1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30
31 #include "common/gen_l3_config.h"
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 static void
emit_lrm(struct anv_batch * batch,uint32_t reg,struct anv_bo * bo,uint32_t offset)36 emit_lrm(struct anv_batch *batch,
37 uint32_t reg, struct anv_bo *bo, uint32_t offset)
38 {
39 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
40 lrm.RegisterAddress = reg;
41 lrm.MemoryAddress = (struct anv_address) { bo, offset };
42 }
43 }
44
45 static void
emit_lri(struct anv_batch * batch,uint32_t reg,uint32_t imm)46 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
47 {
48 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
49 lri.RegisterOffset = reg;
50 lri.DataDWord = imm;
51 }
52 }
53
54 #if GEN_IS_HASWELL || GEN_GEN >= 8
55 static void
emit_lrr(struct anv_batch * batch,uint32_t dst,uint32_t src)56 emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
57 {
58 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
59 lrr.SourceRegisterAddress = src;
60 lrr.DestinationRegisterAddress = dst;
61 }
62 }
63 #endif
64
65 void
genX(cmd_buffer_emit_state_base_address)66 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
67 {
68 struct anv_device *device = cmd_buffer->device;
69
70 /* Emit a render target cache flush.
71 *
72 * This isn't documented anywhere in the PRM. However, it seems to be
73 * necessary prior to changing the surface state base adress. Without
74 * this, we get GPU hangs when using multi-level command buffers which
75 * clear depth, reset state base address, and then go render stuff.
76 */
77 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
78 pc.DCFlushEnable = true;
79 pc.RenderTargetCacheFlushEnable = true;
80 pc.CommandStreamerStallEnable = true;
81 }
82
83 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
84 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
85 sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
86 sba.GeneralStateBaseAddressModifyEnable = true;
87
88 sba.SurfaceStateBaseAddress =
89 anv_cmd_buffer_surface_base_address(cmd_buffer);
90 sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
91 sba.SurfaceStateBaseAddressModifyEnable = true;
92
93 sba.DynamicStateBaseAddress =
94 (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
95 sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
96 sba.DynamicStateBaseAddressModifyEnable = true;
97
98 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
99 sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
100 sba.IndirectObjectBaseAddressModifyEnable = true;
101
102 sba.InstructionBaseAddress =
103 (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
104 sba.InstructionMemoryObjectControlState = GENX(MOCS);
105 sba.InstructionBaseAddressModifyEnable = true;
106
107 # if (GEN_GEN >= 8)
108 /* Broadwell requires that we specify a buffer size for a bunch of
109 * these fields. However, since we will be growing the BO's live, we
110 * just set them all to the maximum.
111 */
112 sba.GeneralStateBufferSize = 0xfffff;
113 sba.GeneralStateBufferSizeModifyEnable = true;
114 sba.DynamicStateBufferSize = 0xfffff;
115 sba.DynamicStateBufferSizeModifyEnable = true;
116 sba.IndirectObjectBufferSize = 0xfffff;
117 sba.IndirectObjectBufferSizeModifyEnable = true;
118 sba.InstructionBufferSize = 0xfffff;
119 sba.InstructionBuffersizeModifyEnable = true;
120 # endif
121 }
122
123 /* After re-setting the surface state base address, we have to do some
124 * cache flusing so that the sampler engine will pick up the new
125 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
126 * Shared Function > 3D Sampler > State > State Caching (page 96):
127 *
128 * Coherency with system memory in the state cache, like the texture
129 * cache is handled partially by software. It is expected that the
130 * command stream or shader will issue Cache Flush operation or
131 * Cache_Flush sampler message to ensure that the L1 cache remains
132 * coherent with system memory.
133 *
134 * [...]
135 *
136 * Whenever the value of the Dynamic_State_Base_Addr,
137 * Surface_State_Base_Addr are altered, the L1 state cache must be
138 * invalidated to ensure the new surface or sampler state is fetched
139 * from system memory.
140 *
141 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
142 * which, according the PIPE_CONTROL instruction documentation in the
143 * Broadwell PRM:
144 *
145 * Setting this bit is independent of any other bit in this packet.
146 * This bit controls the invalidation of the L1 and L2 state caches
147 * at the top of the pipe i.e. at the parsing time.
148 *
149 * Unfortunately, experimentation seems to indicate that state cache
150 * invalidation through a PIPE_CONTROL does nothing whatsoever in
151 * regards to surface state and binding tables. In stead, it seems that
152 * invalidating the texture cache is what is actually needed.
153 *
154 * XXX: As far as we have been able to determine through
155 * experimentation, shows that flush the texture cache appears to be
156 * sufficient. The theory here is that all of the sampling/rendering
157 * units cache the binding table in the texture cache. However, we have
158 * yet to be able to actually confirm this.
159 */
160 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
161 pc.TextureCacheInvalidationEnable = true;
162 pc.ConstantCacheInvalidationEnable = true;
163 pc.StateCacheInvalidationEnable = true;
164 }
165 }
166
167 static void
add_surface_state_reloc(struct anv_cmd_buffer * cmd_buffer,struct anv_state state,struct anv_bo * bo,uint32_t offset)168 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
169 struct anv_state state,
170 struct anv_bo *bo, uint32_t offset)
171 {
172 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
173
174 VkResult result =
175 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
176 state.offset + isl_dev->ss.addr_offset, bo, offset);
177 if (result != VK_SUCCESS)
178 anv_batch_set_error(&cmd_buffer->batch, result);
179 }
180
181 static void
add_image_view_relocs(struct anv_cmd_buffer * cmd_buffer,const struct anv_image_view * image_view,const uint32_t plane,struct anv_surface_state state)182 add_image_view_relocs(struct anv_cmd_buffer *cmd_buffer,
183 const struct anv_image_view *image_view,
184 const uint32_t plane,
185 struct anv_surface_state state)
186 {
187 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
188 const struct anv_image *image = image_view->image;
189 uint32_t image_plane = image_view->planes[plane].image_plane;
190
191 add_surface_state_reloc(cmd_buffer, state.state,
192 image->planes[image_plane].bo, state.address);
193
194 if (state.aux_address) {
195 VkResult result =
196 anv_reloc_list_add(&cmd_buffer->surface_relocs,
197 &cmd_buffer->pool->alloc,
198 state.state.offset + isl_dev->ss.aux_addr_offset,
199 image->planes[image_plane].bo, state.aux_address);
200 if (result != VK_SUCCESS)
201 anv_batch_set_error(&cmd_buffer->batch, result);
202 }
203 }
204
205 static bool
color_is_zero_one(VkClearColorValue value,enum isl_format format)206 color_is_zero_one(VkClearColorValue value, enum isl_format format)
207 {
208 if (isl_format_has_int_channel(format)) {
209 for (unsigned i = 0; i < 4; i++) {
210 if (value.int32[i] != 0 && value.int32[i] != 1)
211 return false;
212 }
213 } else {
214 for (unsigned i = 0; i < 4; i++) {
215 if (value.float32[i] != 0.0f && value.float32[i] != 1.0f)
216 return false;
217 }
218 }
219
220 return true;
221 }
222
223 static void
color_attachment_compute_aux_usage(struct anv_device * device,struct anv_cmd_state * cmd_state,uint32_t att,VkRect2D render_area,union isl_color_value * fast_clear_color)224 color_attachment_compute_aux_usage(struct anv_device * device,
225 struct anv_cmd_state * cmd_state,
226 uint32_t att, VkRect2D render_area,
227 union isl_color_value *fast_clear_color)
228 {
229 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
230 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
231
232 assert(iview->n_planes == 1);
233
234 if (iview->planes[0].isl.base_array_layer >=
235 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
236 iview->planes[0].isl.base_level)) {
237 /* There is no aux buffer which corresponds to the level and layer(s)
238 * being accessed.
239 */
240 att_state->aux_usage = ISL_AUX_USAGE_NONE;
241 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
242 att_state->fast_clear = false;
243 return;
244 } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_MCS) {
245 att_state->aux_usage = ISL_AUX_USAGE_MCS;
246 att_state->input_aux_usage = ISL_AUX_USAGE_MCS;
247 att_state->fast_clear = false;
248 return;
249 } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E) {
250 att_state->aux_usage = ISL_AUX_USAGE_CCS_E;
251 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_E;
252 } else {
253 att_state->aux_usage = ISL_AUX_USAGE_CCS_D;
254 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
255 *
256 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
257 * setting is only allowed if Surface Format supported for Fast
258 * Clear. In addition, if the surface is bound to the sampling
259 * engine, Surface Format must be supported for Render Target
260 * Compression for surfaces bound to the sampling engine."
261 *
262 * In other words, we can only sample from a fast-cleared image if it
263 * also supports color compression.
264 */
265 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
266 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
267
268 /* While fast-clear resolves and partial resolves are fairly cheap in the
269 * case where you render to most of the pixels, full resolves are not
270 * because they potentially involve reading and writing the entire
271 * framebuffer. If we can't texture with CCS_E, we should leave it off and
272 * limit ourselves to fast clears.
273 */
274 if (cmd_state->pass->attachments[att].first_subpass_layout ==
275 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
276 anv_perf_warn(device->instance, iview->image,
277 "Not temporarily enabling CCS_E.");
278 }
279 } else {
280 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
281 }
282 }
283
284 assert(iview->image->planes[0].aux_surface.isl.usage & ISL_SURF_USAGE_CCS_BIT);
285
286 att_state->clear_color_is_zero_one =
287 color_is_zero_one(att_state->clear_value.color, iview->planes[0].isl.format);
288 att_state->clear_color_is_zero =
289 att_state->clear_value.color.uint32[0] == 0 &&
290 att_state->clear_value.color.uint32[1] == 0 &&
291 att_state->clear_value.color.uint32[2] == 0 &&
292 att_state->clear_value.color.uint32[3] == 0;
293
294 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
295 /* Start off assuming fast clears are possible */
296 att_state->fast_clear = true;
297
298 /* Potentially, we could do partial fast-clears but doing so has crazy
299 * alignment restrictions. It's easier to just restrict to full size
300 * fast clears for now.
301 */
302 if (render_area.offset.x != 0 ||
303 render_area.offset.y != 0 ||
304 render_area.extent.width != iview->extent.width ||
305 render_area.extent.height != iview->extent.height)
306 att_state->fast_clear = false;
307
308 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
309 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
310 att_state->fast_clear = false;
311
312 /* We allow fast clears when all aux layers of the miplevel are targeted.
313 * See add_fast_clear_state_buffer() for more information. Also, because
314 * we only either do a fast clear or a normal clear and not both, this
315 * complies with the gen7 restriction of not fast-clearing multiple
316 * layers.
317 */
318 if (cmd_state->framebuffer->layers !=
319 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
320 iview->planes[0].isl.base_level)) {
321 att_state->fast_clear = false;
322 if (GEN_GEN == 7) {
323 anv_perf_warn(device->instance, iview->image,
324 "Not fast-clearing the first layer in "
325 "a multi-layer fast clear.");
326 }
327 }
328
329 /* We only allow fast clears in the GENERAL layout if the auxiliary
330 * buffer is always enabled and the fast-clear value is all 0's. See
331 * add_fast_clear_state_buffer() for more information.
332 */
333 if (cmd_state->pass->attachments[att].first_subpass_layout ==
334 VK_IMAGE_LAYOUT_GENERAL &&
335 (!att_state->clear_color_is_zero ||
336 iview->image->planes[0].aux_usage == ISL_AUX_USAGE_NONE)) {
337 att_state->fast_clear = false;
338 }
339
340 if (att_state->fast_clear) {
341 memcpy(fast_clear_color->u32, att_state->clear_value.color.uint32,
342 sizeof(fast_clear_color->u32));
343 }
344 } else {
345 att_state->fast_clear = false;
346 }
347 }
348
349 static bool
need_input_attachment_state(const struct anv_render_pass_attachment * att)350 need_input_attachment_state(const struct anv_render_pass_attachment *att)
351 {
352 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
353 return false;
354
355 /* We only allocate input attachment states for color surfaces. Compression
356 * is not yet enabled for depth textures and stencil doesn't allow
357 * compression so we can just use the texture surface state from the view.
358 */
359 return vk_format_is_color(att->format);
360 }
361
362 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
363 * the initial layout is undefined, the HiZ buffer and depth buffer will
364 * represent the same data at the end of this operation.
365 */
366 static void
transition_depth_buffer(struct anv_cmd_buffer * cmd_buffer,const struct anv_image * image,VkImageLayout initial_layout,VkImageLayout final_layout)367 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
368 const struct anv_image *image,
369 VkImageLayout initial_layout,
370 VkImageLayout final_layout)
371 {
372 assert(image);
373
374 /* A transition is a no-op if HiZ is not enabled, or if the initial and
375 * final layouts are equal.
376 *
377 * The undefined layout indicates that the user doesn't care about the data
378 * that's currently in the buffer. Therefore, a data-preserving resolve
379 * operation is not needed.
380 */
381 if (image->planes[0].aux_usage != ISL_AUX_USAGE_HIZ || initial_layout == final_layout)
382 return;
383
384 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
385 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
386 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
387 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
388 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
389 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
390
391 enum blorp_hiz_op hiz_op;
392 if (hiz_enabled && !enable_hiz) {
393 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
394 } else if (!hiz_enabled && enable_hiz) {
395 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
396 } else {
397 assert(hiz_enabled == enable_hiz);
398 /* If the same buffer will be used, no resolves are necessary. */
399 hiz_op = BLORP_HIZ_OP_NONE;
400 }
401
402 if (hiz_op != BLORP_HIZ_OP_NONE)
403 anv_gen8_hiz_op_resolve(cmd_buffer, image, hiz_op);
404 }
405
406 #define MI_PREDICATE_SRC0 0x2400
407 #define MI_PREDICATE_SRC1 0x2408
408
409 /* Manages the state of an color image subresource to ensure resolves are
410 * performed properly.
