• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "concurrent_copying.h"
18 
19 #include "art_field-inl.h"
20 #include "barrier.h"
21 #include "base/enums.h"
22 #include "base/file_utils.h"
23 #include "base/histogram-inl.h"
24 #include "base/quasi_atomic.h"
25 #include "base/stl_util.h"
26 #include "base/systrace.h"
27 #include "class_root.h"
28 #include "debugger.h"
29 #include "gc/accounting/atomic_stack.h"
30 #include "gc/accounting/heap_bitmap-inl.h"
31 #include "gc/accounting/mod_union_table-inl.h"
32 #include "gc/accounting/read_barrier_table.h"
33 #include "gc/accounting/space_bitmap-inl.h"
34 #include "gc/gc_pause_listener.h"
35 #include "gc/reference_processor.h"
36 #include "gc/space/image_space.h"
37 #include "gc/space/space-inl.h"
38 #include "gc/verification.h"
39 #include "image-inl.h"
40 #include "intern_table.h"
41 #include "mirror/class-inl.h"
42 #include "mirror/object-inl.h"
43 #include "mirror/object-refvisitor-inl.h"
44 #include "mirror/object_reference.h"
45 #include "scoped_thread_state_change-inl.h"
46 #include "thread-inl.h"
47 #include "thread_list.h"
48 #include "well_known_classes.h"
49 
50 namespace art {
51 namespace gc {
52 namespace collector {
53 
54 static constexpr size_t kDefaultGcMarkStackSize = 2 * MB;
55 // If kFilterModUnionCards then we attempt to filter cards that don't need to be dirty in the mod
56 // union table. Disabled since it does not seem to help the pause much.
57 static constexpr bool kFilterModUnionCards = kIsDebugBuild;
58 // If kDisallowReadBarrierDuringScan is true then the GC aborts if there are any read barrier that
59 // occur during ConcurrentCopying::Scan in GC thread. May be used to diagnose possibly unnecessary
60 // read barriers. Only enabled for kIsDebugBuild to avoid performance hit.
61 static constexpr bool kDisallowReadBarrierDuringScan = kIsDebugBuild;
62 // Slow path mark stack size, increase this if the stack is getting full and it is causing
63 // performance problems.
64 static constexpr size_t kReadBarrierMarkStackSize = 512 * KB;
65 // Size (in the number of objects) of the sweep array free buffer.
66 static constexpr size_t kSweepArrayChunkFreeSize = 1024;
67 // Verify that there are no missing card marks.
68 static constexpr bool kVerifyNoMissingCardMarks = kIsDebugBuild;
69 
ConcurrentCopying(Heap * heap,bool young_gen,bool use_generational_cc,const std::string & name_prefix,bool measure_read_barrier_slow_path)70 ConcurrentCopying::ConcurrentCopying(Heap* heap,
71                                      bool young_gen,
72                                      bool use_generational_cc,
73                                      const std::string& name_prefix,
74                                      bool measure_read_barrier_slow_path)
75     : GarbageCollector(heap,
76                        name_prefix + (name_prefix.empty() ? "" : " ") +
77                        "concurrent copying"),
78       region_space_(nullptr),
79       gc_barrier_(new Barrier(0)),
80       gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
81                                                      kDefaultGcMarkStackSize,
82                                                      kDefaultGcMarkStackSize)),
83       use_generational_cc_(use_generational_cc),
84       young_gen_(young_gen),
85       rb_mark_bit_stack_(accounting::ObjectStack::Create("rb copying gc mark stack",
86                                                          kReadBarrierMarkStackSize,
87                                                          kReadBarrierMarkStackSize)),
88       rb_mark_bit_stack_full_(false),
89       mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
90       thread_running_gc_(nullptr),
91       is_marking_(false),
92       is_using_read_barrier_entrypoints_(false),
93       is_active_(false),
94       is_asserting_to_space_invariant_(false),
95       region_space_bitmap_(nullptr),
96       heap_mark_bitmap_(nullptr),
97       live_stack_freeze_size_(0),
98       from_space_num_objects_at_first_pause_(0),
99       from_space_num_bytes_at_first_pause_(0),
100       mark_stack_mode_(kMarkStackModeOff),
101       weak_ref_access_enabled_(true),
102       copied_live_bytes_ratio_sum_(0.f),
103       gc_count_(0),
104       region_space_inter_region_bitmap_(nullptr),
105       non_moving_space_inter_region_bitmap_(nullptr),
106       reclaimed_bytes_ratio_sum_(0.f),
107       skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
108       measure_read_barrier_slow_path_(measure_read_barrier_slow_path),
109       mark_from_read_barrier_measurements_(false),
110       rb_slow_path_ns_(0),
111       rb_slow_path_count_(0),
112       rb_slow_path_count_gc_(0),
113       rb_slow_path_histogram_lock_("Read barrier histogram lock"),
114       rb_slow_path_time_histogram_("Mutator time in read barrier slow path", 500, 32),
115       rb_slow_path_count_total_(0),
116       rb_slow_path_count_gc_total_(0),
117       rb_table_(heap_->GetReadBarrierTable()),
118       force_evacuate_all_(false),
119       gc_grays_immune_objects_(false),
120       immune_gray_stack_lock_("concurrent copying immune gray stack lock",
121                               kMarkSweepMarkStackLock),
122       num_bytes_allocated_before_gc_(0) {
123   static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
124                 "The region space size and the read barrier table region size must match");
125   CHECK(use_generational_cc_ || !young_gen_);
126   Thread* self = Thread::Current();
127   {
128     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
129     // Cache this so that we won't have to lock heap_bitmap_lock_ in
130     // Mark() which could cause a nested lock on heap_bitmap_lock_
131     // when GC causes a RB while doing GC or a lock order violation
132     // (class_linker_lock_ and heap_bitmap_lock_).
133     heap_mark_bitmap_ = heap->GetMarkBitmap();
134   }
135   {
136     MutexLock mu(self, mark_stack_lock_);
137     for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
138       accounting::AtomicStack<mirror::Object>* mark_stack =
139           accounting::AtomicStack<mirror::Object>::Create(
140               "thread local mark stack", kMarkStackSize, kMarkStackSize);
141       pooled_mark_stacks_.push_back(mark_stack);
142     }
143   }
144   if (use_generational_cc_) {
145     // Allocate sweep array free buffer.
146     std::string error_msg;
147     sweep_array_free_buffer_mem_map_ = MemMap::MapAnonymous(
148         "concurrent copying sweep array free buffer",
149         RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
150         PROT_READ | PROT_WRITE,
151         /*low_4gb=*/ false,
152         &error_msg);
153     CHECK(sweep_array_free_buffer_mem_map_.IsValid())
154         << "Couldn't allocate sweep array free buffer: " << error_msg;
155   }
156 }
157 
MarkHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)158 void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* field,
159                                           bool do_atomic_update) {
160   Thread* const self = Thread::Current();
161   if (UNLIKELY(do_atomic_update)) {
162     // Used to mark the referent in DelayReferenceReferent in transaction mode.
163     mirror::Object* from_ref = field->AsMirrorPtr();
164     if (from_ref == nullptr) {
165       return;
166     }
167     mirror::Object* to_ref = Mark(self, from_ref);
168     if (from_ref != to_ref) {
169       do {
170         if (field->AsMirrorPtr() != from_ref) {
171           // Concurrently overwritten by a mutator.
172           break;
173         }
174       } while (!field->CasWeakRelaxed(from_ref, to_ref));
175     }
176   } else {
177     // Used for preserving soft references, should be OK to not have a CAS here since there should be
178     // no other threads which can trigger read barriers on the same referent during reference
179     // processing.
180     field->Assign(Mark(self, field->AsMirrorPtr()));
181   }
182 }
183 
~ConcurrentCopying()184 ConcurrentCopying::~ConcurrentCopying() {
185   STLDeleteElements(&pooled_mark_stacks_);
186 }
187 
RunPhases()188 void ConcurrentCopying::RunPhases() {
189   CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
190   CHECK(!is_active_);
191   is_active_ = true;
192   Thread* self = Thread::Current();
193   thread_running_gc_ = self;
194   Locks::mutator_lock_->AssertNotHeld(self);
195   {
196     ReaderMutexLock mu(self, *Locks::mutator_lock_);
197     InitializePhase();
198     // In case of forced evacuation, all regions are evacuated and hence no
199     // need to compute live_bytes.
200     if (use_generational_cc_ && !young_gen_ && !force_evacuate_all_) {
201       MarkingPhase();
202     }
203   }
204   if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
205     // Switch to read barrier mark entrypoints before we gray the objects. This is required in case
206     // a mutator sees a gray bit and dispatches on the entrypoint. (b/37876887).
207     ActivateReadBarrierEntrypoints();
208     // Gray dirty immune objects concurrently to reduce GC pause times. We re-process gray cards in
209     // the pause.
210     ReaderMutexLock mu(self, *Locks::mutator_lock_);
211     GrayAllDirtyImmuneObjects();
212   }
213   FlipThreadRoots();
214   {
215     ReaderMutexLock mu(self, *Locks::mutator_lock_);
216     CopyingPhase();
217   }
218   // Verify no from space refs. This causes a pause.
219   if (kEnableNoFromSpaceRefsVerification) {
220     TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
221     ScopedPause pause(this, false);
222     CheckEmptyMarkStack();
223     if (kVerboseMode) {
224       LOG(INFO) << "Verifying no from-space refs";
225     }
226     VerifyNoFromSpaceReferences();
227     if (kVerboseMode) {
228       LOG(INFO) << "Done verifying no from-space refs";
229     }
230     CheckEmptyMarkStack();
231   }
232   {
233     ReaderMutexLock mu(self, *Locks::mutator_lock_);
234     ReclaimPhase();
235   }
236   FinishPhase();
237   CHECK(is_active_);
238   is_active_ = false;
239   thread_running_gc_ = nullptr;
240 }
241 
242 class ConcurrentCopying::ActivateReadBarrierEntrypointsCheckpoint : public Closure {
243  public:
ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying * concurrent_copying)244   explicit ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying* concurrent_copying)
245       : concurrent_copying_(concurrent_copying) {}
246 
Run(Thread * thread)247   void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
248     // Note: self is not necessarily equal to thread since thread may be suspended.
249     Thread* self = Thread::Current();
250     DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
251         << thread->GetState() << " thread " << thread << " self " << self;
252     // Switch to the read barrier entrypoints.
253     thread->SetReadBarrierEntrypoints();
254     // If thread is a running mutator, then act on behalf of the garbage collector.
255     // See the code in ThreadList::RunCheckpoint.
256     concurrent_copying_->GetBarrier().Pass(self);
257   }
258 
259  private:
260   ConcurrentCopying* const concurrent_copying_;
261 };
262 
263 class ConcurrentCopying::ActivateReadBarrierEntrypointsCallback : public Closure {
264  public:
ActivateReadBarrierEntrypointsCallback(ConcurrentCopying * concurrent_copying)265   explicit ActivateReadBarrierEntrypointsCallback(ConcurrentCopying* concurrent_copying)
266       : concurrent_copying_(concurrent_copying) {}
267 
Run(Thread * self ATTRIBUTE_UNUSED)268   void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
269     // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
270     // to avoid a race with ThreadList::Register().
271     CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
272     concurrent_copying_->is_using_read_barrier_entrypoints_ = true;
273   }
274 
275  private:
276   ConcurrentCopying* const concurrent_copying_;
277 };
278 
ActivateReadBarrierEntrypoints()279 void ConcurrentCopying::ActivateReadBarrierEntrypoints() {
280   Thread* const self = Thread::Current();
281   ActivateReadBarrierEntrypointsCheckpoint checkpoint(this);
282   ThreadList* thread_list = Runtime::Current()->GetThreadList();
283   gc_barrier_->Init(self, 0);
284   ActivateReadBarrierEntrypointsCallback callback(this);
285   const size_t barrier_count = thread_list->RunCheckpoint(&checkpoint, &callback);
286   // If there are no threads to wait which implies that all the checkpoint functions are finished,
287   // then no need to release the mutator lock.
288   if (barrier_count == 0) {
289     return;
290   }
291   ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
292   gc_barrier_->Increment(self, barrier_count);
293 }
294 
CreateInterRegionRefBitmaps()295 void ConcurrentCopying::CreateInterRegionRefBitmaps() {
296   DCHECK(use_generational_cc_);
297   DCHECK(region_space_inter_region_bitmap_ == nullptr);
298   DCHECK(non_moving_space_inter_region_bitmap_ == nullptr);
299   DCHECK(region_space_ != nullptr);
300   DCHECK(heap_->non_moving_space_ != nullptr);
301   // Region-space
302   region_space_inter_region_bitmap_.reset(accounting::ContinuousSpaceBitmap::Create(
303       "region-space inter region ref bitmap",
304       reinterpret_cast<uint8_t*>(region_space_->Begin()),
305       region_space_->Limit() - region_space_->Begin()));
306   CHECK(region_space_inter_region_bitmap_ != nullptr)
307       << "Couldn't allocate region-space inter region ref bitmap";
308 
309   // non-moving-space
310   non_moving_space_inter_region_bitmap_.reset(accounting::ContinuousSpaceBitmap::Create(
311       "non-moving-space inter region ref bitmap",
312       reinterpret_cast<uint8_t*>(heap_->non_moving_space_->Begin()),
313       heap_->non_moving_space_->Limit() - heap_->non_moving_space_->Begin()));
314   CHECK(non_moving_space_inter_region_bitmap_ != nullptr)
315       << "Couldn't allocate non-moving-space inter region ref bitmap";
316 }
317 
BindBitmaps()318 void ConcurrentCopying::BindBitmaps() {
319   Thread* self = Thread::Current();
320   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
321   // Mark all of the spaces we never collect as immune.
322   for (const auto& space : heap_->GetContinuousSpaces()) {
323     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
324         space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
325       CHECK(space->IsZygoteSpace() || space->IsImageSpace());
326       immune_spaces_.AddSpace(space);
327     } else {
328       CHECK(!space->IsZygoteSpace());
329       CHECK(!space->IsImageSpace());
330       CHECK(space == region_space_ || space == heap_->non_moving_space_);
331       if (use_generational_cc_) {
332         if (space == region_space_) {
333           region_space_bitmap_ = region_space_->GetMarkBitmap();
334         } else if (young_gen_ && space->IsContinuousMemMapAllocSpace()) {
335           DCHECK_EQ(space->GetGcRetentionPolicy(), space::kGcRetentionPolicyAlwaysCollect);
336           space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
337         }
338         if (young_gen_) {
339           // Age all of the cards for the region space so that we know which evac regions to scan.
340           heap_->GetCardTable()->ModifyCardsAtomic(space->Begin(),
341                                                    space->End(),
342                                                    AgeCardVisitor(),
343                                                    VoidFunctor());
344         } else {
345           // In a full-heap GC cycle, the card-table corresponding to region-space and
346           // non-moving space can be cleared, because this cycle only needs to
347           // capture writes during the marking phase of this cycle to catch
348           // objects that skipped marking due to heap mutation. Furthermore,
349           // if the next GC is a young-gen cycle, then it only needs writes to
350           // be captured after the thread-flip of this GC cycle, as that is when
351           // the young-gen for the next GC cycle starts getting populated.
352           heap_->GetCardTable()->ClearCardRange(space->Begin(), space->Limit());
353         }
354       } else {
355         if (space == region_space_) {
356           // It is OK to clear the bitmap with mutators running since the only place it is read is
357           // VisitObjects which has exclusion with CC.
358           region_space_bitmap_ = region_space_->GetMarkBitmap();
359           region_space_bitmap_->Clear();
360         }
361       }
362     }
363   }
364   if (use_generational_cc_ && young_gen_) {
365     for (const auto& space : GetHeap()->GetDiscontinuousSpaces()) {
366       CHECK(space->IsLargeObjectSpace());
367       space->AsLargeObjectSpace()->CopyLiveToMarked();
368     }
369   }
370 }
371 
InitializePhase()372 void ConcurrentCopying::InitializePhase() {
373   TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
374   num_bytes_allocated_before_gc_ = static_cast<int64_t>(heap_->GetBytesAllocated());
375   if (kVerboseMode) {
376     LOG(INFO) << "GC InitializePhase";
377     LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
378               << reinterpret_cast<void*>(region_space_->Limit());
379   }
380   CheckEmptyMarkStack();
381   rb_mark_bit_stack_full_ = false;
382   mark_from_read_barrier_measurements_ = measure_read_barrier_slow_path_;
383   if (measure_read_barrier_slow_path_) {
384     rb_slow_path_ns_.store(0, std::memory_order_relaxed);
385     rb_slow_path_count_.store(0, std::memory_order_relaxed);
386     rb_slow_path_count_gc_.store(0, std::memory_order_relaxed);
387   }
388 
389   immune_spaces_.Reset();
390   bytes_moved_.store(0, std::memory_order_relaxed);
391   objects_moved_.store(0, std::memory_order_relaxed);
392   bytes_moved_gc_thread_ = 0;
393   objects_moved_gc_thread_ = 0;
394   GcCause gc_cause = GetCurrentIteration()->GetGcCause();
395 
396   force_evacuate_all_ = false;
397   if (!use_generational_cc_ || !young_gen_) {
398     if (gc_cause == kGcCauseExplicit ||
399         gc_cause == kGcCauseCollectorTransition ||
400         GetCurrentIteration()->GetClearSoftReferences()) {
401       force_evacuate_all_ = true;
402     }
403   }
404   if (kUseBakerReadBarrier) {
405     updated_all_immune_objects_.store(false, std::memory_order_relaxed);
406     // GC may gray immune objects in the thread flip.
