1 //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the target machine instruction set to the code generator. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H 15 #define LLVM_TARGET_TARGETINSTRINFO_H 16 17 #include "llvm/MC/MCInstrInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 20 namespace llvm { 21 22 class InstrItineraryData; 23 class LiveVariables; 24 class MCAsmInfo; 25 class MachineMemOperand; 26 class MachineRegisterInfo; 27 class MDNode; 28 class MCInst; 29 class SDNode; 30 class ScheduleHazardRecognizer; 31 class SelectionDAG; 32 class ScheduleDAG; 33 class TargetRegisterClass; 34 class TargetRegisterInfo; 35 class BranchProbability; 36 37 template<class T> class SmallVectorImpl; 38 39 40 //--------------------------------------------------------------------------- 41 /// 42 /// TargetInstrInfo - Interface to description of machine instruction set 43 /// 44 class TargetInstrInfo : public MCInstrInfo { 45 TargetInstrInfo(const TargetInstrInfo &); // DO NOT IMPLEMENT 46 void operator=(const TargetInstrInfo &); // DO NOT IMPLEMENT 47 public: 48 TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1) CallFrameSetupOpcode(CFSetupOpcode)49 : CallFrameSetupOpcode(CFSetupOpcode), 50 CallFrameDestroyOpcode(CFDestroyOpcode) { 51 } 52 53 virtual ~TargetInstrInfo(); 54 55 /// getRegClass - Givem a machine instruction descriptor, returns the register 56 /// class constraint for OpNum, or NULL. 57 const TargetRegisterClass *getRegClass(const MCInstrDesc &TID, 58 unsigned OpNum, 59 const TargetRegisterInfo *TRI) const; 60 61 /// isTriviallyReMaterializable - Return true if the instruction is trivially 62 /// rematerializable, meaning it has no side effects and requires no operands 63 /// that aren't always available. 64 bool isTriviallyReMaterializable(const MachineInstr *MI, 65 AliasAnalysis *AA = 0) const { 66 return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF || 67 (MI->getDesc().isRematerializable() && 68 (isReallyTriviallyReMaterializable(MI, AA) || 69 isReallyTriviallyReMaterializableGeneric(MI, AA))); 70 } 71 72 protected: 73 /// isReallyTriviallyReMaterializable - For instructions with opcodes for 74 /// which the M_REMATERIALIZABLE flag is set, this hook lets the target 75 /// specify whether the instruction is actually trivially rematerializable, 76 /// taking into consideration its operands. This predicate must return false 77 /// if the instruction has any side effects other than producing a value, or 78 /// if it requres any address registers that are not always available. isReallyTriviallyReMaterializable(const MachineInstr * MI,AliasAnalysis * AA)79 virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI, 80 AliasAnalysis *AA) const { 81 return false; 82 } 83 84 private: 85 /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes 86 /// for which the M_REMATERIALIZABLE flag is set and the target hook 87 /// isReallyTriviallyReMaterializable returns false, this function does 88 /// target-independent tests to determine if the instruction is really 89 /// trivially rematerializable. 90 bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, 91 AliasAnalysis *AA) const; 92 93 public: 94 /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the 95 /// frame setup/destroy instructions if they exist (-1 otherwise). Some 96 /// targets use pseudo instructions in order to abstract away the difference 97 /// between operating with a frame pointer and operating without, through the 98 /// use of these two instructions. 99 /// getCallFrameSetupOpcode()100 int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; } getCallFrameDestroyOpcode()101 int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; } 102 103 /// isCoalescableExtInstr - Return true if the instruction is a "coalescable" 104 /// extension instruction. That is, it's like a copy where it's legal for the 105 /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns 106 /// true, then it's expected the pre-extension value is available as a subreg 107 /// of the result register. This also returns the sub-register index in 108 /// SubIdx. isCoalescableExtInstr(const MachineInstr & MI,unsigned & SrcReg,unsigned & DstReg,unsigned & SubIdx)109 virtual bool isCoalescableExtInstr(const MachineInstr &MI, 110 unsigned &SrcReg, unsigned &DstReg, 111 unsigned &SubIdx) const { 112 return false; 113 } 114 115 /// isLoadFromStackSlot - If the specified machine instruction is a direct 116 /// load from a stack slot, return the virtual or physical register number of 117 /// the destination along with the FrameIndex of the loaded stack slot. If 118 /// not, return 0. This predicate must return 0 if