411 */
412 static void
genX(set_image_needs_resolve)413 genX(set_image_needs_resolve)(struct anv_cmd_buffer *cmd_buffer,
414 const struct anv_image *image,
415 VkImageAspectFlagBits aspect,
416 unsigned level, bool needs_resolve)
417 {
418 assert(cmd_buffer && image);
419 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
420 assert(level < anv_image_aux_levels(image, aspect));
421
422 /* The HW docs say that there is no way to guarantee the completion of
423 * the following command. We use it nevertheless because it shows no
424 * issues in testing is currently being used in the GL driver.
425 */
426 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
427 sdi.Address = anv_image_get_needs_resolve_addr(cmd_buffer->device,
428 image, aspect, level);
429 sdi.ImmediateData = needs_resolve;
430 }
431 }
432
433 static void
genX(load_needs_resolve_predicate)434 genX(load_needs_resolve_predicate)(struct anv_cmd_buffer *cmd_buffer,
435 const struct anv_image *image,
436 VkImageAspectFlagBits aspect,
437 unsigned level)
438 {
439 assert(cmd_buffer && image);
440 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
441 assert(level < anv_image_aux_levels(image, aspect));
442
443 const struct anv_address resolve_flag_addr =
444 anv_image_get_needs_resolve_addr(cmd_buffer->device,
445 image, aspect, level);
446
447 /* Make the pending predicated resolve a no-op if one is not needed.
448 * predicate = do_resolve = resolve_flag != 0;
449 */
450 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
451 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
452 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 , 0);
453 emit_lrm(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4,
454 resolve_flag_addr.bo, resolve_flag_addr.offset);
455 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
456 mip.LoadOperation = LOAD_LOADINV;
457 mip.CombineOperation = COMBINE_SET;
458 mip.CompareOperation = COMPARE_SRCS_EQUAL;
459 }
460 }
461
462 static void
init_fast_clear_state_entry(struct anv_cmd_buffer * cmd_buffer,const struct anv_image * image,VkImageAspectFlagBits aspect,unsigned level)463 init_fast_clear_state_entry(struct anv_cmd_buffer *cmd_buffer,
464 const struct anv_image *image,
465 VkImageAspectFlagBits aspect,
466 unsigned level)
467 {
468 assert(cmd_buffer && image);
469 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
470 assert(level < anv_image_aux_levels(image, aspect));
471
472 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
473 enum isl_aux_usage aux_usage = image->planes[plane].aux_usage;
474
475 /* The resolve flag should updated to signify that fast-clear/compression
476 * data needs to be removed when leaving the undefined layout. Such data
477 * may need to be removed if it would cause accesses to the color buffer
478 * to return incorrect data. The fast clear data in CCS_D buffers should
479 * be removed because CCS_D isn't enabled all the time.
480 */
481 genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level,
482 aux_usage == ISL_AUX_USAGE_NONE);
483
484 /* The fast clear value dword(s) will be copied into a surface state object.
485 * Ensure that the restrictions of the fields in the dword(s) are followed.
486 *
487 * CCS buffers on SKL+ can have any value set for the clear colors.
488 */
489 if (image->samples == 1 && GEN_GEN >= 9)
490 return;
491
492 /* Other combinations of auxiliary buffers and platforms require specific
493 * values in the clear value dword(s).
494 */
495 struct anv_address addr =
496 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect, level);
497 unsigned i = 0;
498 for (; i < cmd_buffer->device->isl_dev.ss.clear_value_size; i += 4) {
499 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
500 sdi.Address = addr;
501
502 if (GEN_GEN >= 9) {
503 /* MCS buffers on SKL+ can only have 1/0 clear colors. */
504 assert(aux_usage == ISL_AUX_USAGE_MCS);
505 sdi.ImmediateData = 0;
506 } else if (GEN_VERSIONx10 >= 75) {
507 /* Pre-SKL, the dword containing the clear values also contains
508 * other fields, so we need to initialize those fields to match the
509 * values that would be in a color attachment.
510 */
511 assert(i == 0);
512 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
513 ISL_CHANNEL_SELECT_GREEN << 22 |
514 ISL_CHANNEL_SELECT_BLUE << 19 |
515 ISL_CHANNEL_SELECT_ALPHA << 16;
516 } else if (GEN_VERSIONx10 == 70) {
517 /* On IVB, the dword containing the clear values also contains
518 * other fields that must be zero or can be zero.
519 */
520 assert(i == 0);
521 sdi.ImmediateData = 0;
522 }
523 }
524
525 addr.offset += 4;
526 }
527 }
528
529 /* Copy the fast-clear value dword(s) between a surface state object and an
530 * image's fast clear state buffer.
531 */
532 static void
genX(copy_fast_clear_dwords)533 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
534 struct anv_state surface_state,
535 const struct anv_image *image,
536 VkImageAspectFlagBits aspect,
537 unsigned level,
538 bool copy_from_surface_state)
539 {
540 assert(cmd_buffer && image);
541 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
542 assert(level < anv_image_aux_levels(image, aspect));
543
544 struct anv_bo *ss_bo =
545 &cmd_buffer->device->surface_state_pool.block_pool.bo;
546 uint32_t ss_clear_offset = surface_state.offset +
547 cmd_buffer->device->isl_dev.ss.clear_value_offset;
548 const struct anv_address entry_addr =
549 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect, level);
550 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
551
552 if (copy_from_surface_state) {
553 genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr.bo, entry_addr.offset,
554 ss_bo, ss_clear_offset, copy_size);
555 } else {
556 genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_bo, ss_clear_offset,
557 entry_addr.bo, entry_addr.offset, copy_size);
558
559 /* Updating a surface state object may require that the state cache be
560 * invalidated. From the SKL PRM, Shared Functions -> State -> State
561 * Caching:
562 *
563 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
564 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
565 * modified [...], the L1 state cache must be invalidated to ensure
566 * the new surface or sampler state is fetched from system memory.
567 *
568 * In testing, SKL doesn't actually seem to need this, but HSW does.
569 */
570 cmd_buffer->state.pending_pipe_bits |=
571 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
572 }
573 }
574
575 /**
576 * @brief Transitions a color buffer from one layout to another.
577 *
578 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
579 * more information.
580 *
581 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
582 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
583 * this represents the maximum layers to transition at each
584 * specified miplevel.
585 */
586 static void
transition_color_buffer(struct anv_cmd_buffer * cmd_buffer,const struct anv_image * image,VkImageAspectFlagBits aspect,const uint32_t base_level,uint32_t level_count,uint32_t base_layer,uint32_t layer_count,VkImageLayout initial_layout,VkImageLayout final_layout)587 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
588 const struct anv_image *image,
589 VkImageAspectFlagBits aspect,
590 const uint32_t base_level, uint32_t level_count,
591 uint32_t base_layer, uint32_t layer_count,
592 VkImageLayout initial_layout,
593 VkImageLayout final_layout)
594 {
595 /* Validate the inputs. */
596 assert(cmd_buffer);
597 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
598 /* These values aren't supported for simplicity's sake. */
599 assert(level_count != VK_REMAINING_MIP_LEVELS &&
600 layer_count != VK_REMAINING_ARRAY_LAYERS);
601 /* Ensure the subresource range is valid. */
602 uint64_t last_level_num = base_level + level_count;
603 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
604 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
605 assert((uint64_t)base_layer + layer_count <= image_layers);
606 assert(last_level_num <= image->levels);
607 /* The spec disallows these final layouts. */
608 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
609 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
610
611 /* No work is necessary if the layout stays the same or if this subresource
612 * range lacks auxiliary data.
613 */
614 if (initial_layout == final_layout)
615 return;
616
617 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
618
619 if (image->planes[plane].shadow_surface.isl.size > 0 &&
620 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
621 /* This surface is a linear compressed image with a tiled shadow surface
622 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
623 * we need to ensure the shadow copy is up-to-date.
624 */
625 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
626 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
627 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
628 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
629 assert(plane == 0);
630 anv_image_copy_to_shadow(cmd_buffer, image,
631 base_level, level_count,
632 base_layer, layer_count);
633 }
634
635 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
636 return;
637
638 /* A transition of a 3D subresource works on all slices at a time. */
639 if (image->type == VK_IMAGE_TYPE_3D) {
640 base_layer = 0;
641 layer_count = anv_minify(image->extent.depth, base_level);
642 }
643
644 /* We're interested in the subresource range subset that has aux data. */
645 level_count = MIN2(level_count, anv_image_aux_levels(image, aspect) - base_level);
646 layer_count = MIN2(layer_count,
647 anv_image_aux_layers(image, aspect, base_level) - base_layer);
648 last_level_num = base_level + level_count;
649
650 /* Record whether or not the layout is undefined. Pre-initialized images
651 * with auxiliary buffers have a non-linear layout and are thus undefined.
652 */
653 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
654 const bool undef_layout = initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
655 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED;
656
657 /* Do preparatory work before the resolve operation or return early if no
658 * resolve is actually needed.
659 */
660 if (undef_layout) {
661 /* A subresource in the undefined layout may have been aliased and
662 * populated with any arrangement of bits. Therefore, we must initialize
663 * the related aux buffer and clear buffer entry with desirable values.
664 *
665 * Initialize the relevant clear buffer entries.
666 */
667 for (unsigned level = base_level; level < last_level_num; level++)
668 init_fast_clear_state_entry(cmd_buffer, image, aspect, level);
669
670 /* Initialize the aux buffers to enable correct rendering. This operation
671 * requires up to two steps: one to rid the aux buffer of data that may
672 * cause GPU hangs, and another to ensure that writes done without aux
673 * will be visible to reads done with aux.
674 *
675 * Having an aux buffer with invalid data is possible for CCS buffers
676 * SKL+ and for MCS buffers with certain sample counts (2x and 8x). One
677 * easy way to get to a valid state is to fast-clear the specified range.
678 *
679 * Even for MCS buffers that have sample counts that don't require
680 * certain bits to be reserved (4x and 8x), we're unsure if the hardware
681 * will be okay with the sample mappings given by the undefined buffer.
682 * We don't have any data to show that this is a problem, but we want to
683 * avoid causing difficult-to-debug problems.
684 */
685 if ((GEN_GEN >= 9 && image->samples == 1) || image->samples > 1) {
686 if (image->samples == 4 || image->samples == 16) {
687 anv_perf_warn(cmd_buffer->device->instance, image,
688 "Doing a potentially unnecessary fast-clear to "
689 "define an MCS buffer.");
690 }
691
692 anv_image_fast_clear(cmd_buffer, image, aspect,
693 base_level, level_count,
694 base_layer, layer_count);
695 }
696 /* At this point, some elements of the CCS buffer may have the fast-clear
697 * bit-arrangement. As the user writes to a subresource, we need to have
698 * the associated CCS elements enter the ambiguated state. This enables
699 * reads (implicit or explicit) to reflect the user-written data instead
700 * of the clear color. The only time such elements will not change their
701 * state as described above, is in a final layout that doesn't have CCS
702 * enabled. In this case, we must force the associated CCS buffers of the
703 * specified range to enter the ambiguated state in advance.
704 */
705 if (image->samples == 1 &&
706 image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E &&
707 final_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
708 /* The CCS_D buffer may not be enabled in the final layout. Continue
709 * executing this function to perform a resolve.
710 */
711 anv_perf_warn(cmd_buffer->device->instance, image,
712 "Performing an additional resolve for CCS_D layout "
713 "transition. Consider always leaving it on or "
714 "performing an ambiguation pass.");
715 } else {
716 /* Writes in the final layout will be aware of the auxiliary buffer.
717 * In addition, the clear buffer entries and the auxiliary buffers
718 * have been populated with values that will result in correct
719 * rendering.
720 */
721 return;
722 }
723 } else if (initial_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
724 /* Resolves are only necessary if the subresource may contain blocks
725 * fast-cleared to values unsupported in other layouts. This only occurs
726 * if the initial layout is COLOR_ATTACHMENT_OPTIMAL.
727 */
728 return;
729 } else if (image->samples > 1) {
730 /* MCS buffers don't need resolving. */
731 return;
732 }
733
734 /* Perform a resolve to synchronize data between the main and aux buffer.
735 * Before we begin, we must satisfy the cache flushing requirement specified
736 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
737 *
738 * Any transition from any value in {Clear, Render, Resolve} to a
739 * different value in {Clear, Render, Resolve} requires end of pipe
740 * synchronization.
741 *
742 * We perform a flush of the write cache before and after the clear and
743 * resolve operations to meet this requirement.
744 *
745 * Unlike other drawing, fast clear operations are not properly
746 * synchronized. The first PIPE_CONTROL here likely ensures that the
747 * contents of the previous render or clear hit the render target before we
748 * resolve and the second likely ensures that the resolve is complete before
749 * we do any more rendering or clearing.
750 */
751 cmd_buffer->state.pending_pipe_bits |=
752 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
753
754 for (uint32_t level = base_level; level < last_level_num; level++) {
755
756 /* The number of layers changes at each 3D miplevel. */
757 if (image->type == VK_IMAGE_TYPE_3D) {
758 layer_count = MIN2(layer_count, anv_image_aux_layers(image, aspect, level));
759 }
760
761 genX(load_needs_resolve_predicate)(cmd_buffer, image, aspect, level);
762
763 anv_ccs_resolve(cmd_buffer, image, aspect, level, base_layer, layer_count,
764 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E ?