407     gc_grays_immune_objects_ = true;
408     if (kIsDebugBuild) {
409       MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
410       DCHECK(immune_gray_stack_.empty());
411     }
412   }
413   if (use_generational_cc_) {
414     done_scanning_.store(false, std::memory_order_release);
415   }
416   BindBitmaps();
417   if (kVerboseMode) {
418     LOG(INFO) << "young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha;
419     LOG(INFO) << "force_evacuate_all=" << std::boolalpha << force_evacuate_all_ << std::noboolalpha;
420     LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin()
421               << "-" << immune_spaces_.GetLargestImmuneRegion().End();
422     for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
423       LOG(INFO) << "Immune space: " << *space;
424     }
425     LOG(INFO) << "GC end of InitializePhase";
426   }
427   if (use_generational_cc_ && !young_gen_) {
428     region_space_bitmap_->Clear();
429   }
430   mark_stack_mode_.store(ConcurrentCopying::kMarkStackModeThreadLocal, std::memory_order_relaxed);
431   // Mark all of the zygote large objects without graying them.
432   MarkZygoteLargeObjects();
433 }
434 
435 // Used to switch the thread roots of a thread from from-space refs to to-space refs.
436 class ConcurrentCopying::ThreadFlipVisitor : public Closure, public RootVisitor {
437  public:
ThreadFlipVisitor(ConcurrentCopying * concurrent_copying,bool use_tlab)438   ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
439       : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
440   }
441 
Run(Thread * thread)442   void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) {
443     // Note: self is not necessarily equal to thread since thread may be suspended.
444     Thread* self = Thread::Current();
445     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
446         << thread->GetState() << " thread " << thread << " self " << self;
447     thread->SetIsGcMarkingAndUpdateEntrypoints(true);
448     if (use_tlab_ && thread->HasTlab()) {
449       if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
450         // This must come before the revoke.
451         size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
452         concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
453         reinterpret_cast<Atomic<size_t>*>(
454             &concurrent_copying_->from_space_num_objects_at_first_pause_)->
455                 fetch_add(thread_local_objects, std::memory_order_relaxed);
456       } else {
457         concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
458       }
459     }
460     if (kUseThreadLocalAllocationStack) {
461       thread->RevokeThreadLocalAllocationStack();
462     }
463     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
464     // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
465     // only.
466     thread->VisitRoots(this, kVisitRootFlagAllRoots);
467     concurrent_copying_->GetBarrier().Pass(self);
468   }
469 
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)470   void VisitRoots(mirror::Object*** roots,
471                   size_t count,
472                   const RootInfo& info ATTRIBUTE_UNUSED) override
473       REQUIRES_SHARED(Locks::mutator_lock_) {
474     Thread* self = Thread::Current();
475     for (size_t i = 0; i < count; ++i) {
476       mirror::Object** root = roots[i];
477       mirror::Object* ref = *root;
478       if (ref != nullptr) {
479         mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
480         if (to_ref != ref) {
481           *root = to_ref;
482         }
483       }
484     }
485   }
486 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)487   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
488                   size_t count,
489                   const RootInfo& info ATTRIBUTE_UNUSED) override
490       REQUIRES_SHARED(Locks::mutator_lock_) {
491     Thread* self = Thread::Current();
492     for (size_t i = 0; i < count; ++i) {
493       mirror::CompressedReference<mirror::Object>* const root = roots[i];
494       if (!root->IsNull()) {
495         mirror::Object* ref = root->AsMirrorPtr();
496         mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
497         if (to_ref != ref) {
498           root->Assign(to_ref);
499         }
500       }
501     }
502   }
503 
504  private:
505   ConcurrentCopying* const concurrent_copying_;
506   const bool use_tlab_;
507 };
508 
509 // Called back from Runtime::FlipThreadRoots() during a pause.
510 class ConcurrentCopying::FlipCallback : public Closure {
511  public:
FlipCallback(ConcurrentCopying * concurrent_copying)512   explicit FlipCallback(ConcurrentCopying* concurrent_copying)
513       : concurrent_copying_(concurrent_copying) {
514   }
515 
Run(Thread * thread)516   void Run(Thread* thread) override REQUIRES(Locks::mutator_lock_) {
517     ConcurrentCopying* cc = concurrent_copying_;
518     TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
519     // Note: self is not necessarily equal to thread since thread may be suspended.
520     Thread* self = Thread::Current();
521     if (kVerifyNoMissingCardMarks && cc->young_gen_) {
522       cc->VerifyNoMissingCardMarks();
523     }
524     CHECK_EQ(thread, self);
525     Locks::mutator_lock_->AssertExclusiveHeld(self);
526     space::RegionSpace::EvacMode evac_mode = space::RegionSpace::kEvacModeLivePercentNewlyAllocated;
527     if (cc->young_gen_) {
528       CHECK(!cc->force_evacuate_all_);
529       evac_mode = space::RegionSpace::kEvacModeNewlyAllocated;
530     } else if (cc->force_evacuate_all_) {
531       evac_mode = space::RegionSpace::kEvacModeForceAll;
532     }
533     {
534       TimingLogger::ScopedTiming split2("(Paused)SetFromSpace", cc->GetTimings());
535       // Only change live bytes for 1-phase full heap CC.
536       cc->region_space_->SetFromSpace(
537           cc->rb_table_,
538           evac_mode,
539           /*clear_live_bytes=*/ !cc->use_generational_cc_);
540     }
541     cc->SwapStacks();
542     if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
543       cc->RecordLiveStackFreezeSize(self);
544       cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
545       cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
546     }
547     cc->is_marking_ = true;
548     if (kIsDebugBuild && !cc->use_generational_cc_) {
549       cc->region_space_->AssertAllRegionLiveBytesZeroOrCleared();
550     }
551     if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
552       CHECK(Runtime::Current()->IsAotCompiler());
553       TimingLogger::ScopedTiming split3("(Paused)VisitTransactionRoots", cc->GetTimings());
554       Runtime::Current()->VisitTransactionRoots(cc);
555     }
556     if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
557       cc->GrayAllNewlyDirtyImmuneObjects();
558       if (kIsDebugBuild) {
559         // Check that all non-gray immune objects only reference immune objects.
560         cc->VerifyGrayImmuneObjects();
561       }
562     }
563     // May be null during runtime creation, in this case leave java_lang_Object null.
564     // This is safe since single threaded behavior should mean FillDummyObject does not
565     // happen when java_lang_Object_ is null.
566     if (WellKnownClasses::java_lang_Object != nullptr) {
567       cc->java_lang_Object_ = down_cast<mirror::Class*>(cc->Mark(thread,
568           WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object).Ptr()));
569     } else {
570       cc->java_lang_Object_ = nullptr;
571     }
572   }
573 
574  private:
575   ConcurrentCopying* const concurrent_copying_;
576 };
577 
578 class ConcurrentCopying::VerifyGrayImmuneObjectsVisitor {
579  public:
VerifyGrayImmuneObjectsVisitor(ConcurrentCopying * collector)580   explicit VerifyGrayImmuneObjectsVisitor(ConcurrentCopying* collector)
581       : collector_(collector) {}
582 
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool) const583   void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool /* is_static */)
584       const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
585       REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
586     CheckReference(obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset),
587                    obj, offset);
588   }
589 
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const590   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
591       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
592     CHECK(klass->IsTypeOfReferenceClass());
593     CheckReference(ref->GetReferent<kWithoutReadBarrier>(),
594                    ref,
595                    mirror::Reference::ReferentOffset());
596   }
597 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const598   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
599       ALWAYS_INLINE
600       REQUIRES_SHARED(Locks::mutator_lock_) {
601     if (!root->IsNull()) {
602       VisitRoot(root);
603     }
604   }
605 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const606   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
607       ALWAYS_INLINE
608       REQUIRES_SHARED(Locks::mutator_lock_) {
609     CheckReference(root->AsMirrorPtr(), nullptr, MemberOffset(0));
610   }
611 
612  private:
613   ConcurrentCopying* const collector_;
614 
CheckReference(ObjPtr<mirror::Object> ref,ObjPtr<mirror::Object> holder,MemberOffset offset) const615   void CheckReference(ObjPtr<mirror::Object> ref,
616                       ObjPtr<mirror::Object> holder,
617                       MemberOffset offset) const
618       REQUIRES_SHARED(Locks::mutator_lock_) {
619     if (ref != nullptr) {
620       if (!collector_->immune_spaces_.ContainsObject(ref.Ptr())) {
621         // Not immune, must be a zygote large object.
622         space::LargeObjectSpace* large_object_space =
623             Runtime::Current()->GetHeap()->GetLargeObjectsSpace();
624         CHECK(large_object_space->Contains(ref.Ptr()) &&
625               large_object_space->IsZygoteLargeObject(Thread::Current(), ref.Ptr()))
626             << "Non gray object references non immune, non zygote large object "<< ref << " "
627             << mirror::Object::PrettyTypeOf(ref) << " in holder " << holder << " "
628             << mirror::Object::PrettyTypeOf(holder) << " offset=" << offset.Uint32Value();
629       } else {
630         // Make sure the large object class is immune since we will never scan the large object.
631         CHECK(collector_->immune_spaces_.ContainsObject(
632             ref->GetClass<kVerifyNone, kWithoutReadBarrier>()));
633       }
634     }
635   }
636 };
637 
VerifyGrayImmuneObjects()638 void ConcurrentCopying::VerifyGrayImmuneObjects() {
639   TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
640   for (auto& space : immune_spaces_.GetSpaces()) {
641     DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
642     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
643     VerifyGrayImmuneObjectsVisitor visitor(this);
644     live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
645                                   reinterpret_cast<uintptr_t>(space->Limit()),
646                                   [&visitor](mirror::Object* obj)
647         REQUIRES_SHARED(Locks::mutator_lock_) {
648       // If an object is not gray, it should only have references to things in the immune spaces.
649       if (obj->GetReadBarrierState() != ReadBarrier::GrayState()) {
650         obj->VisitReferences</*kVisitNativeRoots=*/true,
651                              kDefaultVerifyFlags,
652                              kWithoutReadBarrier>(visitor, visitor);
653       }
654     });
655   }
656 }
657 
658 class ConcurrentCopying::VerifyNoMissingCardMarkVisitor {
659  public:
VerifyNoMissingCardMarkVisitor(ConcurrentCopying * cc,ObjPtr<mirror::Object> holder)660   VerifyNoMissingCardMarkVisitor(ConcurrentCopying* cc, ObjPtr<mirror::Object> holder)
661     : cc_(cc),
662       holder_(holder) {}
663 
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const664   void operator()(ObjPtr<mirror::Object> obj,
665                   MemberOffset offset,
666                   bool is_static ATTRIBUTE_UNUSED) const
667       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
668     if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
669      CheckReference(obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(
670          offset), offset.Uint32Value());
671     }
672   }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const673   void operator()(ObjPtr<mirror::Class> klass,
674                   ObjPtr<mirror::Reference> ref) const
675       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
676     CHECK(klass->IsTypeOfReferenceClass());
677     this->operator()(ref, mirror::Reference::ReferentOffset(), false);
678   }
679 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const680   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
681       REQUIRES_SHARED(Locks::mutator_lock_) {
682     if (!root->IsNull()) {
683       VisitRoot(root);
684     }
685   }
686 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const687   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
688       REQUIRES_SHARED(Locks::mutator_lock_) {
689     CheckReference(root->AsMirrorPtr());
690   }
691 
CheckReference(mirror::Object * ref,int32_t offset=-1) const692   void CheckReference(mirror::Object* ref, int32_t offset = -1) const
693       REQUIRES_SHARED(Locks::mutator_lock_) {
694     if (ref != nullptr && cc_->region_space_->IsInNewlyAllocatedRegion(ref)) {
695       LOG(FATAL_WITHOUT_ABORT)
696         << holder_->PrettyTypeOf() << "(" << holder_.Ptr() << ") references object "
697         << ref->PrettyTypeOf() << "(" << ref << ") in newly allocated region at offset=" << offset;
698       LOG(FATAL_WITHOUT_ABORT) << "time=" << cc_->region_space_->Time();
699       constexpr const char* kIndent = "  ";
700       LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(holder_.Ptr(), "holder_", kIndent);
701       LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(ref, "ref", kIndent);
702       LOG(FATAL) << "Unexpected reference to newly allocated region.";
703     }
704   }
705 
706  private:
707   ConcurrentCopying* const cc_;
708   const ObjPtr<mirror::Object> holder_;
709 };
710 
VerifyNoMissingCardMarks()711 void ConcurrentCopying::VerifyNoMissingCardMarks() {
712   auto visitor = [&](mirror::Object* obj)
713       REQUIRES(Locks::mutator_lock_)
714       REQUIRES(!mark_stack_lock_) {
715     // Objects on clean cards should never have references to newly allocated regions. Note
716     // that aged cards are also not clean.
717     if (heap_->GetCardTable()->GetCard(obj) == gc::accounting::CardTable::kCardClean) {
718       VerifyNoMissingCardMarkVisitor internal_visitor(this, /*holder=*/ obj);
719       obj->VisitReferences</*kVisitNativeRoots=*/true, kVerifyNone, kWithoutReadBarrier>(
720           internal_visitor, internal_visitor);
721     }
722   };
723   TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
724   region_space_->Walk(visitor);
725   {
726     ReaderMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
727     heap_->GetLiveBitmap()->Visit(visitor);
728   }
729 }
730 
731 // Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
FlipThreadRoots()732 void ConcurrentCopying::FlipThreadRoots() {
733   TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
734   if (kVerboseMode || heap_->dump_region_info_before_gc_) {
735     LOG(INFO) << "time=" << region_space_->Time();
736     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
737   }
738   Thread* self = Thread::Current();
739   Locks::mutator_lock_->AssertNotHeld(self);
740   gc_barrier_->Init(self, 0);
741   ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
742   FlipCallback flip_callback(this);
743 
744   size_t barrier_count = Runtime::Current()->GetThreadList()->FlipThreadRoots(
745       &thread_flip_visitor, &flip_callback, this, GetHeap()->GetGcPauseListener());
746 
747   {
748     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
749     gc_barrier_->Increment(self, barrier_count);
750   }
751   is_asserting_to_space_invariant_ = true;
752   QuasiAtomic::ThreadFenceForConstructor();
753   if (kVerboseMode) {
754     LOG(INFO) << "time=" << region_space_->Time();
755     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
756     LOG(INFO) << "GC end of FlipThreadRoots";
757   }
758 }
759 
760 template <bool kConcurrent>
761 class ConcurrentCopying::GrayImmuneObjectVisitor {
762  public:
GrayImmuneObjectVisitor(Thread * self)763   explicit GrayImmuneObjectVisitor(Thread* self) : self_(self) {}
764 
operator ()(mirror::Object * obj) const765   ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
766     if (kUseBakerReadBarrier && obj->GetReadBarrierState() == ReadBarrier::NonGrayState()) {
767       if (kConcurrent) {
768         Locks::mutator_lock_->AssertSharedHeld(self_);
769         obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
770         // Mod union table VisitObjects may visit the same object multiple times so we can't check
771         // the result of the atomic set.
772       } else {
773         Locks::mutator_lock_->AssertExclusiveHeld(self_);
774         obj->SetReadBarrierState(ReadBarrier::GrayState());
775       }
776     }
777   }
778 
Callback(mirror::Object * obj,void * arg)779   static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
780     reinterpret_cast<GrayImmuneObjectVisitor<kConcurrent>*>(arg)->operator()(obj);
781   }
782 
783  private:
784   Thread* const self_;
785 };
786 
GrayAllDirtyImmuneObjects()787 void ConcurrentCopying::GrayAllDirtyImmuneObjects() {
788   TimingLogger::ScopedTiming split("GrayAllDirtyImmuneObjects", GetTimings());
789   accounting::CardTable* const card_table = heap_->GetCardTable();
790   Thread* const self = Thread::Current();
791   using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ true>;
792   VisitorType visitor(self);
793   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
794   for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
795     DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
796     accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
797     // Mark all the objects on dirty cards since these may point to objects in other space.
798     // Once these are marked, the GC will eventually clear them later.
799     // Table is non null for boot image and zygote spaces. It is only null for application image
800     // spaces.
801     if (table != nullptr) {
802       table->ProcessCards();
803       table->VisitObjects(&VisitorType::Callback, &visitor);
804       // Don't clear cards here since we need to rescan in the pause. If we cleared the cards here,
805       // there would be races with the mutator marking new cards.
806     } else {
807       // Keep cards aged if we don't have a mod-union table since we may need to scan them in future
808       // GCs. This case is for app images.
809       card_table->ModifyCardsAtomic(
810           space->Begin(),
811           space->End(),
812           [](uint8_t card) {
813             return (card != gc::accounting::CardTable::kCardClean)
814                 ? gc::accounting::CardTable::kCardAged
815                 : card;
816           },
817           /* card modified visitor */ VoidFunctor());
818       card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
819                                               space->Begin(),
820                                               space->End(),
821                                               visitor,
822                                               gc::accounting::CardTable::kCardAged);
823     }
824   }
825 }
826 
GrayAllNewlyDirtyImmuneObjects()827 void ConcurrentCopying::GrayAllNewlyDirtyImmuneObjects() {
828   TimingLogger::ScopedTiming split("(Paused)GrayAllNewlyDirtyImmuneObjects", GetTimings());
829   accounting::CardTable* const card_table = heap_->GetCardTable();
830   using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ false>;
831   Thread* const self = Thread::Current();
832   VisitorType visitor(self);
833   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
834   for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
835     DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
836     accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
837 
838     // Don't need to scan aged cards since we did these before the pause. Note that scanning cards
839     // also handles the mod-union table cards.
840     card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
841                                             space->Begin(),
842                                             space->End(),
843                                             visitor,
844                                             gc::accounting::CardTable::kCardDirty);
845     if (table != nullptr) {
846       // Add the cards to the mod-union table so that we can clear cards to save RAM.
