || 1442 ((h = head) != null && (s = h.next) != null && 1443 s.prev == head && (st = s.thread) != null)) 1444 return st; 1445 1446 /* 1447 * Head's next field might not have been set yet, or may have 1448 * been unset after setHead. So we must check to see if tail 1449 * is actually first node. If not, we continue on, safely 1450 * traversing from tail back to head to find first, 1451 * guaranteeing termination. 1452 */ 1453 1454 Thread firstThread = null; 1455 for (Node p = tail; p != null && p != head; p = p.prev) { 1456 Thread t = p.thread; 1457 if (t != null) 1458 firstThread = t; 1459 } 1460 return firstThread; 1461 } 1462 1463 /** 1464 * Returns true if the given thread is currently queued. 1465 * 1466 * <p>This implementation traverses the queue to determine 1467 * presence of the given thread. 1468 * 1469 * @param thread the thread 1470 * @return {@code true} if the given thread is on the queue 1471 * @throws NullPointerException if the thread is null 1472 */ isQueued(Thread thread)1473 public final boolean isQueued(Thread thread) { 1474 if (thread == null) 1475 throw new NullPointerException(); 1476 for (Node p = tail; p != null; p = p.prev) 1477 if (p.thread == thread) 1478 return true; 1479 return false; 1480 } 1481 1482 /** 1483 * Returns {@code true} if the apparent first queued thread, if one 1484 * exists, is waiting in exclusive mode. If this method returns 1485 * {@code true}, and the current thread is attempting to acquire in 1486 * shared mode (that is, this method is invoked from {@link 1487 * #tryAcquireShared}) then it is guaranteed that the current thread 1488 * is not the first queued thread. Used only as a heuristic in 1489 * ReentrantReadWriteLock. 1490 */ apparentlyFirstQueuedIsExclusive()1491 final boolean apparentlyFirstQueuedIsExclusive() { 1492 Node h, s; 1493 return (h = head) != null && 1494 (s = h.next) != null && 1495 !s.isShared() && 1496 s.thread != null; 1497 } 1498 1499 /** 1500 * Queries whether any threads have been waiting to acquire longer 1501 * than the current thread. 1502 * 1503 * <p>An invocation of this method is equivalent to (but may be 1504 * more efficient than): 1505 * <pre> {@code 1506 * getFirstQueuedThread() != Thread.currentThread() 1507 * && hasQueuedThreads()}</pre> 1508 * 1509 * <p>Note that because cancellations due to interrupts and 1510 * timeouts may occur at any time, a {@code true} return does not 1511 * guarantee that some other thread will acquire before the current 1512 * thread. Likewise, it is possible for another thread to win a 1513 * race to enqueue after this method has returned {@code false}, 1514 * due to the queue being empty. 1515 * 1516 * <p>This method is designed to be used by a fair synchronizer to 1517 * avoid <a href="AbstractQueuedSynchronizer.html#barging">barging</a>. 1518 * Such a synchronizer's {@link #tryAcquire} method should return 1519 * {@code false}, and its {@link #tryAcquireShared} method should 1520 * return a negative value, if this method returns {@code true} 1521 * (unless this is a reentrant acquire). For example, the {@code 1522 * tryAcquire} method for a fair, reentrant, exclusive mode 1523 * synchronizer might look like this: 1524 * 1525 * <pre> {@code 1526 * protected boolean tryAcquire(int arg) { 1527 * if (isHeldExclusively()) { 1528 * // A reentrant acquire; increment hold count 1529 * return true; 1530 * } else if (hasQueuedPredecessors()) { 1531 * return false; 1532 * } else { 1533 * // try to acquire normally 1534 * } 1535 * }}</pre> 1536 * 1537 * @return {@code true} if there is a queued thread preceding the 1538 * current thread, and {@code false} if the current thread 1539 * is at the head of the queue or the queue is empty 1540 * @since 1.7 1541 */ hasQueuedPredecessors()1542 public final boolean hasQueuedPredecessors() { 1543 // The correctness of this depends on head being initialized 1544 // before tail and on head.next being accurate if the current 1545 // thread is first in queue. 