the instruction has 119 /// any side effects other than loading from the stack slot. isLoadFromStackSlot(const MachineInstr * MI,int & FrameIndex)120 virtual unsigned isLoadFromStackSlot(const MachineInstr *MI, 121 int &FrameIndex) const { 122 return 0; 123 } 124 125 /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination 126 /// stack locations as well. This uses a heuristic so it isn't 127 /// reliable for correctness. isLoadFromStackSlotPostFE(const MachineInstr * MI,int & FrameIndex)128 virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI, 129 int &FrameIndex) const { 130 return 0; 131 } 132 133 /// hasLoadFromStackSlot - If the specified machine instruction has 134 /// a load from a stack slot, return true along with the FrameIndex 135 /// of the loaded stack slot and the machine mem operand containing 136 /// the reference. If not, return false. Unlike 137 /// isLoadFromStackSlot, this returns true for any instructions that 138 /// loads from the stack. This is just a hint, as some cases may be 139 /// missed. hasLoadFromStackSlot(const MachineInstr * MI,const MachineMemOperand * & MMO,int & FrameIndex)140 virtual bool hasLoadFromStackSlot(const MachineInstr *MI, 141 const MachineMemOperand *&MMO, 142 int &FrameIndex) const { 143 return 0; 144 } 145 146 /// isStoreToStackSlot - If the specified machine instruction is a direct 147 /// store to a stack slot, return the virtual or physical register number of 148 /// the source reg along with the FrameIndex of the loaded stack slot. If 149 /// not, return 0. This predicate must return 0 if the instruction has 150 /// any side effects other than storing to the stack slot. isStoreToStackSlot(const MachineInstr * MI,int & FrameIndex)151 virtual unsigned isStoreToStackSlot(const MachineInstr *MI, 152 int &FrameIndex) const { 153 return 0; 154 } 155 156 /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination 157 /// stack locations as well. This uses a heuristic so it isn't 158 /// reliable for correctness. isStoreToStackSlotPostFE(const MachineInstr * MI,int & FrameIndex)159 virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI, 160 int &FrameIndex) const { 161 return 0; 162 } 163 164 /// hasStoreToStackSlot - If the specified machine instruction has a 165 /// store to a stack slot, return true along with the FrameIndex of 166 /// the loaded stack slot and the machine mem operand containing the 167 /// reference. If not, return false. Unlike isStoreToStackSlot, 168 /// this returns true for any instructions that stores to the 169 /// stack. This is just a hint, as some cases may be missed. hasStoreToStackSlot(const MachineInstr * MI,const MachineMemOperand * & MMO,int & FrameIndex)170 virtual bool hasStoreToStackSlot(const MachineInstr *MI, 171 const MachineMemOperand *&MMO, 172 int &FrameIndex) const { 173 return 0; 174 } 175 176 /// reMaterialize - Re-issue the specified 'original' instruction at the 177 /// specific location targeting a new destination register. 178 /// The register in Orig->getOperand(0).getReg() will be substituted by 179 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with 180 /// SubIdx. 181 virtual void reMaterialize(MachineBasicBlock &MBB, 182 MachineBasicBlock::iterator MI, 183 unsigned DestReg, unsigned SubIdx, 184 const MachineInstr *Orig, 185 const TargetRegisterInfo &TRI) const = 0; 186 187 /// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the 188 /// two-addrss instruction inserted by two-address pass. scheduleTwoAddrSource(MachineInstr * SrcMI,MachineInstr * UseMI,const TargetRegisterInfo & TRI)189 virtual void scheduleTwoAddrSource(MachineInstr *SrcMI, 190 MachineInstr *UseMI, 191 const TargetRegisterInfo &TRI) const { 192 // Do nothing. 193 } 194 195 /// duplicate - Create a duplicate of the Orig instruction in MF. This is like 196 /// MachineFunction::CloneMachineInstr(), but the target may update operands 197 /// that are required to be unique. 198 /// 199 /// The instruction must be duplicable as indicated by isNotDuplicable(). 200 virtual MachineInstr *duplicate(MachineInstr *Orig, 201 MachineFunction &MF) const = 0; 202 203 /// convertToThreeAddress - This method must be implemented by targets that 204 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 205 /// may be able to convert a two-address instruction into one or more true 206 /// three-address instructions on demand. This allows the X86 target (for 207 /// example) to convert ADD and SHL instructions into LEA instructions if they 208 /// would require register copies due to two-addressness. 209 /// 210 /// This method returns a null pointer if the transformation cannot be 211 /// performed, otherwise it returns the last new instruction. 