847       table->ProcessCards();
848       TimingLogger::ScopedTiming split2("(Paused)ClearCards", GetTimings());
849       card_table->ClearCardRange(space->Begin(),
850                                  AlignDown(space->End(), accounting::CardTable::kCardSize));
851     }
852   }
853   // Since all of the objects that may point to other spaces are gray, we can avoid all the read
854   // barriers in the immune spaces.
855   updated_all_immune_objects_.store(true, std::memory_order_relaxed);
856 }
857 
SwapStacks()858 void ConcurrentCopying::SwapStacks() {
859   heap_->SwapStacks();
860 }
861 
RecordLiveStackFreezeSize(Thread * self)862 void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
863   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
864   live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
865 }
866 
867 // Used to visit objects in the immune spaces.
ScanImmuneObject(mirror::Object * obj)868 inline void ConcurrentCopying::ScanImmuneObject(mirror::Object* obj) {
869   DCHECK(obj != nullptr);
870   DCHECK(immune_spaces_.ContainsObject(obj));
871   // Update the fields without graying it or pushing it onto the mark stack.
872   if (use_generational_cc_ && young_gen_) {
873     // Young GC does not care about references to unevac space. It is safe to not gray these as
874     // long as scan immune objects happens after scanning the dirty cards.
875     Scan<true>(obj);
876   } else {
877     Scan<false>(obj);
878   }
879 }
880 
881 class ConcurrentCopying::ImmuneSpaceScanObjVisitor {
882  public:
ImmuneSpaceScanObjVisitor(ConcurrentCopying * cc)883   explicit ImmuneSpaceScanObjVisitor(ConcurrentCopying* cc)
884       : collector_(cc) {}
885 
operator ()(mirror::Object * obj) const886   ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
887     if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
888       // Only need to scan gray objects.
889       if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) {
890         collector_->ScanImmuneObject(obj);
891         // Done scanning the object, go back to black (non-gray).
892         bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
893                                                       ReadBarrier::NonGrayState());
894         CHECK(success)
895             << Runtime::Current()->GetHeap()->GetVerification()->DumpObjectInfo(obj, "failed CAS");
896       }
897     } else {
898       collector_->ScanImmuneObject(obj);
899     }
900   }
901 
Callback(mirror::Object * obj,void * arg)902   static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
903     reinterpret_cast<ImmuneSpaceScanObjVisitor*>(arg)->operator()(obj);
904   }
905 
906  private:
907   ConcurrentCopying* const collector_;
908 };
909 
910 template <bool kAtomicTestAndSet>
911 class ConcurrentCopying::CaptureRootsForMarkingVisitor : public RootVisitor {
912  public:
CaptureRootsForMarkingVisitor(ConcurrentCopying * cc,Thread * self)913   explicit CaptureRootsForMarkingVisitor(ConcurrentCopying* cc, Thread* self)
914       : collector_(cc), self_(self) {}
915 
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)916   void VisitRoots(mirror::Object*** roots,
917                   size_t count,
918                   const RootInfo& info ATTRIBUTE_UNUSED) override
919       REQUIRES_SHARED(Locks::mutator_lock_) {
920     for (size_t i = 0; i < count; ++i) {
921       mirror::Object** root = roots[i];
922       mirror::Object* ref = *root;
923       if (ref != nullptr && !collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
924         collector_->PushOntoMarkStack(self_, ref);
925       }
926     }
927   }
928 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)929   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
930                   size_t count,
931                   const RootInfo& info ATTRIBUTE_UNUSED) override
932       REQUIRES_SHARED(Locks::mutator_lock_) {
933     for (size_t i = 0; i < count; ++i) {
934       mirror::CompressedReference<mirror::Object>* const root = roots[i];
935       if (!root->IsNull()) {
936         mirror::Object* ref = root->AsMirrorPtr();
937         if (!collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
938           collector_->PushOntoMarkStack(self_, ref);
939         }
940       }
941     }
942   }
943 
944  private:
945   ConcurrentCopying* const collector_;
946   Thread* const self_;
947 };
948 
949 class ConcurrentCopying::RevokeThreadLocalMarkStackCheckpoint : public Closure {
950  public:
RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying * concurrent_copying,bool disable_weak_ref_access)951   RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
952                                        bool disable_weak_ref_access)
953       : concurrent_copying_(concurrent_copying),
954         disable_weak_ref_access_(disable_weak_ref_access) {
955   }
956 
Run(Thread * thread)957   void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
958     // Note: self is not necessarily equal to thread since thread may be suspended.
959     Thread* const self = Thread::Current();
960     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
961         << thread->GetState() << " thread " << thread << " self " << self;
962     // Revoke thread local mark stacks.
963     accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
964     if (tl_mark_stack != nullptr) {
965       MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
966       concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
967       thread->SetThreadLocalMarkStack(nullptr);
968     }
969     // Disable weak ref access.
970     if (disable_weak_ref_access_) {
971       thread->SetWeakRefAccessEnabled(false);
972     }
973     // If thread is a running mutator, then act on behalf of the garbage collector.
974     // See the code in ThreadList::RunCheckpoint.
975     concurrent_copying_->GetBarrier().Pass(self);
976   }
977 
978  protected:
979   ConcurrentCopying* const concurrent_copying_;
980 
981  private:
982   const bool disable_weak_ref_access_;
983 };
984 
985 class ConcurrentCopying::CaptureThreadRootsForMarkingAndCheckpoint :
986   public RevokeThreadLocalMarkStackCheckpoint {
987  public:
CaptureThreadRootsForMarkingAndCheckpoint(ConcurrentCopying * cc)988   explicit CaptureThreadRootsForMarkingAndCheckpoint(ConcurrentCopying* cc) :
989     RevokeThreadLocalMarkStackCheckpoint(cc, /* disable_weak_ref_access */ false) {}
990 
Run(Thread * thread)991   void Run(Thread* thread) override
992       REQUIRES_SHARED(Locks::mutator_lock_) {
993     Thread* const self = Thread::Current();
994     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
995     // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
996     // only.
997     CaptureRootsForMarkingVisitor</*kAtomicTestAndSet*/ true> visitor(concurrent_copying_, self);
998     thread->VisitRoots(&visitor, kVisitRootFlagAllRoots);
999     // Barrier handling is done in the base class' Run() below.
1000     RevokeThreadLocalMarkStackCheckpoint::Run(thread);
1001   }
1002 };
1003 
CaptureThreadRootsForMarking()1004 void ConcurrentCopying::CaptureThreadRootsForMarking() {
1005   TimingLogger::ScopedTiming split("CaptureThreadRootsForMarking", GetTimings());
1006   if (kVerboseMode) {
1007     LOG(INFO) << "time=" << region_space_->Time();
1008     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
1009   }
1010   Thread* const self = Thread::Current();
1011   CaptureThreadRootsForMarkingAndCheckpoint check_point(this);
1012   ThreadList* thread_list = Runtime::Current()->GetThreadList();
1013   gc_barrier_->Init(self, 0);
1014   size_t barrier_count = thread_list->RunCheckpoint(&check_point, /* callback */ nullptr);
1015   // If there are no threads to wait which implys that all the checkpoint functions are finished,
1016   // then no need to release the mutator lock.
1017   if (barrier_count == 0) {
1018     return;
1019   }
1020   Locks::mutator_lock_->SharedUnlock(self);
1021   {
1022     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1023     gc_barrier_->Increment(self, barrier_count);
1024   }
1025   Locks::mutator_lock_->SharedLock(self);
1026   if (kVerboseMode) {
1027     LOG(INFO) << "time=" << region_space_->Time();
1028     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
1029     LOG(INFO) << "GC end of CaptureThreadRootsForMarking";
1030   }
1031 }
1032 
1033 // Used to scan ref fields of an object.
1034 template <bool kHandleInterRegionRefs>
1035 class ConcurrentCopying::ComputeLiveBytesAndMarkRefFieldsVisitor {
1036  public:
ComputeLiveBytesAndMarkRefFieldsVisitor(ConcurrentCopying * collector,size_t obj_region_idx)1037   explicit ComputeLiveBytesAndMarkRefFieldsVisitor(ConcurrentCopying* collector,
1038                                                    size_t obj_region_idx)
1039       : collector_(collector),
1040       obj_region_idx_(obj_region_idx),
1041       contains_inter_region_idx_(false) {}
1042 
operator ()(mirror::Object * obj,MemberOffset offset,bool) const1043   void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1044       ALWAYS_INLINE
1045       REQUIRES_SHARED(Locks::mutator_lock_)
1046       REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
1047     DCHECK_EQ(collector_->RegionSpace()->RegionIdxForRef(obj), obj_region_idx_);
1048     DCHECK(kHandleInterRegionRefs || collector_->immune_spaces_.ContainsObject(obj));
1049     CheckReference(obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset));
1050   }
1051 
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1052   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1053       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1054     DCHECK(klass->IsTypeOfReferenceClass());
1055     // If the referent is not null, then we must re-visit the object during
1056     // copying phase to enqueue it for delayed processing and setting
1057     // read-barrier state to gray to ensure that call to GetReferent() triggers
1058     // the read-barrier. We use same data structure that is used to remember
1059     // objects with inter-region refs for this purpose too.
1060     if (kHandleInterRegionRefs
1061         && !contains_inter_region_idx_
1062         && ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr) {
1063       contains_inter_region_idx_ = true;
1064     }
1065   }
1066 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1067   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1068       ALWAYS_INLINE
1069       REQUIRES_SHARED(Locks::mutator_lock_) {
1070     if (!root->IsNull()) {
1071       VisitRoot(root);
1072     }
1073   }
1074 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1075   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1076       ALWAYS_INLINE
1077       REQUIRES_SHARED(Locks::mutator_lock_) {
1078     CheckReference(root->AsMirrorPtr());
1079   }
1080 
ContainsInterRegionRefs() const1081   bool ContainsInterRegionRefs() const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) {
1082     return contains_inter_region_idx_;
1083   }
1084 
1085  private:
CheckReference(mirror::Object * ref) const1086   void CheckReference(mirror::Object* ref) const
1087       REQUIRES_SHARED(Locks::mutator_lock_) {
1088     if (ref == nullptr) {
1089       // Nothing to do.
1090       return;
1091     }
1092     if (!collector_->TestAndSetMarkBitForRef(ref)) {
1093       collector_->PushOntoLocalMarkStack(ref);
1094     }
1095     if (kHandleInterRegionRefs && !contains_inter_region_idx_) {
1096       size_t ref_region_idx = collector_->RegionSpace()->RegionIdxForRef(ref);
1097       // If a region-space object refers to an outside object, we will have a
1098       // mismatch of region idx, but the object need not be re-visited in
1099       // copying phase.
1100       if (ref_region_idx != static_cast<size_t>(-1) && obj_region_idx_ != ref_region_idx) {
1101         contains_inter_region_idx_ = true;
1102       }
1103     }
1104   }
1105 
1106   ConcurrentCopying* const collector_;
1107   const size_t obj_region_idx_;
1108   mutable bool contains_inter_region_idx_;
1109 };
1110 
AddLiveBytesAndScanRef(mirror::Object * ref)1111 void ConcurrentCopying::AddLiveBytesAndScanRef(mirror::Object* ref) {
1112   DCHECK(ref != nullptr);
1113   DCHECK(!immune_spaces_.ContainsObject(ref));
1114   DCHECK(TestMarkBitmapForRef(ref));
1115   size_t obj_region_idx = static_cast<size_t>(-1);
1116   if (LIKELY(region_space_->HasAddress(ref))) {
1117     obj_region_idx = region_space_->RegionIdxForRefUnchecked(ref);
1118     // Add live bytes to the corresponding region
1119     if (!region_space_->IsRegionNewlyAllocated(obj_region_idx)) {
1120       // Newly Allocated regions are always chosen for evacuation. So no need
1121       // to update live_bytes_.
1122       size_t obj_size = ref->SizeOf<kDefaultVerifyFlags>();
1123       size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1124       region_space_->AddLiveBytes(ref, alloc_size);
1125     }
1126   }
1127   ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ true>
1128       visitor(this, obj_region_idx);
1129   ref->VisitReferences</*kVisitNativeRoots=*/ true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1130       visitor, visitor);
1131   // Mark the corresponding card dirty if the object contains any
1132   // inter-region reference.
1133   if (visitor.ContainsInterRegionRefs()) {
1134     if (obj_region_idx == static_cast<size_t>(-1)) {
1135       // If an inter-region ref has been found in a non-region-space, then it
1136       // must be non-moving-space. This is because this function cannot be
1137       // called on a immune-space object, and a large-object-space object has
1138       // only class object reference, which is either in some immune-space, or
1139       // in non-moving-space.
1140       DCHECK(heap_->non_moving_space_->HasAddress(ref));
1141       non_moving_space_inter_region_bitmap_->Set(ref);
1142     } else {
1143       region_space_inter_region_bitmap_->Set(ref);
1144     }
1145   }
1146 }
1147 
1148 template <bool kAtomic>
TestAndSetMarkBitForRef(mirror::Object * ref)1149 bool ConcurrentCopying::TestAndSetMarkBitForRef(mirror::Object* ref) {
1150   accounting::ContinuousSpaceBitmap* bitmap = nullptr;
1151   accounting::LargeObjectBitmap* los_bitmap = nullptr;
1152   if (LIKELY(region_space_->HasAddress(ref))) {
1153     bitmap = region_space_bitmap_;
1154   } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
1155     bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
1156   } else if (immune_spaces_.ContainsObject(ref)) {
1157     // References to immune space objects are always live.
1158     DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
1159     return true;
1160   } else {
1161     // Should be a large object. Must be page aligned and the LOS must exist.
1162     if (kIsDebugBuild
1163         && (!IsAligned<kPageSize>(ref) || heap_->GetLargeObjectsSpace() == nullptr)) {
1164       // It must be heap corruption. Remove memory protection and dump data.
1165       region_space_->Unprotect();
1166       heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
1167                                                   MemberOffset(0),
1168                                                   ref,
1169                                                   /* fatal */ true);
1170     }
1171     los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
1172   }
1173   if (kAtomic) {
1174     return (bitmap != nullptr) ? bitmap->AtomicTestAndSet(ref) : los_bitmap->AtomicTestAndSet(ref);
1175   } else {
1176     return (bitmap != nullptr) ? bitmap->Set(ref) : los_bitmap->Set(ref);
1177   }
1178 }
1179 
TestMarkBitmapForRef(mirror::Object * ref)1180 bool ConcurrentCopying::TestMarkBitmapForRef(mirror::Object* ref) {
1181   if (LIKELY(region_space_->HasAddress(ref))) {
1182     return region_space_bitmap_->Test(ref);
1183   } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
1184     return heap_->GetNonMovingSpace()->GetMarkBitmap()->Test(ref);
1185   } else if (immune_spaces_.ContainsObject(ref)) {
1186     // References to immune space objects are always live.
1187     DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
1188     return true;
1189   } else {
1190     // Should be a large object. Must be page aligned and the LOS must exist.
1191     if (kIsDebugBuild
1192         && (!IsAligned<kPageSize>(ref) || heap_->GetLargeObjectsSpace() == nullptr)) {
1193       // It must be heap corruption. Remove memory protection and dump data.
1194       region_space_->Unprotect();
1195       heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
1196                                                   MemberOffset(0),
1197                                                   ref,
1198                                                   /* fatal */ true);
1199     }
1200     return heap_->GetLargeObjectsSpace()->GetMarkBitmap()->Test(ref);
1201   }
1202 }
1203 
PushOntoLocalMarkStack(mirror::Object * ref)1204 void ConcurrentCopying::PushOntoLocalMarkStack(mirror::Object* ref) {
1205   if (kIsDebugBuild) {
1206     Thread *self = Thread::Current();
1207     DCHECK_EQ(thread_running_gc_, self);
1208     DCHECK(self->GetThreadLocalMarkStack() == nullptr);
1209   }
1210   DCHECK_EQ(mark_stack_mode_.load(std::memory_order_relaxed), kMarkStackModeThreadLocal);
1211   if (UNLIKELY(gc_mark_stack_->IsFull())) {
1212     ExpandGcMarkStack();
1213   }
1214   gc_mark_stack_->PushBack(ref);
1215 }
1216 
ProcessMarkStackForMarkingAndComputeLiveBytes()1217 void ConcurrentCopying::ProcessMarkStackForMarkingAndComputeLiveBytes() {
1218   // Process thread-local mark stack containing thread roots
1219   ProcessThreadLocalMarkStacks(/* disable_weak_ref_access */ false,
1220                                /* checkpoint_callback */ nullptr,
1221                                [this] (mirror::Object* ref)
1222                                    REQUIRES_SHARED(Locks::mutator_lock_) {
1223                                  AddLiveBytesAndScanRef(ref);
1224                                });
1225 
1226   while (!gc_mark_stack_->IsEmpty()) {
1227     mirror::Object* ref = gc_mark_stack_->PopBack();
1228     AddLiveBytesAndScanRef(ref);
1229   }
1230 }
1231 
1232 class ConcurrentCopying::ImmuneSpaceCaptureRefsVisitor {
1233  public:
ImmuneSpaceCaptureRefsVisitor(ConcurrentCopying * cc)1234   explicit ImmuneSpaceCaptureRefsVisitor(ConcurrentCopying* cc) : collector_(cc) {}
1235 
operator ()(mirror::Object * obj) const1236   ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
1237     ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ false>
1238         visitor(collector_, /*obj_region_idx*/ static_cast<size_t>(-1));
1239     obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1240         visitor, visitor);
1241   }
1242 
Callback(mirror::Object * obj,void * arg)1243   static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
1244     reinterpret_cast<ImmuneSpaceScanObjVisitor*>(arg)->operator()(obj);
1245   }
1246 
1247  private:
1248   ConcurrentCopying* const collector_;
1249 };
1250 
1251 /* Invariants for two-phase CC
1252  * ===========================
1253  * A) Definitions
1254  * ---------------
1255  * 1) Black: marked in bitmap, rb_state is non-gray, and not in mark stack
1256  * 2) Black-clean: marked in bitmap, and corresponding card is clean/aged
1257  * 3) Black-dirty: marked in bitmap, and corresponding card is dirty
1258  * 4) Gray: marked in bitmap, and exists in mark stack
1259  * 5) Gray-dirty: marked in bitmap, rb_state is gray, corresponding card is
1260  *    dirty, and exists in mark stack
1261  * 6) White: unmarked in bitmap, rb_state is non-gray, and not in mark stack
1262  *
1263  * B) Before marking phase
1264  * -----------------------
1265  * 1) All objects are white
1266  * 2) Cards are either clean or aged (cannot be asserted without a STW pause)
1267  * 3) Mark bitmap is cleared
1268  * 4) Mark stack is empty
1269  *
1270  * C) During marking phase
1271  * ------------------------
1272  * 1) If a black object holds an inter-region or white reference, then its
1273  *    corresponding card is dirty. In other words, it changes from being
1274  *    black-clean to black-dirty
1275  * 2) No black-clean object points to a white object
1276  *
1277  * D) After marking phase
1278  * -----------------------
1279  * 1) There are no gray objects
1280  * 2) All newly allocated objects are in from space
1281  * 3) No white object can be reachable, directly or otherwise, from a
1282  *    black-clean object
1283  *
1284  * E) During copying phase
1285  * ------------------------
1286  * 1) Mutators cannot observe white and black-dirty objects
1287  * 2) New allocations are in to-space (newly allocated regions are part of to-space)
1288  * 3) An object in mark stack must have its rb_state = Gray
1289  *
1290  * F) During card table scan
1291  * --------------------------
1292  * 1) Referents corresponding to root references are gray or in to-space
1293  * 2) Every path from an object that is read or written by a mutator during
1294  *    this period to a dirty black object goes through some gray object.
