1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
genX(CreateQueryPool)35 VkResult genX(CreateQueryPool)(
36 VkDevice _device,
37 const VkQueryPoolCreateInfo* pCreateInfo,
38 const VkAllocationCallbacks* pAllocator,
39 VkQueryPool* pQueryPool)
40 {
41 ANV_FROM_HANDLE(anv_device, device, _device);
42 const struct anv_physical_device *pdevice = &device->instance->physicalDevice;
43 struct anv_query_pool *pool;
44 VkResult result;
45
46 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO);
47
48 /* Query pool slots are made up of some number of 64-bit values packed
49 * tightly together. The first 64-bit value is always the "available" bit
50 * which is 0 when the query is unavailable and 1 when it is available.
51 * The 64-bit values that follow are determined by the type of query.
52 */
53 uint32_t uint64s_per_slot = 1;
54
55 VkQueryPipelineStatisticFlags pipeline_statistics = 0;
56 switch (pCreateInfo->queryType) {
57 case VK_QUERY_TYPE_OCCLUSION:
58 /* Occlusion queries have two values: begin and end. */
59 uint64s_per_slot += 2;
60 break;
61 case VK_QUERY_TYPE_TIMESTAMP:
62 /* Timestamps just have the one timestamp value */
63 uint64s_per_slot += 1;
64 break;
65 case VK_QUERY_TYPE_PIPELINE_STATISTICS:
66 pipeline_statistics = pCreateInfo->pipelineStatistics;
67 /* We're going to trust this field implicitly so we need to ensure that
68 * no unhandled extension bits leak in.
69 */
70 pipeline_statistics &= ANV_PIPELINE_STATISTICS_MASK;
71
72 /* Statistics queries have a min and max for every statistic */
73 uint64s_per_slot += 2 * _mesa_bitcount(pipeline_statistics);
74 break;
75 default:
76 assert(!"Invalid query type");
77 }
78
79 pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
80 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
81 if (pool == NULL)
82 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
83
84 pool->type = pCreateInfo->queryType;
85 pool->pipeline_statistics = pipeline_statistics;
86 pool->stride = uint64s_per_slot * sizeof(uint64_t);
87 pool->slots = pCreateInfo->queryCount;
88
89 uint64_t size = pool->slots * pool->stride;
90 result = anv_bo_init_new(&pool->bo, device, size);
91 if (result != VK_SUCCESS)
92 goto fail;
93
94 if (pdevice->supports_48bit_addresses)
95 pool->bo.flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
96
97 if (pdevice->has_exec_async)
98 pool->bo.flags |= EXEC_OBJECT_ASYNC;
99
100 /* For query pools, we set the caching mode to I915_CACHING_CACHED. On LLC
101 * platforms, this does nothing. On non-LLC platforms, this means snooping
102 * which comes at a slight cost. However, the buffers aren't big, won't be
103 * written frequently, and trying to handle the flushing manually without
104 * doing too much flushing is extremely painful.
105 */
106 anv_gem_set_caching(device, pool->bo.gem_handle, I915_CACHING_CACHED);
107
108 pool->bo.map = anv_gem_mmap(device, pool->bo.gem_handle, 0, size, 0);
109
110 *pQueryPool = anv_query_pool_to_handle(pool);
111
112 return VK_SUCCESS;
113
114 fail:
115 vk_free2(&device->alloc, pAllocator, pool);
116
117 return result;
118 }
119
genX(DestroyQueryPool)120 void genX(DestroyQueryPool)(
121 VkDevice _device,
122 VkQueryPool _pool,
123 const VkAllocationCallbacks* pAllocator)
124 {
125 ANV_FROM_HANDLE(anv_device, device, _device);
126 ANV_FROM_HANDLE(anv_query_pool, pool, _pool);
127
128 if (!pool)
129 return;
130
131 anv_gem_munmap(pool->bo.map, pool->bo.size);
132 anv_gem_close(device, pool->bo.gem_handle);
133 vk_free2(&device->alloc, pAllocator, pool);