212 /// 213 virtual MachineInstr * convertToThreeAddress(MachineFunction::iterator & MFI,MachineBasicBlock::iterator & MBBI,LiveVariables * LV)214 convertToThreeAddress(MachineFunction::iterator &MFI, 215 MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const { 216 return 0; 217 } 218 219 /// commuteInstruction - If a target has any instructions that are 220 /// commutable but require converting to different instructions or making 221 /// non-trivial changes to commute them, this method can overloaded to do 222 /// that. The default implementation simply swaps the commutable operands. 223 /// If NewMI is false, MI is modified in place and returned; otherwise, a 224 /// new machine instruction is created and returned. Do not call this 225 /// method for a non-commutable instruction, but there may be some cases 226 /// where this method fails and returns null. 227 virtual MachineInstr *commuteInstruction(MachineInstr *MI, 228 bool NewMI = false) const = 0; 229 230 /// findCommutedOpIndices - If specified MI is commutable, return the two 231 /// operand indices that would swap value. Return false if the instruction 232 /// is not in a form which this routine understands. 233 virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, 234 unsigned &SrcOpIdx2) const = 0; 235 236 /// produceSameValue - Return true if two machine instructions would produce 237 /// identical values. By default, this is only true when the two instructions 238 /// are deemed identical except for defs. If this function is called when the 239 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for 240 /// aggressive checks. 241 virtual bool produceSameValue(const MachineInstr *MI0, 242 const MachineInstr *MI1, 243 const MachineRegisterInfo *MRI = 0) const = 0; 244 245 /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning 246 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't 247 /// implemented for a target). Upon success, this returns false and returns 248 /// with the following information in various cases: 249 /// 250 /// 1. If this block ends with no branches (it just falls through to its succ) 251 /// just return false, leaving TBB/FBB null. 252 /// 2. If this block ends with only an unconditional branch, it sets TBB to be 253 /// the destination block. 254 /// 3. If this block ends with a conditional branch and it falls through to a 255 /// successor block, it sets TBB to be the branch destination block and a 256 /// list of operands that evaluate the condition. These operands can be 257 /// passed to other TargetInstrInfo methods to create new branches. 258 /// 4. If this block ends with a conditional branch followed by an 259 /// unconditional branch, it returns the 'true' destination in TBB, the 260 /// 'false' destination in FBB, and a list of operands that evaluate the 261 /// condition. These operands can be passed to other TargetInstrInfo 262 /// methods to create new branches. 263 /// 264 /// Note that RemoveBranch and InsertBranch must be implemented to support 265 /// cases where this method returns success. 266 /// 267 /// If AllowModify is true, then this routine is allowed to modify the basic 268 /// block (e.g. delete instructions after the unconditional branch). 269 /// 270 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 271 MachineBasicBlock *&FBB, 272 SmallVectorImpl<MachineOperand> &Cond, 273 bool AllowModify = false) const { 274 return true; 275 } 276 277 /// RemoveBranch - Remove the branching code at the end of the specific MBB. 278 /// This is only invoked in cases where AnalyzeBranch returns success. It 279 /// returns the number of instructions that were removed. RemoveBranch(MachineBasicBlock & MBB)280 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const { 281 assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!"); 282 return 0; 283 } 284 285 /// InsertBranch - Insert branch code into the end of the specified 286 /// MachineBasicBlock. The operands to this method are the same as those 287 /// returned by AnalyzeBranch. This is only invoked in cases where 288 /// AnalyzeBranch returns success. It returns the number of instructions 289 /// inserted. 