765 BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL :
766 BLORP_FAST_CLEAR_OP_RESOLVE_FULL);
767
768 genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level, false);
769 }
770
771 cmd_buffer->state.pending_pipe_bits |=
772 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
773 }
774
775 /**
776 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
777 */
778 static VkResult
genX(cmd_buffer_setup_attachments)779 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
780 struct anv_render_pass *pass,
781 const VkRenderPassBeginInfo *begin)
782 {
783 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
784 struct anv_cmd_state *state = &cmd_buffer->state;
785
786 vk_free(&cmd_buffer->pool->alloc, state->attachments);
787
788 if (pass->attachment_count > 0) {
789 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
790 pass->attachment_count *
791 sizeof(state->attachments[0]),
792 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
793 if (state->attachments == NULL) {
794 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
795 return anv_batch_set_error(&cmd_buffer->batch,
796 VK_ERROR_OUT_OF_HOST_MEMORY);
797 }
798 } else {
799 state->attachments = NULL;
800 }
801
802 /* Reserve one for the NULL state. */
803 unsigned num_states = 1;
804 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
805 if (vk_format_is_color(pass->attachments[i].format))
806 num_states++;
807
808 if (need_input_attachment_state(&pass->attachments[i]))
809 num_states++;
810 }
811
812 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
813 state->render_pass_states =
814 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
815 num_states * ss_stride, isl_dev->ss.align);
816
817 struct anv_state next_state = state->render_pass_states;
818 next_state.alloc_size = isl_dev->ss.size;
819
820 state->null_surface_state = next_state;
821 next_state.offset += ss_stride;
822 next_state.map += ss_stride;
823
824 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
825 if (vk_format_is_color(pass->attachments[i].format)) {
826 state->attachments[i].color.state = next_state;
827 next_state.offset += ss_stride;
828 next_state.map += ss_stride;
829 }
830
831 if (need_input_attachment_state(&pass->attachments[i])) {
832 state->attachments[i].input.state = next_state;
833 next_state.offset += ss_stride;
834 next_state.map += ss_stride;
835 }
836 }
837 assert(next_state.offset == state->render_pass_states.offset +
838 state->render_pass_states.alloc_size);
839
840 if (begin) {
841 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
842 assert(pass->attachment_count == framebuffer->attachment_count);
843
844 isl_null_fill_state(isl_dev, state->null_surface_state.map,
845 isl_extent3d(framebuffer->width,
846 framebuffer->height,
847 framebuffer->layers));
848
849 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
850 struct anv_render_pass_attachment *att = &pass->attachments[i];
851 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
852 VkImageAspectFlags clear_aspects = 0;
853
854 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
855 /* color attachment */
856 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
857 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
858 }
859 } else {
860 /* depthstencil attachment */
861 if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
862 att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
863 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
864 }
865 if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
866 att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
867 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
868 }
869 }
870
871 state->attachments[i].current_layout = att->initial_layout;
872 state->attachments[i].pending_clear_aspects = clear_aspects;
873 if (clear_aspects)
874 state->attachments[i].clear_value = begin->pClearValues[i];
875
876 struct anv_image_view *iview = framebuffer->attachments[i];
877 anv_assert(iview->vk_format == att->format);
878
879 union isl_color_value clear_color = { .u32 = { 0, } };
880 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
881 anv_assert(iview->n_planes == 1);
882 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
883 color_attachment_compute_aux_usage(cmd_buffer->device,
884 state, i, begin->renderArea,
885 &clear_color);
886
887 anv_image_fill_surface_state(cmd_buffer->device,
888 iview->image,
889 VK_IMAGE_ASPECT_COLOR_BIT,
890 &iview->planes[0].isl,
891 ISL_SURF_USAGE_RENDER_TARGET_BIT,
892 state->attachments[i].aux_usage,
893 &clear_color,
894 0,
895 &state->attachments[i].color,
896 NULL);
897
898 add_image_view_relocs(cmd_buffer, iview, 0,
899 state->attachments[i].color);
900 } else {
901 /* This field will be initialized after the first subpass
902 * transition.
903 */
904 state->attachments[i].aux_usage = ISL_AUX_USAGE_NONE;
905
906 state->attachments[i].input_aux_usage = ISL_AUX_USAGE_NONE;
907 }
908
909 if (need_input_attachment_state(&pass->attachments[i])) {
910 anv_image_fill_surface_state(cmd_buffer->device,
911 iview->image,
912 VK_IMAGE_ASPECT_COLOR_BIT,
913 &iview->planes[0].isl,
914 ISL_SURF_USAGE_TEXTURE_BIT,
915 state->attachments[i].input_aux_usage,
916 &clear_color,
917 0,
918 &state->attachments[i].input,
919 NULL);
920
921 add_image_view_relocs(cmd_buffer, iview, 0,
922 state->attachments[i].input);
923 }
924 }
925 }
926
927 return VK_SUCCESS;
928 }
929
930 VkResult
genX(BeginCommandBuffer)931 genX(BeginCommandBuffer)(
932 VkCommandBuffer commandBuffer,
933 const VkCommandBufferBeginInfo* pBeginInfo)
934 {
935 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
936
937 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
938 * command buffer's state. Otherwise, we must *reset* its state. In both
939 * cases we reset it.
940 *
941 * From the Vulkan 1.0 spec:
942 *
943 * If a command buffer is in the executable state and the command buffer
944 * was allocated from a command pool with the
945 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
946 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
947 * as if vkResetCommandBuffer had been called with
948 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
949 * the command buffer in the recording state.
950 */
951 anv_cmd_buffer_reset(cmd_buffer);
952
953 cmd_buffer->usage_flags = pBeginInfo->flags;
954
955 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
956 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
957
958 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
959
960 /* We sometimes store vertex data in the dynamic state buffer for blorp
961 * operations and our dynamic state stream may re-use data from previous
962 * command buffers. In order to prevent stale cache data, we flush the VF
963 * cache. We could do this on every blorp call but that's not really
964 * needed as all of the data will get written by the CPU prior to the GPU
965 * executing anything. The chances are fairly high that they will use
966 * blorp at least once per primary command buffer so it shouldn't be
967 * wasted.
968 */
969 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
970 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
971
972 /* We send an "Indirect State Pointers Disable" packet at
973 * EndCommandBuffer, so all push contant packets are ignored during a
974 * context restore. Documentation says after that command, we need to
975 * emit push constants again before any rendering operation. So we
976 * flag them dirty here to make sure they get emitted.
977 */
978 if (GEN_GEN == 10)
979 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
980
981 VkResult result = VK_SUCCESS;
982 if (cmd_buffer->usage_flags &
983 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
984 assert(pBeginInfo->pInheritanceInfo);
985 cmd_buffer->state.pass =
986 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
987 cmd_buffer->state.subpass =
988 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
989
990 /* This is optional in the inheritance info. */
991 cmd_buffer->state.framebuffer =
992 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
993
994 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
995 cmd_buffer->state.pass, NULL);
996
997 /* Record that HiZ is enabled if we can. */
998 if (cmd_buffer->state.framebuffer) {
999 const struct anv_image_view * const iview =
1000 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1001
1002 if (iview) {
1003 VkImageLayout layout =
1004 cmd_buffer->state.subpass->depth_stencil_attachment.layout;
1005
1006 enum isl_aux_usage aux_usage =
1007 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1008 VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1009
1010 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1011 }
1012 }
1013
1014 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1015 }
1016
1017 return result;
1018 }
1019
1020 /* From the PRM, Volume 2a:
1021 *
1022 * "Indirect State Pointers Disable
1023 *
1024 * At the completion of the post-sync operation associated with this pipe
1025 * control packet, the indirect state pointers in the hardware are
1026 * considered invalid; the indirect pointers are not saved in the context.
1027 * If any new indirect state commands are executed in the command stream
1028 * while the pipe control is pending, the new indirect state commands are
1029 * preserved.
1030 *
1031 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1032 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1033 * commands are only considered as Indirect State Pointers. Once ISP is
1034 * issued in a context, SW must initialize by programming push constant
1035 * commands for all the shaders (at least to zero length) before attempting
1036 * any rendering operation for the same context."
1037 *
1038 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1039 * even though they point to a BO that has been already unreferenced at
1040 * the end of the previous batch buffer. This has been fine so far since
1041 * we are protected by these scratch page (every address not covered by
1042 * a BO should be pointing to the scratch page). But on CNL, it is
1043 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1044 * instruction.
1045 *
1046 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1047 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1048 * context restore, so the mentioned hang doesn't happen. However,
1049 * software must program push constant commands for all stages prior to
1050 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1051 */
1052 static void
emit_isp_disable(struct anv_cmd_buffer * cmd_buffer)1053 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1054 {
1055 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1056 pc.IndirectStatePointersDisable = true;
1057 pc.CommandStreamerStallEnable = true;
1058 }
1059 }
1060
1061 VkResult
genX(EndCommandBuffer)1062 genX(EndCommandBuffer)(
1063 VkCommandBuffer commandBuffer)
1064 {
1065 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1066
1067 if (anv_batch_has_error(&cmd_buffer->batch))
1068 return cmd_buffer->batch.status;
1069
1070 /* We want every command buffer to start with the PMA fix in a known state,
1071 * so we disable it at the end of the command buffer.
1072 */
1073 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1074
1075 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1076
1077 if (GEN_GEN == 10)
1078 emit_isp_disable(cmd_buffer);
1079
1080 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1081
1082 return VK_SUCCESS;
1083 }
1084
1085 void
genX(CmdExecuteCommands)1086 genX(CmdExecuteCommands)(
1087 VkCommandBuffer commandBuffer,
1088 uint32_t commandBufferCount,
1089 const VkCommandBuffer* pCmdBuffers)
1090 {
1091 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1092
1093 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1094
1095 if (anv_batch_has_error(&primary->batch))
1096 return;
1097
1098 /* The secondary command buffers will assume that the PMA fix is disabled
1099 * when they begin executing. Make sure this is true.
1100 */
1101 genX(cmd_buffer_enable_pma_fix)(primary, false);
1102
1103 /* The secondary command buffer doesn't know which textures etc. have been
1104 * flushed prior to their execution. Apply those flushes now.
1105 */
1106 genX(cmd_buffer_apply_pipe_flushes)(primary);
1107
1108 for (uint32_t i = 0; i < commandBufferCount; i++) {
1109 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1110
1111 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1112 assert(!anv_batch_has_error(&secondary->batch));
1113
1114 if (secondary->usage_flags &
1115 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1116 /* If we're continuing a render pass from the primary, we need to
1117 * copy the surface states for the current subpass into the storage
1118 * we allocated for them in BeginCommandBuffer.
1119 */
1120 struct anv_bo *ss_bo =
1121 &primary->device->surface_state_pool.block_pool.bo;
1122 struct anv_state src_state = primary->state.render_pass_states;
1123 struct anv_state dst_state = secondary->state.render_pass_states;
1124 assert(src_state.alloc_size == dst_state.alloc_size);
1125
1126 genX(cmd_buffer_so_memcpy)(primary, ss_bo, dst_state.offset,
1127 ss_bo, src_state.offset,
1128 src_state.alloc_size);
1129 }
1130
1131 anv_cmd_buffer_add_secondary(primary, secondary);
1132 }
1133
1134 /* The secondary may have selected a different pipeline (3D or compute) and
1135 * may have changed the current L3$ configuration. Reset our tracking
1136 * variables to invalid values to ensure that we re-emit these in the case
1137 * where we do any draws or compute dispatches from the primary after the
1138 * secondary has returned.
1139 */
1140 primary->state.current_pipeline = UINT32_MAX;
1141 primary->state.current_l3_config = NULL;
1142
1143 /* Each of the secondary command buffers will use its own state base
1144 * address. We need to re-emit state base address for the primary after
1145 * all of the secondaries are done.
1146 *
1147 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1148 * address calls?
1149 */
1150 genX(cmd_buffer_emit_state_base_address)(primary);
1151 }
1152
1153 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1154 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1155 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1156
1157 /**
1158 * Program the hardware to use the specified L3 configuration.
1159 */
1160 void
genX(cmd_buffer_config_l3)1161 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1162 const struct gen_l3_config *cfg)
1163 {
1164 assert(cfg);
1165 if (cfg == cmd_buffer->state.current_l3_config)
1166 return;
1167
1168 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1169 intel_logd("L3 config transition: ");
1170 gen_dump_l3_config(cfg, stderr);
1171 }
1172
1173 const bool has_slm = cfg->n[GEN_L3P_SLM];
1174
1175 /* According to the hardware docs, the L3 partitioning can only be changed
1176 * while the pipeline is completely drained and the caches are flushed,
1177 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1178 */
1179 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1180 pc.DCFlushEnable = true;
1181 pc.PostSyncOperation = NoWrite;
1182 pc.CommandStreamerStallEnable = true;
1183 }
1184
1185 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1186 * invalidation of the relevant caches. Note that because RO invalidation
1187 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1188 * command is processed by the CS) we cannot combine it with the previous
1189 * stalling flush as the hardware documentation suggests, because that
1190 * would cause the CS to stall on previous rendering *after* RO
1191 * invalidation and wouldn't prevent the RO caches from being polluted by
1192 * concurrent rendering before the stall completes. This intentionally
1193 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1194 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1195 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1196 * already guarantee that there is no concurrent GPGPU kernel execution
1197 * (see SKL HSD 2132585).