134 }
135
136 static void
cpu_write_query_result(void * dst_slot,VkQueryResultFlags flags,uint32_t value_index,uint64_t result)137 cpu_write_query_result(void *dst_slot, VkQueryResultFlags flags,
138 uint32_t value_index, uint64_t result)
139 {
140 if (flags & VK_QUERY_RESULT_64_BIT) {
141 uint64_t *dst64 = dst_slot;
142 dst64[value_index] = result;
143 } else {
144 uint32_t *dst32 = dst_slot;
145 dst32[value_index] = result;
146 }
147 }
148
149 static bool
query_is_available(uint64_t * slot)150 query_is_available(uint64_t *slot)
151 {
152 return *(volatile uint64_t *)slot;
153 }
154
155 static VkResult
wait_for_available(struct anv_device * device,struct anv_query_pool * pool,uint64_t * slot)156 wait_for_available(struct anv_device *device,
157 struct anv_query_pool *pool, uint64_t *slot)
158 {
159 while (true) {
160 if (query_is_available(slot))
161 return VK_SUCCESS;
162
163 int ret = anv_gem_busy(device, pool->bo.gem_handle);
164 if (ret == 1) {
165 /* The BO is still busy, keep waiting. */
166 continue;
167 } else if (ret == -1) {
168 /* We don't know the real error. */
169 device->lost = true;
170 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
171 "gem wait failed: %m");
172 } else {
173 assert(ret == 0);
174 /* The BO is no longer busy. */
175 if (query_is_available(slot)) {
176 return VK_SUCCESS;
177 } else {
178 VkResult status = anv_device_query_status(device);
179 if (status != VK_SUCCESS)
180 return status;
181
182 /* If we haven't seen availability yet, then we never will. This
183 * can only happen if we have a client error where they call
184 * GetQueryPoolResults on a query that they haven't submitted to
185 * the GPU yet. The spec allows us to do anything in this case,
186 * but returning VK_SUCCESS doesn't seem right and we shouldn't
187 * just keep spinning.
188 */
189 return VK_NOT_READY;
190 }
191 }
192 }
193 }
194
genX(GetQueryPoolResults)195 VkResult genX(GetQueryPoolResults)(
196 VkDevice _device,
197 VkQueryPool queryPool,
198 uint32_t firstQuery,
199 uint32_t queryCount,
200 size_t dataSize,
201 void* pData,
202 VkDeviceSize stride,
203 VkQueryResultFlags flags)
204 {
205 ANV_FROM_HANDLE(anv_device, device, _device);
206 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
207
208 assert(pool->type == VK_QUERY_TYPE_OCCLUSION ||
209 pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS ||
210 pool->type == VK_QUERY_TYPE_TIMESTAMP);
211
212 if (unlikely(device->lost))
213 return VK_ERROR_DEVICE_LOST;
214
215 if (pData == NULL)
216 return VK_SUCCESS;
217
218 void *data_end = pData + dataSize;
219
220 VkResult status = VK_SUCCESS;
221 for (uint32_t i = 0; i < queryCount; i++) {
222 uint64_t *slot = pool->bo.map + (firstQuery + i) * pool->stride;
223
224 /* Availability is always at the start of the slot */
225 bool available = slot[0];
226
227 if (!available && (flags & VK_QUERY_RESULT_WAIT_BIT)) {
228 status = wait_for_available(device, pool, slot);
229 if (status != VK_SUCCESS)
230 return status;
231
232 available = true;
233 }
234
235 /* From the Vulkan 1.0.42 spec:
236 *
237 * "If VK_QUERY_RESULT_WAIT_BIT and VK_QUERY_RESULT_PARTIAL_BIT are
238 * both not set then no result values are written to pData for
239 * queries that are in the unavailable state at the time of the call,
240 * and vkGetQueryPoolResults returns VK_NOT_READY. However,
241 * availability state is still written to pData for those queries if
242 * VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set."