1546 Node t = tail; // Read fields in reverse initialization order 1547 Node h = head; 1548 Node s; 1549 return h != t && 1550 ((s = h.next) == null || s.thread != Thread.currentThread()); 1551 } 1552 1553 1554 // Instrumentation and monitoring methods 1555 1556 /** 1557 * Returns an estimate of the number of threads waiting to 1558 * acquire. The value is only an estimate because the number of 1559 * threads may change dynamically while this method traverses 1560 * internal data structures. This method is designed for use in 1561 * monitoring system state, not for synchronization control. 1562 * 1563 * @return the estimated number of threads waiting to acquire 1564 */ getQueueLength()1565 public final int getQueueLength() { 1566 int n = 0; 1567 for (Node p = tail; p != null; p = p.prev) { 1568 if (p.thread != null) 1569 ++n; 1570 } 1571 return n; 1572 } 1573 1574 /** 1575 * Returns a collection containing threads that may be waiting to 1576 * acquire. Because the actual set of threads may change 1577 * dynamically while constructing this result, the returned 1578 * collection is only a best-effort estimate. The elements of the 1579 * returned collection are in no particular order. This method is 1580 * designed to facilitate construction of subclasses that provide 1581 * more extensive monitoring facilities. 1582 * 1583 * @return the collection of threads 1584 */ getQueuedThreads()1585 public final Collection<Thread> getQueuedThreads() { 1586 ArrayList<Thread> list = new ArrayList<>(); 1587 for (Node p = tail; p != null; p = p.prev) { 1588 Thread t = p.thread; 1589 if (t != null) 1590 list.add(t); 1591 } 1592 return list; 1593 } 1594 1595 /** 1596 * Returns a collection containing threads that may be waiting to 1597 * acquire in exclusive mode. This has the same properties 1598 * as {@link #getQueuedThreads} except that it only returns 1599 * those threads waiting due to an exclusive acquire. 1600 * 1601 * @return the collection of threads 1602 */ getExclusiveQueuedThreads()1603 public final Collection<Thread> getExclusiveQueuedThreads() { 1604 ArrayList<Thread> list = new ArrayList<>(); 1605 for (Node p = tail; p != null; p = p.prev) { 1606 if (!p.isShared()) { 1607 Thread t = p.thread; 1608 if (t != null) 1609 list.add(t); 1610 } 1611 } 1612 return list; 1613 } 1614 1615 /** 1616 * Returns a collection containing threads that may be waiting to 1617 * acquire in shared mode. This has the same properties 1618 * as {@link #getQueuedThreads} except that it only returns 1619 * those threads waiting due to a shared acquire. 1620 * 1621 * @return the collection of threads 1622 */ getSharedQueuedThreads()1623 public final Collection<Thread> getSharedQueuedThreads() { 1624 ArrayList<Thread> list = new ArrayList<>(); 1625 for (Node p = tail; p != null; p = p.prev) { 1626 if (p.isShared()) { 1627 Thread t = p.thread; 1628 if (t != null) 1629 list.add(t); 1630 } 1631 } 1632 return list; 1633 } 1634 1635 /** 1636 * Returns a string identifying this synchronizer, as well as its state. 1637 * The state, in brackets, includes the String {@code "State ="} 1638 * followed by the current value of {@link #getState}, and either 1639 * {@code "nonempty"} or {@code "empty"} depending on whether the 1640 * queue is empty. 1641 * 1642 * @return a string identifying this synchronizer, as well as its state 1643 */ toString()1644 public String toString() { 1645 return super.toString() 1646 + "[State = " + getState() + ", " 1647 + (hasQueuedThreads() ? "non" : "") + "empty queue]"; 1648 } 1649 1650 1651 // Internal support methods for Conditions 1652 1653 /** 1654 * Returns true if a node, always one that was initially placed on 1655 * a condition queue, is now waiting to reacquire on sync queue. 