1198 */
1199 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1200 pc.TextureCacheInvalidationEnable = true;
1201 pc.ConstantCacheInvalidationEnable = true;
1202 pc.InstructionCacheInvalidateEnable = true;
1203 pc.StateCacheInvalidationEnable = true;
1204 pc.PostSyncOperation = NoWrite;
1205 }
1206
1207 /* Now send a third stalling flush to make sure that invalidation is
1208 * complete when the L3 configuration registers are modified.
1209 */
1210 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1211 pc.DCFlushEnable = true;
1212 pc.PostSyncOperation = NoWrite;
1213 pc.CommandStreamerStallEnable = true;
1214 }
1215
1216 #if GEN_GEN >= 8
1217
1218 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1219
1220 uint32_t l3cr;
1221 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1222 .SLMEnable = has_slm,
1223 .URBAllocation = cfg->n[GEN_L3P_URB],
1224 .ROAllocation = cfg->n[GEN_L3P_RO],
1225 .DCAllocation = cfg->n[GEN_L3P_DC],
1226 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1227
1228 /* Set up the L3 partitioning. */
1229 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1230
1231 #else
1232
1233 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1234 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1235 cfg->n[GEN_L3P_ALL];
1236 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1237 cfg->n[GEN_L3P_ALL];
1238 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1239 cfg->n[GEN_L3P_ALL];
1240
1241 assert(!cfg->n[GEN_L3P_ALL]);
1242
1243 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1244 * the matching space on the remaining banks has to be allocated to a
1245 * client (URB for all validated configurations) set to the
1246 * lower-bandwidth 2-bank address hashing mode.
1247 */
1248 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1249 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1250 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1251
1252 /* Minimum number of ways that can be allocated to the URB. */
1253 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1254 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1255
1256 uint32_t l3sqcr1, l3cr2, l3cr3;
1257 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1258 .ConvertDC_UC = !has_dc,
1259 .ConvertIS_UC = !has_is,
1260 .ConvertC_UC = !has_c,
1261 .ConvertT_UC = !has_t);
1262 l3sqcr1 |=
1263 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1264 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1265 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1266
1267 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1268 .SLMEnable = has_slm,
1269 .URBLowBandwidth = urb_low_bw,
1270 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1271 #if !GEN_IS_HASWELL
1272 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1273 #endif
1274 .ROAllocation = cfg->n[GEN_L3P_RO],
1275 .DCAllocation = cfg->n[GEN_L3P_DC]);
1276
1277 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1278 .ISAllocation = cfg->n[GEN_L3P_IS],
1279 .ISLowBandwidth = 0,
1280 .CAllocation = cfg->n[GEN_L3P_C],
1281 .CLowBandwidth = 0,
1282 .TAllocation = cfg->n[GEN_L3P_T],
1283 .TLowBandwidth = 0);
1284
1285 /* Set up the L3 partitioning. */
1286 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1287 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1288 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1289
1290 #if GEN_IS_HASWELL
1291 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1292 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1293 * them disabled to avoid crashing the system hard.
1294 */
1295 uint32_t scratch1, chicken3;
1296 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1297 .L3AtomicDisable = !has_dc);
1298 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1299 .L3AtomicDisableMask = true,
1300 .L3AtomicDisable = !has_dc);
1301 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1302 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1303 }
1304 #endif
1305
1306 #endif
1307
1308 cmd_buffer->state.current_l3_config = cfg;
1309 }
1310
1311 void
genX(cmd_buffer_apply_pipe_flushes)1312 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1313 {
1314 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1315
1316 /* Flushes are pipelined while invalidations are handled immediately.
1317 * Therefore, if we're flushing anything then we need to schedule a stall
1318 * before any invalidations can happen.
1319 */
1320 if (bits & ANV_PIPE_FLUSH_BITS)
1321 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1322
1323 /* If we're going to do an invalidate and we have a pending CS stall that
1324 * has yet to be resolved, we do the CS stall now.
1325 */
1326 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1327 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1328 bits |= ANV_PIPE_CS_STALL_BIT;
1329 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1330 }
1331
1332 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1333 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1334 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1335 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1336 pipe.RenderTargetCacheFlushEnable =
1337 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1338
1339 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1340 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1341 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1342
1343 /*
1344 * According to the Broadwell documentation, any PIPE_CONTROL with the
1345 * "Command Streamer Stall" bit set must also have another bit set,
1346 * with five different options:
1347 *
1348 * - Render Target Cache Flush
1349 * - Depth Cache Flush
1350 * - Stall at Pixel Scoreboard
1351 * - Post-Sync Operation
1352 * - Depth Stall
1353 * - DC Flush Enable
1354 *
1355 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1356 * mesa and it seems to work fine. The choice is fairly arbitrary.
1357 */
1358 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1359 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1360 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1361 pipe.StallAtPixelScoreboard = true;
1362 }
1363
1364 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1365 }
1366
1367 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1368 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1369 pipe.StateCacheInvalidationEnable =
1370 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1371 pipe.ConstantCacheInvalidationEnable =
1372 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1373 pipe.VFCacheInvalidationEnable =
1374 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1375 pipe.TextureCacheInvalidationEnable =
1376 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1377 pipe.InstructionCacheInvalidateEnable =
1378 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1379 }
1380
1381 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1382 }
1383
1384 cmd_buffer->state.pending_pipe_bits = bits;
1385 }
1386
genX(CmdPipelineBarrier)1387 void genX(CmdPipelineBarrier)(
1388 VkCommandBuffer commandBuffer,
1389 VkPipelineStageFlags srcStageMask,
1390 VkPipelineStageFlags destStageMask,
1391 VkBool32 byRegion,
1392 uint32_t memoryBarrierCount,
1393 const VkMemoryBarrier* pMemoryBarriers,
1394 uint32_t bufferMemoryBarrierCount,
1395 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1396 uint32_t imageMemoryBarrierCount,
1397 const VkImageMemoryBarrier* pImageMemoryBarriers)
1398 {
1399 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1400
1401 /* XXX: Right now, we're really dumb and just flush whatever categories
1402 * the app asks for. One of these days we may make this a bit better
1403 * but right now that's all the hardware allows for in most areas.
1404 */
1405 VkAccessFlags src_flags = 0;
1406 VkAccessFlags dst_flags = 0;
1407
1408 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1409 src_flags |= pMemoryBarriers[i].srcAccessMask;
1410 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1411 }
1412
1413 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1414 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1415 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1416 }
1417
1418 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1419 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1420 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1421 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1422 const VkImageSubresourceRange *range =
1423 &pImageMemoryBarriers[i].subresourceRange;
1424
1425 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1426 transition_depth_buffer(cmd_buffer, image,
1427 pImageMemoryBarriers[i].oldLayout,
1428 pImageMemoryBarriers[i].newLayout);
1429 } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1430 VkImageAspectFlags color_aspects =
1431 anv_image_expand_aspects(image, range->aspectMask);
1432 uint32_t aspect_bit;
1433
1434 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1435 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1436 range->baseMipLevel,
1437 anv_get_levelCount(image, range),
1438 range->baseArrayLayer,
1439 anv_get_layerCount(image, range),
1440 pImageMemoryBarriers[i].oldLayout,
1441 pImageMemoryBarriers[i].newLayout);
1442 }
1443 }
1444 }
1445
1446 cmd_buffer->state.pending_pipe_bits |=
1447 anv_pipe_flush_bits_for_access_flags(src_flags) |
1448 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1449 }
1450
1451 static void
cmd_buffer_alloc_push_constants(struct anv_cmd_buffer * cmd_buffer)1452 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1453 {
1454 VkShaderStageFlags stages =
1455 cmd_buffer->state.gfx.base.pipeline->active_stages;
1456
1457 /* In order to avoid thrash, we assume that vertex and fragment stages
1458 * always exist. In the rare case where one is missing *and* the other
1459 * uses push concstants, this may be suboptimal. However, avoiding stalls
1460 * seems more important.
1461 */
1462 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1463
1464 if (stages == cmd_buffer->state.push_constant_stages)
1465 return;
1466
1467 #if GEN_GEN >= 8
1468 const unsigned push_constant_kb = 32;
1469 #elif GEN_IS_HASWELL
1470 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1471 #else
1472 const unsigned push_constant_kb = 16;
1473 #endif
1474
1475 const unsigned num_stages =
1476 _mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1477 unsigned size_per_stage = push_constant_kb / num_stages;
1478
1479 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1480 * units of 2KB. Incidentally, these are the same platforms that have
1481 * 32KB worth of push constant space.
1482 */
1483 if (push_constant_kb == 32)
1484 size_per_stage &= ~1u;
1485
1486 uint32_t kb_used = 0;
1487 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1488 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1489 anv_batch_emit(&cmd_buffer->batch,
1490 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1491 alloc._3DCommandSubOpcode = 18 + i;
1492 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1493 alloc.ConstantBufferSize = push_size;
1494 }
1495 kb_used += push_size;
1496 }
1497
1498 anv_batch_emit(&cmd_buffer->batch,
1499 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1500 alloc.ConstantBufferOffset = kb_used;
1501 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1502 }
1503
1504 cmd_buffer->state.push_constant_stages = stages;
1505
1506 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1507 *
1508 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1509 * the next 3DPRIMITIVE command after programming the
1510 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1511 *
1512 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1513 * pipeline setup, we need to dirty push constants.
1514 */
1515 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1516 }
1517
1518 static const struct anv_descriptor *
anv_descriptor_for_binding(const struct anv_cmd_pipeline_state * pipe_state,const struct anv_pipeline_binding * binding)1519 anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1520 const struct anv_pipeline_binding *binding)
1521 {
1522 assert(binding->set < MAX_SETS);
1523 const struct anv_descriptor_set *set =
1524 pipe_state->descriptors[binding->set];
1525 const uint32_t offset =
1526 set->layout->binding[binding->binding].descriptor_index;
1527 return &set->descriptors[offset + binding->index];
1528 }
1529
1530 static uint32_t
dynamic_offset_for_binding(const struct anv_cmd_pipeline_state * pipe_state,const struct anv_pipeline * pipeline,const struct anv_pipeline_binding * binding)1531 dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1532 const struct anv_pipeline *pipeline,
1533 const struct anv_pipeline_binding *binding)
1534 {
1535 assert(binding->set < MAX_SETS);
1536 const struct anv_descriptor_set *set =
1537 pipe_state->descriptors[binding->set];
1538
1539 uint32_t dynamic_offset_idx =
1540 pipeline->layout->set[binding->set].dynamic_offset_start +
1541 set->layout->binding[binding->binding].dynamic_offset_index +
1542 binding->index;
1543
1544 return pipe_state->dynamic_offsets[dynamic_offset_idx];
1545 }
1546
1547 static VkResult
emit_binding_table(struct anv_cmd_buffer * cmd_buffer,gl_shader_stage stage,struct anv_state * bt_state)1548 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1549 gl_shader_stage stage,
1550 struct anv_state *bt_state)
1551 {
1552 struct anv_subpass *subpass = cmd_buffer->state.subpass;
1553 struct anv_cmd_pipeline_state *pipe_state;
1554 struct anv_pipeline *pipeline;
1555 uint32_t bias, state_offset;
1556
1557 switch (stage) {
1558 case MESA_SHADER_COMPUTE:
1559 pipe_state = &cmd_buffer->state.compute.base;
1560 bias = 1;
1561 break;
1562 default:
1563 pipe_state = &cmd_buffer->state.gfx.base;
1564 bias = 0;
1565 break;
1566 }
1567 pipeline = pipe_state->pipeline;
1568
1569 if (!anv_pipeline_has_stage(pipeline, stage)) {
1570 *bt_state = (struct anv_state) { 0, };
1571 return VK_SUCCESS;
1572 }
1573
1574 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1575 if (bias + map->surface_count == 0) {
1576 *bt_state = (struct anv_state) { 0, };
1577 return VK_SUCCESS;
1578 }
1579
1580 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
1581 bias + map->surface_count,
1582 &state_offset);
1583 uint32_t *bt_map = bt_state->map;
1584
1585 if (bt_state->map == NULL)
1586 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1587
1588 if (stage == MESA_SHADER_COMPUTE &&
1589 get_cs_prog_data(pipeline)->uses_num_work_groups) {
1590 struct anv_bo *bo = cmd_buffer->state.compute.num_workgroups.bo;
1591 uint32_t bo_offset = cmd_buffer->state.compute.num_workgroups.offset;
1592
1593 struct anv_state surface_state;
1594 surface_state =
1595 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
1596
1597 const enum isl_format format =
1598 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
1599 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1600 format, bo_offset, 12, 1);
1601
1602 bt_map[0] = surface_state.offset + state_offset;
1603 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
1604 }
1605
1606 if (map->surface_count == 0)
1607 goto out;
1608
1609 if (map->image_count > 0) {
1610 VkResult result =
1611 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
1612 if (result != VK_SUCCESS)
1613 return result;
1614
1615 cmd_buffer->state.push_constants_dirty |= 1 << stage;
1616 }
1617
1618 uint32_t image = 0;
1619 for (uint32_t s = 0; s < map->surface_count; s++) {
1620 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
1621
1622 struct anv_state surface_state;
1623
1624 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
1625 /* Color attachment binding */
1626 assert(stage == MESA_SHADER_FRAGMENT);
1627 assert(binding->binding == 0);
1628 if (binding->index < subpass->color_count) {
1629 const unsigned att =
1630 subpass->color_attachments[binding->index].attachment;
1631
1632 /* From the Vulkan 1.0.46 spec:
1633 *
1634 * "If any color or depth/stencil attachments are
1635 * VK_ATTACHMENT_UNUSED, then no writes occur for those
1636 * attachments."