243 */
244 bool write_results = available || (flags & VK_QUERY_RESULT_PARTIAL_BIT);
245
246 if (write_results) {
247 switch (pool->type) {
248 case VK_QUERY_TYPE_OCCLUSION: {
249 cpu_write_query_result(pData, flags, 0, slot[2] - slot[1]);
250 break;
251 }
252
253 case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
254 uint32_t statistics = pool->pipeline_statistics;
255 uint32_t idx = 0;
256 while (statistics) {
257 uint32_t stat = u_bit_scan(&statistics);
258 uint64_t result = slot[idx * 2 + 2] - slot[idx * 2 + 1];
259
260 /* WaDividePSInvocationCountBy4:HSW,BDW */
261 if ((device->info.gen == 8 || device->info.is_haswell) &&
262 (1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT)
263 result >>= 2;
264
265 cpu_write_query_result(pData, flags, idx, result);
266
267 idx++;
268 }
269 assert(idx == _mesa_bitcount(pool->pipeline_statistics));
270 break;
271 }
272
273 case VK_QUERY_TYPE_TIMESTAMP: {
274 cpu_write_query_result(pData, flags, 0, slot[1]);
275 break;
276 }
277 default:
278 unreachable("invalid pool type");
279 }
280 } else {
281 status = VK_NOT_READY;
282 }
283
284 if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
285 uint32_t idx = (pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS) ?
286 _mesa_bitcount(pool->pipeline_statistics) : 1;
287 cpu_write_query_result(pData, flags, idx, available);
288 }
289
290 pData += stride;
291 if (pData >= data_end)
292 break;
293 }
294
295 return status;
296 }
297
298 static void
emit_ps_depth_count(struct anv_cmd_buffer * cmd_buffer,struct anv_bo * bo,uint32_t offset)299 emit_ps_depth_count(struct anv_cmd_buffer *cmd_buffer,
300 struct anv_bo *bo, uint32_t offset)
301 {
302 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
303 pc.DestinationAddressType = DAT_PPGTT;
304 pc.PostSyncOperation = WritePSDepthCount;
305 pc.DepthStallEnable = true;
306 pc.Address = (struct anv_address) { bo, offset };
307
308 if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
309 pc.CommandStreamerStallEnable = true;
310 }
311 }
312
313 static void
emit_query_availability(struct anv_cmd_buffer * cmd_buffer,struct anv_bo * bo,uint32_t offset)314 emit_query_availability(struct anv_cmd_buffer *cmd_buffer,
315 struct anv_bo *bo, uint32_t offset)
316 {
317 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
318 pc.DestinationAddressType = DAT_PPGTT;
319 pc.PostSyncOperation = WriteImmediateData;
320 pc.Address = (struct anv_address) { bo, offset };
321 pc.ImmediateData = 1;
322 }
323 }
324
325 /**
326 * Goes through a series of consecutive query indices in the given pool
327 * setting all element values to 0 and emitting them as available.
328 */
329 static void
emit_zero_queries(struct anv_cmd_buffer * cmd_buffer,struct anv_query_pool * pool,uint32_t first_index,uint32_t num_queries)330 emit_zero_queries(struct anv_cmd_buffer *cmd_buffer,
331 struct anv_query_pool *pool,
332 uint32_t first_index, uint32_t num_queries)
333 {
334 const uint32_t num_elements = pool->stride / sizeof(uint64_t);
335
336 for (uint32_t i = 0; i < num_queries; i++) {
337 uint32_t slot_offset = (first_index + i) * pool->stride;
338 for (uint32_t j = 1; j < num_elements; j++) {
339 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
340 sdi.Address.bo = &pool->bo;
341 sdi.Address.offset = slot_offset + j * sizeof(uint64_t);
342 sdi.ImmediateData = 0ull;
343 }
344 }
345 emit_query_availability(cmd_buffer, &pool->bo, slot_offset);
346 }
347 }
348
genX(CmdResetQueryPool)349 void genX(CmdResetQueryPool)(
350 VkCommandBuffer commandBuffer,
351 VkQueryPool queryPool,
352 uint32_t firstQuery,
353 uint32_t queryCount)
354 {
355 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
356 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
357
358 for (uint32_t i = 0; i < queryCount; i++) {
359 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdm) {
360 sdm.Address = (struct anv_address) {
361 .bo = &pool->bo,
362 .offset = (firstQuery + i) * pool->stride,
363 };