290 /// 291 /// It is also invoked by tail merging to add unconditional branches in 292 /// cases where AnalyzeBranch doesn't apply because there was no original 293 /// branch to analyze. At least this much must be implemented, else tail 294 /// merging needs to be disabled. InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,const SmallVectorImpl<MachineOperand> & Cond,DebugLoc DL)295 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 296 MachineBasicBlock *FBB, 297 const SmallVectorImpl<MachineOperand> &Cond, 298 DebugLoc DL) const { 299 assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!"); 300 return 0; 301 } 302 303 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 304 /// after it, replacing it with an unconditional branch to NewDest. This is 305 /// used by the tail merging pass. 306 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 307 MachineBasicBlock *NewDest) const = 0; 308 309 /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic 310 /// block at the specified instruction (i.e. instruction would be the start 311 /// of a new basic block). isLegalToSplitMBBAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI)312 virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, 313 MachineBasicBlock::iterator MBBI) const { 314 return true; 315 } 316 317 /// isProfitableToIfCvt - Return true if it's profitable to predicate 318 /// instructions with accumulated instruction latency of "NumCycles" 319 /// of the specified basic block, where the probability of the instructions 320 /// being executed is given by Probability, and Confidence is a measure 321 /// of our confidence that it will be properly predicted. 322 virtual isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCyles,unsigned ExtraPredCycles,const BranchProbability & Probability)323 bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCyles, 324 unsigned ExtraPredCycles, 325 const BranchProbability &Probability) const { 326 return false; 327 } 328 329 /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one 330 /// checks for the case where two basic blocks from true and false path 331 /// of a if-then-else (diamond) are predicated on mutally exclusive 332 /// predicates, where the probability of the true path being taken is given 333 /// by Probability, and Confidence is a measure of our confidence that it 334 /// will be properly predicted. 335 virtual bool isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumTCycles,unsigned ExtraTCycles,MachineBasicBlock & FMBB,unsigned NumFCycles,unsigned ExtraFCycles,const BranchProbability & Probability)336 isProfitableToIfCvt(MachineBasicBlock &TMBB, 337 unsigned NumTCycles, unsigned ExtraTCycles, 338 MachineBasicBlock &FMBB, 339 unsigned NumFCycles, unsigned ExtraFCycles, 340 const BranchProbability &Probability) const { 341 return false; 342 } 343 344 /// isProfitableToDupForIfCvt - Return true if it's profitable for 345 /// if-converter to duplicate instructions of specified accumulated 346 /// instruction latencies in the specified MBB to enable if-conversion. 347 /// The probability of the instructions being executed is given by 348 /// Probability, and Confidence is a measure of our confidence that it 349 /// will be properly predicted. 350 virtual bool isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCyles,const BranchProbability & Probability)351 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCyles, 352 const BranchProbability &Probability) const { 353 return false; 354 } 355 356 /// copyPhysReg - Emit instructions to copy a pair of physical registers. copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,DebugLoc DL,unsigned DestReg,unsigned SrcReg,bool KillSrc)357 virtual void copyPhysReg(MachineBasicBlock &MBB, 358 MachineBasicBlock::iterator MI, DebugLoc DL, 359 unsigned DestReg, unsigned SrcReg, 360 bool KillSrc) const { 361 assert(0 && "Target didn't implement TargetInstrInfo::copyPhysReg!"); 362 } 363 364 /// storeRegToStackSlot - Store the specified register of the given register 365 /// class to the specified stack frame index. The store instruction is to be 366 /// added to the given machine basic block before the specified machine 367 /// instruction. If isKill is true, the register operand is the last use and 368 /// must be marked kill. storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned SrcReg,bool isKill,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)369 virtual void storeRegToStackSlot(MachineBasicBlock &MBB, 370 MachineBasicBlock::iterator MI, 371 unsigned SrcReg, bool isKill, int FrameIndex, 372 const TargetRegisterClass *RC, 373 const TargetRegisterInfo *TRI) const { 374 assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!"); 375 } 376 377 /// loadRegFromStackSlot - Load the specified register of the given register 378 /// class from the specified stack frame index. The load instruction is to be 379 /// added to the given machine basic block before the specified machine 380 /// instruction. loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)381 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, 382 