1 //===-LTO.h - LLVM Link Time Optimizer ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares functions and classes used to support LTO. It is intended 11 // to be used both by LTO classes as well as by clients (gold-plugin) that 12 // don't utilize the LTO code generator interfaces. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_LTO_LTO_H 17 #define LLVM_LTO_LTO_H 18 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/StringMap.h" 21 #include "llvm/ADT/StringSet.h" 22 #include "llvm/IR/DiagnosticInfo.h" 23 #include "llvm/IR/ModuleSummaryIndex.h" 24 #include "llvm/LTO/Config.h" 25 #include "llvm/Linker/IRMover.h" 26 #include "llvm/Object/IRSymtab.h" 27 #include "llvm/Support/Error.h" 28 #include "llvm/Support/ToolOutputFile.h" 29 #include "llvm/Support/thread.h" 30 #include "llvm/Target/TargetOptions.h" 31 #include "llvm/Transforms/IPO/FunctionImport.h" 32 33 namespace llvm { 34 35 class BitcodeModule; 36 class Error; 37 class LLVMContext; 38 class MemoryBufferRef; 39 class Module; 40 class Target; 41 class raw_pwrite_stream; 42 43 /// Resolve Weak and LinkOnce values in the \p Index. Linkage changes recorded 44 /// in the index and the ThinLTO backends must apply the changes to the Module 45 /// via thinLTOResolveWeakForLinkerModule. 46 /// 47 /// This is done for correctness (if value exported, ensure we always 48 /// emit a copy), and compile-time optimization (allow drop of duplicates). 49 void thinLTOResolveWeakForLinkerInIndex( 50 ModuleSummaryIndex &Index, 51 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 52 isPrevailing, 53 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 54 recordNewLinkage); 55 56 /// Update the linkages in the given \p Index to mark exported values 57 /// as external and non-exported values as internal. The ThinLTO backends 58 /// must apply the changes to the Module via thinLTOInternalizeModule. 59 void thinLTOInternalizeAndPromoteInIndex( 60 ModuleSummaryIndex &Index, 61 function_ref<bool(StringRef, GlobalValue::GUID)> isExported); 62 63 namespace lto { 64 65 /// Given the original \p Path to an output file, replace any path 66 /// prefix matching \p OldPrefix with \p NewPrefix. Also, create the 67 /// resulting directory if it does not yet exist. 68 std::string getThinLTOOutputFile(const std::string &Path, 69 const std::string &OldPrefix, 70 const std::string &NewPrefix); 71 72 /// Setup optimization remarks. 73 Expected<std::unique_ptr<ToolOutputFile>> 74 setupOptimizationRemarks(LLVMContext &Context, StringRef LTORemarksFilename, 75 bool LTOPassRemarksWithHotness, int Count = -1); 76 77 class LTO; 78 struct SymbolResolution; 79 class ThinBackendProc; 80 81 /// An input file. This is a symbol table wrapper that only exposes the 82 /// information that an LTO client should need in order to do symbol resolution. 83 class InputFile { 84 public: 85 class Symbol; 86 87 private: 88 // FIXME: Remove LTO class friendship once we have bitcode symbol tables. 89 friend LTO; 90 InputFile() = default; 91 92 std::vector<BitcodeModule> Mods; 93 SmallVector<char, 0> Strtab; 94 std::vector<Symbol> Symbols; 95 96 // [begin, end) for each module 97 std::vector<std::pair<size_t, size_t>> ModuleSymIndices; 98 99 StringRef TargetTriple, SourceFileName, COFFLinkerOpts; 100 std::vector<StringRef> ComdatTable; 101 102 public: 103 ~InputFile(); 104 105 /// Create an InputFile. 106 static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object); 107 108 /// The purpose of this class is to only expose the symbol information that an 109 /// LTO client should need in order to do symbol resolution. 110 class Symbol : irsymtab::Symbol { 111 friend LTO; 112 113 public: Symbol(const irsymtab::Symbol & S)114 Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {} 115 116 using irsymtab::Symbol::isUndefined; 117 using irsymtab::Symbol::isCommon; 118 using irsymtab::Symbol::isWeak; 119 using irsymtab::Symbol::isIndirect; 120 using irsymtab::Symbol::getName; 121 using irsymtab::Symbol::getVisibility; 122 using irsymtab::Symbol::canBeOmittedFromSymbolTable; 123 using irsymtab::Symbol::isTLS; 124 using irsymtab::Symbol::getComdatIndex; 125 using irsymtab::Symbol::getCommonSize; 126 using irsymtab::Symbol::getCommonAlignment; 127 using irsymtab::Symbol::getCOFFWeakExternalFallback; 128 using irsymtab::Symbol::getSectionName; 129 using irsymtab::Symbol::isExecutable; 130 }; 131 132 /// A range over the symbols in this InputFile. symbols()133 ArrayRef<Symbol> symbols() const { return Symbols; } 134 135 /// Returns linker options specified in the input file. getCOFFLinkerOpts()136 StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; } 137 138 /// Returns the path to the InputFile. 