1295  *    Mutators preserve this by graying black objects as needed during this
1296  *    period. Ensures that a mutator never encounters a black dirty object.
1297  *
1298  * G) After card table scan
1299  * ------------------------
1300  * 1) There are no black-dirty objects
1301  * 2) Referents corresponding to root references are gray, black-clean or in
1302  *    to-space
1303  *
1304  * H) After copying phase
1305  * -----------------------
1306  * 1) Mark stack is empty
1307  * 2) No references into evacuated from-space
1308  * 3) No reference to an object which is unmarked and is also not in newly
1309  *    allocated region. In other words, no reference to white objects.
1310 */
1311 
MarkingPhase()1312 void ConcurrentCopying::MarkingPhase() {
1313   TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
1314   if (kVerboseMode) {
1315     LOG(INFO) << "GC MarkingPhase";
1316   }
1317   accounting::CardTable* const card_table = heap_->GetCardTable();
1318   Thread* const self = Thread::Current();
1319   // Clear live_bytes_ of every non-free region, except the ones that are newly
1320   // allocated.
1321   region_space_->SetAllRegionLiveBytesZero();
1322   if (kIsDebugBuild) {
1323     region_space_->AssertAllRegionLiveBytesZeroOrCleared();
1324   }
1325   // Scan immune spaces
1326   {
1327     TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
1328     for (auto& space : immune_spaces_.GetSpaces()) {
1329       DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
1330       accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1331       accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
1332       ImmuneSpaceCaptureRefsVisitor visitor(this);
1333       if (table != nullptr) {
1334         table->VisitObjects(ImmuneSpaceCaptureRefsVisitor::Callback, &visitor);
1335       } else {
1336         WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1337         card_table->Scan<false>(
1338             live_bitmap,
1339             space->Begin(),
1340             space->Limit(),
1341             visitor,
1342             accounting::CardTable::kCardDirty - 1);
1343       }
1344     }
1345   }
1346   // Scan runtime roots
1347   {
1348     TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
1349     CaptureRootsForMarkingVisitor visitor(this, self);
1350     Runtime::Current()->VisitConcurrentRoots(&visitor, kVisitRootFlagAllRoots);
1351   }
1352   {
1353     // TODO: don't visit the transaction roots if it's not active.
1354     TimingLogger::ScopedTiming split2("VisitNonThreadRoots", GetTimings());
1355     CaptureRootsForMarkingVisitor visitor(this, self);
1356     Runtime::Current()->VisitNonThreadRoots(&visitor);
1357   }
1358   // Capture thread roots
1359   CaptureThreadRootsForMarking();
1360   // Process mark stack
1361   ProcessMarkStackForMarkingAndComputeLiveBytes();
1362 
1363   if (kVerboseMode) {
1364     LOG(INFO) << "GC end of MarkingPhase";
1365   }
1366 }
1367 
1368 template <bool kNoUnEvac>
ScanDirtyObject(mirror::Object * obj)1369 void ConcurrentCopying::ScanDirtyObject(mirror::Object* obj) {
1370   Scan<kNoUnEvac>(obj);
1371   // Set the read-barrier state of a reference-type object to gray if its
1372   // referent is not marked yet. This is to ensure that if GetReferent() is
1373   // called, it triggers the read-barrier to process the referent before use.
1374   if (UNLIKELY((obj->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass()))) {
1375     mirror::Object* referent =
1376         obj->AsReference<kVerifyNone, kWithoutReadBarrier>()->GetReferent<kWithoutReadBarrier>();
1377     if (referent != nullptr && !IsInToSpace(referent)) {
1378       obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
1379     }
1380   }
1381 }
1382 
1383 // Concurrently mark roots that are guarded by read barriers and process the mark stack.
CopyingPhase()1384 void ConcurrentCopying::CopyingPhase() {
1385   TimingLogger::ScopedTiming split("CopyingPhase", GetTimings());
1386   if (kVerboseMode) {
1387     LOG(INFO) << "GC CopyingPhase";
1388   }
1389   Thread* self = Thread::Current();
1390   accounting::CardTable* const card_table = heap_->GetCardTable();
1391   if (kIsDebugBuild) {
1392     MutexLock mu(self, *Locks::thread_list_lock_);
1393     CHECK(weak_ref_access_enabled_);
1394   }
1395 
1396   // Scan immune spaces.
1397   // Update all the fields in the immune spaces first without graying the objects so that we
1398   // minimize dirty pages in the immune spaces. Note mutators can concurrently access and gray some
1399   // of the objects.
1400   if (kUseBakerReadBarrier) {
1401     gc_grays_immune_objects_ = false;
1402   }
1403   if (use_generational_cc_) {
1404     if (kVerboseMode) {
1405       LOG(INFO) << "GC ScanCardsForSpace";
1406     }
1407     TimingLogger::ScopedTiming split2("ScanCardsForSpace", GetTimings());
1408     WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1409     CHECK(!done_scanning_.load(std::memory_order_relaxed));
1410     if (kIsDebugBuild) {
1411       // Leave some time for mutators to race ahead to try and find races between the GC card
1412       // scanning and mutators reading references.
1413       usleep(10 * 1000);
1414     }
1415     for (space::ContinuousSpace* space : GetHeap()->GetContinuousSpaces()) {
1416       if (space->IsImageSpace() || space->IsZygoteSpace()) {
1417         // Image and zygote spaces are already handled since we gray the objects in the pause.
1418         continue;
1419       }
1420       // Scan all of the objects on dirty cards in unevac from space, and non moving space. These
1421       // are from previous GCs (or from marking phase of 2-phase full GC) and may reference things
1422       // in the from space.
1423       //
1424       // Note that we do not need to process the large-object space (the only discontinuous space)
1425       // as it contains only large string objects and large primitive array objects, that have no
1426       // reference to other objects, except their class. There is no need to scan these large
1427       // objects, as the String class and the primitive array classes are expected to never move
1428       // during a collection:
1429       // - In the case where we run with a boot image, these classes are part of the image space,
1430       //   which is an immune space.
1431       // - In the case where we run without a boot image, these classes are allocated in the
1432       //   non-moving space (see art::ClassLinker::InitWithoutImage).
1433       card_table->Scan<false>(
1434           space->GetMarkBitmap(),
1435           space->Begin(),
1436           space->End(),
1437           [this, space](mirror::Object* obj)
1438               REQUIRES(Locks::heap_bitmap_lock_)
1439               REQUIRES_SHARED(Locks::mutator_lock_) {
1440             // TODO: This code may be refactored to avoid scanning object while
1441             // done_scanning_ is false by setting rb_state to gray, and pushing the
1442             // object on mark stack. However, it will also require clearing the
1443             // corresponding mark-bit and, for region space objects,
1444             // decrementing the object's size from the corresponding region's
1445             // live_bytes.
1446             if (young_gen_) {
1447               // Don't push or gray unevac refs.
1448               if (kIsDebugBuild && space == region_space_) {
1449                 // We may get unevac large objects.
1450                 if (!region_space_->IsInUnevacFromSpace(obj)) {
1451                   CHECK(region_space_bitmap_->Test(obj));
1452                   region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
1453                   LOG(FATAL) << "Scanning " << obj << " not in unevac space";
1454                 }
1455               }
1456               ScanDirtyObject</*kNoUnEvac*/ true>(obj);
1457             } else if (space != region_space_) {
1458               DCHECK(space == heap_->non_moving_space_);
1459               // We need to process un-evac references as they may be unprocessed,
1460               // if they skipped the marking phase due to heap mutation.
1461               ScanDirtyObject</*kNoUnEvac*/ false>(obj);
1462               non_moving_space_inter_region_bitmap_->Clear(obj);
1463             } else if (region_space_->IsInUnevacFromSpace(obj)) {
1464               ScanDirtyObject</*kNoUnEvac*/ false>(obj);
1465               region_space_inter_region_bitmap_->Clear(obj);
1466             }
1467           },
1468           accounting::CardTable::kCardAged);
1469 
1470       if (!young_gen_) {
1471         auto visitor = [this](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1472                          // We don't need to process un-evac references as any unprocessed
1473                          // ones will be taken care of in the card-table scan above.
1474                          ScanDirtyObject</*kNoUnEvac*/ true>(obj);
1475                        };
1476         if (space == region_space_) {
1477           region_space_->ScanUnevacFromSpace(region_space_inter_region_bitmap_.get(), visitor);
1478         } else {
1479           DCHECK(space == heap_->non_moving_space_);
1480           non_moving_space_inter_region_bitmap_->VisitMarkedRange(
1481               reinterpret_cast<uintptr_t>(space->Begin()),
1482               reinterpret_cast<uintptr_t>(space->End()),
1483               visitor);
1484         }
1485       }
1486     }
1487     // Done scanning unevac space.
1488     done_scanning_.store(true, std::memory_order_release);
1489     // NOTE: inter-region-ref bitmaps can be cleared here to release memory, if needed.
1490     // Currently we do it in ReclaimPhase().
1491     if (kVerboseMode) {
1492       LOG(INFO) << "GC end of ScanCardsForSpace";
1493     }
1494   }
1495   {
1496     // For a sticky-bit collection, this phase needs to be after the card scanning since the
1497     // mutator may read an unevac space object out of an image object. If the image object is no
1498     // longer gray it will trigger a read barrier for the unevac space object.
1499     TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
1500     for (auto& space : immune_spaces_.GetSpaces()) {
1501       DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
1502       accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1503       accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
1504       ImmuneSpaceScanObjVisitor visitor(this);
1505       if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects && table != nullptr) {
1506         table->VisitObjects(ImmuneSpaceScanObjVisitor::Callback, &visitor);
1507       } else {
1508         WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1509         card_table->Scan<false>(
1510             live_bitmap,
1511             space->Begin(),
1512             space->Limit(),
1513             visitor,
1514             accounting::CardTable::kCardDirty - 1);
1515       }
1516     }
1517   }
1518   if (kUseBakerReadBarrier) {
1519     // This release fence makes the field updates in the above loop visible before allowing mutator
1520     // getting access to immune objects without graying it first.
1521     updated_all_immune_objects_.store(true, std::memory_order_release);
1522     // Now "un-gray" (conceptually blacken) immune objects concurrently accessed and grayed by
1523     // mutators. We can't do this in the above loop because we would incorrectly disable the read
1524     // barrier by un-graying (conceptually blackening) an object which may point to an unscanned,
1525     // white object, breaking the to-space invariant (a mutator shall never observe a from-space
1526     // (white) object).
1527     //
1528     // Make sure no mutators are in the middle of marking an immune object before un-graying
1529     // (blackening) immune objects.
1530     IssueEmptyCheckpoint();
1531     MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
1532     if (kVerboseMode) {
1533       LOG(INFO) << "immune gray stack size=" << immune_gray_stack_.size();
1534     }
1535     for (mirror::Object* obj : immune_gray_stack_) {
1536       DCHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::GrayState());
1537       bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
1538                                                     ReadBarrier::NonGrayState());
1539       DCHECK(success);
1540     }
1541     immune_gray_stack_.clear();
1542   }
1543 
1544   {
1545     TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
1546     Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots);
1547   }
1548   {
1549     // TODO: don't visit the transaction roots if it's not active.
1550     TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
1551     Runtime::Current()->VisitNonThreadRoots(this);
1552   }
1553 
1554   {
1555     TimingLogger::ScopedTiming split7("ProcessMarkStack", GetTimings());
1556     // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
1557     // primary reasons are the fact that we need to use a checkpoint to process thread-local mark
1558     // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
1559     // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
1560     // reach the point where we process weak references, we can avoid using a lock when accessing
1561     // the GC mark stack, which makes mark stack processing more efficient.
1562 
1563     // Process the mark stack once in the thread local stack mode. This marks most of the live
1564     // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system
1565     // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray
1566     // objects and push refs on the mark stack.
1567     ProcessMarkStack();
1568     // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
1569     // for the last time before transitioning to the shared mark stack mode, which would process new
1570     // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
1571     // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
1572     // important to do these together in a single checkpoint so that we can ensure that mutators
1573     // won't newly gray objects and push new refs onto the mark stack due to weak ref accesses and
1574     // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
1575     // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
1576     // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
1577     SwitchToSharedMarkStackMode();
1578     CHECK(!self->GetWeakRefAccessEnabled());
1579     // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
1580     // (which may be non-empty if there were refs found on thread-local mark stacks during the above
1581     // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
1582     // (via read barriers) have no way to produce any more refs to process. Marking converges once
1583     // before we process weak refs below.
1584     ProcessMarkStack();
1585     CheckEmptyMarkStack();
1586     // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
1587     // lock from this point on.
1588     SwitchToGcExclusiveMarkStackMode();
1589     CheckEmptyMarkStack();
1590     if (kVerboseMode) {
1591       LOG(INFO) << "ProcessReferences";
1592     }
1593     // Process weak references. This may produce new refs to process and have them processed via
1594     // ProcessMarkStack (in the GC exclusive mark stack mode).
1595     ProcessReferences(self);
1596     CheckEmptyMarkStack();
1597     if (kVerboseMode) {
1598       LOG(INFO) << "SweepSystemWeaks";
1599     }
1600     SweepSystemWeaks(self);
1601     if (kVerboseMode) {
1602       LOG(INFO) << "SweepSystemWeaks done";
1603     }
1604     // Process the mark stack here one last time because the above SweepSystemWeaks() call may have
1605     // marked some objects (strings alive) as hash_set::Erase() can call the hash function for
1606     // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks().
1607     ProcessMarkStack();
1608     CheckEmptyMarkStack();
1609     // Re-enable weak ref accesses.
1610     ReenableWeakRefAccess(self);
1611     // Free data for class loaders that we unloaded.
1612     Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
1613     // Marking is done. Disable marking.
1614     DisableMarking();
1615     CheckEmptyMarkStack();
1616   }
1617 
1618   if (kIsDebugBuild) {
1619     MutexLock mu(self, *Locks::thread_list_lock_);
1620     CHECK(weak_ref_access_enabled_);
1621   }
1622   if (kVerboseMode) {
1623     LOG(INFO) << "GC end of CopyingPhase";
1624   }
1625 }
1626 
ReenableWeakRefAccess(Thread * self)1627 void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
1628   if (kVerboseMode) {
1629     LOG(INFO) << "ReenableWeakRefAccess";
1630   }
1631   // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
1632   {
1633     MutexLock mu(self, *Locks::thread_list_lock_);
1634     weak_ref_access_enabled_ = true;  // This is for new threads.
1635     std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
1636     for (Thread* thread : thread_list) {
1637       thread->SetWeakRefAccessEnabled(true);
1638     }
1639   }
1640   // Unblock blocking threads.
1641   GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
1642   Runtime::Current()->BroadcastForNewSystemWeaks();
1643 }
1644 
1645 class ConcurrentCopying::DisableMarkingCheckpoint : public Closure {
1646  public:
DisableMarkingCheckpoint(ConcurrentCopying * concurrent_copying)1647   explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
1648       : concurrent_copying_(concurrent_copying) {
1649   }
1650 
Run(Thread * thread)1651   void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
1652     // Note: self is not necessarily equal to thread since thread may be suspended.
1653     Thread* self = Thread::Current();
1654     DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1655         << thread->GetState() << " thread " << thread << " self " << self;
1656     // Disable the thread-local is_gc_marking flag.
1657     // Note a thread that has just started right before this checkpoint may have already this flag
1658     // set to false, which is ok.
1659     thread->SetIsGcMarkingAndUpdateEntrypoints(false);
1660     // If thread is a running mutator, then act on behalf of the garbage collector.
1661     // See the code in ThreadList::RunCheckpoint.
1662     concurrent_copying_->GetBarrier().Pass(self);
1663   }
1664 
1665  private:
1666   ConcurrentCopying* const concurrent_copying_;
1667 };
1668 
1669 class ConcurrentCopying::DisableMarkingCallback : public Closure {
1670  public:
DisableMarkingCallback(ConcurrentCopying * concurrent_copying)1671   explicit DisableMarkingCallback(ConcurrentCopying* concurrent_copying)
1672       : concurrent_copying_(concurrent_copying) {
1673   }
1674 
Run(Thread * self ATTRIBUTE_UNUSED)1675   void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
1676     // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
1677     // to avoid a race with ThreadList::Register().