MachineBasicBlock::iterator MI, 383 unsigned DestReg, int FrameIndex, 384 const TargetRegisterClass *RC, 385 const TargetRegisterInfo *TRI) const { 386 assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!"); 387 } 388 389 /// expandPostRAPseudo - This function is called for all pseudo instructions 390 /// that remain after register allocation. Many pseudo instructions are 391 /// created to help register allocation. This is the place to convert them 392 /// into real instructions. The target can edit MI in place, or it can insert 393 /// new instructions and erase MI. The function should return true if 394 /// anything was changed. expandPostRAPseudo(MachineBasicBlock::iterator MI)395 virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const { 396 return false; 397 } 398 399 /// emitFrameIndexDebugValue - Emit a target-dependent form of 400 /// DBG_VALUE encoding the address of a frame index. Addresses would 401 /// normally be lowered the same way as other addresses on the target, 402 /// e.g. in load instructions. For targets that do not support this 403 /// the debug info is simply lost. 404 /// If you add this for a target you should handle this DBG_VALUE in the 405 /// target-specific AsmPrinter code as well; you will probably get invalid 406 /// assembly output if you don't. emitFrameIndexDebugValue(MachineFunction & MF,int FrameIx,uint64_t Offset,const MDNode * MDPtr,DebugLoc dl)407 virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF, 408 int FrameIx, 409 uint64_t Offset, 410 const MDNode *MDPtr, 411 DebugLoc dl) const { 412 return 0; 413 } 414 415 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack 416 /// slot into the specified machine instruction for the specified operand(s). 417 /// If this is possible, a new instruction is returned with the specified 418 /// operand folded, otherwise NULL is returned. 419 /// The new instruction is inserted before MI, and the client is responsible 420 /// for removing the old instruction. 421 MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI, 422 const SmallVectorImpl<unsigned> &Ops, 423 int FrameIndex) const; 424 425 /// foldMemoryOperand - Same as the previous version except it allows folding 426 /// of any load and store from / to any address, not just from a specific 427 /// stack slot. 428 MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI, 429 const SmallVectorImpl<unsigned> &Ops, 430 MachineInstr* LoadMI) const; 431 432 protected: 433 /// foldMemoryOperandImpl - Target-dependent implementation for 434 /// foldMemoryOperand. Target-independent code in foldMemoryOperand will 435 /// take care of adding a MachineMemOperand to the newly created instruction. foldMemoryOperandImpl(MachineFunction & MF,MachineInstr * MI,const SmallVectorImpl<unsigned> & Ops,int FrameIndex)436 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, 437 MachineInstr* MI, 438 const SmallVectorImpl<unsigned> &Ops, 439 int FrameIndex) const { 440 return 0; 441 } 442 443 /// foldMemoryOperandImpl - Target-dependent implementation for 444 /// foldMemoryOperand. Target-independent code in foldMemoryOperand will 445 /// take care of adding a MachineMemOperand to the newly created instruction. foldMemoryOperandImpl(MachineFunction & MF,MachineInstr * MI,const SmallVectorImpl<unsigned> & Ops,MachineInstr * LoadMI)446 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, 447 MachineInstr* MI, 448 const SmallVectorImpl<unsigned> &Ops, 449 MachineInstr* LoadMI) const { 450 return 0; 451 } 452 453 public: 454 /// canFoldMemoryOperand - Returns true for the specified load / store if 455 /// folding is possible. 456 virtual 457 bool canFoldMemoryOperand(const MachineInstr *MI, 458 const SmallVectorImpl<unsigned> &Ops) const =0; 459 460 /// unfoldMemoryOperand - Separate a single instruction which folded a load or 461 /// a store or a load and a store into two or more instruction. If this is 462 /// possible, returns true as well as the new instructions by reference. unfoldMemoryOperand(MachineFunction & MF,MachineInstr * MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs)463 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, 464 unsigned Reg, bool UnfoldLoad, bool UnfoldStore, 465 SmallVectorImpl<MachineInstr*> &NewMIs) const{ 466 return false; 467 } 468 unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes)469 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 470 SmallVectorImpl<SDNode*> &NewNodes) const { 471 return false; 472 } 473 474 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new 475 /// instruction after load / store are unfolded from an instruction of the 476 /// specified opcode. It returns zero if the specified unfolding is not 477 /// possible. If LoadRegIndex is non-null, it is filled in with the operand 478 /// index of the operand which will hold the register holding the loaded 479 /// value. 