139 StringRef getName() const; 140 141 /// Returns the input file's target triple. getTargetTriple()142 StringRef getTargetTriple() const { return TargetTriple; } 143 144 /// Returns the source file path specified at compile time. getSourceFileName()145 StringRef getSourceFileName() const { return SourceFileName; } 146 147 // Returns a table with all the comdats used by this file. getComdatTable()148 ArrayRef<StringRef> getComdatTable() const { return ComdatTable; } 149 150 private: module_symbols(unsigned I)151 ArrayRef<Symbol> module_symbols(unsigned I) const { 152 const auto &Indices = ModuleSymIndices[I]; 153 return {Symbols.data() + Indices.first, Symbols.data() + Indices.second}; 154 } 155 }; 156 157 /// This class wraps an output stream for a native object. Most clients should 158 /// just be able to return an instance of this base class from the stream 159 /// callback, but if a client needs to perform some action after the stream is 160 /// written to, that can be done by deriving from this class and overriding the 161 /// destructor. 162 class NativeObjectStream { 163 public: NativeObjectStream(std::unique_ptr<raw_pwrite_stream> OS)164 NativeObjectStream(std::unique_ptr<raw_pwrite_stream> OS) : OS(std::move(OS)) {} 165 std::unique_ptr<raw_pwrite_stream> OS; 166 virtual ~NativeObjectStream() = default; 167 }; 168 169 /// This type defines the callback to add a native object that is generated on 170 /// the fly. 171 /// 172 /// Stream callbacks must be thread safe. 173 typedef std::function<std::unique_ptr<NativeObjectStream>(unsigned Task)> 174 AddStreamFn; 175 176 /// This is the type of a native object cache. To request an item from the 177 /// cache, pass a unique string as the Key. For hits, the cached file will be 178 /// added to the link and this function will return AddStreamFn(). For misses, 179 /// the cache will return a stream callback which must be called at most once to 180 /// produce content for the stream. The native object stream produced by the 181 /// stream callback will add the file to the link after the stream is written 182 /// to. 183 /// 184 /// Clients generally look like this: 185 /// 186 /// if (AddStreamFn AddStream = Cache(Task, Key)) 187 /// ProduceContent(AddStream); 188 typedef std::function<AddStreamFn(unsigned Task, StringRef Key)> 189 NativeObjectCache; 190 191 /// A ThinBackend defines what happens after the thin-link phase during ThinLTO. 192 /// The details of this type definition aren't important; clients can only 193 /// create a ThinBackend using one of the create*ThinBackend() functions below. 194 typedef std::function<std::unique_ptr<ThinBackendProc>( 195 Config &C, ModuleSummaryIndex &CombinedIndex, 196 StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 197 AddStreamFn AddStream, NativeObjectCache Cache)> 198 ThinBackend; 199 200 /// This ThinBackend runs the individual backend jobs in-process. 201 ThinBackend createInProcessThinBackend(unsigned ParallelismLevel); 202 203 /// This ThinBackend writes individual module indexes to files, instead of 204 /// running the individual backend jobs. This backend is for distributed builds 205 /// where separate processes will invoke the real backends. 206 /// 207 /// To find the path to write the index to, the backend checks if the path has a 208 /// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then 209 /// appends ".thinlto.bc" and writes the index to that path. If 210 /// ShouldEmitImportsFiles is true it also writes a list of imported files to a 211 /// similar path with ".imports" appended instead. 212 /// LinkedObjectsFile is an output stream to write the list of object files for 213 /// the final ThinLTO linking. Can be nullptr. 214 /// OnWrite is callback which receives module identifier and notifies LTO user 215 /// that index file for the module (and optionally imports file) was created. 