1678     CHECK(concurrent_copying_->is_marking_);
1679     concurrent_copying_->is_marking_ = false;
1680     if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
1681       CHECK(concurrent_copying_->is_using_read_barrier_entrypoints_);
1682       concurrent_copying_->is_using_read_barrier_entrypoints_ = false;
1683     } else {
1684       CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
1685     }
1686   }
1687 
1688  private:
1689   ConcurrentCopying* const concurrent_copying_;
1690 };
1691 
IssueDisableMarkingCheckpoint()1692 void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
1693   Thread* self = Thread::Current();
1694   DisableMarkingCheckpoint check_point(this);
1695   ThreadList* thread_list = Runtime::Current()->GetThreadList();
1696   gc_barrier_->Init(self, 0);
1697   DisableMarkingCallback dmc(this);
1698   size_t barrier_count = thread_list->RunCheckpoint(&check_point, &dmc);
1699   // If there are no threads to wait which implies that all the checkpoint functions are finished,
1700   // then no need to release the mutator lock.
1701   if (barrier_count == 0) {
1702     return;
1703   }
1704   // Release locks then wait for all mutator threads to pass the barrier.
1705   Locks::mutator_lock_->SharedUnlock(self);
1706   {
1707     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1708     gc_barrier_->Increment(self, barrier_count);
1709   }
1710   Locks::mutator_lock_->SharedLock(self);
1711 }
1712 
DisableMarking()1713 void ConcurrentCopying::DisableMarking() {
1714   // Use a checkpoint to turn off the global is_marking and the thread-local is_gc_marking flags and
1715   // to ensure no threads are still in the middle of a read barrier which may have a from-space ref
1716   // cached in a local variable.
1717   IssueDisableMarkingCheckpoint();
1718   if (kUseTableLookupReadBarrier) {
1719     heap_->rb_table_->ClearAll();
1720     DCHECK(heap_->rb_table_->IsAllCleared());
1721   }
1722   is_mark_stack_push_disallowed_.store(1, std::memory_order_seq_cst);
1723   mark_stack_mode_.store(kMarkStackModeOff, std::memory_order_seq_cst);
1724 }
1725 
IssueEmptyCheckpoint()1726 void ConcurrentCopying::IssueEmptyCheckpoint() {
1727   Thread* self = Thread::Current();
1728   ThreadList* thread_list = Runtime::Current()->GetThreadList();
1729   // Release locks then wait for all mutator threads to pass the barrier.
1730   Locks::mutator_lock_->SharedUnlock(self);
1731   thread_list->RunEmptyCheckpoint();
1732   Locks::mutator_lock_->SharedLock(self);
1733 }
1734 
ExpandGcMarkStack()1735 void ConcurrentCopying::ExpandGcMarkStack() {
1736   DCHECK(gc_mark_stack_->IsFull());
1737   const size_t new_size = gc_mark_stack_->Capacity() * 2;
1738   std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(),
1739                                                    gc_mark_stack_->End());
1740   gc_mark_stack_->Resize(new_size);
1741   for (auto& ref : temp) {
1742     gc_mark_stack_->PushBack(ref.AsMirrorPtr());
1743   }
1744   DCHECK(!gc_mark_stack_->IsFull());
1745 }
1746 
PushOntoMarkStack(Thread * const self,mirror::Object * to_ref)1747 void ConcurrentCopying::PushOntoMarkStack(Thread* const self, mirror::Object* to_ref) {
1748   CHECK_EQ(is_mark_stack_push_disallowed_.load(std::memory_order_relaxed), 0)
1749       << " " << to_ref << " " << mirror::Object::PrettyTypeOf(to_ref);
1750   CHECK(thread_running_gc_ != nullptr);
1751   MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
1752   if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) {
1753     if (LIKELY(self == thread_running_gc_)) {
1754       // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
1755       CHECK(self->GetThreadLocalMarkStack() == nullptr);
1756       if (UNLIKELY(gc_mark_stack_->IsFull())) {
1757         ExpandGcMarkStack();
1758       }
1759       gc_mark_stack_->PushBack(to_ref);
1760     } else {
1761       // Otherwise, use a thread-local mark stack.
1762       accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
1763       if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
1764         MutexLock mu(self, mark_stack_lock_);
1765         // Get a new thread local mark stack.
1766         accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
1767         if (!pooled_mark_stacks_.empty()) {
1768           // Use a pooled mark stack.
1769           new_tl_mark_stack = pooled_mark_stacks_.back();
1770           pooled_mark_stacks_.pop_back();
1771         } else {
1772           // None pooled. Create a new one.
1773           new_tl_mark_stack =
1774               accounting::AtomicStack<mirror::Object>::Create(
1775                   "thread local mark stack", 4 * KB, 4 * KB);
1776         }
1777         DCHECK(new_tl_mark_stack != nullptr);
1778         DCHECK(new_tl_mark_stack->IsEmpty());
1779         new_tl_mark_stack->PushBack(to_ref);
1780         self->SetThreadLocalMarkStack(new_tl_mark_stack);
1781         if (tl_mark_stack != nullptr) {
1782           // Store the old full stack into a vector.
1783           revoked_mark_stacks_.push_back(tl_mark_stack);
1784         }
1785       } else {
1786         tl_mark_stack->PushBack(to_ref);
1787       }
1788     }
1789   } else if (mark_stack_mode == kMarkStackModeShared) {
1790     // Access the shared GC mark stack with a lock.
1791     MutexLock mu(self, mark_stack_lock_);
1792     if (UNLIKELY(gc_mark_stack_->IsFull())) {
1793       ExpandGcMarkStack();
1794     }
1795     gc_mark_stack_->PushBack(to_ref);
1796   } else {
1797     CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
1798              static_cast<uint32_t>(kMarkStackModeGcExclusive))
1799         << "ref=" << to_ref
1800         << " self->gc_marking=" << self->GetIsGcMarking()
1801         << " cc->is_marking=" << is_marking_;
1802     CHECK(self == thread_running_gc_)
1803         << "Only GC-running thread should access the mark stack "
1804         << "in the GC exclusive mark stack mode";
1805     // Access the GC mark stack without a lock.
1806     if (UNLIKELY(gc_mark_stack_->IsFull())) {
1807       ExpandGcMarkStack();
1808     }
1809     gc_mark_stack_->PushBack(to_ref);
1810   }
1811 }
1812 
GetAllocationStack()1813 accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
1814   return heap_->allocation_stack_.get();
1815 }
1816 
GetLiveStack()1817 accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
1818   return heap_->live_stack_.get();
1819 }
1820 
1821 // The following visitors are used to verify that there's no references to the from-space left after
1822 // marking.
1823 class ConcurrentCopying::VerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
1824  public:
VerifyNoFromSpaceRefsVisitor(ConcurrentCopying * collector)1825   explicit VerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
1826       : collector_(collector) {}
1827 
operator ()(mirror::Object * ref,MemberOffset offset=MemberOffset (0),mirror::Object * holder=nullptr) const1828   void operator()(mirror::Object* ref,
1829                   MemberOffset offset = MemberOffset(0),
1830                   mirror::Object* holder = nullptr) const
1831       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1832     if (ref == nullptr) {
1833       // OK.
1834       return;
1835     }
1836     collector_->AssertToSpaceInvariant(holder, offset, ref);
1837     if (kUseBakerReadBarrier) {
1838       CHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState())
1839           << "Ref " << ref << " " << ref->PrettyTypeOf() << " has gray rb_state";
1840     }
1841   }
1842 
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)1843   void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
1844       override REQUIRES_SHARED(Locks::mutator_lock_) {
1845     DCHECK(root != nullptr);
1846     operator()(root);
1847   }
1848 
1849  private:
1850   ConcurrentCopying* const collector_;
1851 };
1852 
1853 class ConcurrentCopying::VerifyNoFromSpaceRefsFieldVisitor {
1854  public:
VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying * collector)1855   explicit VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
1856       : collector_(collector) {}
1857 
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1858   void operator()(ObjPtr<mirror::Object> obj,
1859                   MemberOffset offset,
1860                   bool is_static ATTRIBUTE_UNUSED) const
1861       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1862     mirror::Object* ref =
1863         obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
1864     VerifyNoFromSpaceRefsVisitor visitor(collector_);
1865     visitor(ref, offset, obj.Ptr());
1866   }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1867   void operator()(ObjPtr<mirror::Class> klass,
1868                   ObjPtr<mirror::Reference> ref) const
1869       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1870     CHECK(klass->IsTypeOfReferenceClass());
1871     this->operator()(ref, mirror::Reference::ReferentOffset(), false);
1872   }
1873 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1874   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1875       REQUIRES_SHARED(Locks::mutator_lock_) {
1876     if (!root->IsNull()) {
1877       VisitRoot(root);
1878     }
1879   }
1880 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1881   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1882       REQUIRES_SHARED(Locks::mutator_lock_) {
1883     VerifyNoFromSpaceRefsVisitor visitor(collector_);
1884     visitor(root->AsMirrorPtr());
1885   }
1886 
1887  private:
1888   ConcurrentCopying* const collector_;
1889 };
1890 
1891 // Verify there's no from-space references left after the marking phase.
VerifyNoFromSpaceReferences()1892 void ConcurrentCopying::VerifyNoFromSpaceReferences() {
1893   Thread* self = Thread::Current();
1894   DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
1895   // Verify all threads have is_gc_marking to be false
1896   {
1897     MutexLock mu(self, *Locks::thread_list_lock_);
1898     std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
1899     for (Thread* thread : thread_list) {
1900       CHECK(!thread->GetIsGcMarking());
1901     }
1902   }
1903 
1904   auto verify_no_from_space_refs_visitor = [&](mirror::Object* obj)
1905       REQUIRES_SHARED(Locks::mutator_lock_) {
1906     CHECK(obj != nullptr);
1907     space::RegionSpace* region_space = RegionSpace();
1908     CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
1909     VerifyNoFromSpaceRefsFieldVisitor visitor(this);
1910     obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1911         visitor,
1912         visitor);
1913     if (kUseBakerReadBarrier) {
1914       CHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::NonGrayState())
1915           << "obj=" << obj << " has gray rb_state " << obj->GetReadBarrierState();
1916     }
1917   };
1918   // Roots.
1919   {
1920     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1921     VerifyNoFromSpaceRefsVisitor ref_visitor(this);
1922     Runtime::Current()->VisitRoots(&ref_visitor);
1923   }
1924   // The to-space.
1925   region_space_->WalkToSpace(verify_no_from_space_refs_visitor);
1926   // Non-moving spaces.
1927   {
1928     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1929     heap_->GetMarkBitmap()->Visit(verify_no_from_space_refs_visitor);
1930   }
1931   // The alloc stack.
1932   {
1933     VerifyNoFromSpaceRefsVisitor ref_visitor(this);
1934     for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
1935         it < end; ++it) {
1936       mirror::Object* const obj = it->AsMirrorPtr();
1937       if (obj != nullptr && obj->GetClass() != nullptr) {
1938         // TODO: need to call this only if obj is alive?
1939         ref_visitor(obj);
1940         verify_no_from_space_refs_visitor(obj);
1941       }
1942     }
1943   }
1944   // TODO: LOS. But only refs in LOS are classes.
1945 }
1946 
1947 // The following visitors are used to assert the to-space invariant.
1948 class ConcurrentCopying::AssertToSpaceInvariantFieldVisitor {
1949  public:
AssertToSpaceInvariantFieldVisitor(ConcurrentCopying * collector)1950   explicit AssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
1951       : collector_(collector) {}
1952 
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1953   void operator()(ObjPtr<mirror::Object> obj,
1954                   MemberOffset offset,
1955                   bool is_static ATTRIBUTE_UNUSED) const
1956       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1957     mirror::Object* ref =
1958         obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
1959     collector_->AssertToSpaceInvariant(obj.Ptr(), offset, ref);
1960   }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const1961   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
1962       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1963     CHECK(klass->IsTypeOfReferenceClass());
1964   }
1965 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1966   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1967       REQUIRES_SHARED(Locks::mutator_lock_) {
1968     if (!root->IsNull()) {
1969       VisitRoot(root);
1970     }
1971   }
1972 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1973   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1974       REQUIRES_SHARED(Locks::mutator_lock_) {
1975     mirror::Object* ref = root->AsMirrorPtr();
1976     collector_->AssertToSpaceInvariant(/* obj */ nullptr, MemberOffset(0), ref);
1977   }
1978 
1979  private:
1980   ConcurrentCopying* const collector_;
1981 };
1982 
RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback)1983 void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,
1984                                                     Closure* checkpoint_callback) {
1985   Thread* self = Thread::Current();
1986   RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
1987   ThreadList* thread_list = Runtime::Current()->GetThreadList();
1988   gc_barrier_->Init(self, 0);
1989   size_t barrier_count = thread_list->RunCheckpoint(&check_point, checkpoint_callback);
1990   // If there are no threads to wait which implys that all the checkpoint functions are finished,
1991   // then no need to release the mutator lock.
1992   if (barrier_count == 0) {
1993     return;
1994   }
1995   Locks::mutator_lock_->SharedUnlock(self);
1996   {
1997     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1998     gc_barrier_->Increment(self, barrier_count);
1999   }
2000   Locks::mutator_lock_->SharedLock(self);
2001 }
2002 
RevokeThreadLocalMarkStack(Thread * thread)2003 void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
2004   Thread* self = Thread::Current();
2005   CHECK_EQ(self, thread);
2006   accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
2007   if (tl_mark_stack != nullptr) {
2008     CHECK(is_marking_);
2009     MutexLock mu(self, mark_stack_lock_);
2010     revoked_mark_stacks_.push_back(tl_mark_stack);
2011     thread->SetThreadLocalMarkStack(nullptr);
2012   }
2013 }
2014 
ProcessMarkStack()2015 void ConcurrentCopying::ProcessMarkStack() {
2016   if (kVerboseMode) {
2017     LOG(INFO) << "ProcessMarkStack. ";
2018   }
2019   bool empty_prev = false;
2020   while (true) {
2021     bool empty = ProcessMarkStackOnce();
2022     if (empty_prev && empty) {
2023       // Saw empty mark stack for a second time, done.
2024       break;
2025     }
2026     empty_prev = empty;
2027   }
2028 }
2029 
ProcessMarkStackOnce()2030 bool ConcurrentCopying::ProcessMarkStackOnce() {
2031   DCHECK(thread_running_gc_ != nullptr);
2032   Thread* const self = Thread::Current();
2033   DCHECK(self == thread_running_gc_);
2034   DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2035   size_t count = 0;
2036   MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2037   if (mark_stack_mode == kMarkStackModeThreadLocal) {
2038     // Process the thread-local mark stacks and the GC mark stack.
2039     count += ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ false,
2040                                           /* checkpoint_callback= */ nullptr,
2041                                           [this] (mirror::Object* ref)
2042                                               REQUIRES_SHARED(Locks::mutator_lock_) {
2043                                             ProcessMarkStackRef(ref);
2044                                           });
2045     while (!gc_mark_stack_->IsEmpty()) {
2046       mirror::Object* to_ref = gc_mark_stack_->PopBack();
2047       ProcessMarkStackRef(to_ref);
2048       ++count;
2049     }
2050     gc_mark_stack_->Reset();
2051   } else if (mark_stack_mode == kMarkStackModeShared) {
2052     // Do an empty checkpoint to avoid a race with a mutator preempted in the middle of a read
2053     // barrier but before pushing onto the mark stack. b/32508093. Note the weak ref access is
2054     // disabled at this point.
2055     IssueEmptyCheckpoint();
2056     // Process the shared GC mark stack with a lock.
2057     {
2058       MutexLock mu(thread_running_gc_, mark_stack_lock_);
2059       CHECK(revoked_mark_stacks_.empty());
2060     }
2061     while (true) {
2062       std::vector<mirror::Object*> refs;
2063       {
2064         // Copy refs with lock. Note the number of refs should be small.
2065         MutexLock mu(thread_running_gc_, mark_stack_lock_);
2066         if (gc_mark_stack_->IsEmpty()) {
2067           break;
2068         }
2069         for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
2070              p != gc_mark_stack_->End(); ++p) {
2071           refs.push_back(p->AsMirrorPtr());
2072         }
2073         gc_mark_stack_->Reset();
2074       }
2075       for (mirror::Object* ref : refs) {
2076         ProcessMarkStackRef(ref);
2077         ++count;
2078       }
2079     }
2080   } else {
2081     CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
2082              static_cast<uint32_t>(kMarkStackModeGcExclusive));
2083     {
2084       MutexLock mu(thread_running_gc_, mark_stack_lock_);
2085       CHECK(revoked_mark_stacks_.empty());
2086     }
2087     // Process the GC mark stack in the exclusive mode. No need to take the lock.
2088     while (!gc_mark_stack_->IsEmpty()) {
2089       mirror::Object* to_ref = gc_mark_stack_->PopBack();
2090       ProcessMarkStackRef(to_ref);
2091       ++count;
2092     }
2093     gc_mark_stack_->Reset();
2094   }
2095 
2096   // Return true if the stack was empty.
2097   return count == 0;
2098 }
2099 
2100 template <typename Processor>
ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback,const Processor & processor)2101 size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,
2102                                                        Closure* checkpoint_callback,
2103                                                        const Processor& processor) {
2104   // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
2105   RevokeThreadLocalMarkStacks(disable_weak_ref_access, checkpoint_callback);
2106   size_t count = 0;
2107   std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
2108   {
2109     MutexLock mu(thread_running_gc_, mark_stack_lock_);
2110     // Make a copy of the mark stack vector.