480 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, 481 bool UnfoldLoad, bool UnfoldStore, 482 unsigned *LoadRegIndex = 0) const { 483 return 0; 484 } 485 486 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler 487 /// to determine if two loads are loading from the same base address. It 488 /// should only return true if the base pointers are the same and the 489 /// only differences between the two addresses are the offset. It also returns 490 /// the offsets by reference. areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2)491 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 492 int64_t &Offset1, int64_t &Offset2) const { 493 return false; 494 } 495 496 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 497 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 498 /// be scheduled togther. On some targets if two loads are loading from 499 /// addresses in the same cache line, it's better if they are scheduled 500 /// together. This function takes two integers that represent the load offsets 501 /// from the common base address. It returns true if it decides it's desirable 502 /// to schedule the two loads together. "NumLoads" is the number of loads that 503 /// have already been scheduled after Load1. shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads)504 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 505 int64_t Offset1, int64_t Offset2, 506 unsigned NumLoads) const { 507 return false; 508 } 509 510 /// ReverseBranchCondition - Reverses the branch condition of the specified 511 /// condition list, returning false on success and true if it cannot be 512 /// reversed. 513 virtual ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond)514 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 515 return true; 516 } 517 518 /// insertNoop - Insert a noop into the instruction stream at the specified 519 /// point. 520 virtual void insertNoop(MachineBasicBlock &MBB, 521 MachineBasicBlock::iterator MI) const; 522 523 524 /// getNoopForMachoTarget - Return the noop instruction to use for a noop. getNoopForMachoTarget(MCInst & NopInst)525 virtual void getNoopForMachoTarget(MCInst &NopInst) const { 526 // Default to just using 'nop' string. 527 } 528 529 530 /// isPredicated - Returns true if the instruction is already predicated. 531 /// isPredicated(const MachineInstr * MI)532 virtual bool isPredicated(const MachineInstr *MI) const { 533 return false; 534 } 535 536 /// isUnpredicatedTerminator - Returns true if the instruction is a 537 /// terminator instruction that has not been predicated. 538 virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const; 539 540 /// PredicateInstruction - Convert the instruction into a predicated 541 /// instruction. It returns true if the operation was successful. 542 virtual 543 bool PredicateInstruction(MachineInstr *MI, 544 const SmallVectorImpl<MachineOperand> &Pred) const = 0; 545 546 /// SubsumesPredicate - Returns true if the first specified predicate 547 /// subsumes the second, e.g. GE subsumes GT. 548 virtual SubsumesPredicate(const SmallVectorImpl<MachineOperand> & Pred1,const SmallVectorImpl<MachineOperand> & Pred2)549 bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1, 550 const SmallVectorImpl<MachineOperand> &Pred2) const { 551 return false; 552 } 553 554 /// DefinesPredicate - If the specified instruction defines any predicate 555 /// or condition code register(s) used for predication, returns true as well 556 /// as the definition predicate(s) by reference. DefinesPredicate(MachineInstr * MI,std::vector<MachineOperand> & Pred)557 virtual bool DefinesPredicate(MachineInstr *MI, 558 std::vector<MachineOperand> &Pred) const { 559 return false; 560 } 561 562 /// isPredicable - Return true if the specified instruction can be predicated. 563 /// By default, this returns true for every instruction with a 564 /// PredicateOperand. isPredicable(MachineInstr * MI)565 virtual bool isPredicable(MachineInstr *MI) const { 566 return MI->getDesc().isPredicable(); 567 } 568 569 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine 570 /// instruction that defines the specified register class. isSafeToMoveRegClassDefs(const TargetRegisterClass * RC)571 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { 572 return true; 573 } 574 575 /// isSchedulingBoundary - Test if the given instruction should be 576 /// considered a scheduling boundary. This primarily includes labels and 577 /// terminators. 