1656 * @param node the node 1657 * @return true if is reacquiring 1658 */ isOnSyncQueue(Node node)1659 final boolean isOnSyncQueue(Node node) { 1660 if (node.waitStatus == Node.CONDITION || node.prev == null) 1661 return false; 1662 if (node.next != null) // If has successor, it must be on queue 1663 return true; 1664 /* 1665 * node.prev can be non-null, but not yet on queue because 1666 * the CAS to place it on queue can fail. So we have to 1667 * traverse from tail to make sure it actually made it. It 1668 * will always be near the tail in calls to this method, and 1669 * unless the CAS failed (which is unlikely), it will be 1670 * there, so we hardly ever traverse much. 1671 */ 1672 return findNodeFromTail(node); 1673 } 1674 1675 /** 1676 * Returns true if node is on sync queue by searching backwards from tail. 1677 * Called only when needed by isOnSyncQueue. 1678 * @return true if present 1679 */ findNodeFromTail(Node node)1680 private boolean findNodeFromTail(Node node) { 1681 // We check for node first, since it's likely to be at or near tail. 1682 // tail is known to be non-null, so we could re-order to "save" 1683 // one null check, but we leave it this way to help the VM. 1684 for (Node p = tail;;) { 1685 if (p == node) 1686 return true; 1687 if (p == null) 1688 return false; 1689 p = p.prev; 1690 } 1691 } 1692 1693 /** 1694 * Transfers a node from a condition queue onto sync queue. 1695 * Returns true if successful. 1696 * @param node the node 1697 * @return true if successfully transferred (else the node was 1698 * cancelled before signal) 1699 */ transferForSignal(Node node)1700 final boolean transferForSignal(Node node) { 1701 /* 1702 * If cannot change waitStatus, the node has been cancelled. 1703 */ 1704 if (!node.compareAndSetWaitStatus(Node.CONDITION, 0)) 1705 return false; 1706 1707 /* 1708 * Splice onto queue and try to set waitStatus of predecessor to 1709 * indicate that thread is (probably) waiting. If cancelled or 1710 * attempt to set waitStatus fails, wake up to resync (in which 1711 * case the waitStatus can be transiently and harmlessly wrong). 1712 */ 1713 Node p = enq(node); 1714 int ws = p.waitStatus; 1715 if (ws > 0 || !p.compareAndSetWaitStatus(ws, Node.SIGNAL)) 1716 LockSupport.unpark(node.thread); 1717 return true; 1718 } 1719 1720 /** 1721 * Transfers node, if necessary, to sync queue after a cancelled wait. 1722 * Returns true if thread was cancelled before being signalled. 1723 * 1724 * @param node the node 1725 * @return true if cancelled before the node was signalled 1726 */ transferAfterCancelledWait(Node node)1727 final boolean transferAfterCancelledWait(Node node) { 1728 if (node.compareAndSetWaitStatus(Node.CONDITION, 0)) { 1729 enq(node); 1730 return true; 1731 } 1732 /* 1733 * If we lost out to a signal(), then we can't proceed 1734 * until it finishes its enq(). Cancelling during an 1735 * incomplete transfer is both rare and transient, so just 1736 * spin. 1737 */ 1738 while (!isOnSyncQueue(node)) 1739 Thread.yield(); 1740 return false; 1741 } 1742 1743 /** 1744 * Invokes release with current state value; returns saved state. 1745 * Cancels node and throws exception on failure. 1746 * @param node the condition node for this wait 1747 * @return previous sync state 1748 */ fullyRelease(Node node)1749 final int fullyRelease(Node node) { 1750 try { 1751 int savedState = getState(); 1752 if (release(savedState)) 1753 return savedState; 1754 throw new IllegalMonitorStateException(); 1755 } catch (Throwable t) { 1756 node.waitStatus = Node.CANCELLED; 1757 throw t; 1758 } 1759 } 1760 1761 // Instrumentation methods for conditions 1762 1763 /** 1764 * Queries whether the given ConditionObject 1765 * uses this synchronizer as its lock. 1766 * 1767 * @param condition the condition 1768 * @return {@code true} if owned 1769 * @throws NullPointerException if the condition is null 1770 */ owns(ConditionObject condition)1771 public final boolean owns(ConditionObject condition) { 1772 return condition.isOwnedBy(this); 1773 } 1774 1775 /** 1776 * Queries whether any threads are waiting on the given condition 1777 * associated with this synchronizer. Note that because timeouts 1778 * and interrupts may occur at any time, a {@code true} return 1779 * does not guarantee that a future {@code signal} will awaken 1780 * any threads. This method is designed primarily for use in 1781 * monitoring of the system state. 