2111     mark_stacks = revoked_mark_stacks_;
2112     revoked_mark_stacks_.clear();
2113   }
2114   for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
2115     for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
2116       mirror::Object* to_ref = p->AsMirrorPtr();
2117       processor(to_ref);
2118       ++count;
2119     }
2120     {
2121       MutexLock mu(thread_running_gc_, mark_stack_lock_);
2122       if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
2123         // The pool has enough. Delete it.
2124         delete mark_stack;
2125       } else {
2126         // Otherwise, put it into the pool for later reuse.
2127         mark_stack->Reset();
2128         pooled_mark_stacks_.push_back(mark_stack);
2129       }
2130     }
2131   }
2132   return count;
2133 }
2134 
ProcessMarkStackRef(mirror::Object * to_ref)2135 inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
2136   DCHECK(!region_space_->IsInFromSpace(to_ref));
2137   space::RegionSpace::RegionType rtype = region_space_->GetRegionType(to_ref);
2138   if (kUseBakerReadBarrier) {
2139     DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
2140         << " to_ref=" << to_ref
2141         << " rb_state=" << to_ref->GetReadBarrierState()
2142         << " is_marked=" << IsMarked(to_ref)
2143         << " type=" << to_ref->PrettyTypeOf()
2144         << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
2145         << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
2146         << " region_type=" << rtype
2147         // TODO: Temporary; remove this when this is no longer needed (b/116087961).
2148         << " runtime->sentinel=" << Runtime::Current()->GetSentinel().Read<kWithoutReadBarrier>();
2149   }
2150   bool add_to_live_bytes = false;
2151   // Invariant: There should be no object from a newly-allocated
2152   // region (either large or non-large) on the mark stack.
2153   DCHECK(!region_space_->IsInNewlyAllocatedRegion(to_ref)) << to_ref;
2154   bool perform_scan = false;
2155   switch (rtype) {
2156     case space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace:
2157       // Mark the bitmap only in the GC thread here so that we don't need a CAS.
2158       if (!kUseBakerReadBarrier || !region_space_bitmap_->Set(to_ref)) {
2159         // It may be already marked if we accidentally pushed the same object twice due to the racy
2160         // bitmap read in MarkUnevacFromSpaceRegion.
2161         if (use_generational_cc_ && young_gen_) {
2162           CHECK(region_space_->IsLargeObject(to_ref));
2163           region_space_->ZeroLiveBytesForLargeObject(to_ref);
2164         }
2165         perform_scan = true;
2166         // Only add to the live bytes if the object was not already marked and we are not the young
2167         // GC.
2168         // Why add live bytes even after 2-phase GC?
2169         // We need to ensure that if there is a unevac region with any live
2170         // objects, then its live_bytes must be non-zero. Otherwise,
2171         // ClearFromSpace() will clear the region. Considering, that we may skip
2172         // live objects during marking phase of 2-phase GC, we have to take care
2173         // of such objects here.
2174         add_to_live_bytes = true;
2175       }
2176       break;
2177     case space::RegionSpace::RegionType::kRegionTypeToSpace:
2178       if (use_generational_cc_) {
2179         // Copied to to-space, set the bit so that the next GC can scan objects.
2180         region_space_bitmap_->Set(to_ref);
2181       }
2182       perform_scan = true;
2183       break;
2184     default:
2185       DCHECK(!region_space_->HasAddress(to_ref)) << to_ref;
2186       DCHECK(!immune_spaces_.ContainsObject(to_ref));
2187       // Non-moving or large-object space.
2188       if (kUseBakerReadBarrier) {
2189         accounting::ContinuousSpaceBitmap* mark_bitmap =
2190             heap_->GetNonMovingSpace()->GetMarkBitmap();
2191         const bool is_los = !mark_bitmap->HasAddress(to_ref);
2192         if (is_los) {
2193           if (!IsAligned<kPageSize>(to_ref)) {
2194             // Ref is a large object that is not aligned, it must be heap
2195             // corruption. Remove memory protection and dump data before
2196             // AtomicSetReadBarrierState since it will fault if the address is not
2197             // valid.
2198             region_space_->Unprotect();
2199             heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
2200                                                         MemberOffset(0),
2201                                                         to_ref,
2202                                                         /* fatal */ true);
2203           }
2204           DCHECK(heap_->GetLargeObjectsSpace())
2205               << "ref=" << to_ref
2206               << " doesn't belong to non-moving space and large object space doesn't exist";
2207           accounting::LargeObjectBitmap* los_bitmap =
2208               heap_->GetLargeObjectsSpace()->GetMarkBitmap();
2209           DCHECK(los_bitmap->HasAddress(to_ref));
2210           // Only the GC thread could be setting the LOS bit map hence doesn't
2211           // need to be atomically done.
2212           perform_scan = !los_bitmap->Set(to_ref);
2213         } else {
2214           // Only the GC thread could be setting the non-moving space bit map
2215           // hence doesn't need to be atomically done.
2216           perform_scan = !mark_bitmap->Set(to_ref);
2217         }
2218       } else {
2219         perform_scan = true;
2220       }
2221   }
2222   if (perform_scan) {
2223     if (use_generational_cc_ && young_gen_) {
2224       Scan<true>(to_ref);
2225     } else {
2226       Scan<false>(to_ref);
2227     }
2228   }
2229   if (kUseBakerReadBarrier) {
2230     DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
2231         << " to_ref=" << to_ref
2232         << " rb_state=" << to_ref->GetReadBarrierState()
2233         << " is_marked=" << IsMarked(to_ref)
2234         << " type=" << to_ref->PrettyTypeOf()
2235         << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
2236         << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
2237         << " region_type=" << rtype
2238         // TODO: Temporary; remove this when this is no longer needed (b/116087961).
2239         << " runtime->sentinel=" << Runtime::Current()->GetSentinel().Read<kWithoutReadBarrier>();
2240   }
2241 #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
2242   mirror::Object* referent = nullptr;
2243   if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
2244                 (referent = to_ref->AsReference()->GetReferent<kWithoutReadBarrier>()) != nullptr &&
2245                 !IsInToSpace(referent)))) {
2246     // Leave this reference gray in the queue so that GetReferent() will trigger a read barrier. We
2247     // will change it to non-gray later in ReferenceQueue::DisableReadBarrierForReference.
2248     DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr)
2249         << "Left unenqueued ref gray " << to_ref;
2250   } else {
2251     // We may occasionally leave a reference non-gray in the queue if its referent happens to be
2252     // concurrently marked after the Scan() call above has enqueued the Reference, in which case the
2253     // above IsInToSpace() evaluates to true and we change the color from gray to non-gray here in
2254     // this else block.
2255     if (kUseBakerReadBarrier) {
2256       bool success = to_ref->AtomicSetReadBarrierState<std::memory_order_release>(
2257           ReadBarrier::GrayState(),
2258           ReadBarrier::NonGrayState());
2259       DCHECK(success) << "Must succeed as we won the race.";
2260     }
2261   }
2262 #else
2263   DCHECK(!kUseBakerReadBarrier);
2264 #endif
2265 
2266   if (add_to_live_bytes) {
2267     // Add to the live bytes per unevacuated from-space. Note this code is always run by the
2268     // GC-running thread (no synchronization required).
2269     DCHECK(region_space_bitmap_->Test(to_ref));
2270     size_t obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
2271     size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
2272     region_space_->AddLiveBytes(to_ref, alloc_size);
2273   }
2274   if (ReadBarrier::kEnableToSpaceInvariantChecks) {
2275     CHECK(to_ref != nullptr);
2276     space::RegionSpace* region_space = RegionSpace();
2277     CHECK(!region_space->IsInFromSpace(to_ref)) << "Scanning object " << to_ref << " in from space";
2278     AssertToSpaceInvariant(nullptr, MemberOffset(0), to_ref);
2279     AssertToSpaceInvariantFieldVisitor visitor(this);
2280     to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
2281         visitor,
2282         visitor);
2283   }
2284 }
2285 
2286 class ConcurrentCopying::DisableWeakRefAccessCallback : public Closure {
2287  public:
DisableWeakRefAccessCallback(ConcurrentCopying * concurrent_copying)2288   explicit DisableWeakRefAccessCallback(ConcurrentCopying* concurrent_copying)
2289       : concurrent_copying_(concurrent_copying) {
2290   }
2291 
Run(Thread * self ATTRIBUTE_UNUSED)2292   void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
2293     // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
2294     // to avoid a deadlock b/31500969.
2295     CHECK(concurrent_copying_->weak_ref_access_enabled_);
2296     concurrent_copying_->weak_ref_access_enabled_ = false;
2297   }
2298 
2299  private:
2300   ConcurrentCopying* const concurrent_copying_;
2301 };
2302 
SwitchToSharedMarkStackMode()2303 void ConcurrentCopying::SwitchToSharedMarkStackMode() {
2304   Thread* self = Thread::Current();
2305   DCHECK(thread_running_gc_ != nullptr);
2306   DCHECK(self == thread_running_gc_);
2307   DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2308   MarkStackMode before_mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2309   CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
2310            static_cast<uint32_t>(kMarkStackModeThreadLocal));
2311   mark_stack_mode_.store(kMarkStackModeShared, std::memory_order_relaxed);
2312   DisableWeakRefAccessCallback dwrac(this);
2313   // Process the thread local mark stacks one last time after switching to the shared mark stack
2314   // mode and disable weak ref accesses.
2315   ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ true,
2316                                &dwrac,
2317                                [this] (mirror::Object* ref)
2318                                    REQUIRES_SHARED(Locks::mutator_lock_) {
2319                                  ProcessMarkStackRef(ref);
2320                                });
2321   if (kVerboseMode) {
2322     LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
2323   }
2324 }
2325 
SwitchToGcExclusiveMarkStackMode()2326 void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
2327   Thread* self = Thread::Current();
2328   DCHECK(thread_running_gc_ != nullptr);
2329   DCHECK(self == thread_running_gc_);
2330   DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2331   MarkStackMode before_mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2332   CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
2333            static_cast<uint32_t>(kMarkStackModeShared));
2334   mark_stack_mode_.store(kMarkStackModeGcExclusive, std::memory_order_relaxed);
2335   QuasiAtomic::ThreadFenceForConstructor();
2336   if (kVerboseMode) {
2337     LOG(INFO) << "Switched to GC exclusive mark stack mode";
2338   }
2339 }
2340 
CheckEmptyMarkStack()2341 void ConcurrentCopying::CheckEmptyMarkStack() {
2342   Thread* self = Thread::Current();
2343   DCHECK(thread_running_gc_ != nullptr);
2344   DCHECK(self == thread_running_gc_);
2345   DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2346   MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2347   if (mark_stack_mode == kMarkStackModeThreadLocal) {
2348     // Thread-local mark stack mode.
2349     RevokeThreadLocalMarkStacks(false, nullptr);
2350     MutexLock mu(thread_running_gc_, mark_stack_lock_);
2351     if (!revoked_mark_stacks_.empty()) {
2352       for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
2353         while (!mark_stack->IsEmpty()) {
2354           mirror::Object* obj = mark_stack->PopBack();
2355           if (kUseBakerReadBarrier) {
2356             uint32_t rb_state = obj->GetReadBarrierState();
2357             LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() << " rb_state="
2358                       << rb_state << " is_marked=" << IsMarked(obj);
2359           } else {
2360             LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf()
2361                       << " is_marked=" << IsMarked(obj);
2362           }
2363         }
2364       }
2365       LOG(FATAL) << "mark stack is not empty";
2366     }
2367   } else {
2368     // Shared, GC-exclusive, or off.
2369     MutexLock mu(thread_running_gc_, mark_stack_lock_);
2370     CHECK(gc_mark_stack_->IsEmpty());
2371     CHECK(revoked_mark_stacks_.empty());
2372   }
2373 }
2374 
SweepSystemWeaks(Thread * self)2375 void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
2376   TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
2377   ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2378   Runtime::Current()->SweepSystemWeaks(this);
2379 }
2380 
Sweep(bool swap_bitmaps)2381 void ConcurrentCopying::Sweep(bool swap_bitmaps) {
2382   if (use_generational_cc_ && young_gen_) {
2383     // Only sweep objects on the live stack.
2384     SweepArray(heap_->GetLiveStack(), /* swap_bitmaps= */ false);
2385   } else {
2386     {
2387       TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
2388       accounting::ObjectStack* live_stack = heap_->GetLiveStack();
2389       if (kEnableFromSpaceAccountingCheck) {
2390         // Ensure that nobody inserted items in the live stack after we swapped the stacks.
2391         CHECK_GE(live_stack_freeze_size_, live_stack->Size());
2392       }
2393       heap_->MarkAllocStackAsLive(live_stack);
2394       live_stack->Reset();
2395     }
2396     CheckEmptyMarkStack();
2397     TimingLogger::ScopedTiming split("Sweep", GetTimings());
2398     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
2399       if (space->IsContinuousMemMapAllocSpace() && space != region_space_
2400           && !immune_spaces_.ContainsSpace(space)) {
2401         space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2402         TimingLogger::ScopedTiming split2(
2403             alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
2404         RecordFree(alloc_space->Sweep(swap_bitmaps));
2405       }
2406     }
2407     SweepLargeObjects(swap_bitmaps);
2408   }
2409 }
2410 
2411 // Copied and adapted from MarkSweep::SweepArray.
SweepArray(accounting::ObjectStack * allocations,bool swap_bitmaps)2412 void ConcurrentCopying::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
2413   // This method is only used when Generational CC collection is enabled.
2414   DCHECK(use_generational_cc_);
2415   CheckEmptyMarkStack();
2416   TimingLogger::ScopedTiming t("SweepArray", GetTimings());
2417   Thread* self = Thread::Current();
2418   mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
2419       sweep_array_free_buffer_mem_map_.BaseBegin());
2420   size_t chunk_free_pos = 0;
2421   ObjectBytePair freed;
2422   ObjectBytePair freed_los;
2423   // How many objects are left in the array, modified after each space is swept.
2424   StackReference<mirror::Object>* objects = allocations->Begin();
2425   size_t count = allocations->Size();
2426   // Start by sweeping the continuous spaces.
2427   for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
2428     if (!space->IsAllocSpace() ||
2429         space == region_space_ ||
2430         immune_spaces_.ContainsSpace(space) ||
2431         space->GetLiveBitmap() == nullptr) {
2432       continue;
2433     }
2434     space::AllocSpace* alloc_space = space->AsAllocSpace();
2435     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
2436     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
2437     if (swap_bitmaps) {
2438       std::swap(live_bitmap, mark_bitmap);
2439     }
2440     StackReference<mirror::Object>* out = objects;
2441     for (size_t i = 0; i < count; ++i) {
2442       mirror::Object* const obj = objects[i].AsMirrorPtr();
2443       if (kUseThreadLocalAllocationStack && obj == nullptr) {
2444         continue;
2445       }
2446       if (space->HasAddress(obj)) {
2447         // This object is in the space, remove it from the array and add it to the sweep buffer
2448         // if needed.
2449         if (!mark_bitmap->Test(obj)) {
2450           if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
2451             TimingLogger::ScopedTiming t2("FreeList", GetTimings());
2452             freed.objects += chunk_free_pos;
2453             freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
2454             chunk_free_pos = 0;
2455           }
2456           chunk_free_buffer[chunk_free_pos++] = obj;
2457         }
2458       } else {
2459         (out++)->Assign(obj);
2460       }
2461     }
2462     if (chunk_free_pos > 0) {
2463       TimingLogger::ScopedTiming t2("FreeList", GetTimings());
2464       freed.objects += chunk_free_pos;
2465       freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
2466       chunk_free_pos = 0;
2467     }
2468     // All of the references which space contained are no longer in the allocation stack, update
2469     // the count.
2470     count = out - objects;
2471   }
2472   // Handle the large object space.
2473   space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
2474   if (large_object_space != nullptr) {
2475     accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
2476     accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
2477     if (swap_bitmaps) {
2478       std::swap(large_live_objects, large_mark_objects);
2479     }
2480     for (size_t i = 0; i < count; ++i) {
2481       mirror::Object* const obj = objects[i].AsMirrorPtr();
2482       // Handle large objects.
2483       if (kUseThreadLocalAllocationStack && obj == nullptr) {
2484         continue;
2485       }
2486       if (!large_mark_objects->Test(obj)) {
2487         ++freed_los.objects;
2488         freed_los.bytes += large_object_space->Free(self, obj);
2489       }
2490     }
2491   }
2492   {
2493     TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
2494     RecordFree(freed);
2495     RecordFreeLOS(freed_los);
2496     t2.NewTiming("ResetStack");
2497     allocations->Reset();
2498   }
2499   sweep_array_free_buffer_mem_map_.MadviseDontNeedAndZero();
2500 }
2501 
MarkZygoteLargeObjects()2502 void ConcurrentCopying::MarkZygoteLargeObjects() {
2503   TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
2504   Thread* const self = Thread::Current();
2505   WriterMutexLock rmu(self, *Locks::heap_bitmap_lock_);
2506   space::LargeObjectSpace* const los = heap_->GetLargeObjectsSpace();
2507   if (los != nullptr) {
2508     // Pick the current live bitmap (mark bitmap if swapped).
2509     accounting::LargeObjectBitmap* const live_bitmap = los->GetLiveBitmap();
2510     accounting::LargeObjectBitmap* const mark_bitmap = los->GetMarkBitmap();
2511     // Walk through all of the objects and explicitly mark the zygote ones so they don't get swept.
2512     std::pair<uint8_t*, uint8_t*> range = los->GetBeginEndAtomic();
2513     live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(range.first),
2514                                   reinterpret_cast<uintptr_t>(range.second),
2515                                   [mark_bitmap, los, self](mirror::Object* obj)
2516         REQUIRES(Locks::heap_bitmap_lock_)
2517         REQUIRES_SHARED(Locks::mutator_lock_) {
2518       if (los->IsZygoteLargeObject(self, obj)) {
2519         mark_bitmap->Set(obj);
2520       }
2521     });
2522   }
2523 }
2524 
SweepLargeObjects(bool swap_bitmaps)2525 void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
2526   TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
2527   if (heap_->GetLargeObjectsSpace() != nullptr) {
2528     RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
2529   }
2530 }
2531 
CaptureRssAtPeak()2532 void ConcurrentCopying::CaptureRssAtPeak() {
2533   using range_t = std::pair<void*, void*>;
2534   // This operation is expensive as several calls to mincore() are performed.