216 using IndexWriteCallback = std::function<void(const std::string &)>; 217 ThinBackend createWriteIndexesThinBackend(std::string OldPrefix, 218 std::string NewPrefix, 219 bool ShouldEmitImportsFiles, 220 raw_fd_ostream *LinkedObjectsFile, 221 IndexWriteCallback OnWrite); 222 223 /// This class implements a resolution-based interface to LLVM's LTO 224 /// functionality. It supports regular LTO, parallel LTO code generation and 225 /// ThinLTO. You can use it from a linker in the following way: 226 /// - Set hooks and code generation options (see lto::Config struct defined in 227 /// Config.h), and use the lto::Config object to create an lto::LTO object. 228 /// - Create lto::InputFile objects using lto::InputFile::create(), then use 229 /// the symbols() function to enumerate its symbols and compute a resolution 230 /// for each symbol (see SymbolResolution below). 231 /// - After the linker has visited each input file (and each regular object 232 /// file) and computed a resolution for each symbol, take each lto::InputFile 233 /// and pass it and an array of symbol resolutions to the add() function. 234 /// - Call the getMaxTasks() function to get an upper bound on the number of 235 /// native object files that LTO may add to the link. 236 /// - Call the run() function. This function will use the supplied AddStream 237 /// and Cache functions to add up to getMaxTasks() native object files to 238 /// the link. 239 class LTO { 240 friend InputFile; 241 242 public: 243 /// Create an LTO object. A default constructed LTO object has a reasonable 244 /// production configuration, but you can customize it by passing arguments to 245 /// this constructor. 246 /// FIXME: We do currently require the DiagHandler field to be set in Conf. 247 /// Until that is fixed, a Config argument is required. 248 LTO(Config Conf, ThinBackend Backend = nullptr, 249 unsigned ParallelCodeGenParallelismLevel = 1); 250 ~LTO(); 251 252 /// Add an input file to the LTO link, using the provided symbol resolutions. 253 /// The symbol resolutions must appear in the enumeration order given by 254 /// InputFile::symbols(). 255 Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res); 256 257 /// Returns an upper bound on the number of tasks that the client may expect. 258 /// This may only be called after all IR object files have been added. For a 259 /// full description of tasks see LTOBackend.h. 260 unsigned getMaxTasks() const; 261 262 /// Runs the LTO pipeline. This function calls the supplied AddStream 263 /// function to add native object files to the link. 264 /// 265 /// The Cache parameter is optional. If supplied, it will be used to cache 266 /// native object files and add them to the link. 267 /// 268 /// The client will receive at most one callback (via either AddStream or 269 /// Cache) for each task identifier. 270 Error run(AddStreamFn AddStream, NativeObjectCache Cache = nullptr); 271 272 private: 273 Config Conf; 274 275 struct RegularLTOState { 276 RegularLTOState(unsigned ParallelCodeGenParallelismLevel, Config &Conf); 277 struct CommonResolution { 278 uint64_t Size = 0; 279 unsigned Align = 0; 280 /// Record if at least one instance of the common was marked as prevailing 281 bool Prevailing = false; 282 }; 283 std::map<std::string, CommonResolution> Commons; 284 285 unsigned ParallelCodeGenParallelismLevel; 286 LTOLLVMContext Ctx; 287 std::unique_ptr<Module> CombinedModule; 288 std::unique_ptr<IRMover> Mover; 289 290 // This stores the information about a regular LTO module that we have added 291 // to the link. It will either be linked immediately (for modules without 292 // summaries) or after summary-based dead stripping (for modules with 293 // summaries). 294 struct AddedModule { 295 std::unique_ptr<Module> M; 296 std::vector<GlobalValue *> Keep; 297 }; 298 std::vector<AddedModule> ModsWithSummaries; 299 } RegularLTO; 300 301 struct ThinLTOState { 302 ThinLTOState(ThinBackend Backend); 303 304 ThinBackend Backend; 305 ModuleSummaryIndex CombinedIndex; 306 MapVector<StringRef, BitcodeModule> ModuleMap; 307 DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID; 308 } ThinLTO; 309 310 // The global resolution for a particular (mangled) symbol name. This is in 311 // particular necessary to track whether each symbol can be internalized. 