578 virtual bool isSchedulingBoundary(const MachineInstr *MI, 579 const MachineBasicBlock *MBB, 580 const MachineFunction &MF) const = 0; 581 582 /// Measure the specified inline asm to determine an approximation of its 583 /// length. 584 virtual unsigned getInlineAsmLength(const char *Str, 585 const MCAsmInfo &MAI) const; 586 587 /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to 588 /// use for this target when scheduling the machine instructions before 589 /// register allocation. 590 virtual ScheduleHazardRecognizer* 591 CreateTargetHazardRecognizer(const TargetMachine *TM, 592 const ScheduleDAG *DAG) const = 0; 593 594 /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard 595 /// recognizer to use for this target when scheduling the machine instructions 596 /// after register allocation. 597 virtual ScheduleHazardRecognizer* 598 CreateTargetPostRAHazardRecognizer(const InstrItineraryData*, 599 const ScheduleDAG *DAG) const = 0; 600 601 /// AnalyzeCompare - For a comparison instruction, return the source register 602 /// in SrcReg and the value it compares against in CmpValue. Return true if 603 /// the comparison instruction can be analyzed. AnalyzeCompare(const MachineInstr * MI,unsigned & SrcReg,int & Mask,int & Value)604 virtual bool AnalyzeCompare(const MachineInstr *MI, 605 unsigned &SrcReg, int &Mask, int &Value) const { 606 return false; 607 } 608 609 /// OptimizeCompareInstr - See if the comparison instruction can be converted 610 /// into something more efficient. E.g., on ARM most instructions can set the 611 /// flags register, obviating the need for a separate CMP. OptimizeCompareInstr(MachineInstr * CmpInstr,unsigned SrcReg,int Mask,int Value,const MachineRegisterInfo * MRI)612 virtual bool OptimizeCompareInstr(MachineInstr *CmpInstr, 613 unsigned SrcReg, int Mask, int Value, 614 const MachineRegisterInfo *MRI) const { 615 return false; 616 } 617 618 /// FoldImmediate - 'Reg' is known to be defined by a move immediate 619 /// instruction, try to fold the immediate into the use instruction. FoldImmediate(MachineInstr * UseMI,MachineInstr * DefMI,unsigned Reg,MachineRegisterInfo * MRI)620 virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, 621 unsigned Reg, MachineRegisterInfo *MRI) const { 622 return false; 623 } 624 625 /// getNumMicroOps - Return the number of u-operations the given machine 626 /// instruction will be decoded to on the target cpu. 627 virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, 628 const MachineInstr *MI) const; 629 630 /// isZeroCost - Return true for pseudo instructions that don't consume any 631 /// machine resources in their current form. These are common cases that the 632 /// scheduler should consider free, rather than conservatively handling them 633 /// as instructions with no itinerary. isZeroCost(unsigned Opcode)634 bool isZeroCost(unsigned Opcode) const { 635 return Opcode <= TargetOpcode::COPY; 636 } 637 638 /// getOperandLatency - Compute and return the use operand latency of a given 639 /// pair of def and use. 640 /// In most cases, the static scheduling itinerary was enough to determine the 641 /// operand latency. But it may not be possible for instructions with variable 642 /// number of defs / uses. 643 virtual int getOperandLatency(const InstrItineraryData *ItinData, 644 const MachineInstr *DefMI, unsigned DefIdx, 645 const MachineInstr *UseMI, unsigned UseIdx) const; 646 647 virtual int getOperandLatency(const InstrItineraryData *ItinData, 648 SDNode *DefNode, unsigned DefIdx, 649 SDNode *UseNode, unsigned UseIdx) const; 650 651 /// getInstrLatency - Compute the instruction latency of a given instruction. 652 /// If the instruction has higher cost when predicated, it's returned via 653 /// PredCost. 654 virtual int getInstrLatency(const InstrItineraryData *ItinData, 655 const MachineInstr *MI, 656 unsigned *PredCost = 0) const; 657 658 virtual int getInstrLatency(const InstrItineraryData *ItinData, 659 SDNode *Node) const; 660 661 /// isHighLatencyDef - Return true if this opcode has high latency to its 662 /// result. isHighLatencyDef(int opc)663 virtual bool isHighLatencyDef(int opc) const { return false; } 664 665 /// hasHighOperandLatency - Compute operand latency between a def of 'Reg' 666 /// and an use in the current loop, return true if the target considered 667 /// it 'high'. This is used by optimization passes such as machine LICM to 668 /// determine whether it makes sense to hoist an instruction out even in 669 /// high register pressure situation. 