2535   // Also, this must be called before clearing regions in ReclaimPhase().
2536   // Therefore, we make it conditional on the flag that enables dumping GC
2537   // performance info on shutdown.
2538   if (Runtime::Current()->GetDumpGCPerformanceOnShutdown()) {
2539     std::list<range_t> gc_ranges;
2540     auto add_gc_range = [&gc_ranges](void* start, size_t size) {
2541       void* end = static_cast<char*>(start) + RoundUp(size, kPageSize);
2542       gc_ranges.emplace_back(range_t(start, end));
2543     };
2544 
2545     // region space
2546     DCHECK(IsAligned<kPageSize>(region_space_->Limit()));
2547     gc_ranges.emplace_back(range_t(region_space_->Begin(), region_space_->Limit()));
2548     // mark bitmap
2549     add_gc_range(region_space_bitmap_->Begin(), region_space_bitmap_->Size());
2550 
2551     // non-moving space
2552     {
2553       DCHECK(IsAligned<kPageSize>(heap_->non_moving_space_->Limit()));
2554       gc_ranges.emplace_back(range_t(heap_->non_moving_space_->Begin(),
2555                                      heap_->non_moving_space_->Limit()));
2556       // mark bitmap
2557       accounting::ContinuousSpaceBitmap *bitmap = heap_->non_moving_space_->GetMarkBitmap();
2558       add_gc_range(bitmap->Begin(), bitmap->Size());
2559       // live bitmap. Deal with bound bitmaps.
2560       ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2561       if (heap_->non_moving_space_->HasBoundBitmaps()) {
2562         DCHECK_EQ(bitmap, heap_->non_moving_space_->GetLiveBitmap());
2563         bitmap = heap_->non_moving_space_->GetTempBitmap();
2564       } else {
2565         bitmap = heap_->non_moving_space_->GetLiveBitmap();
2566       }
2567       add_gc_range(bitmap->Begin(), bitmap->Size());
2568     }
2569     // large-object space
2570     if (heap_->GetLargeObjectsSpace()) {
2571       heap_->GetLargeObjectsSpace()->ForEachMemMap([&add_gc_range](const MemMap& map) {
2572         DCHECK(IsAligned<kPageSize>(map.BaseSize()));
2573         add_gc_range(map.BaseBegin(), map.BaseSize());
2574       });
2575       // mark bitmap
2576       accounting::LargeObjectBitmap* bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
2577       add_gc_range(bitmap->Begin(), bitmap->Size());
2578       // live bitmap
2579       bitmap = heap_->GetLargeObjectsSpace()->GetLiveBitmap();
2580       add_gc_range(bitmap->Begin(), bitmap->Size());
2581     }
2582     // card table
2583     add_gc_range(heap_->GetCardTable()->MemMapBegin(), heap_->GetCardTable()->MemMapSize());
2584     // inter-region refs
2585     if (use_generational_cc_ && !young_gen_) {
2586       // region space
2587       add_gc_range(region_space_inter_region_bitmap_->Begin(),
2588                    region_space_inter_region_bitmap_->Size());
2589       // non-moving space
2590       add_gc_range(non_moving_space_inter_region_bitmap_->Begin(),
2591                    non_moving_space_inter_region_bitmap_->Size());
2592     }
2593     // Extract RSS using mincore(). Updates the cummulative RSS counter.
2594     ExtractRssFromMincore(&gc_ranges);
2595   }
2596 }
2597 
ReclaimPhase()2598 void ConcurrentCopying::ReclaimPhase() {
2599   TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
2600   if (kVerboseMode) {
2601     LOG(INFO) << "GC ReclaimPhase";
2602   }
2603   Thread* self = Thread::Current();
2604 
2605   {
2606     // Double-check that the mark stack is empty.
2607     // Note: need to set this after VerifyNoFromSpaceRef().
2608     is_asserting_to_space_invariant_ = false;
2609     QuasiAtomic::ThreadFenceForConstructor();
2610     if (kVerboseMode) {
2611       LOG(INFO) << "Issue an empty check point. ";
2612     }
2613     IssueEmptyCheckpoint();
2614     // Disable the check.
2615     is_mark_stack_push_disallowed_.store(0, std::memory_order_seq_cst);
2616     if (kUseBakerReadBarrier) {
2617       updated_all_immune_objects_.store(false, std::memory_order_seq_cst);
2618     }
2619     CheckEmptyMarkStack();
2620   }
2621 
2622   // Capture RSS at the time when memory usage is at its peak. All GC related
2623   // memory ranges like java heap, card table, bitmap etc. are taken into
2624   // account.
2625   // TODO: We can fetch resident memory for region space directly by going
2626   // through list of allocated regions. This way we can avoid calling mincore on
2627   // the biggest memory range, thereby reducing the cost of this function.
2628   CaptureRssAtPeak();
2629 
2630   {
2631     // Record freed objects.
2632     TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
2633     // Don't include thread-locals that are in the to-space.
2634     const uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
2635     const uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
2636     const uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
2637     const uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
2638     uint64_t to_bytes = bytes_moved_.load(std::memory_order_relaxed) + bytes_moved_gc_thread_;
2639     cumulative_bytes_moved_.fetch_add(to_bytes, std::memory_order_relaxed);
2640     uint64_t to_objects = objects_moved_.load(std::memory_order_relaxed) + objects_moved_gc_thread_;
2641     cumulative_objects_moved_.fetch_add(to_objects, std::memory_order_relaxed);
2642     if (kEnableFromSpaceAccountingCheck) {
2643       CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
2644       CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
2645     }
2646     CHECK_LE(to_objects, from_objects);
2647     // to_bytes <= from_bytes is only approximately true, because objects expand a little when
2648     // copying to non-moving space in near-OOM situations.
2649     if (from_bytes > 0) {
2650       copied_live_bytes_ratio_sum_ += static_cast<float>(to_bytes) / from_bytes;
2651       gc_count_++;
2652     }
2653 
2654     // Cleared bytes and objects, populated by the call to RegionSpace::ClearFromSpace below.
2655     uint64_t cleared_bytes;
2656     uint64_t cleared_objects;
2657     {
2658       TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
2659       region_space_->ClearFromSpace(&cleared_bytes, &cleared_objects, /*clear_bitmap*/ !young_gen_);
2660       // `cleared_bytes` and `cleared_objects` may be greater than the from space equivalents since
2661       // RegionSpace::ClearFromSpace may clear empty unevac regions.
2662       CHECK_GE(cleared_bytes, from_bytes);
2663       CHECK_GE(cleared_objects, from_objects);
2664     }
2665     // freed_bytes could conceivably be negative if we fall back to nonmoving space and have to
2666     // pad to a larger size.
2667     int64_t freed_bytes = (int64_t)cleared_bytes - (int64_t)to_bytes;
2668     uint64_t freed_objects = cleared_objects - to_objects;
2669     if (kVerboseMode) {
2670       LOG(INFO) << "RecordFree:"
2671                 << " from_bytes=" << from_bytes << " from_objects=" << from_objects
2672                 << " unevac_from_bytes=" << unevac_from_bytes
2673                 << " unevac_from_objects=" << unevac_from_objects
2674                 << " to_bytes=" << to_bytes << " to_objects=" << to_objects
2675                 << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
2676                 << " from_space size=" << region_space_->FromSpaceSize()
2677                 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
2678                 << " to_space size=" << region_space_->ToSpaceSize();
2679       LOG(INFO) << "(before) num_bytes_allocated="
2680                 << heap_->num_bytes_allocated_.load();
2681     }
2682     RecordFree(ObjectBytePair(freed_objects, freed_bytes));
2683     if (kVerboseMode) {
2684       LOG(INFO) << "(after) num_bytes_allocated="
2685                 << heap_->num_bytes_allocated_.load();
2686     }
2687 
2688     float reclaimed_bytes_ratio = static_cast<float>(freed_bytes) / num_bytes_allocated_before_gc_;
2689     reclaimed_bytes_ratio_sum_ += reclaimed_bytes_ratio;
2690   }
2691 
2692   {
2693     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2694     Sweep(/* swap_bitmaps= */ false);
2695     SwapBitmaps();
2696     heap_->UnBindBitmaps();
2697 
2698     // The bitmap was cleared at the start of the GC, there is nothing we need to do here.
2699     DCHECK(region_space_bitmap_ != nullptr);
2700     region_space_bitmap_ = nullptr;
2701   }
2702 
2703   CheckEmptyMarkStack();
2704 
2705   if (heap_->dump_region_info_after_gc_) {
2706     LOG(INFO) << "time=" << region_space_->Time();
2707     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
2708   }
2709 
2710   if (kVerboseMode) {
2711     LOG(INFO) << "GC end of ReclaimPhase";
2712   }
2713 }
2714 
DumpReferenceInfo(mirror::Object * ref,const char * ref_name,const char * indent)2715 std::string ConcurrentCopying::DumpReferenceInfo(mirror::Object* ref,
2716                                                  const char* ref_name,
2717                                                  const char* indent) {
2718   std::ostringstream oss;
2719   oss << indent << heap_->GetVerification()->DumpObjectInfo(ref, ref_name) << '\n';
2720   if (ref != nullptr) {
2721     if (kUseBakerReadBarrier) {
2722       oss << indent << ref_name << "->GetMarkBit()=" << ref->GetMarkBit() << '\n';
2723       oss << indent << ref_name << "->GetReadBarrierState()=" << ref->GetReadBarrierState() << '\n';
2724     }
2725   }
2726   if (region_space_->HasAddress(ref)) {
2727     oss << indent << "Region containing " << ref_name << ":" << '\n';
2728     region_space_->DumpRegionForObject(oss, ref);
2729     if (region_space_bitmap_ != nullptr) {
2730       oss << indent << "region_space_bitmap_->Test(" << ref_name << ")="
2731           << std::boolalpha << region_space_bitmap_->Test(ref) << std::noboolalpha;
2732     }
2733   }
2734   return oss.str();
2735 }
2736 
DumpHeapReference(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)2737 std::string ConcurrentCopying::DumpHeapReference(mirror::Object* obj,
2738                                                  MemberOffset offset,
2739                                                  mirror::Object* ref) {
2740   std::ostringstream oss;
2741   constexpr const char* kIndent = "  ";
2742   oss << kIndent << "Invalid reference: ref=" << ref
2743       << " referenced from: object=" << obj << " offset= " << offset << '\n';
2744   // Information about `obj`.
2745   oss << DumpReferenceInfo(obj, "obj", kIndent) << '\n';
2746   // Information about `ref`.
2747   oss << DumpReferenceInfo(ref, "ref", kIndent);
2748   return oss.str();
2749 }
2750 
AssertToSpaceInvariant(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)2751 void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj,
2752                                                MemberOffset offset,
2753                                                mirror::Object* ref) {
2754   CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
2755   if (is_asserting_to_space_invariant_) {
2756     if (ref == nullptr) {
2757       // OK.
2758       return;
2759     } else if (region_space_->HasAddress(ref)) {
2760       // Check to-space invariant in region space (moving space).
2761       using RegionType = space::RegionSpace::RegionType;
2762       space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
2763       if (type == RegionType::kRegionTypeToSpace) {
2764         // OK.
2765         return;
2766       } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
2767         if (!IsMarkedInUnevacFromSpace(ref)) {
2768           LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
2769           // Remove memory protection from the region space and log debugging information.
2770           region_space_->Unprotect();
2771           LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
2772           Thread::Current()->DumpJavaStack(LOG_STREAM(FATAL_WITHOUT_ABORT));
2773         }
2774         CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
2775      } else {
2776         // Not OK: either a from-space ref or a reference in an unused region.
2777         if (type == RegionType::kRegionTypeFromSpace) {
2778           LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
2779         } else {
2780           LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
2781         }
2782         // Remove memory protection from the region space and log debugging information.
2783         region_space_->Unprotect();
2784         LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
2785         if (obj != nullptr) {
2786           LogFromSpaceRefHolder(obj, offset);
2787           LOG(FATAL_WITHOUT_ABORT) << "UNEVAC " << region_space_->IsInUnevacFromSpace(obj) << " "
2788                                    << obj << " " << obj->GetMarkBit();
2789           if (region_space_->HasAddress(obj)) {
2790             region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
2791           }
2792           LOG(FATAL_WITHOUT_ABORT) << "CARD " << static_cast<size_t>(
2793               *Runtime::Current()->GetHeap()->GetCardTable()->CardFromAddr(
2794                   reinterpret_cast<uint8_t*>(obj)));
2795           if (region_space_->HasAddress(obj)) {
2796             LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << region_space_bitmap_->Test(obj);
2797           } else {
2798             accounting::ContinuousSpaceBitmap* mark_bitmap =
2799                 heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
2800             if (mark_bitmap != nullptr) {
2801               LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << mark_bitmap->Test(obj);
2802             } else {
2803               accounting::LargeObjectBitmap* los_bitmap =
2804                   heap_mark_bitmap_->GetLargeObjectBitmap(obj);
2805               LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << los_bitmap->Test(obj);
2806             }
2807           }
2808         }
2809         ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
2810         LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
2811         region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
2812         PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
2813         MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
2814         LOG(FATAL) << "Invalid reference " << ref
2815                    << " referenced from object " << obj << " at offset " << offset;
2816       }
2817     } else {
2818       // Check to-space invariant in non-moving space.
2819       AssertToSpaceInvariantInNonMovingSpace(obj, ref);
2820     }
2821   }
2822 }
2823 
2824 class RootPrinter {
2825  public:
RootPrinter()2826   RootPrinter() { }
2827 
2828   template <class MirrorType>
VisitRootIfNonNull(mirror::CompressedReference<MirrorType> * root)2829   ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
2830       REQUIRES_SHARED(Locks::mutator_lock_) {
2831     if (!root->IsNull()) {
2832       VisitRoot(root);
2833     }
2834   }
2835 
2836   template <class MirrorType>
VisitRoot(mirror::Object ** root)2837   void VisitRoot(mirror::Object** root)
2838       REQUIRES_SHARED(Locks::mutator_lock_) {
2839     LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << *root;
2840   }
2841 
2842   template <class MirrorType>
VisitRoot(mirror::CompressedReference<MirrorType> * root)2843   void VisitRoot(mirror::CompressedReference<MirrorType>* root)
2844       REQUIRES_SHARED(Locks::mutator_lock_) {
2845     LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << root->AsMirrorPtr();
2846   }
2847 };
2848 
DumpGcRoot(mirror::Object * ref)2849 std::string ConcurrentCopying::DumpGcRoot(mirror::Object* ref) {
2850   std::ostringstream oss;
2851   constexpr const char* kIndent = "  ";
2852   oss << kIndent << "Invalid GC root: ref=" << ref << '\n';
2853   // Information about `ref`.
2854   oss << DumpReferenceInfo(ref, "ref", kIndent);
2855   return oss.str();
2856 }
2857 
AssertToSpaceInvariant(GcRootSource * gc_root_source,mirror::Object * ref)2858 void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
2859                                                mirror::Object* ref) {
2860   CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
2861   if (is_asserting_to_space_invariant_) {
2862     if (ref == nullptr) {
2863       // OK.
2864       return;
2865     } else if (region_space_->HasAddress(ref)) {
2866       // Check to-space invariant in region space (moving space).
2867       using RegionType = space::RegionSpace::RegionType;
2868       space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
2869       if (type == RegionType::kRegionTypeToSpace) {
2870         // OK.
2871         return;
2872       } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
2873         if (!IsMarkedInUnevacFromSpace(ref)) {
2874           LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
2875           // Remove memory protection from the region space and log debugging information.
2876           region_space_->Unprotect();
2877           LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
2878         }
2879         CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
2880       } else {
2881         // Not OK: either a from-space ref or a reference in an unused region.
2882         if (type == RegionType::kRegionTypeFromSpace) {
2883           LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
2884         } else {
2885           LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
2886         }
2887         // Remove memory protection from the region space and log debugging information.
2888         region_space_->Unprotect();
2889         LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
2890         if (gc_root_source == nullptr) {
2891           // No info.
2892         } else if (gc_root_source->HasArtField()) {
2893           ArtField* field = gc_root_source->GetArtField();
2894           LOG(FATAL_WITHOUT_ABORT) << "gc root in field " << field << " "
2895                                    << ArtField::PrettyField(field);
2896           RootPrinter root_printer;
2897           field->VisitRoots(root_printer);
2898         } else if (gc_root_source->HasArtMethod()) {
2899           ArtMethod* method = gc_root_source->GetArtMethod();
2900           LOG(FATAL_WITHOUT_ABORT) << "gc root in method " << method << " "
2901                                    << ArtMethod::PrettyMethod(method);
2902           RootPrinter root_printer;
2903           method->VisitRoots(root_printer, kRuntimePointerSize);
2904         }
2905         ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
2906         LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
2907         region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
2908         PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
2909         MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
2910         LOG(FATAL) << "Invalid reference " << ref;
2911       }
2912     } else {
2913       // Check to-space invariant in non-moving space.
