1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved. 2 3 Licensed under the Apache License, Version 2.0 (the "License"); 4 you may not use this file except in compliance with the License. 5 You may obtain a copy of the License at 6 7 http://www.apache.org/licenses/LICENSE-2.0 8 9 Unless required by applicable law or agreed to in writing, software 10 distributed under the License is distributed on an "AS IS" BASIS, 11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 See the License for the specific language governing permissions and 13 limitations under the License. 14 ==============================================================================*/ 15 16 // A Device is a something that can perform computations as part of a 17 // model. Devices can be local (runs computation on this machine), or 18 // remote (contacts a device local to another machine using an RPC to 19 // do the work). Devices are registered in a DeviceSet, which is also 20 // responsible for the Device <-> id mapping. 21 // 22 // Device names 23 // * Every Device should have a unique name with the format: 24 // /job:___/replica:___/task:___/(gpu|cpu):___ 25 // An example name would be "/job:train/replica:0/task:3/device:GPU:2". 26 // * Task numbers are within the specified replica, so there are as 27 // many "task zeros" as replicas. 28 29 #ifndef TENSORFLOW_CORE_COMMON_RUNTIME_DEVICE_H_ 30 #define TENSORFLOW_CORE_COMMON_RUNTIME_DEVICE_H_ 31 32 #include <memory> 33 #include <string> 34 35 #include "tensorflow/core/framework/allocator.h" 36 #include "tensorflow/core/framework/control_flow.h" 37 #include "tensorflow/core/framework/device_attributes.pb_text.h" 38 #include "tensorflow/core/framework/device_attributes.pb.h" 39 #include "tensorflow/core/framework/device_base.h" 40 #include "tensorflow/core/framework/graph.pb.h" 41 #include "tensorflow/core/framework/op_kernel.h" 42 #include "tensorflow/core/framework/op_segment.h" 43 #include "tensorflow/core/framework/resource_mgr.h" 44 #include "tensorflow/core/framework/types.h" 45 #include "tensorflow/core/graph/graph.h" 46 #include "tensorflow/core/graph/types.h" 47 #include "tensorflow/core/lib/core/errors.h" 48 #include "tensorflow/core/lib/core/status.h" 49 #include "tensorflow/core/platform/macros.h" 50 #include "tensorflow/core/platform/types.h" 51 #include "tensorflow/core/util/device_name_utils.h" 52 53 namespace tensorflow { 54 55 class DeviceMgr; 56 57 class Device : public DeviceBase { 58 public: 59 // Callback type that takes a Status and returns void. 60 typedef std::function<void(const Status&)> DoneCallback; 61 62 Device(Env* env, const DeviceAttributes& device_attributes); 63 ~Device() override; 64 65 // Full name of this device (see top comment). name()66 const string& name() const override { return device_attributes_.name(); } 67 68 // Parsed name of this device parsed_name()69 const DeviceNameUtils::ParsedName& parsed_name() const { 70 return parsed_name_; 71 } 72 73 // Describes what kind of device this is. This is intended to be 74 // human-readable and not computer-parsed, except that two devices 75 // with the same device_type() are expected to perform similarly 76 // (both from a computation and communication perspective). device_type()77 const string& device_type() const { return device_attributes_.device_type(); } 78 79 // Returns an aggregation of device attributes. attributes()80 const DeviceAttributes& attributes() const override { 81 return device_attributes_; 82 } 83 84 // Performs the actual compute function. 85 // 86 // Subclasses may override this function if they wish to perform 87 // some initialization before each compute. Compute(OpKernel * op_kernel,OpKernelContext * context)88 virtual void Compute(OpKernel* op_kernel, OpKernelContext* context) { 89 op_kernel->Compute(context); 90 } 91 92 // Asynchronous kernel's compute. ComputeAsync(AsyncOpKernel * op_kernel,OpKernelContext * context,AsyncOpKernel::DoneCallback done)93 virtual void ComputeAsync(AsyncOpKernel* op_kernel, OpKernelContext* context, 94 AsyncOpKernel::DoneCallback done) { 95 op_kernel->ComputeAsync(context, std::move(done)); 96 } 97 98 // Takes ownership of the references in tensors. If necessary, a 99 // device may override this method to keep a reference to the 100 // accessed tensors until the async computation has completed. ConsumeListOfAccessedTensors(DeviceContext * context,const TensorReferenceVector & tensors)101 virtual void ConsumeListOfAccessedTensors( 102 DeviceContext* context, const TensorReferenceVector& tensors) { 103 for (const auto& ref : tensors) { 104 ref.Unref(); 105 } 106 } 107 108 // If true, and tracing is enabled, the `tracing::ScopedAnnotation()` tracing 109 // mechanism will be used instead of `tracing::ScopedActivity()`. Some devices 110 // may override this method to use annotations, which enable child activities 111 // (such as GPU kernel launches) to be related to the OpKernel invocation. TraceUsingAnnotations()112 virtual bool TraceUsingAnnotations() const { return false; } 113 114 // Blocks until all operations queued on the device at the time of 115 // the call have completed. Returns any error pending on the device 116 // at completion. 