364 sdm.ImmediateData = 0;
365 }
366 }
367 }
368
369 static const uint32_t vk_pipeline_stat_to_reg[] = {
370 GENX(IA_VERTICES_COUNT_num),
371 GENX(IA_PRIMITIVES_COUNT_num),
372 GENX(VS_INVOCATION_COUNT_num),
373 GENX(GS_INVOCATION_COUNT_num),
374 GENX(GS_PRIMITIVES_COUNT_num),
375 GENX(CL_INVOCATION_COUNT_num),
376 GENX(CL_PRIMITIVES_COUNT_num),
377 GENX(PS_INVOCATION_COUNT_num),
378 GENX(HS_INVOCATION_COUNT_num),
379 GENX(DS_INVOCATION_COUNT_num),
380 GENX(CS_INVOCATION_COUNT_num),
381 };
382
383 static void
emit_pipeline_stat(struct anv_cmd_buffer * cmd_buffer,uint32_t stat,struct anv_bo * bo,uint32_t offset)384 emit_pipeline_stat(struct anv_cmd_buffer *cmd_buffer, uint32_t stat,
385 struct anv_bo *bo, uint32_t offset)
386 {
387 STATIC_ASSERT(ANV_PIPELINE_STATISTICS_MASK ==
388 (1 << ARRAY_SIZE(vk_pipeline_stat_to_reg)) - 1);
389
390 assert(stat < ARRAY_SIZE(vk_pipeline_stat_to_reg));
391 uint32_t reg = vk_pipeline_stat_to_reg[stat];
392
393 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), lrm) {
394 lrm.RegisterAddress = reg,
395 lrm.MemoryAddress = (struct anv_address) { bo, offset };
396 }
397 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), lrm) {
398 lrm.RegisterAddress = reg + 4,
399 lrm.MemoryAddress = (struct anv_address) { bo, offset + 4 };
400 }
401 }
402
genX(CmdBeginQuery)403 void genX(CmdBeginQuery)(
404 VkCommandBuffer commandBuffer,
405 VkQueryPool queryPool,
406 uint32_t query,
407 VkQueryControlFlags flags)
408 {
409 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
410 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
411
412 switch (pool->type) {
413 case VK_QUERY_TYPE_OCCLUSION:
414 emit_ps_depth_count(cmd_buffer, &pool->bo, query * pool->stride + 8);
415 break;
416
417 case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
418 /* TODO: This might only be necessary for certain stats */
419 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
420 pc.CommandStreamerStallEnable = true;
421 pc.StallAtPixelScoreboard = true;
422 }
423
424 uint32_t statistics = pool->pipeline_statistics;
425 uint32_t offset = query * pool->stride + 8;
426 while (statistics) {
427 uint32_t stat = u_bit_scan(&statistics);
428 emit_pipeline_stat(cmd_buffer, stat, &pool->bo, offset);
429 offset += 16;
430 }
431 break;
432 }
433
434 default:
435 unreachable("");
436 }
437 }
438
genX(CmdEndQuery)439 void genX(CmdEndQuery)(
440 VkCommandBuffer commandBuffer,
441 VkQueryPool queryPool,
442 uint32_t query)
443 {
444 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
445 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
446
447 switch (pool->type) {
448 case VK_QUERY_TYPE_OCCLUSION:
449 emit_ps_depth_count(cmd_buffer, &pool->bo, query * pool->stride + 16);
450 emit_query_availability(cmd_buffer, &pool->bo, query * pool->stride);
451 break;
452
453 case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
454 /* TODO: This might only be necessary for certain stats */
455 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
456 pc.CommandStreamerStallEnable = true;
457 pc.StallAtPixelScoreboard = true;
458 }
459
460 uint32_t statistics = pool->pipeline_statistics;
461 uint32_t offset = query * pool->stride + 16;
462 while (statistics) {
463 uint32_t stat = u_bit_scan(&statistics);
464 emit_pipeline_stat(cmd_buffer, stat, &pool->bo, offset);
465 offset += 16;
466 }
467
468 emit_query_availability(cmd_buffer, &pool->bo, query * pool->stride);
469 break;
470 }
471
472 default:
473 unreachable("");
474 }
475
476 /* When multiview is active the spec requires that N consecutive query
477 * indices are used, where N is the number of active views in the subpass.
478 * The spec allows that we only write the results to one of the queries
479 * but we still need to manage result availability for all the query indices.
480 * Since we only emit a single query for all active views in the
481 * first index, mark the other query indices as being already available
482 * with result 0.