1637 */
1638 if (att == VK_ATTACHMENT_UNUSED) {
1639 surface_state = cmd_buffer->state.null_surface_state;
1640 } else {
1641 surface_state = cmd_buffer->state.attachments[att].color.state;
1642 }
1643 } else {
1644 surface_state = cmd_buffer->state.null_surface_state;
1645 }
1646
1647 bt_map[bias + s] = surface_state.offset + state_offset;
1648 continue;
1649 }
1650
1651 const struct anv_descriptor *desc =
1652 anv_descriptor_for_binding(pipe_state, binding);
1653
1654 switch (desc->type) {
1655 case VK_DESCRIPTOR_TYPE_SAMPLER:
1656 /* Nothing for us to do here */
1657 continue;
1658
1659 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1660 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
1661 struct anv_surface_state sstate =
1662 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1663 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1664 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1665 surface_state = sstate.state;
1666 assert(surface_state.alloc_size);
1667 add_image_view_relocs(cmd_buffer, desc->image_view,
1668 binding->plane, sstate);
1669 break;
1670 }
1671 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1672 assert(stage == MESA_SHADER_FRAGMENT);
1673 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
1674 /* For depth and stencil input attachments, we treat it like any
1675 * old texture that a user may have bound.
1676 */
1677 struct anv_surface_state sstate =
1678 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1679 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1680 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1681 surface_state = sstate.state;
1682 assert(surface_state.alloc_size);
1683 add_image_view_relocs(cmd_buffer, desc->image_view,
1684 binding->plane, sstate);
1685 } else {
1686 /* For color input attachments, we create the surface state at
1687 * vkBeginRenderPass time so that we can include aux and clear
1688 * color information.
1689 */
1690 assert(binding->input_attachment_index < subpass->input_count);
1691 const unsigned subpass_att = binding->input_attachment_index;
1692 const unsigned att = subpass->input_attachments[subpass_att].attachment;
1693 surface_state = cmd_buffer->state.attachments[att].input.state;
1694 }
1695 break;
1696
1697 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
1698 struct anv_surface_state sstate = (binding->write_only)
1699 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
1700 : desc->image_view->planes[binding->plane].storage_surface_state;
1701 surface_state = sstate.state;
1702 assert(surface_state.alloc_size);
1703 add_image_view_relocs(cmd_buffer, desc->image_view,
1704 binding->plane, sstate);
1705
1706 struct brw_image_param *image_param =
1707 &cmd_buffer->state.push_constants[stage]->images[image++];
1708
1709 *image_param = desc->image_view->planes[binding->plane].storage_image_param;
1710 image_param->surface_idx = bias + s;
1711 break;
1712 }
1713
1714 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1715 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1716 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1717 surface_state = desc->buffer_view->surface_state;
1718 assert(surface_state.alloc_size);
1719 add_surface_state_reloc(cmd_buffer, surface_state,
1720 desc->buffer_view->bo,
1721 desc->buffer_view->offset);
1722 break;
1723
1724 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1725 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1726 /* Compute the offset within the buffer */
1727 uint32_t dynamic_offset =
1728 dynamic_offset_for_binding(pipe_state, pipeline, binding);
1729 uint64_t offset = desc->offset + dynamic_offset;
1730 /* Clamp to the buffer size */
1731 offset = MIN2(offset, desc->buffer->size);
1732 /* Clamp the range to the buffer size */
1733 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
1734
1735 surface_state =
1736 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
1737 enum isl_format format =
1738 anv_isl_format_for_descriptor_type(desc->type);
1739
1740 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1741 format, offset, range, 1);
1742 add_surface_state_reloc(cmd_buffer, surface_state,
1743 desc->buffer->bo,
1744 desc->buffer->offset + offset);
1745 break;
1746 }
1747
1748 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1749 surface_state = (binding->write_only)
1750 ? desc->buffer_view->writeonly_storage_surface_state
1751 : desc->buffer_view->storage_surface_state;
1752 assert(surface_state.alloc_size);
1753 add_surface_state_reloc(cmd_buffer, surface_state,
1754 desc->buffer_view->bo,
1755 desc->buffer_view->offset);
1756
1757 struct brw_image_param *image_param =
1758 &cmd_buffer->state.push_constants[stage]->images[image++];
1759
1760 *image_param = desc->buffer_view->storage_image_param;
1761 image_param->surface_idx = bias + s;
1762 break;
1763
1764 default:
1765 assert(!"Invalid descriptor type");
1766 continue;
1767 }
1768
1769 bt_map[bias + s] = surface_state.offset + state_offset;
1770 }
1771 assert(image == map->image_count);
1772
1773 out:
1774 anv_state_flush(cmd_buffer->device, *bt_state);
1775
1776 return VK_SUCCESS;
1777 }
1778
1779 static VkResult
emit_samplers(struct anv_cmd_buffer * cmd_buffer,gl_shader_stage stage,struct anv_state * state)1780 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1781 gl_shader_stage stage,
1782 struct anv_state *state)
1783 {
1784 struct anv_cmd_pipeline_state *pipe_state =
1785 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
1786 &cmd_buffer->state.gfx.base;
1787 struct anv_pipeline *pipeline = pipe_state->pipeline;
1788
1789 if (!anv_pipeline_has_stage(pipeline, stage)) {
1790 *state = (struct anv_state) { 0, };
1791 return VK_SUCCESS;
1792 }
1793
1794 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1795 if (map->sampler_count == 0) {
1796 *state = (struct anv_state) { 0, };
1797 return VK_SUCCESS;
1798 }
1799
1800 uint32_t size = map->sampler_count * 16;
1801 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
1802
1803 if (state->map == NULL)
1804 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1805
1806 for (uint32_t s = 0; s < map->sampler_count; s++) {
1807 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
1808 const struct anv_descriptor *desc =
1809 anv_descriptor_for_binding(pipe_state, binding);
1810
1811 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
1812 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
1813 continue;
1814
1815 struct anv_sampler *sampler = desc->sampler;
1816
1817 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
1818 * happens to be zero.
1819 */
1820 if (sampler == NULL)
1821 continue;
1822
1823 memcpy(state->map + (s * 16),
1824 sampler->state[binding->plane], sizeof(sampler->state[0]));
1825 }
1826
1827 anv_state_flush(cmd_buffer->device, *state);
1828
1829 return VK_SUCCESS;
1830 }
1831
1832 static uint32_t
flush_descriptor_sets(struct anv_cmd_buffer * cmd_buffer)1833 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
1834 {
1835 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
1836
1837 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
1838 pipeline->active_stages;
1839
1840 VkResult result = VK_SUCCESS;
1841 anv_foreach_stage(s, dirty) {
1842 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1843 if (result != VK_SUCCESS)
1844 break;
1845 result = emit_binding_table(cmd_buffer, s,
1846 &cmd_buffer->state.binding_tables[s]);
1847 if (result != VK_SUCCESS)
1848 break;
1849 }
1850
1851 if (result != VK_SUCCESS) {
1852 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
1853
1854 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
1855 if (result != VK_SUCCESS)
1856 return 0;
1857
1858 /* Re-emit state base addresses so we get the new surface state base
1859 * address before we start emitting binding tables etc.
1860 */
1861 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1862
1863 /* Re-emit all active binding tables */
1864 dirty |= pipeline->active_stages;
1865 anv_foreach_stage(s, dirty) {
1866 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
1867 if (result != VK_SUCCESS) {
1868 anv_batch_set_error(&cmd_buffer->batch, result);
1869 return 0;
1870 }
1871 result = emit_binding_table(cmd_buffer, s,
1872 &cmd_buffer->state.binding_tables[s]);
1873 if (result != VK_SUCCESS) {
1874 anv_batch_set_error(&cmd_buffer->batch, result);
1875 return 0;
1876 }
1877 }
1878 }
1879
1880 cmd_buffer->state.descriptors_dirty &= ~dirty;
1881
1882 return dirty;
1883 }
1884
1885 static void
cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer * cmd_buffer,uint32_t stages)1886 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
1887 uint32_t stages)
1888 {
1889 static const uint32_t sampler_state_opcodes[] = {
1890 [MESA_SHADER_VERTEX] = 43,
1891 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
1892 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
1893 [MESA_SHADER_GEOMETRY] = 46,
1894 [MESA_SHADER_FRAGMENT] = 47,
1895 [MESA_SHADER_COMPUTE] = 0,
1896 };
1897
1898 static const uint32_t binding_table_opcodes[] = {
1899 [MESA_SHADER_VERTEX] = 38,
1900 [MESA_SHADER_TESS_CTRL] = 39,
1901 [MESA_SHADER_TESS_EVAL] = 40,
1902 [MESA_SHADER_GEOMETRY] = 41,
1903 [MESA_SHADER_FRAGMENT] = 42,
1904 [MESA_SHADER_COMPUTE] = 0,
1905 };
1906
1907 anv_foreach_stage(s, stages) {
1908 assert(s < ARRAY_SIZE(binding_table_opcodes));
1909 assert(binding_table_opcodes[s] > 0);
1910
1911 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
1912 anv_batch_emit(&cmd_buffer->batch,
1913 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
1914 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
1915 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
1916 }
1917 }
1918
1919 /* Always emit binding table pointers if we're asked to, since on SKL
1920 * this is what flushes push constants. */
1921 anv_batch_emit(&cmd_buffer->batch,
1922 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
1923 btp._3DCommandSubOpcode = binding_table_opcodes[s];
1924 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
1925 }
1926 }
1927 }
1928
1929 static void
cmd_buffer_flush_push_constants(struct anv_cmd_buffer * cmd_buffer,VkShaderStageFlags dirty_stages)1930 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
1931 VkShaderStageFlags dirty_stages)
1932 {
1933 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
1934 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
1935
1936 static const uint32_t push_constant_opcodes[] = {
1937 [MESA_SHADER_VERTEX] = 21,
1938 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
1939 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
1940 [MESA_SHADER_GEOMETRY] = 22,
1941 [MESA_SHADER_FRAGMENT] = 23,
1942 [MESA_SHADER_COMPUTE] = 0,
1943 };
1944
1945 VkShaderStageFlags flushed = 0;
1946
1947 anv_foreach_stage(stage, dirty_stages) {
1948 assert(stage < ARRAY_SIZE(push_constant_opcodes));
1949 assert(push_constant_opcodes[stage] > 0);
1950
1951 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
1952 c._3DCommandSubOpcode = push_constant_opcodes[stage];
1953
1954 if (anv_pipeline_has_stage(pipeline, stage)) {
1955 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1956 const struct brw_stage_prog_data *prog_data =
1957 pipeline->shaders[stage]->prog_data;
1958 const struct anv_pipeline_bind_map *bind_map =
1959 &pipeline->shaders[stage]->bind_map;
1960
1961 /* The Skylake PRM contains the following restriction:
1962 *
1963 * "The driver must ensure The following case does not occur
1964 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
1965 * buffer 3 read length equal to zero committed followed by a
1966 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
1967 * zero committed."
1968 *
1969 * To avoid this, we program the buffers in the highest slots.
1970 * This way, slot 0 is only used if slot 3 is also used.
1971 */
1972 int n = 3;
1973
1974 for (int i = 3; i >= 0; i--) {
1975 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
1976 if (range->length == 0)
1977 continue;
1978
1979 const unsigned surface =
1980 prog_data->binding_table.ubo_start + range->block;
1981
1982 assert(surface <= bind_map->surface_count);
1983 const struct anv_pipeline_binding *binding =
1984 &bind_map->surface_to_descriptor[surface];
1985
1986 const struct anv_descriptor *desc =
1987 anv_descriptor_for_binding(&gfx_state->base, binding);
1988
1989 struct anv_address read_addr;
1990 uint32_t read_len;
1991 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
1992 read_len = MIN2(range->length,
1993 DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start);
1994 read_addr = (struct anv_address) {
1995 .bo = desc->buffer_view->bo,
1996 .offset = desc->buffer_view->offset +
1997 range->start * 32,
1998 };
1999 } else {
2000 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2001
2002 uint32_t dynamic_offset =
2003 dynamic_offset_for_binding(&gfx_state->base,
2004 pipeline, binding);
2005 uint32_t buf_offset =
2006 MIN2(desc->offset + dynamic_offset, desc->buffer->size);
2007 uint32_t buf_range =
2008 MIN2(desc->range, desc->buffer->size - buf_offset);
2009
2010 read_len = MIN2(range->length,
2011 DIV_ROUND_UP(buf_range, 32) - range->start);
2012 read_addr = (struct anv_address) {
2013 .bo = desc->buffer->bo,
2014 .offset = desc->buffer->offset + buf_offset +
2015 range->start * 32,
2016 };
2017 }
2018
2019 if (read_len > 0) {
2020 c.ConstantBody.Buffer[n] = read_addr;
2021 c.ConstantBody.ReadLength[n] = read_len;
2022 n--;
2023 }
2024 }
2025
2026 struct anv_state state =
2027 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2028
2029 if (state.alloc_size > 0) {
2030 c.ConstantBody.Buffer[n] = (struct anv_address) {
2031 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2032 .offset = state.offset,
2033 };
2034 c.ConstantBody.ReadLength[n] =
2035 DIV_ROUND_UP(state.alloc_size, 32);
2036 }
2037 #else
2038 /* For Ivy Bridge, the push constants packets have a different
2039 * rule that would require us to iterate in the other direction
2040 * and possibly mess around with dynamic state base address.
2041 * Don't bother; just emit regular push constants at n = 0.