117 virtual Status Sync() = 0; 118 119 // Calls the given callback when all operations queued on the device at the 120 // time of the call have completed. The callback is passed any error pending 121 // on the device at completion. 122 // TODO(b/112409994): Consolidate these two APIs, removing the synchronous 123 // version. 124 virtual void Sync(const DoneCallback& done); 125 126 // On session completion, the executor may call Device::Sync() depending on 127 // flag settings. Override this to return false for devices that don't allow 128 // such calls. Instead, these devices must use other mechanisms (such as 129 // num_deferred_ops) to ensure the device has finished processing necessary 130 // work at session completion. In addition, for these devices, RefreshStatus 131 // must be called at session completion to retrieve execution result status. 132 // 133 // Devices that override this function must also implement RefreshStatus. AllowsSyncOnCompletion()134 virtual bool AllowsSyncOnCompletion() const { return true; } 135 136 // This is used in conjunction with AllowsSyncOnCompletion to allow the 137 // executor to get execution result status at session completion. 138 // 139 // For supported devices, this call returns the underlying device stream's 140 // current status in a non-blocking way, without using blocking calls such as 141 // Stream::BlockHostUntilDone or Device::Sync. When applicable, the device 142 // status is also updated with the retrieved stream status. RefreshStatus()143 virtual Status RefreshStatus() { 144 return errors::Unimplemented( 145 "RefreshStatus is not supported on this device."); 146 } 147 148 // Optionally modify the device's GraphDef before execution. 149 // 150 // This method should be considered experimental and is supplied to enable 151 // prototyping of TensorFlow device implementations that need to modify 152 // the GraphDef before execution. 153 // 154 // 'graph' supplies the partition of the graph assigned to this 155 // device. MaybeRewriteGraph(std::unique_ptr<Graph> *)156 virtual Status MaybeRewriteGraph(std::unique_ptr<Graph>* /*graph*/) { 157 return Status::OK(); 158 } 159 160 // Fill in the context map for the graph. Default behavior is to do 161 // nothing. 162 // 163 // The caller takes ownership over the DeviceContext objects given 164 // by the device. FillContextMap(const Graph * graph,DeviceContextMap * device_context_map)165 virtual Status FillContextMap(const Graph* graph, 166 DeviceContextMap* device_context_map) { 167 return Status::OK(); 168 } 169 170 // Returns the op segment of this device. The caller can reuse op 171 // kernels registered for the same session running on this device. op_segment()172 OpSegment* op_segment() { return &op_seg_; } 173 174 // Returns the resource manager associated w/ this device. resource_manager()175 virtual ResourceMgr* resource_manager() { return rmgr_; } 176 177 // Returns the device manager that owns this device, or nullptr if this Device 178 // is not owned by a device manager. device_mgr()179 DeviceMgr* device_mgr() const { return device_mgr_; } 180 181 // Summarizes the status of this Device, for debugging. DebugString()182 string DebugString() const { return ProtoDebugString(device_attributes_); } 183 184 // Assembles the parameter components into a complete DeviceAttributes value. 185 static DeviceAttributes BuildDeviceAttributes( 186 const string& name, DeviceType device, Bytes memory_limit, 187 const DeviceLocality& locality, const string& physical_device_desc); 188 BuildDeviceAttributes(const string & name,DeviceType device,Bytes memory_limit,const DeviceLocality & locality)189 static DeviceAttributes BuildDeviceAttributes( 190 const string& name, DeviceType device, Bytes memory_limit, 191 const DeviceLocality& locality) { 192 // Pass in an empty string as physical device name. 193 return BuildDeviceAttributes(name, device, memory_limit, locality, ""); 194 } 195 196 // Clears the resource manager associated with this device. ClearResourceMgr()197 void ClearResourceMgr() { rmgr_->Clear(); } 198 199 protected: DeleteResourceMgr()200 void DeleteResourceMgr() { 201 delete rmgr_; 202 rmgr_ = nullptr; 203 } 204 205 private: 206 friend class DeviceMgr; 207 208 // Pointer to the device manager that owns this device. Not owned. 209 DeviceMgr* device_mgr_ = nullptr; 210 211 const DeviceAttributes device_attributes_; 212 DeviceNameUtils::ParsedName parsed_name_; 213 214 // op_seg_ maps session handle and op name to OpKernel objects. 215 OpSegment op_seg_; 216 217 // Resources associated w/ this device. E.g., shared variables, etc. 218 ResourceMgr* rmgr_ = nullptr; 219 220 TF_DISALLOW_COPY_AND_ASSIGN(Device); 221 }; 222 223 } // namespace tensorflow 224 225 #endif // TENSORFLOW_CORE_COMMON_RUNTIME_DEVICE_H_ 226