1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/heap/heap-controller.h"
6 #include "src/isolate-inl.h"
7
8 namespace v8 {
9 namespace internal {
10
11 // Given GC speed in bytes per ms, the allocation throughput in bytes per ms
12 // (mutator speed), this function returns the heap growing factor that will
13 // achieve the kTargetMutatorUtilisation if the GC speed and the mutator speed
14 // remain the same until the next GC.
15 //
16 // For a fixed time-frame T = TM + TG, the mutator utilization is the ratio
17 // TM / (TM + TG), where TM is the time spent in the mutator and TG is the
18 // time spent in the garbage collector.
19 //
20 // Let MU be kTargetMutatorUtilisation, the desired mutator utilization for the
21 // time-frame from the end of the current GC to the end of the next GC. Based
22 // on the MU we can compute the heap growing factor F as
23 //
24 // F = R * (1 - MU) / (R * (1 - MU) - MU), where R = gc_speed / mutator_speed.
25 //
26 // This formula can be derived as follows.
27 //
28 // F = Limit / Live by definition, where the Limit is the allocation limit,
29 // and the Live is size of live objects.
30 // Let’s assume that we already know the Limit. Then:
31 // TG = Limit / gc_speed
32 // TM = (TM + TG) * MU, by definition of MU.
33 // TM = TG * MU / (1 - MU)
34 // TM = Limit * MU / (gc_speed * (1 - MU))
35 // On the other hand, if the allocation throughput remains constant:
36 // Limit = Live + TM * allocation_throughput = Live + TM * mutator_speed
37 // Solving it for TM, we get
38 // TM = (Limit - Live) / mutator_speed
39 // Combining the two equation for TM:
40 // (Limit - Live) / mutator_speed = Limit * MU / (gc_speed * (1 - MU))
41 // (Limit - Live) = Limit * MU * mutator_speed / (gc_speed * (1 - MU))
42 // substitute R = gc_speed / mutator_speed
43 // (Limit - Live) = Limit * MU / (R * (1 - MU))
44 // substitute F = Limit / Live
45 // F - 1 = F * MU / (R * (1 - MU))
46 // F - F * MU / (R * (1 - MU)) = 1
47 // F * (1 - MU / (R * (1 - MU))) = 1
48 // F * (R * (1 - MU) - MU) / (R * (1 - MU)) = 1
49 // F = R * (1 - MU) / (R * (1 - MU) - MU)
GrowingFactor(double gc_speed,double mutator_speed,double max_factor)50 double MemoryController::GrowingFactor(double gc_speed, double mutator_speed,
51 double max_factor) {
52 DCHECK_LE(kMinGrowingFactor, max_factor);
53 DCHECK_GE(kMaxGrowingFactor, max_factor);
54 if (gc_speed == 0 || mutator_speed == 0) return max_factor;
55
56 const double speed_ratio = gc_speed / mutator_speed;
57
58 const double a = speed_ratio * (1 - kTargetMutatorUtilization);
59 const double b =
60 speed_ratio * (1 - kTargetMutatorUtilization) - kTargetMutatorUtilization;
61
62 // The factor is a / b, but we need to check for small b first.
63 double factor = (a < b * max_factor) ? a / b : max_factor;
64 factor = Min(factor, max_factor);
65 factor = Max(factor, kMinGrowingFactor);
66 return factor;
67 }
68
MaxGrowingFactor(size_t curr_max_size)69 double MemoryController::MaxGrowingFactor(size_t curr_max_size) {
70 const double min_small_factor = 1.3;
71 const double max_small_factor = 2.0;
72 const double high_factor = 4.0;
73
74 size_t max_size_in_mb = curr_max_size / MB;
75 max_size_in_mb = Max(max_size_in_mb, kMinSize);
76
77 // If we are on a device with lots of memory, we allow a high heap
78 // growing factor.
79 if (max_size_in_mb >= kMaxSize) {
80 return high_factor;
81 }
82
83 DCHECK_GE(max_size_in_mb, kMinSize);
84 DCHECK_LT(max_size_in_mb, kMaxSize);
85
86 // On smaller devices we linearly scale the factor: (X-A)/(B-A)*(D-C)+C
87 double factor = (max_size_in_mb - kMinSize) *
88 (max_small_factor - min_small_factor) /
89 (kMaxSize - kMinSize) +
90 min_small_factor;
91 return factor;
92 }
93
CalculateAllocationLimit(size_t curr_size,size_t max_size,double gc_speed,double mutator_speed,size_t new_space_capacity,Heap::HeapGrowingMode growing_mode)94 size_t MemoryController::CalculateAllocationLimit(
95 size_t curr_size, size_t max_size, double gc_speed, double mutator_speed,
96 size_t new_space_capacity, Heap::HeapGrowingMode growing_mode) {
97 double max_factor = MaxGrowingFactor(max_size);
98 double factor = GrowingFactor(gc_speed, mutator_speed, max_factor);
99
100 if (FLAG_trace_gc_verbose) {
101 heap_->isolate()->PrintWithTimestamp(
102 "%s factor %.1f based on mu=%.3f, speed_ratio=%.f "
103 "(gc=%.f, mutator=%.f)\n",
104 ControllerName(), factor, kTargetMutatorUtilization,
105 gc_speed / mutator_speed, gc_speed, mutator_speed);
106 }
107
108 if (growing_mode == Heap::HeapGrowingMode::kConservative ||
109 growing_mode == Heap::HeapGrowingMode::kSlow) {
110 factor = Min(factor, kConservativeGrowingFactor);
111 }
112
113 if (growing_mode == Heap::HeapGrowingMode::kMinimal) {
114 factor = kMinGrowingFactor;
115 }
116
117 if (FLAG_heap_growing_percent > 0) {
118 factor = 1.0 + FLAG_heap_growing_percent / 100.0;
119 }
120
121 CHECK_LT(1.0, factor);
122 CHECK_LT(0, curr_size);
123 uint64_t limit = static_cast<uint64_t>(curr_size * factor);
124 limit = Max(limit, static_cast<uint64_t>(curr_size) +
125 MinimumAllocationLimitGrowingStep(growing_mode));
126 limit += new_space_capacity;
127 uint64_t halfway_to_the_max =
128 (static_cast<uint64_t>(curr_size) + max_size) / 2;
129 size_t result = static_cast<size_t>(Min(limit, halfway_to_the_max));
130
131 if (FLAG_trace_gc_verbose) {
132 heap_->isolate()->PrintWithTimestamp(
133 "%s Limit: old size: %" PRIuS " KB, new limit: %" PRIuS " KB (%.1f)\n",
134 ControllerName(), curr_size / KB, result / KB, factor);
135 }
136
137 return result;
138 }
139
MinimumAllocationLimitGrowingStep(Heap::HeapGrowingMode growing_mode)140 size_t MemoryController::MinimumAllocationLimitGrowingStep(
141 Heap::HeapGrowingMode growing_mode) {
142 const size_t kRegularAllocationLimitGrowingStep = 8;
143 const size_t kLowMemoryAllocationLimitGrowingStep = 2;
144 size_t limit = (Page::kPageSize > MB ? Page::kPageSize : MB);
145 return limit * (growing_mode == Heap::HeapGrowingMode::kConservative
146 ? kLowMemoryAllocationLimitGrowingStep
147 : kRegularAllocationLimitGrowingStep);
148 }
149
150 } // namespace internal
151 } // namespace v8
152