1782 * 1783 * @param condition the condition 1784 * @return {@code true} if there are any waiting threads 1785 * @throws IllegalMonitorStateException if exclusive synchronization 1786 * is not held 1787 * @throws IllegalArgumentException if the given condition is 1788 * not associated with this synchronizer 1789 * @throws NullPointerException if the condition is null 1790 */ hasWaiters(ConditionObject condition)1791 public final boolean hasWaiters(ConditionObject condition) { 1792 if (!owns(condition)) 1793 throw new IllegalArgumentException("Not owner"); 1794 return condition.hasWaiters(); 1795 } 1796 1797 /** 1798 * Returns an estimate of the number of threads waiting on the 1799 * given condition associated with this synchronizer. Note that 1800 * because timeouts and interrupts may occur at any time, the 1801 * estimate serves only as an upper bound on the actual number of 1802 * waiters. This method is designed for use in monitoring system 1803 * state, not for synchronization control. 1804 * 1805 * @param condition the condition 1806 * @return the estimated number of waiting threads 1807 * @throws IllegalMonitorStateException if exclusive synchronization 1808 * is not held 1809 * @throws IllegalArgumentException if the given condition is 1810 * not associated with this synchronizer 1811 * @throws NullPointerException if the condition is null 1812 */ getWaitQueueLength(ConditionObject condition)1813 public final int getWaitQueueLength(ConditionObject condition) { 1814 if (!owns(condition)) 1815 throw new IllegalArgumentException("Not owner"); 1816 return condition.getWaitQueueLength(); 1817 } 1818 1819 /** 1820 * Returns a collection containing those threads that may be 1821 * waiting on the given condition associated with this 1822 * synchronizer. Because the actual set of threads may change 1823 * dynamically while constructing this result, the returned 1824 * collection is only a best-effort estimate. The elements of the 1825 * returned collection are in no particular order. 1826 * 1827 * @param condition the condition 1828 * @return the collection of threads 1829 * @throws IllegalMonitorStateException if exclusive synchronization 1830 * is not held 1831 * @throws IllegalArgumentException if the given condition is 1832 * not associated with this synchronizer 1833 * @throws NullPointerException if the condition is null 1834 */ getWaitingThreads(ConditionObject condition)1835 public final Collection<Thread> getWaitingThreads(ConditionObject condition) { 1836 if (!owns(condition)) 1837 throw new IllegalArgumentException("Not owner"); 1838 return condition.getWaitingThreads(); 1839 } 1840 1841 /** 1842 * Condition implementation for a {@link 1843 * AbstractQueuedSynchronizer} serving as the basis of a {@link 1844 * Lock} implementation. 1845 * 1846 * <p>Method documentation for this class describes mechanics, 1847 * not behavioral specifications from the point of view of Lock 1848 * and Condition users. Exported versions of this class will in 1849 * general need to be accompanied by documentation describing 1850 * condition semantics that rely on those of the associated 1851 * {@code AbstractQueuedSynchronizer}. 1852 * 1853 * <p>This class is Serializable, but all fields are transient, 1854 * so deserialized conditions have no waiters. 1855 */ 1856 public class ConditionObject implements Condition, java.io.Serializable { 1857 private static final long serialVersionUID = 1173984872572414699L; 1858 /** First node of condition queue. */ 1859 private transient Node firstWaiter; 1860 /** Last node of condition queue. */ 1861 private transient Node lastWaiter; 1862 1863 /** 1864 * Creates a new {@code ConditionObject} instance. 1865 */ ConditionObject()1866 public ConditionObject() { } 1867 1868 // Internal methods 1869 1870 /** 1871 * Adds a new waiter to wait queue. 