670 virtual hasHighOperandLatency(const InstrItineraryData * ItinData,const MachineRegisterInfo * MRI,const MachineInstr * DefMI,unsigned DefIdx,const MachineInstr * UseMI,unsigned UseIdx)671 bool hasHighOperandLatency(const InstrItineraryData *ItinData, 672 const MachineRegisterInfo *MRI, 673 const MachineInstr *DefMI, unsigned DefIdx, 674 const MachineInstr *UseMI, unsigned UseIdx) const { 675 return false; 676 } 677 678 /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true 679 /// if the target considered it 'low'. 680 virtual 681 bool hasLowDefLatency(const InstrItineraryData *ItinData, 682 const MachineInstr *DefMI, unsigned DefIdx) const; 683 684 /// verifyInstruction - Perform target specific instruction verification. 685 virtual verifyInstruction(const MachineInstr * MI,StringRef & ErrInfo)686 bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const { 687 return true; 688 } 689 690 /// getExecutionDomain - Return the current execution domain and bit mask of 691 /// possible domains for instruction. 692 /// 693 /// Some micro-architectures have multiple execution domains, and multiple 694 /// opcodes that perform the same operation in different domains. For 695 /// example, the x86 architecture provides the por, orps, and orpd 696 /// instructions that all do the same thing. There is a latency penalty if a 697 /// register is written in one domain and read in another. 698 /// 699 /// This function returns a pair (domain, mask) containing the execution 700 /// domain of MI, and a bit mask of possible domains. The setExecutionDomain 701 /// function can be used to change the opcode to one of the domains in the 702 /// bit mask. Instructions whose execution domain can't be changed should 703 /// return a 0 mask. 704 /// 705 /// The execution domain numbers don't have any special meaning except domain 706 /// 0 is used for instructions that are not associated with any interesting 707 /// execution domain. 708 /// 709 virtual std::pair<uint16_t, uint16_t> getExecutionDomain(const MachineInstr * MI)710 getExecutionDomain(const MachineInstr *MI) const { 711 return std::make_pair(0, 0); 712 } 713 714 /// setExecutionDomain - Change the opcode of MI to execute in Domain. 715 /// 716 /// The bit (1 << Domain) must be set in the mask returned from 717 /// getExecutionDomain(MI). 718 /// setExecutionDomain(MachineInstr * MI,unsigned Domain)719 virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {} 720 721 private: 722 int CallFrameSetupOpcode, CallFrameDestroyOpcode; 723 }; 724 725 /// TargetInstrInfoImpl - This is the default implementation of 726 /// TargetInstrInfo, which just provides a couple of default implementations 727 /// for various methods. This separated out because it is implemented in 728 /// libcodegen, not in libtarget. 729 class TargetInstrInfoImpl : public TargetInstrInfo { 730 protected: 731 TargetInstrInfoImpl(int CallFrameSetupOpcode = -1, 732 int CallFrameDestroyOpcode = -1) TargetInstrInfo(CallFrameSetupOpcode,CallFrameDestroyOpcode)733 : TargetInstrInfo(CallFrameSetupOpcode, CallFrameDestroyOpcode) {} 734 public: 735 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, 736 MachineBasicBlock *NewDest) const; 737 virtual MachineInstr *commuteInstruction(MachineInstr *MI, 738 bool NewMI = false) const; 739 virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, 740 unsigned &SrcOpIdx2) const; 741 virtual bool canFoldMemoryOperand(const MachineInstr *MI, 742 const SmallVectorImpl<unsigned> &Ops) const; 743 virtual bool hasLoadFromStackSlot(const MachineInstr *MI, 744 const MachineMemOperand *&MMO, 745 int &FrameIndex) const; 746 virtual bool hasStoreToStackSlot(const MachineInstr *MI, 747 const MachineMemOperand *&MMO, 748 int &FrameIndex) const; 749 virtual bool PredicateInstruction(MachineInstr *MI, 750 const SmallVectorImpl<MachineOperand> &Pred) const; 751 virtual void reMaterialize(MachineBasicBlock &MBB, 752 MachineBasicBlock::iterator MI, 753 unsigned DestReg, unsigned SubReg, 754 const MachineInstr *Orig, 755 const TargetRegisterInfo &TRI) const; 756 virtual MachineInstr *duplicate(MachineInstr *Orig, 757 MachineFunction &MF) const; 758 virtual bool produceSameValue(const MachineInstr *MI0, 759 const MachineInstr *MI1, 760 const MachineRegisterInfo *MRI) const; 761 virtual bool isSchedulingBoundary(const MachineInstr *MI, 762 const MachineBasicBlock *MBB, 763 const MachineFunction &MF) const; 764 765 bool usePreRAHazardRecognizer() const; 766 767 virtual ScheduleHazardRecognizer * 768 CreateTargetHazardRecognizer(const TargetMachine*, const ScheduleDAG*) const; 769 770 virtual ScheduleHazardRecognizer * 771 CreateTargetPostRAHazardRecognizer(const InstrItineraryData*, 772 const ScheduleDAG*) const; 773 }; 774 775 } // End llvm namespace 776 777 #endif 778