1 //===- SelectionDAGBuilder.h - Selection-DAG building -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H 15 #define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H 16 17 #include "StatepointLowering.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/ISDOpcodes.h" 24 #include "llvm/CodeGen/SelectionDAG.h" 25 #include "llvm/CodeGen/SelectionDAGNodes.h" 26 #include "llvm/CodeGen/TargetLowering.h" 27 #include "llvm/CodeGen/ValueTypes.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/DebugLoc.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Statepoint.h" 32 #include "llvm/Support/BranchProbability.h" 33 #include "llvm/Support/CodeGen.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MachineValueType.h" 36 #include <algorithm> 37 #include <cassert> 38 #include <cstdint> 39 #include <utility> 40 #include <vector> 41 42 namespace llvm { 43 44 class AllocaInst; 45 class AtomicCmpXchgInst; 46 class AtomicRMWInst; 47 class BasicBlock; 48 class BranchInst; 49 class CallInst; 50 class CatchPadInst; 51 class CatchReturnInst; 52 class CatchSwitchInst; 53 class CleanupPadInst; 54 class CleanupReturnInst; 55 class Constant; 56 class ConstantInt; 57 class ConstrainedFPIntrinsic; 58 class DbgValueInst; 59 class DataLayout; 60 class DIExpression; 61 class DILocalVariable; 62 class DILocation; 63 class FenceInst; 64 class FunctionLoweringInfo; 65 class GCFunctionInfo; 66 class GCRelocateInst; 67 class GCResultInst; 68 class IndirectBrInst; 69 class InvokeInst; 70 class LandingPadInst; 71 class LLVMContext; 72 class LoadInst; 73 class MachineBasicBlock; 74 class PHINode; 75 class ResumeInst; 76 class ReturnInst; 77 class SDDbgValue; 78 class StoreInst; 79 class SwitchInst; 80 class TargetLibraryInfo; 81 class TargetMachine; 82 class Type; 83 class VAArgInst; 84 class UnreachableInst; 85 class Use; 86 class User; 87 class Value; 88 89 //===----------------------------------------------------------------------===// 90 /// SelectionDAGBuilder - This is the common target-independent lowering 91 /// implementation that is parameterized by a TargetLowering object. 92 /// 93 class SelectionDAGBuilder { 94 /// CurInst - The current instruction being visited 95 const Instruction *CurInst = nullptr; 96 97 DenseMap<const Value*, SDValue> NodeMap; 98 99 /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used 100 /// to preserve debug information for incoming arguments. 101 DenseMap<const Value*, SDValue> UnusedArgNodeMap; 102 103 /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap. 104 class DanglingDebugInfo { 105 const DbgValueInst* DI = nullptr; 106 DebugLoc dl; 107 unsigned SDNodeOrder = 0; 108 109 public: 110 DanglingDebugInfo() = default; DanglingDebugInfo(const DbgValueInst * di,DebugLoc DL,unsigned SDNO)111 DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) 112 : DI(di), dl(std::move(DL)), SDNodeOrder(SDNO) {} 113 getDI()114 const DbgValueInst* getDI() { return DI; } getdl()115 DebugLoc getdl() { return dl; } getSDNodeOrder()116 unsigned getSDNodeOrder() { return SDNodeOrder; } 117 }; 118 119 /// DanglingDebugInfoVector - Helper type for DanglingDebugInfoMap. 120 typedef std::vector<DanglingDebugInfo> DanglingDebugInfoVector; 121 122 /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not 123 /// yet seen the referent. We defer handling these until we do see it. 124 DenseMap<const Value*, DanglingDebugInfoVector> DanglingDebugInfoMap; 125 126 public: 127 /// PendingLoads - Loads are not emitted to the program immediately. We bunch 128 /// them up and then emit token factor nodes when possible. This allows us to 129 /// get simple disambiguation between loads without worrying about alias 130 /// analysis. 131 SmallVector<SDValue, 8> PendingLoads; 132 133 /// State used while lowering a statepoint sequence (gc_statepoint, 134 /// gc_relocate, and gc_result). See StatepointLowering.hpp/cpp for details. 135 StatepointLoweringState StatepointLowering; 136 137 private: 138 /// PendingExports - CopyToReg nodes that copy values to virtual registers 139 /// for export to other blocks need to be emitted before any terminator 140 /// instruction, but they have no other ordering requirements. We bunch them 141 /// up and the emit a single tokenfactor for them just before terminator 142 /// instructions. 143 SmallVector<SDValue, 8> PendingExports; 144 145 /// SDNodeOrder - A unique monotonically increasing number used to order the 146 /// SDNodes we create. 147 unsigned SDNodeOrder; 148 149 enum CaseClusterKind { 150 /// A cluster of adjacent case labels with the same destination, or just one 151 /// case. 152 CC_Range, 153 /// A cluster of cases suitable for jump table lowering. 154 CC_JumpTable, 155 /// A cluster of cases suitable for bit test lowering. 156 CC_BitTests 157 }; 158 159 /// A cluster of case labels. 