1872 * @return its new wait node 1873 */ addConditionWaiter()1874 private Node addConditionWaiter() { 1875 Node t = lastWaiter; 1876 // If lastWaiter is cancelled, clean out. 1877 if (t != null && t.waitStatus != Node.CONDITION) { 1878 unlinkCancelledWaiters(); 1879 t = lastWaiter; 1880 } 1881 1882 Node node = new Node(Node.CONDITION); 1883 1884 if (t == null) 1885 firstWaiter = node; 1886 else 1887 t.nextWaiter = node; 1888 lastWaiter = node; 1889 return node; 1890 } 1891 1892 /** 1893 * Removes and transfers nodes until hit non-cancelled one or 1894 * null. Split out from signal in part to encourage compilers 1895 * to inline the case of no waiters. 1896 * @param first (non-null) the first node on condition queue 1897 */ doSignal(Node first)1898 private void doSignal(Node first) { 1899 do { 1900 if ( (firstWaiter = first.nextWaiter) == null) 1901 lastWaiter = null; 1902 first.nextWaiter = null; 1903 } while (!transferForSignal(first) && 1904 (first = firstWaiter) != null); 1905 } 1906 1907 /** 1908 * Removes and transfers all nodes. 1909 * @param first (non-null) the first node on condition queue 1910 */ doSignalAll(Node first)1911 private void doSignalAll(Node first) { 1912 lastWaiter = firstWaiter = null; 1913 do { 1914 Node next = first.nextWaiter; 1915 first.nextWaiter = null; 1916 transferForSignal(first); 1917 first = next; 1918 } while (first != null); 1919 } 1920 1921 /** 1922 * Unlinks cancelled waiter nodes from condition queue. 1923 * Called only while holding lock. This is called when 1924 * cancellation occurred during condition wait, and upon 1925 * insertion of a new waiter when lastWaiter is seen to have 1926 * been cancelled. This method is needed to avoid garbage 1927 * retention in the absence of signals. So even though it may 1928 * require a full traversal, it comes into play only when 1929 * timeouts or cancellations occur in the absence of 1930 * signals. It traverses all nodes rather than stopping at a 1931 * particular target to unlink all pointers to garbage nodes 1932 * without requiring many re-traversals during cancellation 1933 * storms. 1934 */ unlinkCancelledWaiters()1935 private void unlinkCancelledWaiters() { 1936 Node t = firstWaiter; 1937 Node trail = null; 1938 while (t != null) { 1939 Node next = t.nextWaiter; 1940 if (t.waitStatus != Node.CONDITION) { 1941 t.nextWaiter = null; 1942 if (trail == null) 1943 firstWaiter = next; 1944 else 1945 trail.nextWaiter = next; 1946 if (next == null) 1947 lastWaiter = trail; 1948 } 1949 else 1950 trail = t; 1951 t = next; 1952 } 1953 } 1954 1955 // public methods 1956 1957 /** 1958 * Moves the longest-waiting thread, if one exists, from the 1959 * wait queue for this condition to the wait queue for the 1960 * owning lock. 1961 * 1962 * @throws IllegalMonitorStateException if {@link #isHeldExclusively} 1963 * returns {@code false} 1964 */ signal()1965 public final void signal() { 1966 if (!isHeldExclusively()) 1967 throw new IllegalMonitorStateException(); 1968 Node first = firstWaiter; 1969 if (first != null) 1970 doSignal(first); 1971 } 1972 1973 /** 1974 * Moves all threads from the wait queue for this condition to 1975 * the wait queue for the owning lock. 1976 * 1977 * @throws IllegalMonitorStateException if {@link #isHeldExclusively} 1978 * returns {@code false} 1979 */ signalAll()1980 public final void signalAll() { 1981 if (!isHeldExclusively()) 1982 throw new IllegalMonitorStateException(); 1983 Node first = firstWaiter; 1984 if (first != null) 1985 doSignalAll(first); 1986 } 1987 1988 /** 1989 * Implements uninterruptible condition wait. 1990 * <ol> 1991 * <li>Save lock state returned by {@link #getState}. 1992 * <li>Invoke {@link #release} with saved state as argument, 1993 * throwing IllegalMonitorStateException if it fails. 1994 * <li>Block until signalled. 1995 * <li>Reacquire by invoking specialized version of 1996 * {@link #acquire} with saved state as argument. 1997 * </ol> 1998 */ awaitUninterruptibly()1999 public final void awaitUninterruptibly() { 2000 Node node = addConditionWaiter(); 2001 int savedState = fullyRelease(node); 2002 boolean interrupted = false; 2003 while (!isOnSyncQueue(node)) { 2004 LockSupport.park(this); 2005 if (Thread.interrupted()) 2006 interrupted = true; 2007 } 2008 if (acquireQueued(node, savedState) || interrupted) 2009 selfInterrupt(); 2010 } 2011 2012 /* 2013 * For interruptible waits, we need to track whether to throw 2014 * InterruptedException, if interrupted while blocked on 2015 * condition, versus reinterrupt current thread, if 2016 * interrupted while blocked waiting to re-acquire. 