• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #define EIGEN_USE_THREADS
17 
18 #include "tensorflow/core/kernels/concat_lib_cpu.h"
19 #include <vector>
20 #include "tensorflow/core/framework/register_types.h"
21 #include "tensorflow/core/kernels/concat_lib.h"
22 
23 namespace tensorflow {
24 
25 namespace {
26 template <typename T>
27 struct MemCpyCopier {
Copytensorflow::__anon18de36420111::MemCpyCopier28   inline void Copy(T* dst, const T* src, int input_index, size_t n) {
29     if (DataTypeCanUseMemcpy(DataTypeToEnum<T>::v())) {
30       memcpy(dst, src, n * sizeof(T));
31     } else {
32       for (size_t k = 0; k < n; ++k) {
33         *dst++ = *src++;
34       }
35     }
36   }
37 };
38 template <>
39 struct MemCpyCopier<ResourceHandle> {
Copytensorflow::__anon18de36420111::MemCpyCopier40   inline void Copy(ResourceHandle* dst, const ResourceHandle* src,
41                    int input_index, size_t n) {
42     for (size_t k = 0; k < n; ++k) {
43       *dst++ = *src++;
44     }
45   }
46 };
47 
48 }  // namespace
49 
50 template <typename T>
ConcatCPU(DeviceBase * d,const std::vector<std::unique_ptr<typename TTypes<T,2>::ConstMatrix>> & inputs,typename TTypes<T,2>::Matrix * output)51 void ConcatCPU(
52     DeviceBase* d,
53     const std::vector<std::unique_ptr<typename TTypes<T, 2>::ConstMatrix>>&
54         inputs,
55     typename TTypes<T, 2>::Matrix* output) {
56   if (std::is_same<T, string>::value) {
57     // use a large cost here to force strings to be handled by separate threads
58     ConcatCPUImpl<T>(d, inputs, 100000, MemCpyCopier<T>(), output);
59   } else {
60     ConcatCPUImpl<T>(d, inputs, sizeof(T) /* cost_per_unit */,
61                      MemCpyCopier<T>(), output);
62   }
63 }
64 
65 #define REGISTER(T)                                                            \
66   template void ConcatCPU<T>(                                                  \
67       DeviceBase*,                                                             \
68       const std::vector<std::unique_ptr<typename TTypes<T, 2>::ConstMatrix>>&, \
69       typename TTypes<T, 2>::Matrix* output);
70 TF_CALL_ALL_TYPES(REGISTER)
71 REGISTER(quint8)
72 REGISTER(qint8)
73 REGISTER(quint16)
74 REGISTER(qint16)
75 REGISTER(qint32)
76 
77 #if defined(IS_MOBILE_PLATFORM) && !defined(SUPPORT_SELECTIVE_REGISTRATION) && \
78     !defined(__ANDROID_TYPES_FULL__)
79     // Primarily used for SavedModel support on mobile. Registering it here only
80     // if __ANDROID_TYPES_FULL__ is not defined (which already registers string)
81     // to avoid duplicate registration.
82     REGISTER(string);
83 #endif  // defined(IS_MOBILE_PLATFORM) &&
84         // !defined(SUPPORT_SELECTIVE_REGISTRATION) &&
85         // !defined(__ANDROID_TYPES_FULL__)
86 
87 #ifdef TENSORFLOW_USE_SYCL
88 template <typename T>
ConcatSYCL(const Eigen::SyclDevice & d,const std::vector<std::unique_ptr<typename TTypes<T,2>::ConstMatrix>> & inputs,typename TTypes<T,2>::Matrix * output)89 void ConcatSYCL(
90     const Eigen::SyclDevice& d,
91     const std::vector<std::unique_ptr<typename TTypes<T, 2>::ConstMatrix>>&
92         inputs,
93     typename TTypes<T, 2>::Matrix* output) {
94   ConcatSYCLImpl<T>(d, inputs, sizeof(T) /* cost_per_unit */, MemCpyCopier<T>(),
95                     output);
96 }
97 #define REGISTER_SYCL(T)                                                       \
98   template void ConcatSYCL<T>(                                                 \
99       const Eigen::SyclDevice&,                                                \
100       const std::vector<std::unique_ptr<typename TTypes<T, 2>::ConstMatrix>>&, \
101       typename TTypes<T, 2>::Matrix* output);
102 
103 TF_CALL_GPU_NUMBER_TYPES_NO_HALF(REGISTER_SYCL)
104 
105 #undef REGISTER_SYCL
106 #endif  // TENSORFLOW_USE_SYCL
107 }  // namespace tensorflow
108