160 struct CaseCluster { 161 CaseClusterKind Kind; 162 const ConstantInt *Low, *High; 163 union { 164 MachineBasicBlock *MBB; 165 unsigned JTCasesIndex; 166 unsigned BTCasesIndex; 167 }; 168 BranchProbability Prob; 169 rangeCaseCluster170 static CaseCluster range(const ConstantInt *Low, const ConstantInt *High, 171 MachineBasicBlock *MBB, BranchProbability Prob) { 172 CaseCluster C; 173 C.Kind = CC_Range; 174 C.Low = Low; 175 C.High = High; 176 C.MBB = MBB; 177 C.Prob = Prob; 178 return C; 179 } 180 jumpTableCaseCluster181 static CaseCluster jumpTable(const ConstantInt *Low, 182 const ConstantInt *High, unsigned JTCasesIndex, 183 BranchProbability Prob) { 184 CaseCluster C; 185 C.Kind = CC_JumpTable; 186 C.Low = Low; 187 C.High = High; 188 C.JTCasesIndex = JTCasesIndex; 189 C.Prob = Prob; 190 return C; 191 } 192 bitTestsCaseCluster193 static CaseCluster bitTests(const ConstantInt *Low, const ConstantInt *High, 194 unsigned BTCasesIndex, BranchProbability Prob) { 195 CaseCluster C; 196 C.Kind = CC_BitTests; 197 C.Low = Low; 198 C.High = High; 199 C.BTCasesIndex = BTCasesIndex; 200 C.Prob = Prob; 201 return C; 202 } 203 }; 204 205 using CaseClusterVector = std::vector<CaseCluster>; 206 using CaseClusterIt = CaseClusterVector::iterator; 207 208 struct CaseBits { 209 uint64_t Mask = 0; 210 MachineBasicBlock* BB = nullptr; 211 unsigned Bits = 0; 212 BranchProbability ExtraProb; 213 214 CaseBits() = default; CaseBitsCaseBits215 CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits, 216 BranchProbability Prob): 217 Mask(mask), BB(bb), Bits(bits), ExtraProb(Prob) {} 218 }; 219 220 using CaseBitsVector = std::vector<CaseBits>; 221 222 /// Sort Clusters and merge adjacent cases. 223 void sortAndRangeify(CaseClusterVector &Clusters); 224 225 /// CaseBlock - This structure is used to communicate between 226 /// SelectionDAGBuilder and SDISel for the code generation of additional basic 227 /// blocks needed by multi-case switch statements. 228 struct CaseBlock { 229 // CC - the condition code to use for the case block's setcc node 230 ISD::CondCode CC; 231 232 // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit. 233 // Emit by default LHS op RHS. MHS is used for range comparisons: 234 // If MHS is not null: (LHS <= MHS) and (MHS <= RHS). 235 const Value *CmpLHS, *CmpMHS, *CmpRHS; 236 237 // TrueBB/FalseBB - the block to branch to if the setcc is true/false. 238 MachineBasicBlock *TrueBB, *FalseBB; 239 240 // ThisBB - the block into which to emit the code for the setcc and branches 241 MachineBasicBlock *ThisBB; 242 243 /// The debug location of the instruction this CaseBlock was 244 /// produced from. 245 SDLoc DL; 246 247 // TrueProb/FalseProb - branch weights. 248 BranchProbability TrueProb, FalseProb; 249 250 CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs, 251 const Value *cmpmiddle, MachineBasicBlock *truebb, 252 MachineBasicBlock *falsebb, MachineBasicBlock *me, 253 SDLoc dl, 254 BranchProbability trueprob = BranchProbability::getUnknown(), 255 BranchProbability falseprob = BranchProbability::getUnknown()) CCCaseBlock256 : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs), 257 TrueBB(truebb), FalseBB(falsebb), ThisBB(me), DL(dl), 258 TrueProb(trueprob), FalseProb(falseprob) {} 259 }; 260 261 struct JumpTable { 262 /// Reg - the virtual register containing the index of the jump table entry 263 //. to jump to. 264 unsigned Reg; 265 /// JTI - the JumpTableIndex for this jump table in the function. 266 unsigned JTI; 267 /// MBB - the MBB into which to emit the code for the indirect jump. 268 MachineBasicBlock *MBB; 269 /// Default - the MBB of the default bb, which is a successor of the range 270 /// check MBB. This is when updating PHI nodes in successors. 271 MachineBasicBlock *Default; 272 JumpTableJumpTable273 JumpTable(unsigned R, unsigned J, MachineBasicBlock *M, 274 MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {} 275 }; 276 struct JumpTableHeader { 277 APInt First; 278 APInt Last; 279 const Value *SValue; 280 MachineBasicBlock *HeaderBB; 281 bool Emitted; 282 283 JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H, 284 bool E = false) FirstJumpTableHeader285 : First(std::move(F)), Last(std::move(L)), SValue(SV), HeaderBB(H), 286 Emitted(E) {} 287 }; 288 using JumpTableBlock = std::pair<JumpTableHeader, JumpTable>; 289 290 struct BitTestCase { 291 uint64_t Mask; 292 MachineBasicBlock *ThisBB; 293 MachineBasicBlock *TargetBB; 294 BranchProbability ExtraProb; 295 BitTestCaseBitTestCase296 BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr, 297 BranchProbability Prob): 298 Mask(M), ThisBB(T), TargetBB(Tr), ExtraProb(Prob) {} 299 }; 300 301 using BitTestInfo = SmallVector<BitTestCase, 3>; 302 303 struct BitTestBlock { 304 APInt First; 305 APInt Range; 306 const Value *SValue; 307 unsigned Reg; 308 MVT RegVT; 309 bool Emitted; 310 bool ContiguousRange; 311 MachineBasicBlock *Parent; 312 MachineBasicBlock *Default; 313 BitTestInfo Cases; 314 BranchProbability Prob; 315 BranchProbability DefaultProb; 316 BitTestBlockBitTestBlock317 BitTestBlock(APInt F, APInt R, const Value *SV, unsigned Rg, MVT RgVT, 318 bool E, bool CR, MachineBasicBlock *P, MachineBasicBlock *D, 319 BitTestInfo C, BranchProbability Pr) 320 : First(std::move(F)), Range(std::move(R)), SValue(SV), Reg(Rg), 321 RegVT(RgVT), Emitted(E), ContiguousRange(CR), Parent(P), Default(D), 322 Cases(std::move(C)), Prob(Pr) {} 323 }; 324 325 /// Return the range of value in [First..Last]. 326 uint64_t getJumpTableRange(const CaseClusterVector &Clusters, unsigned First, 327 unsigned Last) const; 328 329 /// Return the number of cases in [First..Last]. 330 uint64_t getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases, 331 unsigned First, unsigned Last) const; 332 333 /// Build a jump table cluster from Clusters[First..Last]. Returns false if it 334 /// decides it's not a good idea. 335 bool buildJumpTable(const CaseClusterVector &Clusters, unsigned First, 336 unsigned Last, const SwitchInst *SI, 337 MachineBasicBlock *DefaultMBB, CaseCluster &JTCluster); 338 339 /// Find clusters of cases suitable for jump table lowering. 