2017 */ 2018 2019 /** Mode meaning to reinterrupt on exit from wait */ 2020 private static final int REINTERRUPT = 1; 2021 /** Mode meaning to throw InterruptedException on exit from wait */ 2022 private static final int THROW_IE = -1; 2023 2024 /** 2025 * Checks for interrupt, returning THROW_IE if interrupted 2026 * before signalled, REINTERRUPT if after signalled, or 2027 * 0 if not interrupted. 2028 */ checkInterruptWhileWaiting(Node node)2029 private int checkInterruptWhileWaiting(Node node) { 2030 return Thread.interrupted() ? 2031 (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) : 2032 0; 2033 } 2034 2035 /** 2036 * Throws InterruptedException, reinterrupts current thread, or 2037 * does nothing, depending on mode. 2038 */ reportInterruptAfterWait(int interruptMode)2039 private void reportInterruptAfterWait(int interruptMode) 2040 throws InterruptedException { 2041 if (interruptMode == THROW_IE) 2042 throw new InterruptedException(); 2043 else if (interruptMode == REINTERRUPT) 2044 selfInterrupt(); 2045 } 2046 2047 /** 2048 * Implements interruptible condition wait. 2049 * <ol> 2050 * <li>If current thread is interrupted, throw InterruptedException. 2051 * <li>Save lock state returned by {@link #getState}. 2052 * <li>Invoke {@link #release} with saved state as argument, 2053 * throwing IllegalMonitorStateException if it fails. 2054 * <li>Block until signalled or interrupted. 2055 * <li>Reacquire by invoking specialized version of 2056 * {@link #acquire} with saved state as argument. 2057 * <li>If interrupted while blocked in step 4, throw InterruptedException. 2058 * </ol> 2059 */ await()2060 public final void await() throws InterruptedException { 2061 if (Thread.interrupted()) 2062 throw new InterruptedException(); 2063 Node node = addConditionWaiter(); 2064 int savedState = fullyRelease(node); 2065 int interruptMode = 0; 2066 while (!isOnSyncQueue(node)) { 2067 LockSupport.park(this); 2068 if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) 2069 break; 2070 } 2071 if (acquireQueued(node, savedState) && interruptMode != THROW_IE) 2072 interruptMode = REINTERRUPT; 2073 if (node.nextWaiter != null) // clean up if cancelled 2074 unlinkCancelledWaiters(); 2075 if (interruptMode != 0) 2076 reportInterruptAfterWait(interruptMode); 2077 } 2078 2079 /** 2080 * Implements timed condition wait. 2081 * <ol> 2082 * <li>If current thread is interrupted, throw InterruptedException. 2083 * <li>Save lock state returned by {@link #getState}. 2084 * <li>Invoke {@link #release} with saved state as argument, 2085 * throwing IllegalMonitorStateException if it fails. 2086 * <li>Block until signalled, interrupted, or timed out. 2087 * <li>Reacquire by invoking specialized version of 2088 * {@link #acquire} with saved state as argument. 2089 * <li>If interrupted while blocked in step 4, throw InterruptedException. 2090 * </ol> 2091 */ awaitNanos(long nanosTimeout)2092 public final long awaitNanos(long nanosTimeout) 2093 throws InterruptedException { 2094 if (Thread.interrupted()) 2095 throw new InterruptedException(); 2096 // We don't check for nanosTimeout <= 0L here, to allow 2097 // awaitNanos(0) as a way to "yield the lock". 