483 */
484 if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) {
485 const uint32_t num_queries =
486 _mesa_bitcount(cmd_buffer->state.subpass->view_mask);
487 if (num_queries > 1)
488 emit_zero_queries(cmd_buffer, pool, query + 1, num_queries - 1);
489 }
490 }
491
492 #define TIMESTAMP 0x2358
493
genX(CmdWriteTimestamp)494 void genX(CmdWriteTimestamp)(
495 VkCommandBuffer commandBuffer,
496 VkPipelineStageFlagBits pipelineStage,
497 VkQueryPool queryPool,
498 uint32_t query)
499 {
500 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
501 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
502 uint32_t offset = query * pool->stride;
503
504 assert(pool->type == VK_QUERY_TYPE_TIMESTAMP);
505
506 switch (pipelineStage) {
507 case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT:
508 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
509 srm.RegisterAddress = TIMESTAMP;
510 srm.MemoryAddress = (struct anv_address) { &pool->bo, offset + 8 };
511 }
512 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
513 srm.RegisterAddress = TIMESTAMP + 4;
514 srm.MemoryAddress = (struct anv_address) { &pool->bo, offset + 12 };
515 }
516 break;
517
518 default:
519 /* Everything else is bottom-of-pipe */
520 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
521 pc.DestinationAddressType = DAT_PPGTT;
522 pc.PostSyncOperation = WriteTimestamp;
523 pc.Address = (struct anv_address) { &pool->bo, offset + 8 };
524
525 if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
526 pc.CommandStreamerStallEnable = true;
527 }
528 break;
529 }
530
531 emit_query_availability(cmd_buffer, &pool->bo, offset);
532
533 /* When multiview is active the spec requires that N consecutive query
534 * indices are used, where N is the number of active views in the subpass.
535 * The spec allows that we only write the results to one of the queries
536 * but we still need to manage result availability for all the query indices.
537 * Since we only emit a single query for all active views in the
538 * first index, mark the other query indices as being already available
539 * with result 0.
540 */
541 if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) {
542 const uint32_t num_queries =
543 _mesa_bitcount(cmd_buffer->state.subpass->view_mask);
544 if (num_queries > 1)
545 emit_zero_queries(cmd_buffer, pool, query + 1, num_queries - 1);
546 }
547 }
548
549 #if GEN_GEN > 7 || GEN_IS_HASWELL
550
551 static uint32_t
mi_alu(uint32_t opcode,uint32_t operand1,uint32_t operand2)552 mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
553 {
554 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
555 .ALUOpcode = opcode,
556 .Operand1 = operand1,
557 .Operand2 = operand2,
558 };
559
560 uint32_t dw;
561 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
562
563 return dw;
564 }
565
566 #define CS_GPR(n) (0x2600 + (n) * 8)
567
568 static void
emit_load_alu_reg_u64(struct anv_batch * batch,uint32_t reg,struct anv_bo * bo,uint32_t offset)569 emit_load_alu_reg_u64(struct anv_batch *batch, uint32_t reg,
570 struct anv_bo *bo, uint32_t offset)
571 {
572 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
573 lrm.RegisterAddress = reg,
574 lrm.MemoryAddress = (struct anv_address) { bo, offset };
575 }
576 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
577 lrm.RegisterAddress = reg + 4;
578 lrm.MemoryAddress = (struct anv_address) { bo, offset + 4 };
579 }
580 }
581
582 static void
emit_load_alu_reg_imm32(struct anv_batch * batch,uint32_t reg,uint32_t imm)583 emit_load_alu_reg_imm32(struct anv_batch *batch, uint32_t reg, uint32_t imm)
584 {
585 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
586 lri.RegisterOffset = reg;
587 lri.DataDWord = imm;
588 }
589 }
590
591 static void