340 void findJumpTables(CaseClusterVector &Clusters, const SwitchInst *SI, 341 MachineBasicBlock *DefaultMBB); 342 343 /// Build a bit test cluster from Clusters[First..Last]. Returns false if it 344 /// decides it's not a good idea. 345 bool buildBitTests(CaseClusterVector &Clusters, unsigned First, unsigned Last, 346 const SwitchInst *SI, CaseCluster &BTCluster); 347 348 /// Find clusters of cases suitable for bit test lowering. 349 void findBitTestClusters(CaseClusterVector &Clusters, const SwitchInst *SI); 350 351 struct SwitchWorkListItem { 352 MachineBasicBlock *MBB; 353 CaseClusterIt FirstCluster; 354 CaseClusterIt LastCluster; 355 const ConstantInt *GE; 356 const ConstantInt *LT; 357 BranchProbability DefaultProb; 358 }; 359 using SwitchWorkList = SmallVector<SwitchWorkListItem, 4>; 360 361 /// Determine the rank by weight of CC in [First,Last]. If CC has more weight 362 /// than each cluster in the range, its rank is 0. 363 static unsigned caseClusterRank(const CaseCluster &CC, CaseClusterIt First, 364 CaseClusterIt Last); 365 366 /// Emit comparison and split W into two subtrees. 367 void splitWorkItem(SwitchWorkList &WorkList, const SwitchWorkListItem &W, 368 Value *Cond, MachineBasicBlock *SwitchMBB); 369 370 /// Lower W. 371 void lowerWorkItem(SwitchWorkListItem W, Value *Cond, 372 MachineBasicBlock *SwitchMBB, 373 MachineBasicBlock *DefaultMBB); 374 375 /// Peel the top probability case if it exceeds the threshold 376 MachineBasicBlock *peelDominantCaseCluster(const SwitchInst &SI, 377 CaseClusterVector &Clusters, 378 BranchProbability &PeeledCaseProb); 379 380 /// A class which encapsulates all of the information needed to generate a 381 /// stack protector check and signals to isel via its state being initialized 382 /// that a stack protector needs to be generated. 383 /// 384 /// *NOTE* The following is a high level documentation of SelectionDAG Stack 385 /// Protector Generation. The reason that it is placed here is for a lack of 386 /// other good places to stick it. 387 /// 388 /// High Level Overview of SelectionDAG Stack Protector Generation: 389 /// 390 /// Previously, generation of stack protectors was done exclusively in the 391 /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated 392 /// splitting basic blocks at the IR level to create the success/failure basic 393 /// blocks in the tail of the basic block in question. As a result of this, 394 /// calls that would have qualified for the sibling call optimization were no 395 /// longer eligible for optimization since said calls were no longer right in 396 /// the "tail position" (i.e. the immediate predecessor of a ReturnInst 397 /// instruction). 398 /// 399 /// Then it was noticed that since the sibling call optimization causes the 400 /// callee to reuse the caller's stack, if we could delay the generation of 401 /// the stack protector check until later in CodeGen after the sibling call 402 /// decision was made, we get both the tail call optimization and the stack 403 /// protector check! 404 /// 405 /// A few goals in solving this problem were: 406 /// 407 /// 1. Preserve the architecture independence of stack protector generation. 408 /// 409 /// 2. Preserve the normal IR level stack protector check for platforms like 410 /// OpenBSD for which we support platform-specific stack protector 411 /// generation. 412 /// 413 /// The main problem that guided the present solution is that one can not 414 /// solve this problem in an architecture independent manner at the IR level 415 /// only. This is because: 416 /// 417 /// 1. The decision on whether or not to perform a sibling call on certain 418 /// platforms (for instance i386) requires lower level information 419 /// related to available registers that can not be known at the IR level. 420 /// 421 /// 2. Even if the previous point were not true, the decision on whether to 422 /// perform a tail call is done in LowerCallTo in SelectionDAG which 423 /// occurs after the Stack Protector Pass. As a result, one would need to 424 /// put the relevant callinst into the stack protector check success 425 /// basic block (where the return inst is placed) and then move it back 426 /// later at SelectionDAG/MI time before the stack protector check if the 427 /// tail call optimization failed. The MI level option was nixed 428 /// immediately since it would require platform-specific pattern 429 /// matching. The SelectionDAG level option was nixed because 430 /// SelectionDAG only processes one IR level basic block at a time 431 /// implying one could not create a DAG Combine to move the callinst. 432 /// 433 /// To get around this problem a few things were realized: 434 /// 435 /// 1. While one can not handle multiple IR level basic blocks at the 436 /// SelectionDAG Level, one can generate multiple machine basic blocks 437 /// for one IR level basic block. This is how we handle bit tests and 438 /// switches. 439 /// 440 /// 2. At the MI level, tail calls are represented via a special return 441 /// MIInst called "tcreturn". Thus if we know the basic block in which we 442 /// wish to insert the stack protector check, we get the correct behavior 443 /// by always inserting the stack protector check right before the return 444 /// statement. This is a "magical transformation" since no matter where 445 /// the stack protector check intrinsic is, we always insert the stack 446 /// protector check code at the end of the BB. 447 /// 448 /// Given the aforementioned constraints, the following solution was devised: 449 /// 450 /// 1. On platforms that do not support SelectionDAG stack protector check 451 /// generation, allow for the normal IR level stack protector check 452 /// generation to continue. 