2098 final long deadline = System.nanoTime() + nanosTimeout; 2099 long initialNanos = nanosTimeout; 2100 Node node = addConditionWaiter(); 2101 int savedState = fullyRelease(node); 2102 int interruptMode = 0; 2103 while (!isOnSyncQueue(node)) { 2104 if (nanosTimeout <= 0L) { 2105 transferAfterCancelledWait(node); 2106 break; 2107 } 2108 if (nanosTimeout > SPIN_FOR_TIMEOUT_THRESHOLD) 2109 LockSupport.parkNanos(this, nanosTimeout); 2110 if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) 2111 break; 2112 nanosTimeout = deadline - System.nanoTime(); 2113 } 2114 if (acquireQueued(node, savedState) && interruptMode != THROW_IE) 2115 interruptMode = REINTERRUPT; 2116 if (node.nextWaiter != null) 2117 unlinkCancelledWaiters(); 2118 if (interruptMode != 0) 2119 reportInterruptAfterWait(interruptMode); 2120 long remaining = deadline - System.nanoTime(); // avoid overflow 2121 return (remaining <= initialNanos) ? remaining : Long.MIN_VALUE; 2122 } 2123 2124 /** 2125 * Implements absolute timed condition wait. 2126 * <ol> 2127 * <li>If current thread is interrupted, throw InterruptedException. 2128 * <li>Save lock state returned by {@link #getState}. 2129 * <li>Invoke {@link #release} with saved state as argument, 2130 * throwing IllegalMonitorStateException if it fails. 2131 * <li>Block until signalled, interrupted, or timed out. 2132 * <li>Reacquire by invoking specialized version of 2133 * {@link #acquire} with saved state as argument. 2134 * <li>If interrupted while blocked in step 4, throw InterruptedException. 2135 * <li>If timed out while blocked in step 4, return false, else true. 2136 * </ol> 2137 */ awaitUntil(Date deadline)2138 public final boolean awaitUntil(Date deadline) 2139 throws InterruptedException { 2140 long abstime = deadline.getTime(); 2141 if (Thread.interrupted()) 2142 throw new InterruptedException(); 2143 Node node = addConditionWaiter(); 2144 int savedState = fullyRelease(node); 2145 boolean timedout = false; 2146 int interruptMode = 0; 2147 while (!isOnSyncQueue(node)) { 2148 if (System.currentTimeMillis() >= abstime) { 2149 timedout = transferAfterCancelledWait(node); 2150 break; 2151 } 2152 LockSupport.parkUntil(this, abstime); 2153 if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) 2154 break; 2155 } 2156 if (acquireQueued(node, savedState) && interruptMode != THROW_IE) 2157 interruptMode = REINTERRUPT; 2158 if (node.nextWaiter != null) 2159 unlinkCancelledWaiters(); 2160 if (interruptMode != 0) 2161 reportInterruptAfterWait(interruptMode); 2162 return !timedout; 2163 } 2164 2165 /** 2166 * Implements timed condition wait. 2167 * <ol> 2168 * <li>If current thread is interrupted, throw InterruptedException. 2169 * <li>Save lock state returned by {@link #getState}. 2170 * <li>Invoke {@link #release} with saved state as argument, 2171 * throwing IllegalMonitorStateException if it fails. 2172 * <li>Block until signalled, interrupted, or timed out. 2173 * <li>Reacquire by invoking specialized version of 2174 * {@link #acquire} with saved state as argument. 2175 * <li>If interrupted while blocked in step 4, throw InterruptedException. 2176 * <li>If timed out while blocked in step 4, return false, else true. 2177 * </ol> 2178 */ await(long time, TimeUnit unit)2179 public final boolean await(long time, TimeUnit unit) 2180 throws InterruptedException { 2181 long nanosTimeout = unit.toNanos(time); 2182 if (Thread.interrupted()) 2183 throw new InterruptedException(); 2184 // We don't check for nanosTimeout <= 0L here, to allow 2185 // await(0, unit) as a way to "yield the lock". 2186 final long deadline = System.nanoTime() + nanosTimeout; 2187 Node node = addConditionWaiter(); 2188 int savedState = fullyRelease(node); 2189 boolean timedout = false; 2190 int interruptMode = 0; 2191 while (!isOnSyncQueue(node)) { 2192 if (nanosTimeout <= 0L) { 2193 timedout = transferAfterCancelledWait(node); 2194 break; 2195 } 2196 if (nanosTimeout > SPIN_FOR_TIMEOUT_THRESHOLD) 2197 LockSupport.parkNanos(this, nanosTimeout); 2198 if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) 2199 break; 2200 nanosTimeout = deadline - System.nanoTime(); 2201 } 2202 if (acquireQueued(node, savedState) && interruptMode != THROW_IE) 2203 interruptMode = REINTERRUPT; 2204 if (node.nextWaiter != null) 2205 unlinkCancelledWaiters(); 2206 if (interruptMode != 0) 2207 reportInterruptAfterWait(interruptMode); 2208 return !timedout; 2209 } 2210 2211 // support for instrumentation 2212 2213 /** 2214 * Returns true if this condition was created by the given 2215 * synchronization object. 