emit_load_alu_reg_imm64(struct anv_batch * batch,uint32_t reg,uint64_t imm)592 emit_load_alu_reg_imm64(struct anv_batch *batch, uint32_t reg, uint64_t imm)
593 {
594 emit_load_alu_reg_imm32(batch, reg, (uint32_t)imm);
595 emit_load_alu_reg_imm32(batch, reg + 4, (uint32_t)(imm >> 32));
596 }
597
598 static void
emit_load_alu_reg_reg32(struct anv_batch * batch,uint32_t src,uint32_t dst)599 emit_load_alu_reg_reg32(struct anv_batch *batch, uint32_t src, uint32_t dst)
600 {
601 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
602 lrr.SourceRegisterAddress = src;
603 lrr.DestinationRegisterAddress = dst;
604 }
605 }
606
607 /*
608 * GPR0 = GPR0 & ((1ull << n) - 1);
609 */
610 static void
keep_gpr0_lower_n_bits(struct anv_batch * batch,uint32_t n)611 keep_gpr0_lower_n_bits(struct anv_batch *batch, uint32_t n)
612 {
613 assert(n < 64);
614 emit_load_alu_reg_imm64(batch, CS_GPR(1), (1ull << n) - 1);
615
616 uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH));
617 if (!dw) {
618 anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
619 return;
620 }
621
622 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
623 dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
624 dw[3] = mi_alu(MI_ALU_AND, 0, 0);
625 dw[4] = mi_alu(MI_ALU_STORE, MI_ALU_REG0, MI_ALU_ACCU);
626 }
627
628 /*
629 * GPR0 = GPR0 << 30;
630 */
631 static void
shl_gpr0_by_30_bits(struct anv_batch * batch)632 shl_gpr0_by_30_bits(struct anv_batch *batch)
633 {
634 /* First we mask 34 bits of GPR0 to prevent overflow */
635 keep_gpr0_lower_n_bits(batch, 34);
636
637 const uint32_t outer_count = 5;
638 const uint32_t inner_count = 6;
639 STATIC_ASSERT(outer_count * inner_count == 30);
640 const uint32_t cmd_len = 1 + inner_count * 4;
641
642 /* We'll emit 5 commands, each shifting GPR0 left by 6 bits, for a total of
643 * 30 left shifts.
644 */
645 for (int o = 0; o < outer_count; o++) {
646 /* Submit one MI_MATH to shift left by 6 bits */
647 uint32_t *dw = anv_batch_emitn(batch, cmd_len, GENX(MI_MATH));
648 if (!dw) {
649 anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
650 return;
651 }
652
653 dw++;
654 for (int i = 0; i < inner_count; i++, dw += 4) {
655 dw[0] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
656 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG0);
657 dw[2] = mi_alu(MI_ALU_ADD, 0, 0);
658 dw[3] = mi_alu(MI_ALU_STORE, MI_ALU_REG0, MI_ALU_ACCU);
659 }
660 }
661 }
662
663 /*
664 * GPR0 = GPR0 >> 2;
665 *
666 * Note that the upper 30 bits of GPR are lost!
667 */
668 static void
shr_gpr0_by_2_bits(struct anv_batch * batch)669 shr_gpr0_by_2_bits(struct anv_batch *batch)
670 {
671 shl_gpr0_by_30_bits(batch);
672 emit_load_alu_reg_reg32(batch, CS_GPR(0) + 4, CS_GPR(0));
673 emit_load_alu_reg_imm32(batch, CS_GPR(0) + 4, 0);
674 }
675
676 static void
gpu_write_query_result(struct anv_batch * batch,struct anv_buffer * dst_buffer,uint32_t dst_offset,VkQueryResultFlags flags,uint32_t value_index,uint32_t reg)677 gpu_write_query_result(struct anv_batch *batch,
678 struct anv_buffer *dst_buffer, uint32_t dst_offset,
679 VkQueryResultFlags flags,
680 uint32_t value_index, uint32_t reg)
681 {
682 if (flags & VK_QUERY_RESULT_64_BIT)
683 dst_offset += value_index * 8;
684 else
685 dst_offset += value_index * 4;
686
687 anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
688 srm.RegisterAddress = reg;
689 srm.MemoryAddress = (struct anv_address) {
690 .bo = dst_buffer->bo,
691 .offset = dst_buffer->offset + dst_offset,
692 };
693 }
694
695 if (flags & VK_QUERY_RESULT_64_BIT) {
696 anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
697 srm.RegisterAddress = reg + 4;
698 srm.MemoryAddress = (struct anv_address) {
699 .bo = dst_buffer->bo,
700 .offset = dst_buffer->offset + dst_offset + 4,
701 };
702 }
703 }
704 }
705
706 static void