453 /// 454 /// 2. On platforms that do support SelectionDAG stack protector check 455 /// generation: 456 /// 457 /// a. Use the IR level stack protector pass to decide if a stack 458 /// protector is required/which BB we insert the stack protector check 459 /// in by reusing the logic already therein. If we wish to generate a 460 /// stack protector check in a basic block, we place a special IR 461 /// intrinsic called llvm.stackprotectorcheck right before the BB's 462 /// returninst or if there is a callinst that could potentially be 463 /// sibling call optimized, before the call inst. 464 /// 465 /// b. Then when a BB with said intrinsic is processed, we codegen the BB 466 /// normally via SelectBasicBlock. In said process, when we visit the 467 /// stack protector check, we do not actually emit anything into the 468 /// BB. Instead, we just initialize the stack protector descriptor 469 /// class (which involves stashing information/creating the success 470 /// mbbb and the failure mbb if we have not created one for this 471 /// function yet) and export the guard variable that we are going to 472 /// compare. 473 /// 474 /// c. After we finish selecting the basic block, in FinishBasicBlock if 475 /// the StackProtectorDescriptor attached to the SelectionDAGBuilder is 476 /// initialized, we produce the validation code with one of these 477 /// techniques: 478 /// 1) with a call to a guard check function 479 /// 2) with inlined instrumentation 480 /// 481 /// 1) We insert a call to the check function before the terminator. 482 /// 483 /// 2) We first find a splice point in the parent basic block 484 /// before the terminator and then splice the terminator of said basic 485 /// block into the success basic block. Then we code-gen a new tail for 486 /// the parent basic block consisting of the two loads, the comparison, 487 /// and finally two branches to the success/failure basic blocks. We 488 /// conclude by code-gening the failure basic block if we have not 489 /// code-gened it already (all stack protector checks we generate in 490 /// the same function, use the same failure basic block). 491 class StackProtectorDescriptor { 492 public: 493 StackProtectorDescriptor() = default; 494 495 /// Returns true if all fields of the stack protector descriptor are 496 /// initialized implying that we should/are ready to emit a stack protector. shouldEmitStackProtector()497 bool shouldEmitStackProtector() const { 498 return ParentMBB && SuccessMBB && FailureMBB; 499 } 500 shouldEmitFunctionBasedCheckStackProtector()501 bool shouldEmitFunctionBasedCheckStackProtector() const { 502 return ParentMBB && !SuccessMBB && !FailureMBB; 503 } 504 505 /// Initialize the stack protector descriptor structure for a new basic 506 /// block. initialize(const BasicBlock * BB,MachineBasicBlock * MBB,bool FunctionBasedInstrumentation)507 void initialize(const BasicBlock *BB, MachineBasicBlock *MBB, 508 bool FunctionBasedInstrumentation) { 509 // Make sure we are not initialized yet. 510 assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is " 511 "already initialized!"); 512 ParentMBB = MBB; 513 if (!FunctionBasedInstrumentation) { 514 SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true); 515 FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB); 516 } 517 } 518 519 /// Reset state that changes when we handle different basic blocks. 520 /// 521 /// This currently includes: 522 /// 523 /// 1. The specific basic block we are generating a 524 /// stack protector for (ParentMBB). 525 /// 526 /// 2. The successor machine basic block that will contain the tail of 527 /// parent mbb after we create the stack protector check (SuccessMBB). This 528 /// BB is visited only on stack protector check success. resetPerBBState()529 void resetPerBBState() { 530 ParentMBB = nullptr; 531 SuccessMBB = nullptr; 532 } 533 534 /// Reset state that only changes when we switch functions. 535 /// 536 /// This currently includes: 537 /// 538 /// 1. FailureMBB since we reuse the failure code path for all stack 539 /// protector checks created in an individual function. 540 /// 541 /// 2.The guard variable since the guard variable we are checking against is 542 /// always the same. resetPerFunctionState()543 void resetPerFunctionState() { 544 FailureMBB = nullptr; 545 } 546 getParentMBB()547 MachineBasicBlock *getParentMBB() { return ParentMBB; } getSuccessMBB()548 MachineBasicBlock *getSuccessMBB() { return SuccessMBB; } getFailureMBB()549 MachineBasicBlock *getFailureMBB() { return FailureMBB; } 550 551 private: 552 /// The basic block for which we are generating the stack protector. 553 /// 554 /// As a result of stack protector generation, we will splice the 555 /// terminators of this basic block into the successor mbb SuccessMBB and 556 /// replace it with a compare/branch to the successor mbbs 557 /// SuccessMBB/FailureMBB depending on whether or not the stack protector 558 /// was violated. 559 MachineBasicBlock *ParentMBB = nullptr; 560 561 /// A basic block visited on stack protector check success that contains the 562 /// terminators of ParentMBB. 563 MachineBasicBlock *SuccessMBB = nullptr; 564 565 /// This basic block visited on stack protector check failure that will 566 /// contain a call to __stack_chk_fail(). 