2216 * 2217 * @return {@code true} if owned 2218 */ isOwnedBy(AbstractQueuedSynchronizer sync)2219 final boolean isOwnedBy(AbstractQueuedSynchronizer sync) { 2220 return sync == AbstractQueuedSynchronizer.this; 2221 } 2222 2223 /** 2224 * Queries whether any threads are waiting on this condition. 2225 * Implements {@link AbstractQueuedSynchronizer#hasWaiters(ConditionObject)}. 2226 * 2227 * @return {@code true} if there are any waiting threads 2228 * @throws IllegalMonitorStateException if {@link #isHeldExclusively} 2229 * returns {@code false} 2230 */ hasWaiters()2231 protected final boolean hasWaiters() { 2232 if (!isHeldExclusively()) 2233 throw new IllegalMonitorStateException(); 2234 for (Node w = firstWaiter; w != null; w = w.nextWaiter) { 2235 if (w.waitStatus == Node.CONDITION) 2236 return true; 2237 } 2238 return false; 2239 } 2240 2241 /** 2242 * Returns an estimate of the number of threads waiting on 2243 * this condition. 2244 * Implements {@link AbstractQueuedSynchronizer#getWaitQueueLength(ConditionObject)}. 2245 * 2246 * @return the estimated number of waiting threads 2247 * @throws IllegalMonitorStateException if {@link #isHeldExclusively} 2248 * returns {@code false} 2249 */ getWaitQueueLength()2250 protected final int getWaitQueueLength() { 2251 if (!isHeldExclusively()) 2252 throw new IllegalMonitorStateException(); 2253 int n = 0; 2254 for (Node w = firstWaiter; w != null; w = w.nextWaiter) { 2255 if (w.waitStatus == Node.CONDITION) 2256 ++n; 2257 } 2258 return n; 2259 } 2260 2261 /** 2262 * Returns a collection containing those threads that may be 2263 * waiting on this Condition. 2264 * Implements {@link AbstractQueuedSynchronizer#getWaitingThreads(ConditionObject)}. 2265 * 2266 * @return the collection of threads 2267 * @throws IllegalMonitorStateException if {@link #isHeldExclusively} 2268 * returns {@code false} 2269 */ getWaitingThreads()2270 protected final Collection<Thread> getWaitingThreads() { 2271 if (!isHeldExclusively()) 2272 throw new IllegalMonitorStateException(); 2273 ArrayList<Thread> list = new ArrayList<>(); 2274 for (Node w = firstWaiter; w != null; w = w.nextWaiter) { 2275 if (w.waitStatus == Node.CONDITION) { 2276 Thread t = w.thread; 2277 if (t != null) 2278 list.add(t); 2279 } 2280 } 2281 return list; 2282 } 2283 } 2284 2285 /** 2286 * Setup to support compareAndSet. We need to natively implement 2287 * this here: For the sake of permitting future enhancements, we 2288 * cannot explicitly subclass AtomicInteger, which would be 2289 * efficient and useful otherwise. So, as the lesser of evils, we 2290 * natively implement using hotspot intrinsics API. And while we 2291 * are at it, we do the same for other CASable fields (which could 2292 * otherwise be done with atomic field updaters). 2293 */ 2294 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe(); 2295 private static final long STATE; 2296 private static final long HEAD; 2297 private static final long TAIL; 2298 2299 static { 2300 try { 2301 STATE = U.objectFieldOffset 2302 (AbstractQueuedSynchronizer.class.getDeclaredField("state")); 2303 HEAD = U.objectFieldOffset 2304 (AbstractQueuedSynchronizer.class.getDeclaredField("head")); 2305 TAIL = U.objectFieldOffset 2306 (AbstractQueuedSynchronizer.class.getDeclaredField("tail")); 2307 } catch (ReflectiveOperationException e) { 2308 throw new Error(e); 2309 } 2310 2311 // Reduce the risk of rare disastrous classloading in first call to 2312 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773 2313 Class<?> ensureLoaded = LockSupport.class; 2314 } 2315 2316 /** 2317 * Initializes head and tail fields on first contention. 2318 */ initializeSyncQueue()2319 private final void initializeSyncQueue() { 2320 Node h; 2321 if (U.compareAndSwapObject(this, HEAD, null, (h = new Node()))) 2322 tail = h; 2323 } 2324 2325 /** 2326 * CASes tail field. 2327 */ compareAndSetTail(Node expect, Node update)2328 private final boolean compareAndSetTail(Node expect, Node update) { 2329 return U.compareAndSwapObject(this, TAIL, expect, update); 2330 } 2331 } 2332