compute_query_result(struct anv_batch * batch,uint32_t dst_reg,struct anv_bo * bo,uint32_t offset)707 compute_query_result(struct anv_batch *batch, uint32_t dst_reg,
708 struct anv_bo *bo, uint32_t offset)
709 {
710 emit_load_alu_reg_u64(batch, CS_GPR(0), bo, offset);
711 emit_load_alu_reg_u64(batch, CS_GPR(1), bo, offset + 8);
712
713 /* FIXME: We need to clamp the result for 32 bit. */
714
715 uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH));
716 if (!dw) {
717 anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
718 return;
719 }
720
721 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG1);
722 dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG0);
723 dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
724 dw[4] = mi_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
725 }
726
genX(CmdCopyQueryPoolResults)727 void genX(CmdCopyQueryPoolResults)(
728 VkCommandBuffer commandBuffer,
729 VkQueryPool queryPool,
730 uint32_t firstQuery,
731 uint32_t queryCount,
732 VkBuffer destBuffer,
733 VkDeviceSize destOffset,
734 VkDeviceSize destStride,
735 VkQueryResultFlags flags)
736 {
737 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
738 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
739 ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer);
740 uint32_t slot_offset;
741
742 if (flags & VK_QUERY_RESULT_WAIT_BIT) {
743 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
744 pc.CommandStreamerStallEnable = true;
745 pc.StallAtPixelScoreboard = true;
746 }
747 }
748
749 for (uint32_t i = 0; i < queryCount; i++) {
750 slot_offset = (firstQuery + i) * pool->stride;
751 switch (pool->type) {
752 case VK_QUERY_TYPE_OCCLUSION:
753 compute_query_result(&cmd_buffer->batch, MI_ALU_REG2,
754 &pool->bo, slot_offset + 8);
755 gpu_write_query_result(&cmd_buffer->batch, buffer, destOffset,
756 flags, 0, CS_GPR(2));
757 break;
758
759 case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
760 uint32_t statistics = pool->pipeline_statistics;
761 uint32_t idx = 0;
762 while (statistics) {
763 uint32_t stat = u_bit_scan(&statistics);
764
765 compute_query_result(&cmd_buffer->batch, MI_ALU_REG0,
766 &pool->bo, slot_offset + idx * 16 + 8);
767
768 /* WaDividePSInvocationCountBy4:HSW,BDW */
769 if ((cmd_buffer->device->info.gen == 8 ||
770 cmd_buffer->device->info.is_haswell) &&
771 (1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT) {
772 shr_gpr0_by_2_bits(&cmd_buffer->batch);
773 }
774
775 gpu_write_query_result(&cmd_buffer->batch, buffer, destOffset,
776 flags, idx, CS_GPR(0));
777
778 idx++;
779 }
780 assert(idx == _mesa_bitcount(pool->pipeline_statistics));
781 break;
782 }
783
784 case VK_QUERY_TYPE_TIMESTAMP:
785 emit_load_alu_reg_u64(&cmd_buffer->batch,
786 CS_GPR(2), &pool->bo, slot_offset + 8);
787 gpu_write_query_result(&cmd_buffer->batch, buffer, destOffset,
788 flags, 0, CS_GPR(2));
789 break;
790
791 default:
792 unreachable("unhandled query type");
793 }
794
795 if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
796 uint32_t idx = (pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS) ?
797 _mesa_bitcount(pool->pipeline_statistics) : 1;
798
799 emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0),
800 &pool->bo, slot_offset);
801 gpu_write_query_result(&cmd_buffer->batch, buffer, destOffset,
802 flags, idx, CS_GPR(0));
803 }
804
805 destOffset += destStride;
806 }
807 }
808
809 #else
genX(CmdCopyQueryPoolResults)810 void genX(CmdCopyQueryPoolResults)(
811 VkCommandBuffer commandBuffer,
812 VkQueryPool queryPool,
813 uint32_t firstQuery,
814 uint32_t queryCount,
815 VkBuffer destBuffer,
816 VkDeviceSize destOffset,
817 VkDeviceSize destStride,
818 VkQueryResultFlags flags)
819 {
820 anv_finishme("Queries not yet supported on Ivy Bridge");
821 }
822 #endif
823