567 MachineBasicBlock *FailureMBB = nullptr; 568 569 /// Add a successor machine basic block to ParentMBB. If the successor mbb 570 /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic 571 /// block will be created. Assign a large weight if IsLikely is true. 572 MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB, 573 MachineBasicBlock *ParentMBB, 574 bool IsLikely, 575 MachineBasicBlock *SuccMBB = nullptr); 576 }; 577 578 private: 579 const TargetMachine &TM; 580 581 public: 582 /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling 583 /// nodes without a corresponding SDNode. 584 static const unsigned LowestSDNodeOrder = 1; 585 586 SelectionDAG &DAG; 587 const DataLayout *DL = nullptr; 588 AliasAnalysis *AA = nullptr; 589 const TargetLibraryInfo *LibInfo; 590 591 /// SwitchCases - Vector of CaseBlock structures used to communicate 592 /// SwitchInst code generation information. 593 std::vector<CaseBlock> SwitchCases; 594 595 /// JTCases - Vector of JumpTable structures used to communicate 596 /// SwitchInst code generation information. 597 std::vector<JumpTableBlock> JTCases; 598 599 /// BitTestCases - Vector of BitTestBlock structures used to communicate 600 /// SwitchInst code generation information. 601 std::vector<BitTestBlock> BitTestCases; 602 603 /// A StackProtectorDescriptor structure used to communicate stack protector 604 /// information in between SelectBasicBlock and FinishBasicBlock. 605 StackProtectorDescriptor SPDescriptor; 606 607 // Emit PHI-node-operand constants only once even if used by multiple 608 // PHI nodes. 609 DenseMap<const Constant *, unsigned> ConstantsOut; 610 611 /// FuncInfo - Information about the function as a whole. 612 /// 613 FunctionLoweringInfo &FuncInfo; 614 615 /// GFI - Garbage collection metadata for the function. 616 GCFunctionInfo *GFI; 617 618 /// LPadToCallSiteMap - Map a landing pad to the call site indexes. 619 DenseMap<MachineBasicBlock *, SmallVector<unsigned, 4>> LPadToCallSiteMap; 620 621 /// HasTailCall - This is set to true if a call in the current 622 /// block has been translated as a tail call. In this case, 623 /// no subsequent DAG nodes should be created. 624 bool HasTailCall = false; 625 626 LLVMContext *Context; 627 SelectionDAGBuilder(SelectionDAG & dag,FunctionLoweringInfo & funcinfo,CodeGenOpt::Level ol)628 SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo, 629 CodeGenOpt::Level ol) 630 : SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()), DAG(dag), 631 FuncInfo(funcinfo) {} 632 633 void init(GCFunctionInfo *gfi, AliasAnalysis *AA, 634 const TargetLibraryInfo *li); 635 636 /// Clear out the current SelectionDAG and the associated state and prepare 637 /// this SelectionDAGBuilder object to be used for a new block. This doesn't 638 /// clear out information about additional blocks that are needed to complete 639 /// switch lowering or PHI node updating; that information is cleared out as 640 /// it is consumed. 641 void clear(); 642 643 /// Clear the dangling debug information map. This function is separated from 644 /// the clear so that debug information that is dangling in a basic block can 645 /// be properly resolved in a different basic block. This allows the 646 /// SelectionDAG to resolve dangling debug information attached to PHI nodes. 647 void clearDanglingDebugInfo(); 648 649 /// Return the current virtual root of the Selection DAG, flushing any 650 /// PendingLoad items. This must be done before emitting a store or any other 651 /// node that may need to be ordered after any prior load instructions. 652 SDValue getRoot(); 653 654 /// Similar to getRoot, but instead of flushing all the PendingLoad items, 655 /// flush all the PendingExports items. It is necessary to do this before 656 /// emitting a terminator instruction. 657 SDValue getControlRoot(); 658 getCurSDLoc()659 SDLoc getCurSDLoc() const { 660 return SDLoc(CurInst, SDNodeOrder); 661 } 662 getCurDebugLoc()663 DebugLoc getCurDebugLoc() const { 664 return CurInst ? CurInst->getDebugLoc() : DebugLoc(); 665 } 666 667 void CopyValueToVirtualRegister(const Value *V, unsigned Reg); 668 669 void visit(const Instruction &I); 670 671 void visit(unsigned Opcode, const User &I); 672 673 /// getCopyFromRegs - If there was virtual register allocated for the value V 674 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 675 SDValue getCopyFromRegs(const Value *V, Type *Ty); 676 677 /// If we have dangling debug info that describes \p Variable, or an 678 /// overlapping part of variable considering the \p Expr, then this method 679 /// weill drop that debug info as it isn't valid any longer. 680 void dropDanglingDebugInfo(const DILocalVariable *Variable, 681 const DIExpression *Expr); 682 683 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 684 // generate the debug data structures now that we've seen its definition. 