312 // Because any input file may introduce a new cross-partition reference, we 313 // cannot make any final internalization decisions until all input files have 314 // been added and the client has called run(). During run() we apply 315 // internalization decisions either directly to the module (for regular LTO) 316 // or to the combined index (for ThinLTO). 317 struct GlobalResolution { 318 /// The unmangled name of the global. 319 std::string IRName; 320 321 /// Keep track if the symbol is visible outside of a module with a summary 322 /// (i.e. in either a regular object or a regular LTO module without a 323 /// summary). 324 bool VisibleOutsideSummary = false; 325 326 bool UnnamedAddr = true; 327 328 /// True if module contains the prevailing definition. 329 bool Prevailing = false; 330 331 /// Returns true if module contains the prevailing definition and symbol is 332 /// an IR symbol. For example when module-level inline asm block is used, 333 /// symbol can be prevailing in module but have no IR name. isPrevailingIRSymbolGlobalResolution334 bool isPrevailingIRSymbol() const { return Prevailing && !IRName.empty(); } 335 336 /// This field keeps track of the partition number of this global. The 337 /// regular LTO object is partition 0, while each ThinLTO object has its own 338 /// partition number from 1 onwards. 339 /// 340 /// Any global that is defined or used by more than one partition, or that 341 /// is referenced externally, may not be internalized. 342 /// 343 /// Partitions generally have a one-to-one correspondence with tasks, except 344 /// that we use partition 0 for all parallel LTO code generation partitions. 345 /// Any partitioning of the combined LTO object is done internally by the 346 /// LTO backend. 347 unsigned Partition = Unknown; 348 349 /// Special partition numbers. 350 enum : unsigned { 351 /// A partition number has not yet been assigned to this global. 352 Unknown = -1u, 353 354 /// This global is either used by more than one partition or has an 355 /// external reference, and therefore cannot be internalized. 356 External = -2u, 357 358 /// The RegularLTO partition 359 RegularLTO = 0, 360 }; 361 }; 362 363 // Global mapping from mangled symbol names to resolutions. 364 StringMap<GlobalResolution> GlobalResolutions; 365 366 void addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 367 ArrayRef<SymbolResolution> Res, unsigned Partition, 368 bool InSummary); 369 370 // These functions take a range of symbol resolutions [ResI, ResE) and consume 371 // the resolutions used by a single input module by incrementing ResI. After 372 // these functions return, [ResI, ResE) will refer to the resolution range for 373 // the remaining modules in the InputFile. 374 Error addModule(InputFile &Input, unsigned ModI, 375 const SymbolResolution *&ResI, const SymbolResolution *ResE); 376 377 Expected<RegularLTOState::AddedModule> 378 addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 379 const SymbolResolution *&ResI, const SymbolResolution *ResE); 380 Error linkRegularLTO(RegularLTOState::AddedModule Mod, 381 bool LivenessFromIndex); 382 383 Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 384 const SymbolResolution *&ResI, const SymbolResolution *ResE); 385 386 Error runRegularLTO(AddStreamFn AddStream); 387 Error runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache); 388 389 mutable bool CalledGetMaxTasks = false; 390 }; 391 392 /// The resolution for a symbol. The linker must provide a SymbolResolution for 393 /// each global symbol based on its internal resolution of that symbol. 394 struct SymbolResolution { SymbolResolutionSymbolResolution395 SymbolResolution() 396 : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0), 397 LinkerRedefined(0) {} 398 399 /// The linker has chosen this definition of the symbol. 400 unsigned Prevailing : 1; 401 402 /// The definition of this symbol is unpreemptable at runtime and is known to 403 /// be in this linkage unit. 404 unsigned FinalDefinitionInLinkageUnit : 1; 405 406 /// The definition of this symbol is visible outside of the LTO unit. 407 unsigned VisibleToRegularObj : 1; 408 409 /// Linker redefined version of the symbol which appeared in -wrap or -defsym 410 /// linker option. 411 unsigned LinkerRedefined : 1; 412 }; 413 414 } // namespace lto 415 } // namespace llvm 416 417 #endif 418