2042 */
2043 struct anv_state state =
2044 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2045
2046 if (state.alloc_size > 0) {
2047 c.ConstantBody.Buffer[0].offset = state.offset,
2048 c.ConstantBody.ReadLength[0] =
2049 DIV_ROUND_UP(state.alloc_size, 32);
2050 }
2051 #endif
2052 }
2053 }
2054
2055 flushed |= mesa_to_vk_shader_stage(stage);
2056 }
2057
2058 cmd_buffer->state.push_constants_dirty &= ~flushed;
2059 }
2060
2061 void
genX(cmd_buffer_flush_state)2062 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2063 {
2064 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2065 uint32_t *p;
2066
2067 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2068
2069 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2070
2071 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2072
2073 genX(flush_pipeline_select_3d)(cmd_buffer);
2074
2075 if (vb_emit) {
2076 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2077 const uint32_t num_dwords = 1 + num_buffers * 4;
2078
2079 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2080 GENX(3DSTATE_VERTEX_BUFFERS));
2081 uint32_t vb, i = 0;
2082 for_each_bit(vb, vb_emit) {
2083 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2084 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2085
2086 struct GENX(VERTEX_BUFFER_STATE) state = {
2087 .VertexBufferIndex = vb,
2088
2089 #if GEN_GEN >= 8
2090 .MemoryObjectControlState = GENX(MOCS),
2091 #else
2092 .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
2093 /* Our implementation of VK_KHR_multiview uses instancing to draw
2094 * the different views. If the client asks for instancing, we
2095 * need to use the Instance Data Step Rate to ensure that we
2096 * repeat the client's per-instance data once for each view.
2097 */
2098 .InstanceDataStepRate = anv_subpass_view_count(pipeline->subpass),
2099 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2100 #endif
2101
2102 .AddressModifyEnable = true,
2103 .BufferPitch = pipeline->binding_stride[vb],
2104 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
2105
2106 #if GEN_GEN >= 8
2107 .BufferSize = buffer->size - offset
2108 #else
2109 .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
2110 #endif
2111 };
2112
2113 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2114 i++;
2115 }
2116 }
2117
2118 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2119
2120 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2121 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2122
2123 /* The exact descriptor layout is pulled from the pipeline, so we need
2124 * to re-emit binding tables on every pipeline change.
2125 */
2126 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
2127
2128 /* If the pipeline changed, we may need to re-allocate push constant
2129 * space in the URB.
2130 */
2131 cmd_buffer_alloc_push_constants(cmd_buffer);
2132 }
2133
2134 #if GEN_GEN <= 7
2135 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2136 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2137 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2138 *
2139 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2140 * stall needs to be sent just prior to any 3DSTATE_VS,
2141 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2142 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2143 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2144 * PIPE_CONTROL needs to be sent before any combination of VS
2145 * associated 3DSTATE."
2146 */
2147 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2148 pc.DepthStallEnable = true;
2149 pc.PostSyncOperation = WriteImmediateData;
2150 pc.Address =
2151 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
2152 }
2153 }
2154 #endif
2155
2156 /* Render targets live in the same binding table as fragment descriptors */
2157 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2158 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2159
2160 /* We emit the binding tables and sampler tables first, then emit push
2161 * constants and then finally emit binding table and sampler table
2162 * pointers. It has to happen in this order, since emitting the binding
2163 * tables may change the push constants (in case of storage images). After
2164 * emitting push constants, on SKL+ we have to emit the corresponding
2165 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2166 */
2167 uint32_t dirty = 0;
2168 if (cmd_buffer->state.descriptors_dirty)
2169 dirty = flush_descriptor_sets(cmd_buffer);
2170
2171 if (dirty || cmd_buffer->state.push_constants_dirty) {
2172 /* Because we're pushing UBOs, we have to push whenever either
2173 * descriptors or push constants is dirty.
2174 */
2175 dirty |= cmd_buffer->state.push_constants_dirty;
2176 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2177 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2178 }
2179
2180 if (dirty)
2181 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2182
2183 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2184 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2185
2186 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2187 ANV_CMD_DIRTY_PIPELINE)) {
2188 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2189 pipeline->depth_clamp_enable);
2190 }
2191
2192 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
2193 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2194
2195 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2196
2197 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2198 }
2199
2200 static void
emit_vertex_bo(struct anv_cmd_buffer * cmd_buffer,struct anv_bo * bo,uint32_t offset,uint32_t size,uint32_t index)2201 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2202 struct anv_bo *bo, uint32_t offset,
2203 uint32_t size, uint32_t index)
2204 {
2205 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2206 GENX(3DSTATE_VERTEX_BUFFERS));
2207
2208 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2209 &(struct GENX(VERTEX_BUFFER_STATE)) {
2210 .VertexBufferIndex = index,
2211 .AddressModifyEnable = true,
2212 .BufferPitch = 0,
2213 #if (GEN_GEN >= 8)
2214 .MemoryObjectControlState = GENX(MOCS),
2215 .BufferStartingAddress = { bo, offset },
2216 .BufferSize = size
2217 #else
2218 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2219 .BufferStartingAddress = { bo, offset },
2220 .EndAddress = { bo, offset + size },
2221 #endif
2222 });
2223 }
2224
2225 static void
emit_base_vertex_instance_bo(struct anv_cmd_buffer * cmd_buffer,struct anv_bo * bo,uint32_t offset)2226 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2227 struct anv_bo *bo, uint32_t offset)
2228 {
2229 emit_vertex_bo(cmd_buffer, bo, offset, 8, ANV_SVGS_VB_INDEX);
2230 }
2231
2232 static void
emit_base_vertex_instance(struct anv_cmd_buffer * cmd_buffer,uint32_t base_vertex,uint32_t base_instance)2233 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2234 uint32_t base_vertex, uint32_t base_instance)
2235 {
2236 struct anv_state id_state =
2237 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2238
2239 ((uint32_t *)id_state.map)[0] = base_vertex;
2240 ((uint32_t *)id_state.map)[1] = base_instance;
2241
2242 anv_state_flush(cmd_buffer->device, id_state);
2243
2244 emit_base_vertex_instance_bo(cmd_buffer,
2245 &cmd_buffer->device->dynamic_state_pool.block_pool.bo, id_state.offset);
2246 }
2247
2248 static void
emit_draw_index(struct anv_cmd_buffer * cmd_buffer,uint32_t draw_index)2249 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2250 {
2251 struct anv_state state =
2252 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2253
2254 ((uint32_t *)state.map)[0] = draw_index;
2255
2256 anv_state_flush(cmd_buffer->device, state);
2257
2258 emit_vertex_bo(cmd_buffer,
2259 &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2260 state.offset, 4, ANV_DRAWID_VB_INDEX);
2261 }
2262
genX(CmdDraw)2263 void genX(CmdDraw)(
2264 VkCommandBuffer commandBuffer,
2265 uint32_t vertexCount,
2266 uint32_t instanceCount,
2267 uint32_t firstVertex,
2268 uint32_t firstInstance)
2269 {
2270 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2271 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2272 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2273
2274 if (anv_batch_has_error(&cmd_buffer->batch))
2275 return;
2276
2277 genX(cmd_buffer_flush_state)(cmd_buffer);
2278
2279 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2280 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2281 if (vs_prog_data->uses_drawid)
2282 emit_draw_index(cmd_buffer, 0);
2283
2284 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2285 * different views. We need to multiply instanceCount by the view count.
2286 */
2287 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2288
2289 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2290 prim.VertexAccessType = SEQUENTIAL;
2291 prim.PrimitiveTopologyType = pipeline->topology;
2292 prim.VertexCountPerInstance = vertexCount;
2293 prim.StartVertexLocation = firstVertex;
2294 prim.InstanceCount = instanceCount;
2295 prim.StartInstanceLocation = firstInstance;
2296 prim.BaseVertexLocation = 0;
2297 }
2298 }
2299
genX(CmdDrawIndexed)2300 void genX(CmdDrawIndexed)(
2301 VkCommandBuffer commandBuffer,
2302 uint32_t indexCount,
2303 uint32_t instanceCount,
2304 uint32_t firstIndex,
2305 int32_t vertexOffset,
2306 uint32_t firstInstance)
2307 {
2308 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2309 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2310 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2311
2312 if (anv_batch_has_error(&cmd_buffer->batch))
2313 return;
2314
2315 genX(cmd_buffer_flush_state)(cmd_buffer);
2316
2317 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2318 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2319 if (vs_prog_data->uses_drawid)
2320 emit_draw_index(cmd_buffer, 0);
2321
2322 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2323 * different views. We need to multiply instanceCount by the view count.
2324 */
2325 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2326
2327 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2328 prim.VertexAccessType = RANDOM;
2329 prim.PrimitiveTopologyType = pipeline->topology;
2330 prim.VertexCountPerInstance = indexCount;
2331 prim.StartVertexLocation = firstIndex;
2332 prim.InstanceCount = instanceCount;
2333 prim.StartInstanceLocation = firstInstance;
2334 prim.BaseVertexLocation = vertexOffset;
2335 }
2336 }
2337
2338 /* Auto-Draw / Indirect Registers */
2339 #define GEN7_3DPRIM_END_OFFSET 0x2420
2340 #define GEN7_3DPRIM_START_VERTEX 0x2430
2341 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2342 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2343 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2344 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2345
2346 /* MI_MATH only exists on Haswell+ */
2347 #if GEN_IS_HASWELL || GEN_GEN >= 8
2348
2349 static uint32_t
mi_alu(uint32_t opcode,uint32_t op1,uint32_t op2)2350 mi_alu(uint32_t opcode, uint32_t op1, uint32_t op2)
2351 {
2352 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
2353 .ALUOpcode = opcode,
2354 .Operand1 = op1,
2355 .Operand2 = op2,
2356 };
2357
2358 uint32_t dw;
2359 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
2360
2361 return dw;
2362 }
2363
2364 #define CS_GPR(n) (0x2600 + (n) * 8)
2365
2366 /* Emit dwords to multiply GPR0 by N */
2367 static void
build_alu_multiply_gpr0(uint32_t * dw,unsigned * dw_count,uint32_t N)2368 build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
2369 {
2370 VK_OUTARRAY_MAKE(out, dw, dw_count);
2371
2372 #define append_alu(opcode, operand1, operand2) \
2373 vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
2374
2375 assert(N > 0);
2376 unsigned top_bit = 31 - __builtin_clz(N);
2377 for (int i = top_bit - 1; i >= 0; i--) {
2378 /* We get our initial data in GPR0 and we write the final data out to
2379 * GPR0 but we use GPR1 as our scratch register.
2380 */
2381 unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
2382 unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
2383
2384 /* Shift the current value left by 1 */
2385 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
2386 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
2387 append_alu(MI_ALU_ADD, 0, 0);
2388
2389 if (N & (1 << i)) {
2390 /* Store ACCU to R1 and add R0 to R1 */
2391 append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
2392 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
2393 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
2394 append_alu(MI_ALU_ADD, 0, 0);
2395 }
2396
2397 append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
2398 }
2399
2400 #undef append_alu
2401 }
2402
2403 static void
emit_mul_gpr0(struct anv_batch * batch,uint32_t N)2404 emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
2405 {
2406 uint32_t num_dwords;
2407 build_alu_multiply_gpr0(NULL, &num_dwords, N);
2408
2409 uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
2410 build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
2411 }
2412
2413 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2414
2415 static void
load_indirect_parameters(struct anv_cmd_buffer * cmd_buffer,struct anv_buffer * buffer,uint64_t offset,bool indexed)2416 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2417 struct anv_buffer *buffer, uint64_t offset,
2418 bool indexed)
2419 {
2420 struct anv_batch *batch = &cmd_buffer->batch;
2421 struct anv_bo *bo = buffer->bo;
2422 uint32_t bo_offset = buffer->offset + offset;
2423
2424 emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
2425
2426 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2427 if (view_count > 1) {
2428 #if GEN_IS_HASWELL || GEN_GEN >= 8
2429 emit_lrm(batch, CS_GPR(0), bo, bo_offset + 4);
2430 emit_mul_gpr0(batch, view_count);
2431 emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
2432 #else
2433 anv_finishme("Multiview + indirect draw requires MI_MATH; "
2434 "MI_MATH is not supported on Ivy Bridge");
2435 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2436 #endif
2437 } else {
2438 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2439 }
2440
2441 emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
2442
2443 if (indexed) {
2444 emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
2445 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
2446 } else {
2447 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
2448 emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2449 }
2450 }
2451
genX(CmdDrawIndirect)2452 void genX(CmdDrawIndirect)(
2453 VkCommandBuffer commandBuffer,
2454 VkBuffer _buffer,
2455 VkDeviceSize offset,
2456 uint32_t drawCount,
2457 uint32_t stride)
2458 {
2459 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2460 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2461 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2462 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2463
2464 if (anv_batch_has_error(&cmd_buffer->batch))
2465 return;
2466
2467 genX(cmd_buffer_flush_state)(cmd_buffer);
2468
2469 for (uint32_t i = 0; i < drawCount; i++) {
2470 struct anv_bo *bo = buffer->bo;
2471 uint32_t bo_offset = buffer->offset + offset;
2472
2473 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2474 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
2475 if (vs_prog_data->uses_drawid)
2476 emit_draw_index(cmd_buffer, i);
2477
2478 load_indirect_parameters(cmd_buffer, buffer, offset, false);
2479
2480 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2481 prim.IndirectParameterEnable = true;
2482 prim.VertexAccessType = SEQUENTIAL;
2483 prim.PrimitiveTopologyType = pipeline->topology;
2484 }
2485
2486 offset += stride;
2487 }
2488 }
2489
genX(CmdDrawIndexedIndirect)2490 void genX(CmdDrawIndexedIndirect)(
2491 VkCommandBuffer commandBuffer,
2492 VkBuffer _buffer,
2493 VkDeviceSize offset,
2494 uint32_t drawCount,
2495 uint32_t stride)
2496 {
2497 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2498 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2499 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2500 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2501
2502 if (anv_batch_has_error(&cmd_buffer->batch))
2503 return;
2504
2505 genX(cmd_buffer_flush_state)(cmd_buffer);
2506
2507 for (uint32_t i = 0; i < drawCount; i++) {
2508 struct anv_bo *bo = buffer->bo;
2509 uint32_t bo_offset = buffer->offset + offset;
2510
2511 /* TODO: We need to stomp base vertex to 0 somehow */
2512 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2513 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
2514 if (vs_prog_data->uses_drawid)
2515 emit_draw_index(cmd_buffer, i);
2516
2517 load_indirect_parameters(cmd_buffer, buffer, offset, true);
2518
2519 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2520 prim.IndirectParameterEnable = true;
2521 prim.VertexAccessType = RANDOM;
2522 prim.PrimitiveTopologyType = pipeline->topology;
2523 }
2524
2525 offset += stride;
2526 }
2527 }
2528
2529 static VkResult
flush_compute_descriptor_set(struct anv_cmd_buffer * cmd_buffer)2530 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
2531 {
2532 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2533 struct anv_state surfaces = { 0, }, samplers = { 0, };
2534 VkResult result;
2535
2536 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2537 if (result != VK_SUCCESS) {
2538 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2539
2540 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2541 if (result != VK_SUCCESS)
2542 return result;
2543
2544 /* Re-emit state base addresses so we get the new surface state base
2545 * address before we start emitting binding tables etc.