685 void resolveDanglingDebugInfo(const Value *V, SDValue Val); 686 687 SDValue getValue(const Value *V); 688 bool findValue(const Value *V) const; 689 690 /// Return the SDNode for the specified IR value if it exists. getNodeForIRValue(const Value * V)691 SDNode *getNodeForIRValue(const Value *V) { 692 if (NodeMap.find(V) == NodeMap.end()) 693 return nullptr; 694 return NodeMap[V].getNode(); 695 } 696 697 SDValue getNonRegisterValue(const Value *V); 698 SDValue getValueImpl(const Value *V); 699 setValue(const Value * V,SDValue NewN)700 void setValue(const Value *V, SDValue NewN) { 701 SDValue &N = NodeMap[V]; 702 assert(!N.getNode() && "Already set a value for this node!"); 703 N = NewN; 704 } 705 setUnusedArgValue(const Value * V,SDValue NewN)706 void setUnusedArgValue(const Value *V, SDValue NewN) { 707 SDValue &N = UnusedArgNodeMap[V]; 708 assert(!N.getNode() && "Already set a value for this node!"); 709 N = NewN; 710 } 711 712 void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, 713 MachineBasicBlock *FBB, MachineBasicBlock *CurBB, 714 MachineBasicBlock *SwitchBB, 715 Instruction::BinaryOps Opc, BranchProbability TProb, 716 BranchProbability FProb, bool InvertCond); 717 void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, 718 MachineBasicBlock *FBB, 719 MachineBasicBlock *CurBB, 720 MachineBasicBlock *SwitchBB, 721 BranchProbability TProb, BranchProbability FProb, 722 bool InvertCond); 723 bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases); 724 bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB); 725 void CopyToExportRegsIfNeeded(const Value *V); 726 void ExportFromCurrentBlock(const Value *V); 727 void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall, 728 const BasicBlock *EHPadBB = nullptr); 729 730 // Lower range metadata from 0 to N to assert zext to an integer of nearest 731 // floor power of two. 732 SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I, 733 SDValue Op); 734 735 void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI, 736 ImmutableCallSite CS, unsigned ArgIdx, 737 unsigned NumArgs, SDValue Callee, 738 Type *ReturnTy, bool IsPatchPoint); 739 740 std::pair<SDValue, SDValue> 741 lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 742 const BasicBlock *EHPadBB = nullptr); 743 744 /// UpdateSplitBlock - When an MBB was split during scheduling, update the 745 /// references that need to refer to the last resulting block. 746 void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last); 747 748 /// Describes a gc.statepoint or a gc.statepoint like thing for the purposes 749 /// of lowering into a STATEPOINT node. 750 struct StatepointLoweringInfo { 751 /// Bases[i] is the base pointer for Ptrs[i]. Together they denote the set 752 /// of gc pointers this STATEPOINT has to relocate. 753 SmallVector<const Value *, 16> Bases; 754 SmallVector<const Value *, 16> Ptrs; 755 756 /// The set of gc.relocate calls associated with this gc.statepoint. 757 SmallVector<const GCRelocateInst *, 16> GCRelocates; 758 759 /// The full list of gc arguments to the gc.statepoint being lowered. 760 ArrayRef<const Use> GCArgs; 761 762 /// The gc.statepoint instruction. 763 const Instruction *StatepointInstr = nullptr; 764 765 /// The list of gc transition arguments present in the gc.statepoint being 766 /// lowered. 767 ArrayRef<const Use> GCTransitionArgs; 768 769 /// The ID that the resulting STATEPOINT instruction has to report. 770 unsigned ID = -1; 771 772 /// Information regarding the underlying call instruction. 773 TargetLowering::CallLoweringInfo CLI; 774 775 /// The deoptimization state associated with this gc.statepoint call, if 776 /// any. 777 ArrayRef<const Use> DeoptState; 778 779 /// Flags associated with the meta arguments being lowered. 780 uint64_t StatepointFlags = -1; 781 782 /// The number of patchable bytes the call needs to get lowered into. 783 unsigned NumPatchBytes = -1; 784 785 /// The exception handling unwind destination, in case this represents an 786 /// invoke of gc.statepoint. 787 const BasicBlock *EHPadBB = nullptr; 788 StatepointLoweringInfoStatepointLoweringInfo789 explicit StatepointLoweringInfo(SelectionDAG &DAG) : CLI(DAG) {} 790 }; 791 792 /// Lower \p SLI into a STATEPOINT instruction. 793 SDValue LowerAsSTATEPOINT(StatepointLoweringInfo &SI); 794 795 // This function is responsible for the whole statepoint lowering process. 796 // It uniformly handles invoke and call statepoints. 797 void LowerStatepoint(ImmutableStatepoint ISP, 798 const BasicBlock *EHPadBB = nullptr); 799 800 void LowerCallSiteWithDeoptBundle(ImmutableCallSite CS, SDValue Callee, 801 const BasicBlock *EHPadBB); 802 803 void LowerDeoptimizeCall(const CallInst *CI); 804 void LowerDeoptimizingReturn(); 805 806 void LowerCallSiteWithDeoptBundleImpl(ImmutableCallSite CS, SDValue Callee, 807 const BasicBlock *EHPadBB, 808 bool VarArgDisallowed, 809 bool ForceVoidReturnTy); 810 811 /// Returns the type of FrameIndex and TargetFrameIndex nodes. getFrameIndexTy()812 MVT getFrameIndexTy() { 813 return DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout()); 814 } 815 816 private: 817 // Terminator instructions. 818 void visitRet(const ReturnInst &I); 819 void visitBr(const BranchInst &I); 820 void visitSwitch(const SwitchInst &I); 821 void visitIndirectBr(const IndirectBrInst &I); 822 void visitUnreachable(const UnreachableInst &I); 823 void visitCleanupRet(const CleanupReturnInst &I); 824 void visitCatchSwitch(const CatchSwitchInst &I); 825 void visitCatchRet(const CatchReturnInst &I); 826 void visitCatchPad(const CatchPadInst &I); 827 void visitCleanupPad(const CleanupPadInst &CPI); 828 829 BranchProbability getEdgeProbability(const MachineBasicBlock *Src, 830 const MachineBasicBlock *Dst) const; 831 void addSuccessorWithProb( 832 MachineBasicBlock *Src, MachineBasicBlock *Dst, 833 BranchProbability Prob = BranchProbability::getUnknown()); 834 835 public: 836 void visitSwitchCase(CaseBlock &CB, 837 MachineBasicBlock *SwitchBB); 838 void visitSPDescriptorParent(StackProtectorDescriptor &SPD, 839 MachineBasicBlock *ParentBB); 840 void visitSPDescriptorFailure(StackProtectorDescriptor &SPD); 841 void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB); 