2546 */
2547 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2548
2549 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2550 if (result != VK_SUCCESS) {
2551 anv_batch_set_error(&cmd_buffer->batch, result);
2552 return result;
2553 }
2554 }
2555
2556 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
2557 if (result != VK_SUCCESS) {
2558 anv_batch_set_error(&cmd_buffer->batch, result);
2559 return result;
2560 }
2561
2562 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
2563 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2564 .BindingTablePointer = surfaces.offset,
2565 .SamplerStatePointer = samplers.offset,
2566 };
2567 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
2568
2569 struct anv_state state =
2570 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
2571 pipeline->interface_descriptor_data,
2572 GENX(INTERFACE_DESCRIPTOR_DATA_length),
2573 64);
2574
2575 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
2576 anv_batch_emit(&cmd_buffer->batch,
2577 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
2578 mid.InterfaceDescriptorTotalLength = size;
2579 mid.InterfaceDescriptorDataStartAddress = state.offset;
2580 }
2581
2582 return VK_SUCCESS;
2583 }
2584
2585 void
genX(cmd_buffer_flush_compute_state)2586 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
2587 {
2588 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2589 MAYBE_UNUSED VkResult result;
2590
2591 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
2592
2593 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2594
2595 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
2596
2597 if (cmd_buffer->state.compute.pipeline_dirty) {
2598 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
2599 *
2600 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
2601 * the only bits that are changed are scoreboard related: Scoreboard
2602 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
2603 * these scoreboard related states, a MEDIA_STATE_FLUSH is
2604 * sufficient."
2605 */
2606 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2607 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2608
2609 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2610 }
2611
2612 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
2613 cmd_buffer->state.compute.pipeline_dirty) {
2614 /* FIXME: figure out descriptors for gen7 */
2615 result = flush_compute_descriptor_set(cmd_buffer);
2616 if (result != VK_SUCCESS)
2617 return;
2618
2619 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
2620 }
2621
2622 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
2623 struct anv_state push_state =
2624 anv_cmd_buffer_cs_push_constants(cmd_buffer);
2625
2626 if (push_state.alloc_size) {
2627 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
2628 curbe.CURBETotalDataLength = push_state.alloc_size;
2629 curbe.CURBEDataStartAddress = push_state.offset;
2630 }
2631 }
2632 }
2633
2634 cmd_buffer->state.compute.pipeline_dirty = false;
2635
2636 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2637 }
2638
2639 #if GEN_GEN == 7
2640
2641 static VkResult
verify_cmd_parser(const struct anv_device * device,int required_version,const char * function)2642 verify_cmd_parser(const struct anv_device *device,
2643 int required_version,
2644 const char *function)
2645 {
2646 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
2647 return vk_errorf(device->instance, device->instance,
2648 VK_ERROR_FEATURE_NOT_PRESENT,
2649 "cmd parser version %d is required for %s",
2650 required_version, function);
2651 } else {
2652 return VK_SUCCESS;
2653 }
2654 }
2655
2656 #endif
2657
genX(CmdDispatch)2658 void genX(CmdDispatch)(
2659 VkCommandBuffer commandBuffer,
2660 uint32_t x,
2661 uint32_t y,
2662 uint32_t z)
2663 {
2664 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2665 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2666 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2667
2668 if (anv_batch_has_error(&cmd_buffer->batch))
2669 return;
2670
2671 if (prog_data->uses_num_work_groups) {
2672 struct anv_state state =
2673 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
2674 uint32_t *sizes = state.map;
2675 sizes[0] = x;
2676 sizes[1] = y;
2677 sizes[2] = z;
2678 anv_state_flush(cmd_buffer->device, state);
2679 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
2680 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2681 .offset = state.offset,
2682 };
2683 }
2684
2685 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2686
2687 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
2688 ggw.SIMDSize = prog_data->simd_size / 16;
2689 ggw.ThreadDepthCounterMaximum = 0;
2690 ggw.ThreadHeightCounterMaximum = 0;
2691 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2692 ggw.ThreadGroupIDXDimension = x;
2693 ggw.ThreadGroupIDYDimension = y;
2694 ggw.ThreadGroupIDZDimension = z;
2695 ggw.RightExecutionMask = pipeline->cs_right_mask;
2696 ggw.BottomExecutionMask = 0xffffffff;
2697 }
2698
2699 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
2700 }
2701
2702 #define GPGPU_DISPATCHDIMX 0x2500
2703 #define GPGPU_DISPATCHDIMY 0x2504
2704 #define GPGPU_DISPATCHDIMZ 0x2508
2705
genX(CmdDispatchIndirect)2706 void genX(CmdDispatchIndirect)(
2707 VkCommandBuffer commandBuffer,
2708 VkBuffer _buffer,
2709 VkDeviceSize offset)
2710 {
2711 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2712 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2713 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2714 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2715 struct anv_bo *bo = buffer->bo;
2716 uint32_t bo_offset = buffer->offset + offset;
2717 struct anv_batch *batch = &cmd_buffer->batch;
2718
2719 #if GEN_GEN == 7
2720 /* Linux 4.4 added command parser version 5 which allows the GPGPU
2721 * indirect dispatch registers to be written.
2722 */
2723 if (verify_cmd_parser(cmd_buffer->device, 5,
2724 "vkCmdDispatchIndirect") != VK_SUCCESS)
2725 return;
2726 #endif
2727
2728 if (prog_data->uses_num_work_groups) {
2729 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
2730 .bo = bo,
2731 .offset = bo_offset,
2732 };
2733 }
2734
2735 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2736
2737 emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
2738 emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
2739 emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
2740
2741 #if GEN_GEN <= 7
2742 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
2743 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
2744 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
2745 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
2746
2747 /* Load compute_dispatch_indirect_x_size into SRC0 */
2748 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
2749
2750 /* predicate = (compute_dispatch_indirect_x_size == 0); */
2751 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2752 mip.LoadOperation = LOAD_LOAD;
2753 mip.CombineOperation = COMBINE_SET;
2754 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2755 }
2756
2757 /* Load compute_dispatch_indirect_y_size into SRC0 */
2758 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
2759
2760 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
2761 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2762 mip.LoadOperation = LOAD_LOAD;
2763 mip.CombineOperation = COMBINE_OR;
2764 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2765 }
2766
2767 /* Load compute_dispatch_indirect_z_size into SRC0 */
2768 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
2769
2770 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
2771 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2772 mip.LoadOperation = LOAD_LOAD;
2773 mip.CombineOperation = COMBINE_OR;
2774 mip.CompareOperation = COMPARE_SRCS_EQUAL;
2775 }
2776
2777 /* predicate = !predicate; */
2778 #define COMPARE_FALSE 1
2779 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
2780 mip.LoadOperation = LOAD_LOADINV;
2781 mip.CombineOperation = COMBINE_OR;
2782 mip.CompareOperation = COMPARE_FALSE;
2783 }
2784 #endif
2785
2786 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
2787 ggw.IndirectParameterEnable = true;
2788 ggw.PredicateEnable = GEN_GEN <= 7;
2789 ggw.SIMDSize = prog_data->simd_size / 16;
2790 ggw.ThreadDepthCounterMaximum = 0;
2791 ggw.ThreadHeightCounterMaximum = 0;
2792 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2793 ggw.RightExecutionMask = pipeline->cs_right_mask;
2794 ggw.BottomExecutionMask = 0xffffffff;
2795 }
2796
2797 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
2798 }
2799
2800 static void
genX(flush_pipeline_select)2801 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
2802 uint32_t pipeline)
2803 {
2804 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
2805
2806 if (cmd_buffer->state.current_pipeline == pipeline)
2807 return;
2808
2809 #if GEN_GEN >= 8 && GEN_GEN < 10
2810 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
2811 *
2812 * Software must clear the COLOR_CALC_STATE Valid field in
2813 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
2814 * with Pipeline Select set to GPGPU.
2815 *
2816 * The internal hardware docs recommend the same workaround for Gen9
2817 * hardware too.
2818 */
2819 if (pipeline == GPGPU)
2820 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
2821 #endif
2822
2823 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
2824 * PIPELINE_SELECT [DevBWR+]":
2825 *
2826 * Project: DEVSNB+
2827 *
2828 * Software must ensure all the write caches are flushed through a
2829 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
2830 * command to invalidate read only caches prior to programming
2831 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
2832 */
2833 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2834 pc.RenderTargetCacheFlushEnable = true;
2835 pc.DepthCacheFlushEnable = true;
2836 pc.DCFlushEnable = true;
2837 pc.PostSyncOperation = NoWrite;
2838 pc.CommandStreamerStallEnable = true;
2839 }
2840
2841 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2842 pc.TextureCacheInvalidationEnable = true;
2843 pc.ConstantCacheInvalidationEnable = true;
2844 pc.StateCacheInvalidationEnable = true;
2845 pc.InstructionCacheInvalidateEnable = true;
2846 pc.PostSyncOperation = NoWrite;
2847 }
2848
2849 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
2850 #if GEN_GEN >= 9
2851 ps.MaskBits = 3;
2852 #endif
2853 ps.PipelineSelection = pipeline;
2854 }
2855
2856 #if GEN_GEN == 9
2857 if (devinfo->is_geminilake) {
2858 /* Project: DevGLK
2859 *
2860 * "This chicken bit works around a hardware issue with barrier logic
2861 * encountered when switching between GPGPU and 3D pipelines. To
2862 * workaround the issue, this mode bit should be set after a pipeline
2863 * is selected."
2864 */
2865 uint32_t scec;
2866 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
2867 .GLKBarrierMode =
2868 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
2869 : GLK_BARRIER_MODE_3D_HULL,
2870 .GLKBarrierModeMask = 1);
2871 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
2872 }
2873 #endif
2874
2875 cmd_buffer->state.current_pipeline = pipeline;
2876 }
2877
2878 void
genX(flush_pipeline_select_3d)2879 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
2880 {
2881 genX(flush_pipeline_select)(cmd_buffer, _3D);
2882 }
2883
2884 void
genX(flush_pipeline_select_gpgpu)2885 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
2886 {
2887 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
2888 }
2889
2890 void
genX(cmd_buffer_emit_gen7_depth_flush)2891 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
2892 {
2893 if (GEN_GEN >= 8)
2894 return;
2895
2896 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
2897 *
2898 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
2899 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
2900 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
2901 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
2902 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
2903 * Depth Flush Bit set, followed by another pipelined depth stall
2904 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
2905 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
2906 * via a preceding MI_FLUSH)."
2907 */
2908 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2909 pipe.DepthStallEnable = true;
2910 }
2911 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2912 pipe.DepthCacheFlushEnable = true;
2913 }
2914 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2915 pipe.DepthStallEnable = true;
2916 }
2917 }
2918
2919 static void
cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer * cmd_buffer)2920 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
2921 {
2922 struct anv_device *device = cmd_buffer->device;
2923 const struct anv_image_view *iview =
2924 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
2925 const struct anv_image *image = iview ? iview->image : NULL;
2926
2927 /* FIXME: Width and Height are wrong */
2928
2929 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
2930
2931 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
2932 device->isl_dev.ds.size / 4);
2933 if (dw == NULL)
2934 return;
2935
2936 struct isl_depth_stencil_hiz_emit_info info = {
2937 .mocs = device->default_mocs,
2938 };
2939
2940 if (iview)
2941 info.view = &iview->planes[0].isl;
2942
2943 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
2944 uint32_t depth_plane =
2945 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
2946 const struct anv_surface *surface = &image->planes[depth_plane].surface;
2947
2948 info.depth_surf = &surface->isl;
2949
2950 info.depth_address =
2951 anv_batch_emit_reloc(&cmd_buffer->batch,
2952 dw + device->isl_dev.ds.depth_offset / 4,
2953 image->planes[depth_plane].bo,
2954 image->planes[depth_plane].bo_offset +
2955 surface->offset);
2956
2957 const uint32_t ds =
2958 cmd_buffer->state.subpass->depth_stencil_attachment.attachment;
2959 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
2960 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
2961 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
2962
2963 info.hiz_address =
2964 anv_batch_emit_reloc(&cmd_buffer->batch,
2965 dw + device->isl_dev.ds.hiz_offset / 4,
2966 image->planes[depth_plane].bo,
2967 image->planes[depth_plane].bo_offset +
2968 image->planes[depth_plane].aux_surface.offset);
2969
2970 info.depth_clear_value = ANV_HZ_FC_VAL;
2971 }
2972 }
2973
2974 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
2975 uint32_t stencil_plane =
2976 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
2977 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
2978
2979 info.stencil_surf = &surface->isl;
2980
2981 info.stencil_address =
2982 anv_batch_emit_reloc(&cmd_buffer->batch,
2983 dw + device->isl_dev.ds.stencil_offset / 4,
2984 image->planes[stencil_plane].bo,
2985 image->planes[stencil_plane].bo_offset + surface->offset);
2986 }
2987
2988 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
2989
2990 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
2991 }
2992
2993
2994 /**
2995 * @brief Perform any layout transitions required at the beginning and/or end
2996 * of the current subpass for depth buffers.
2997 *
2998 * TODO: Consider preprocessing the attachment reference array at render pass
2999 * create time to determine if no layout transition is needed at the
3000 * beginning and/or end of each subpass.
3001 *
3002 * @param cmd_buffer The command buffer the transition is happening within.
3003 * @param subpass_end If true, marks that the transition is happening at the
3004 * end of the subpass.
3005 */
3006 static void
cmd_buffer_subpass_transition_layouts(struct anv_cmd_buffer * const cmd_buffer,const bool subpass_end)3007 cmd_buffer_subpass_transition_layouts(struct anv_cmd_buffer * const cmd_buffer,
3008 const bool subpass_end)
3009 {
3010 /* We need a non-NULL command buffer. */
3011 assert(cmd_buffer);
3012
3013 const struct anv_cmd_state * const cmd_state = &cmd_buffer->state;
3014 const struct anv_subpass * const subpass = cmd_state->subpass;
3015
3016 /* This function must be called within a subpass. */
3017 assert(subpass);
3018
3019 /* If there are attachment references, the array shouldn't be NULL.
3020 */
3021 if (subpass->attachment_count > 0)
3022 assert(subpass->attachments);
3023
3024 /* Iterate over the array of attachment references. */
3025 for (const VkAttachmentReference *att_ref = subpass->attachments;
3026 att_ref < subpass->attachments + subpass->attachment_count; att_ref++) {
3027
3028 /* If the attachment is unused, we can't perform a layout transition. */
3029 if (att_ref->attachment == VK_ATTACHMENT_UNUSED)
3030 continue;
3031
3032 /* This attachment index shouldn't go out of bounds. */
3033 assert(att_ref->attachment < cmd_state->pass->attachment_count);
3034
3035 const struct anv_render_pass_attachment * const att_desc =
3036 &cmd_state->pass->attachments[att_ref->attachment];
3037 struct anv_attachment_state * const att_state =
3038 &cmd_buffer->state.attachments[att_ref->attachment];
3039
3040 /* The attachment should not be used in a subpass after its last. */
3041 assert(att_desc->last_subpass_idx >= anv_get_subpass_id(cmd_state));
3042
3043 if (subpass_end && anv_get_subpass_id(cmd_state) <
3044 att_desc->last_subpass_idx) {
3045 /* We're calling this function on a buffer twice in one subpass and
3046 * this is not the last use of the buffer. The layout should not have
3047 * changed from the first call and no transition is necessary.
3048 */
3049 assert(att_state->current_layout == att_ref->layout ||
3050 att_state->current_layout ==
3051 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
3052 continue;
3053 }
3054
3055 /* The attachment index must be less than the number of attachments
3056 * within the framebuffer.
3057 */
3058 assert(att_ref->attachment < cmd_state->framebuffer->attachment_count);
3059
3060 const struct anv_image_view * const iview =
3061 cmd_state->framebuffer->attachments[att_ref->attachment];
3062 const struct anv_image * const image = iview->image;
3063
3064 /* Get the appropriate target layout for this attachment. */
3065 VkImageLayout target_layout;
3066
3067 /* A resolve is necessary before use as an input attachment if the clear
3068 * color or auxiliary buffer usage isn't supported by the sampler.
3069 */
3070 const bool input_needs_resolve =
3071 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
3072 att_state->input_aux_usage != att_state->aux_usage;
3073 if (subpass_end) {
3074 target_layout = att_desc->final_layout;
3075 } else if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
3076 !input_needs_resolve) {
3077 /* Layout transitions before the final only help to enable sampling as
3078 * an input attachment. If the input attachment supports sampling
3079 * using the auxiliary surface, we can skip such transitions by making
3080 * the target layout one that is CCS-aware.
3081 */
3082 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
3083 } else {
3084 target_layout = att_ref->layout;
3085 }
3086
3087 /* Perform the layout transition. */
3088 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3089 transition_depth_buffer(cmd_buffer, image,
3090 att_state->current_layout, target_layout);
3091 att_state->aux_usage =
3092 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
3093 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
3094 } else if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3095 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3096 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3097 iview->planes[0].isl.base_level, 1,
3098 iview->planes[0].isl.base_array_layer,
3099 iview->planes[0].isl.array_len,
3100 att_state->current_layout, target_layout);
3101 }
3102
3103 att_state->current_layout = target_layout;
3104 }
3105 }
3106
3107 /* Update the clear value dword(s) in surface state objects or the fast clear
3108 * state buffer entry for the color attachments used in this subpass.
3109 */
3110 static void
cmd_buffer_subpass_sync_fast_clear_values(struct anv_cmd_buffer * cmd_buffer)3111 cmd_buffer_subpass_sync_fast_clear_values(struct anv_cmd_buffer *cmd_buffer)
3112 {
3113 assert(cmd_buffer && cmd_buffer->state.subpass);
3114
3115 const struct anv_cmd_state *state = &cmd_buffer->state;
3116
3117 /* Iterate through every color attachment used in this subpass. */
3118 for (uint32_t i = 0; i < state->subpass->color_count; ++i) {
3119
3120 /* The attachment should be one of the attachments described in the
3121 * render pass and used in the subpass.
3122 */
3123 const uint32_t a = state->subpass->color_attachments[i].attachment;
3124 if (a == VK_ATTACHMENT_UNUSED)
3125 continue;
3126
3127 assert(a < state->pass->attachment_count);
3128
3129 /* Store some information regarding this attachment. */
3130 const struct anv_attachment_state *att_state = &state->attachments[a];
3131 const struct anv_image_view *iview = state->framebuffer->attachments[a];
3132 const struct anv_render_pass_attachment *rp_att =
3133 &state->pass->attachments[a];
3134
3135 if (att_state->aux_usage == ISL_AUX_USAGE_NONE)
3136 continue;
3137
3138 /* The fast clear state entry must be updated if a fast clear is going to
3139 * happen. The surface state must be updated if the clear value from a
3140 * prior fast clear may be needed.
3141 */
3142 if (att_state->pending_clear_aspects && att_state->fast_clear) {
3143 /* Update the fast clear state entry. */
3144 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3145 iview->image,
3146 VK_IMAGE_ASPECT_COLOR_BIT,
3147 iview->planes[0].isl.base_level,
3148 true /* copy from ss */);
3149
3150 /* Fast-clears impact whether or not a resolve will be necessary. */
3151 if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E &&
3152 att_state->clear_color_is_zero) {
3153 /* This image always has the auxiliary buffer enabled. We can mark
3154 * the subresource as not needing a resolve because the clear color
3155 * will match what's in every RENDER_SURFACE_STATE object when it's
3156 * being used for sampling.
3157 */
3158 genX(set_image_needs_resolve)(cmd_buffer, iview->image,
3159 VK_IMAGE_ASPECT_COLOR_BIT,
3160 iview->planes[0].isl.base_level,
3161 false);
3162 } else {
3163 genX(set_image_needs_resolve)(cmd_buffer, iview->image,
3164 VK_IMAGE_ASPECT_COLOR_BIT,
3165 iview->planes[0].isl.base_level,
3166 true);
3167 }
3168 } else if (rp_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
3169 /* The attachment may have been fast-cleared in a previous render
3170 * pass and the value is needed now. Update the surface state(s).
3171 *
3172 * TODO: Do this only once per render pass instead of every subpass.
3173 */
3174 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3175 iview->image,
3176 VK_IMAGE_ASPECT_COLOR_BIT,
3177 iview->planes[0].isl.base_level,
3178 false /* copy to ss */);
3179
3180 if (need_input_attachment_state(rp_att) &&
3181 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
3182 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
3183 iview->image,
3184 VK_IMAGE_ASPECT_COLOR_BIT,
3185 iview->planes[0].isl.base_level,
3186 false /* copy to ss */);
3187 }
3188 }
3189 }
3190 }
3191
3192
3193 static void
genX(cmd_buffer_set_subpass)3194 genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer,
3195 struct anv_subpass *subpass)
3196 {
3197 cmd_buffer->state.subpass = subpass;
3198
3199 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
3200
3201 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3202 * different views. If the client asks for instancing, we need to use the
3203 * Instance Data Step Rate to ensure that we repeat the client's
3204 * per-instance data once for each view. Since this bit is in
3205 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
3206 * of each subpass.
3207 */
3208 if (GEN_GEN == 7)
3209 cmd_buffer->state.gfx.vb_dirty |= ~0;
3210
3211 /* It is possible to start a render pass with an old pipeline. Because the
3212 * render pass and subpass index are both baked into the pipeline, this is
3213 * highly unlikely. In order to do so, it requires that you have a render
3214 * pass with a single subpass and that you use that render pass twice
3215 * back-to-back and use the same pipeline at the start of the second render
3216 * pass as at the end of the first. In order to avoid unpredictable issues
3217 * with this edge case, we just dirty the pipeline at the start of every
3218 * subpass.
3219 */
3220 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
3221
3222 /* Perform transitions to the subpass layout before any writes have
3223 * occurred.
3224 */
3225 cmd_buffer_subpass_transition_layouts(cmd_buffer, false);
3226
3227 /* Update clear values *after* performing automatic layout transitions.
3228 * This ensures that transitions from the UNDEFINED layout have had a chance
3229 * to populate the clear value buffer with the correct values for the
3230 * LOAD_OP_LOAD loadOp and that the fast-clears will update the buffer
3231 * without the aforementioned layout transition overwriting the fast-clear
3232 * value.
3233 */
3234 cmd_buffer_subpass_sync_fast_clear_values(cmd_buffer);
3235
3236 cmd_buffer_emit_depth_stencil(cmd_buffer);
3237
3238 anv_cmd_buffer_clear_subpass(cmd_buffer);
3239 }
3240
genX(CmdBeginRenderPass)3241 void genX(CmdBeginRenderPass)(
3242 VkCommandBuffer commandBuffer,
3243 const VkRenderPassBeginInfo* pRenderPassBegin,
3244 VkSubpassContents contents)
3245 {
3246 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3247 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
3248 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
3249
3250 cmd_buffer->state.framebuffer = framebuffer;
3251 cmd_buffer->state.pass = pass;
3252 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
3253 VkResult result =
3254 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
3255
3256 /* If we failed to setup the attachments we should not try to go further */
3257 if (result != VK_SUCCESS) {
3258 assert(anv_batch_has_error(&cmd_buffer->batch));
3259 return;
3260 }
3261
3262 genX(flush_pipeline_select_3d)(cmd_buffer);
3263
3264 genX(cmd_buffer_set_subpass)(cmd_buffer, pass->subpasses);
3265
3266 cmd_buffer->state.pending_pipe_bits |=
3267 cmd_buffer->state.pass->subpass_flushes[0];
3268 }
3269
genX(CmdNextSubpass)3270 void genX(CmdNextSubpass)(
3271 VkCommandBuffer commandBuffer,
3272 VkSubpassContents contents)
3273 {
3274 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3275
3276 if (anv_batch_has_error(&cmd_buffer->batch))
3277 return;
3278
3279 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
3280
3281 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3282
3283 /* Perform transitions to the final layout after all writes have occurred.
3284 */
3285 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3286
3287 genX(cmd_buffer_set_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
3288
3289 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
3290 cmd_buffer->state.pending_pipe_bits |=
3291 cmd_buffer->state.pass->subpass_flushes[subpass_id];
3292 }
3293
genX(CmdEndRenderPass)3294 void genX(CmdEndRenderPass)(
3295 VkCommandBuffer commandBuffer)
3296 {
3297 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3298
3299 if (anv_batch_has_error(&cmd_buffer->batch))
3300 return;
3301
3302 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3303
3304 /* Perform transitions to the final layout after all writes have occurred.
3305 */
3306 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3307
3308 cmd_buffer->state.pending_pipe_bits |=
3309 cmd_buffer->state.pass->subpass_flushes[cmd_buffer->state.pass->subpass_count];
3310
3311 cmd_buffer->state.hiz_enabled = false;
3312
3313 #ifndef NDEBUG
3314 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
3315 #endif
3316
3317 /* Remove references to render pass specific state. This enables us to
3318 * detect whether or not we're in a renderpass.
3319 */
3320 cmd_buffer->state.framebuffer = NULL;
3321 cmd_buffer->state.pass = NULL;
3322 cmd_buffer->state.subpass = NULL;
3323 }
3324