842 void visitBitTestCase(BitTestBlock &BB, 843 MachineBasicBlock* NextMBB, 844 BranchProbability BranchProbToNext, 845 unsigned Reg, 846 BitTestCase &B, 847 MachineBasicBlock *SwitchBB); 848 void visitJumpTable(JumpTable &JT); 849 void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH, 850 MachineBasicBlock *SwitchBB); 851 852 private: 853 // These all get lowered before this pass. 854 void visitInvoke(const InvokeInst &I); 855 void visitResume(const ResumeInst &I); 856 857 void visitBinary(const User &I, unsigned Opcode); 858 void visitShift(const User &I, unsigned Opcode); visitAdd(const User & I)859 void visitAdd(const User &I) { visitBinary(I, ISD::ADD); } visitFAdd(const User & I)860 void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); } visitSub(const User & I)861 void visitSub(const User &I) { visitBinary(I, ISD::SUB); } 862 void visitFSub(const User &I); visitMul(const User & I)863 void visitMul(const User &I) { visitBinary(I, ISD::MUL); } visitFMul(const User & I)864 void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); } visitURem(const User & I)865 void visitURem(const User &I) { visitBinary(I, ISD::UREM); } visitSRem(const User & I)866 void visitSRem(const User &I) { visitBinary(I, ISD::SREM); } visitFRem(const User & I)867 void visitFRem(const User &I) { visitBinary(I, ISD::FREM); } visitUDiv(const User & I)868 void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); } 869 void visitSDiv(const User &I); visitFDiv(const User & I)870 void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); } visitAnd(const User & I)871 void visitAnd (const User &I) { visitBinary(I, ISD::AND); } visitOr(const User & I)872 void visitOr (const User &I) { visitBinary(I, ISD::OR); } visitXor(const User & I)873 void visitXor (const User &I) { visitBinary(I, ISD::XOR); } visitShl(const User & I)874 void visitShl (const User &I) { visitShift(I, ISD::SHL); } visitLShr(const User & I)875 void visitLShr(const User &I) { visitShift(I, ISD::SRL); } visitAShr(const User & I)876 void visitAShr(const User &I) { visitShift(I, ISD::SRA); } 877 void visitICmp(const User &I); 878 void visitFCmp(const User &I); 879 // Visit the conversion instructions 880 void visitTrunc(const User &I); 881 void visitZExt(const User &I); 882 void visitSExt(const User &I); 883 void visitFPTrunc(const User &I); 884 void visitFPExt(const User &I); 885 void visitFPToUI(const User &I); 886 void visitFPToSI(const User &I); 887 void visitUIToFP(const User &I); 888 void visitSIToFP(const User &I); 889 void visitPtrToInt(const User &I); 890 void visitIntToPtr(const User &I); 891 void visitBitCast(const User &I); 892 void visitAddrSpaceCast(const User &I); 893 894 void visitExtractElement(const User &I); 895 void visitInsertElement(const User &I); 896 void visitShuffleVector(const User &I); 897 898 void visitExtractValue(const User &I); 899 void visitInsertValue(const User &I); 900 void visitLandingPad(const LandingPadInst &LP); 901 902 void visitGetElementPtr(const User &I); 903 void visitSelect(const User &I); 904 905 void visitAlloca(const AllocaInst &I); 906 void visitLoad(const LoadInst &I); 907 void visitStore(const StoreInst &I); 908 void visitMaskedLoad(const CallInst &I, bool IsExpanding = false); 909 void visitMaskedStore(const CallInst &I, bool IsCompressing = false); 910 void visitMaskedGather(const CallInst &I); 911 void visitMaskedScatter(const CallInst &I); 912 void visitAtomicCmpXchg(const AtomicCmpXchgInst &I); 913 void visitAtomicRMW(const AtomicRMWInst &I); 914 void visitFence(const FenceInst &I); 915 void visitPHI(const PHINode &I); 916 void visitCall(const CallInst &I); 917 bool visitMemCmpCall(const CallInst &I); 918 bool visitMemPCpyCall(const CallInst &I); 919 bool visitMemChrCall(const CallInst &I); 920 bool visitStrCpyCall(const CallInst &I, bool isStpcpy); 921 bool visitStrCmpCall(const CallInst &I); 922 bool visitStrLenCall(const CallInst &I); 923 bool visitStrNLenCall(const CallInst &I); 924 bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode); 925 bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode); 926 void visitAtomicLoad(const LoadInst &I); 927 void visitAtomicStore(const StoreInst &I); 928 void visitLoadFromSwiftError(const LoadInst &I); 929 void visitStoreToSwiftError(const StoreInst &I); 930 931 void visitInlineAsm(ImmutableCallSite CS); 932 const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic); 933 void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic); 934 void visitConstrainedFPIntrinsic(const ConstrainedFPIntrinsic &FPI); 935 936 void visitVAStart(const CallInst &I); 937 void visitVAArg(const VAArgInst &I); 938 void visitVAEnd(const CallInst &I); 939 void visitVACopy(const CallInst &I); 940 void visitStackmap(const CallInst &I); 941 void visitPatchpoint(ImmutableCallSite CS, 942 const BasicBlock *EHPadBB = nullptr); 943 944 // These two are implemented in StatepointLowering.cpp 945 void visitGCRelocate(const GCRelocateInst &Relocate); 946 void visitGCResult(const GCResultInst &I); 947 948 void visitVectorReduce(const CallInst &I, unsigned Intrinsic); 949 visitUserOp1(const Instruction & I)950 void visitUserOp1(const Instruction &I) { 951 llvm_unreachable("UserOp1 should not exist at instruction selection time!"); 952 } visitUserOp2(const Instruction & I)953 void visitUserOp2(const Instruction &I) { 954 llvm_unreachable("UserOp2 should not exist at instruction selection time!"); 955 } 956 957 void processIntegerCallValue(const Instruction &I, 958 SDValue Value, bool IsSigned); 959 960 void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB); 961 962 void emitInlineAsmError(ImmutableCallSite CS, const Twine &Message); 963 964 /// If V is an function argument then create corresponding DBG_VALUE machine 965 /// instruction for it now. At the end of instruction selection, they will be 966 /// inserted to the entry BB. 967 bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable, 968 DIExpression *Expr, DILocation *DL, 969 bool IsDbgDeclare, const SDValue &N); 970 971 /// Return the next block after MBB, or nullptr if there is none. 972 MachineBasicBlock *NextBlock(MachineBasicBlock *MBB); 973 974 /// Update the DAG and DAG builder with the relevant information after 975 /// a new root node has been created which could be a tail call. 976 void updateDAGForMaybeTailCall(SDValue MaybeTC); 977 978 /// Return the appropriate SDDbgValue based on N. 979 SDDbgValue *getDbgValue(SDValue N, DILocalVariable *Variable, 980 DIExpression *Expr, const DebugLoc &dl, 981 unsigned DbgSDNodeOrder); 982 }; 983 984 /// RegsForValue - This struct represents the registers (physical or virtual) 985 /// that a particular set of values is assigned, and the type information about 986 /// the value. The most common situation is to represent one value at a time, 987 /// but struct or array values are handled element-wise as multiple values. The 988 /// splitting of aggregates is performed recursively, so that we never have 989 /// aggregate-typed registers. The values at this point do not necessarily have 990 /// legal types, so each value may require one or more registers of some legal 991 /// type. 992 /// 993 struct RegsForValue { 994 /// The value types of the values, which may not be legal, and 995 /// may need be promoted or synthesized from one or more registers. 996 SmallVector<EVT, 4> ValueVTs; 997 998 /// The value types of the registers. This is the same size as ValueVTs and it 999 /// records, for each value, what the type of the assigned register or 1000 /// registers are. (Individual values are never synthesized from more than one 1001 /// type of register.) 1002 /// 1003 /// With virtual registers, the contents of RegVTs is redundant with TLI's 1004 /// getRegisterType member function, however when with physical registers 1005 /// it is necessary to have a separate record of the types. 1006 SmallVector<MVT, 4> RegVTs; 1007 1008 /// This list holds the registers assigned to the values. 1009 /// Each legal or promoted value requires one register, and each 1010 /// expanded value requires multiple registers. 1011 SmallVector<unsigned, 4> Regs; 1012 1013 /// This list holds the number of registers for each value. 1014 SmallVector<unsigned, 4> RegCount; 1015 1016 /// Records if this value needs to be treated in an ABI dependant manner, 1017 /// different to normal type legalization. 1018 Optional<CallingConv::ID> CallConv; 1019 1020 RegsForValue() = default; 1021 RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, EVT valuevt, 1022 Optional<CallingConv::ID> CC = None); 1023 RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 1024 const DataLayout &DL, unsigned Reg, Type *Ty, 1025 Optional<CallingConv::ID> CC); 1026 isABIMangledRegsForValue1027 bool isABIMangled() const { 1028 return CallConv.hasValue(); 1029 } 1030 1031 /// Add the specified values to this one. appendRegsForValue1032 void append(const RegsForValue &RHS) { 1033 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 1034 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 1035 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 1036 RegCount.push_back(RHS.Regs.size()); 1037 } 1038 1039 /// Emit a series of CopyFromReg nodes that copies from this value and returns 1040 /// the result as a ValueVTs value. This uses Chain/Flag as the input and 1041 /// updates them for the output Chain/Flag. If the Flag pointer is NULL, no 1042 /// flag is used. 1043 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 1044 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 1045 const Value *V = nullptr) const; 1046 1047 /// Emit a series of CopyToReg nodes that copies the specified value into the 1048 /// registers specified by this object. This uses Chain/Flag as the input and 1049 /// updates them for the output Chain/Flag. If the Flag pointer is nullptr, no 1050 /// flag is used. If V is not nullptr, then it is used in printing better 1051 /// diagnostic messages on error. 1052 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl, 1053 SDValue &Chain, SDValue *Flag, const Value *V = nullptr, 1054 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 1055 1056 /// Add this value to the specified inlineasm node operand list. This adds the 1057 /// code marker, matching input operand index (if applicable), and includes 1058 /// the number of values added into it. 1059 void AddInlineAsmOperands(unsigned Code, bool HasMatching, 1060 unsigned MatchingIdx, const SDLoc &dl, 1061 SelectionDAG &DAG, std::vector<SDValue> &Ops) const; 1062 1063 /// Check if the total RegCount is greater than one. occupiesMultipleRegsRegsForValue1064 bool occupiesMultipleRegs() const { 1065 return std::accumulate(RegCount.begin(), RegCount.end(), 0) > 1; 1066 } 1067 1068 /// Return a list of registers and their sizes. 1069 SmallVector<std::pair<unsigned, unsigned>, 4> getRegsAndSizes() const; 1070 }; 1071 1072 } // end namespace llvm 1073 1074 #endif // LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H 1075