2914       AssertToSpaceInvariantInNonMovingSpace(/* obj= */ nullptr, ref);
2915     }
2916   }
2917 }
2918 
LogFromSpaceRefHolder(mirror::Object * obj,MemberOffset offset)2919 void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
2920   if (kUseBakerReadBarrier) {
2921     LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf()
2922               << " holder rb_state=" << obj->GetReadBarrierState();
2923   } else {
2924     LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf();
2925   }
2926   if (region_space_->IsInFromSpace(obj)) {
2927     LOG(INFO) << "holder is in the from-space.";
2928   } else if (region_space_->IsInToSpace(obj)) {
2929     LOG(INFO) << "holder is in the to-space.";
2930   } else if (region_space_->IsInUnevacFromSpace(obj)) {
2931     LOG(INFO) << "holder is in the unevac from-space.";
2932     if (IsMarkedInUnevacFromSpace(obj)) {
2933       LOG(INFO) << "holder is marked in the region space bitmap.";
2934     } else {
2935       LOG(INFO) << "holder is not marked in the region space bitmap.";
2936     }
2937   } else {
2938     // In a non-moving space.
2939     if (immune_spaces_.ContainsObject(obj)) {
2940       LOG(INFO) << "holder is in an immune image or the zygote space.";
2941     } else {
2942       LOG(INFO) << "holder is in a non-immune, non-moving (or main) space.";
2943       accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
2944       accounting::LargeObjectBitmap* los_bitmap = nullptr;
2945       const bool is_los = !mark_bitmap->HasAddress(obj);
2946       if (is_los) {
2947         DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(obj))
2948             << "obj=" << obj
2949             << " LOS bit map covers the entire lower 4GB address range";
2950         los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
2951       }
2952       if (!is_los && mark_bitmap->Test(obj)) {
2953         LOG(INFO) << "holder is marked in the non-moving space mark bit map.";
2954       } else if (is_los && los_bitmap->Test(obj)) {
2955         LOG(INFO) << "holder is marked in the los bit map.";
2956       } else {
2957         // If ref is on the allocation stack, then it is considered
2958         // mark/alive (but not necessarily on the live stack.)
2959         if (IsOnAllocStack(obj)) {
2960           LOG(INFO) << "holder is on the alloc stack.";
2961         } else {
2962           LOG(INFO) << "holder is not marked or on the alloc stack.";
2963         }
2964       }
2965     }
2966   }
2967   LOG(INFO) << "offset=" << offset.SizeValue();
2968 }
2969 
IsMarkedInNonMovingSpace(mirror::Object * from_ref)2970 bool ConcurrentCopying::IsMarkedInNonMovingSpace(mirror::Object* from_ref) {
2971   DCHECK(!region_space_->HasAddress(from_ref)) << "ref=" << from_ref;
2972   DCHECK(!immune_spaces_.ContainsObject(from_ref)) << "ref=" << from_ref;
2973   if (kUseBakerReadBarrier && from_ref->GetReadBarrierStateAcquire() == ReadBarrier::GrayState()) {
2974     return true;
2975   } else if (!use_generational_cc_ || done_scanning_.load(std::memory_order_acquire)) {
2976     // Read the comment in IsMarkedInUnevacFromSpace()
2977     accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
2978     accounting::LargeObjectBitmap* los_bitmap = nullptr;
2979     const bool is_los = !mark_bitmap->HasAddress(from_ref);
2980     if (is_los) {
2981       DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(from_ref))
2982           << "ref=" << from_ref
2983           << " doesn't belong to non-moving space and large object space doesn't exist";
2984       los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
2985     }
2986     if (is_los ? los_bitmap->Test(from_ref) : mark_bitmap->Test(from_ref)) {
2987       return true;
2988     }
2989   }
2990   return IsOnAllocStack(from_ref);
2991 }
2992 
AssertToSpaceInvariantInNonMovingSpace(mirror::Object * obj,mirror::Object * ref)2993 void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
2994                                                                mirror::Object* ref) {
2995   CHECK(ref != nullptr);
2996   CHECK(!region_space_->HasAddress(ref)) << "obj=" << obj << " ref=" << ref;
2997   // In a non-moving space. Check that the ref is marked.
2998   if (immune_spaces_.ContainsObject(ref)) {
2999     // Immune space case.
3000     if (kUseBakerReadBarrier) {
3001       // Immune object may not be gray if called from the GC.
3002       if (Thread::Current() == thread_running_gc_ && !gc_grays_immune_objects_) {
3003         return;
3004       }
3005       bool updated_all_immune_objects = updated_all_immune_objects_.load(std::memory_order_seq_cst);
3006       CHECK(updated_all_immune_objects || ref->GetReadBarrierState() == ReadBarrier::GrayState())
3007           << "Unmarked immune space ref. obj=" << obj << " rb_state="
3008           << (obj != nullptr ? obj->GetReadBarrierState() : 0U)
3009           << " ref=" << ref << " ref rb_state=" << ref->GetReadBarrierState()
3010           << " updated_all_immune_objects=" << updated_all_immune_objects;
3011     }
3012   } else {
3013     // Non-moving space and large-object space (LOS) cases.
3014     // If `ref` is on the allocation stack, then it may not be
3015     // marked live, but considered marked/alive (but not
3016     // necessarily on the live stack).
3017     CHECK(IsMarkedInNonMovingSpace(ref))
3018         << "Unmarked ref that's not on the allocation stack."
3019         << " obj=" << obj
3020         << " ref=" << ref
3021         << " rb_state=" << ref->GetReadBarrierState()
3022         << " is_marking=" << std::boolalpha << is_marking_ << std::noboolalpha
3023         << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
3024         << " done_scanning="
3025         << std::boolalpha << done_scanning_.load(std::memory_order_acquire) << std::noboolalpha
3026         << " self=" << Thread::Current();
3027   }
3028 }
3029 
3030 // Used to scan ref fields of an object.
3031 template <bool kNoUnEvac>
3032 class ConcurrentCopying::RefFieldsVisitor {
3033  public:
RefFieldsVisitor(ConcurrentCopying * collector,Thread * const thread)3034   explicit RefFieldsVisitor(ConcurrentCopying* collector, Thread* const thread)
3035       : collector_(collector), thread_(thread) {
3036     // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3037     DCHECK(!kNoUnEvac || collector_->use_generational_cc_);
3038   }
3039 
operator ()(mirror::Object * obj,MemberOffset offset,bool) const3040   void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
3041       const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
3042       REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
3043     collector_->Process<kNoUnEvac>(obj, offset);
3044   }
3045 
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const3046   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
3047       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
3048     CHECK(klass->IsTypeOfReferenceClass());
3049     collector_->DelayReferenceReferent(klass, ref);
3050   }
3051 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const3052   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
3053       ALWAYS_INLINE
3054       REQUIRES_SHARED(Locks::mutator_lock_) {
3055     if (!root->IsNull()) {
3056       VisitRoot(root);
3057     }
3058   }
3059 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const3060   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
3061       ALWAYS_INLINE
3062       REQUIRES_SHARED(Locks::mutator_lock_) {
3063     collector_->MarkRoot</*kGrayImmuneObject=*/false>(thread_, root);
3064   }
3065 
3066  private:
3067   ConcurrentCopying* const collector_;
3068   Thread* const thread_;
3069 };
3070 
3071 template <bool kNoUnEvac>
Scan(mirror::Object * to_ref)3072 inline void ConcurrentCopying::Scan(mirror::Object* to_ref) {
3073   // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3074   DCHECK(!kNoUnEvac || use_generational_cc_);
3075   if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
3076     // Avoid all read barriers during visit references to help performance.
3077     // Don't do this in transaction mode because we may read the old value of an field which may
3078     // trigger read barriers.
3079     Thread::Current()->ModifyDebugDisallowReadBarrier(1);
3080   }
3081   DCHECK(!region_space_->IsInFromSpace(to_ref));
3082   DCHECK_EQ(Thread::Current(), thread_running_gc_);
3083   RefFieldsVisitor<kNoUnEvac> visitor(this, thread_running_gc_);
3084   // Disable the read barrier for a performance reason.
3085   to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
3086       visitor, visitor);
3087   if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
3088     thread_running_gc_->ModifyDebugDisallowReadBarrier(-1);
3089   }
3090 }
3091 
3092 template <bool kNoUnEvac>
Process(mirror::Object * obj,MemberOffset offset)3093 inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
3094   // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3095   DCHECK(!kNoUnEvac || use_generational_cc_);
3096   DCHECK_EQ(Thread::Current(), thread_running_gc_);
3097   mirror::Object* ref = obj->GetFieldObject<
3098       mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
3099   mirror::Object* to_ref = Mark</*kGrayImmuneObject=*/false, kNoUnEvac, /*kFromGCThread=*/true>(
3100       thread_running_gc_,
3101       ref,
3102       /*holder=*/ obj,
3103       offset);
3104   if (to_ref == ref) {
3105     return;
3106   }
3107   // This may fail if the mutator writes to the field at the same time. But it's ok.
3108   mirror::Object* expected_ref = ref;
3109   mirror::Object* new_ref = to_ref;
3110   do {
3111     if (expected_ref !=
3112         obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
3113       // It was updated by the mutator.
3114       break;
3115     }
3116     // Use release CAS to make sure threads reading the reference see contents of copied objects.
3117   } while (!obj->CasFieldObjectWithoutWriteBarrier<false, false, kVerifyNone>(
3118       offset,
3119       expected_ref,
3120       new_ref,
3121       CASMode::kWeak,
3122       std::memory_order_release));
3123 }
3124 
3125 // Process some roots.
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)3126 inline void ConcurrentCopying::VisitRoots(
3127     mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
3128   Thread* const self = Thread::Current();
3129   for (size_t i = 0; i < count; ++i) {
3130     mirror::Object** root = roots[i];
3131     mirror::Object* ref = *root;
3132     mirror::Object* to_ref = Mark(self, ref);
3133     if (to_ref == ref) {
3134       continue;
3135     }
3136     Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
3137     mirror::Object* expected_ref = ref;
3138     mirror::Object* new_ref = to_ref;
3139     do {
3140       if (expected_ref != addr->load(std::memory_order_relaxed)) {
3141         // It was updated by the mutator.
3142         break;
3143       }
3144     } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
3145   }
3146 }
3147 
3148 template<bool kGrayImmuneObject>
MarkRoot(Thread * const self,mirror::CompressedReference<mirror::Object> * root)3149 inline void ConcurrentCopying::MarkRoot(Thread* const self,
3150                                         mirror::CompressedReference<mirror::Object>* root) {
3151   DCHECK(!root->IsNull());
3152   mirror::Object* const ref = root->AsMirrorPtr();
3153   mirror::Object* to_ref = Mark<kGrayImmuneObject>(self, ref);
3154   if (to_ref != ref) {
3155     auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
3156     auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
3157     auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
3158     // If the cas fails, then it was updated by the mutator.
3159     do {
3160       if (ref != addr->load(std::memory_order_relaxed).AsMirrorPtr()) {
3161         // It was updated by the mutator.
3162         break;
3163       }
3164     } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
3165   }
3166 }
3167 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)3168 inline void ConcurrentCopying::VisitRoots(
3169     mirror::CompressedReference<mirror::Object>** roots, size_t count,
3170     const RootInfo& info ATTRIBUTE_UNUSED) {
3171   Thread* const self = Thread::Current();
3172   for (size_t i = 0; i < count; ++i) {
3173     mirror::CompressedReference<mirror::Object>* const root = roots[i];
3174     if (!root->IsNull()) {
3175       // kGrayImmuneObject is true because this is used for the thread flip.
3176       MarkRoot</*kGrayImmuneObject=*/true>(self, root);
3177     }
3178   }
3179 }
3180 
3181 // Temporary set gc_grays_immune_objects_ to true in a scope if the current thread is GC.
3182 class ConcurrentCopying::ScopedGcGraysImmuneObjects {
3183  public:
ScopedGcGraysImmuneObjects(ConcurrentCopying * collector)3184   explicit ScopedGcGraysImmuneObjects(ConcurrentCopying* collector)
3185       : collector_(collector), enabled_(false) {
3186     if (kUseBakerReadBarrier &&
3187         collector_->thread_running_gc_ == Thread::Current() &&
3188         !collector_->gc_grays_immune_objects_) {
3189       collector_->gc_grays_immune_objects_ = true;
3190       enabled_ = true;
3191     }
3192   }
3193 
~ScopedGcGraysImmuneObjects()3194   ~ScopedGcGraysImmuneObjects() {
3195     if (kUseBakerReadBarrier &&
3196         collector_->thread_running_gc_ == Thread::Current() &&
3197         enabled_) {
3198       DCHECK(collector_->gc_grays_immune_objects_);
3199       collector_->gc_grays_immune_objects_ = false;
3200     }
3201   }
3202 
3203  private:
3204   ConcurrentCopying* const collector_;
3205   bool enabled_;
3206 };
3207 
3208 // Fill the given memory block with a dummy object. Used to fill in a
3209 // copy of objects that was lost in race.
FillWithDummyObject(Thread * const self,mirror::Object * dummy_obj,size_t byte_size)3210 void ConcurrentCopying::FillWithDummyObject(Thread* const self,
3211                                             mirror::Object* dummy_obj,
3212                                             size_t byte_size) {
3213   // GC doesn't gray immune objects while scanning immune objects. But we need to trigger the read
3214   // barriers here because we need the updated reference to the int array class, etc. Temporary set
3215   // gc_grays_immune_objects_ to true so that we won't cause a DCHECK failure in MarkImmuneSpace().
3216   ScopedGcGraysImmuneObjects scoped_gc_gray_immune_objects(this);
3217   CHECK_ALIGNED(byte_size, kObjectAlignment);
3218   memset(dummy_obj, 0, byte_size);
3219   // Avoid going through read barrier for since kDisallowReadBarrierDuringScan may be enabled.
3220   // Explicitly mark to make sure to get an object in the to-space.
3221   mirror::Class* int_array_class = down_cast<mirror::Class*>(
3222       Mark(self, GetClassRoot<mirror::IntArray, kWithoutReadBarrier>().Ptr()));
3223   CHECK(int_array_class != nullptr);
3224   if (ReadBarrier::kEnableToSpaceInvariantChecks) {
3225     AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
3226   }
3227   size_t component_size = int_array_class->GetComponentSize();
3228   CHECK_EQ(component_size, sizeof(int32_t));
3229   size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
3230   if (data_offset > byte_size) {
3231     // An int array is too big. Use java.lang.Object.
3232     CHECK(java_lang_Object_ != nullptr);
3233     if (ReadBarrier::kEnableToSpaceInvariantChecks) {
3234       AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object_);
3235     }
3236     CHECK_EQ(byte_size, java_lang_Object_->GetObjectSize<kVerifyNone>());
3237     dummy_obj->SetClass(java_lang_Object_);
3238     CHECK_EQ(byte_size, (dummy_obj->SizeOf<kVerifyNone>()));
3239   } else {
3240     // Use an int array.
3241     dummy_obj->SetClass(int_array_class);
3242     CHECK(dummy_obj->IsArrayInstance<kVerifyNone>());
3243     int32_t length = (byte_size - data_offset) / component_size;
3244     ObjPtr<mirror::Array> dummy_arr = dummy_obj->AsArray<kVerifyNone>();
3245     dummy_arr->SetLength(length);
3246     CHECK_EQ(dummy_arr->GetLength(), length)
3247         << "byte_size=" << byte_size << " length=" << length
3248         << " component_size=" << component_size << " data_offset=" << data_offset;
3249     CHECK_EQ(byte_size, (dummy_obj->SizeOf<kVerifyNone>()))
3250         << "byte_size=" << byte_size << " length=" << length
3251         << " component_size=" << component_size << " data_offset=" << data_offset;
3252   }
3253 }
3254 
3255 // Reuse the memory blocks that were copy of objects that were lost in race.
AllocateInSkippedBlock(Thread * const self,size_t alloc_size)3256 mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(Thread* const self, size_t alloc_size) {
3257   // Try to reuse the blocks that were unused due to CAS failures.
3258   CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
3259   size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
3260   size_t byte_size;
3261   uint8_t* addr;
3262   {
3263     MutexLock mu(self, skipped_blocks_lock_);
3264     auto it = skipped_blocks_map_.lower_bound(alloc_size);
3265     if (it == skipped_blocks_map_.end()) {
3266       // Not found.
3267       return nullptr;
3268     }
3269     byte_size = it->first;
3270     CHECK_GE(byte_size, alloc_size);
3271     if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
3272       // If remainder would be too small for a dummy object, retry with a larger request size.
3273       it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
3274       if (it == skipped_blocks_map_.end()) {
3275         // Not found.
3276         return nullptr;
3277       }
3278       CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
3279       CHECK_GE(it->first - alloc_size, min_object_size)
3280           << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
3281     }
3282     // Found a block.
3283     CHECK(it != skipped_blocks_map_.end());
3284     byte_size = it->first;
3285     addr = it->second;
3286     CHECK_GE(byte_size, alloc_size);
3287     CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
3288     CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
3289     if (kVerboseMode) {
3290       LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
3291     }
3292     skipped_blocks_map_.erase(it);
3293   }
3294   memset(addr, 0, byte_size);
3295   if (byte_size > alloc_size) {
3296     // Return the remainder to the map.
3297     CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
3298     CHECK_GE(byte_size - alloc_size, min_object_size);
3299     // FillWithDummyObject may mark an object, avoid holding skipped_blocks_lock_ to prevent lock
3300     // violation and possible deadlock. The deadlock case is a recursive case:
3301     // FillWithDummyObject -> Mark(IntArray.class) -> Copy -> AllocateInSkippedBlock.
3302     FillWithDummyObject(self,
3303                         reinterpret_cast<mirror::Object*>(addr + alloc_size),
3304                         byte_size - alloc_size);
3305     CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
3306     {
3307       MutexLock mu(self, skipped_blocks_lock_);
3308       skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
3309     }
3310   }
3311   return reinterpret_cast<mirror::Object*>(addr);
3312 }
3313 
Copy(Thread * const self,mirror::Object * from_ref,mirror::Object * holder,MemberOffset offset)3314 mirror::Object* ConcurrentCopying::Copy(Thread* const self,
3315                                         mirror::Object* from_ref,
3316                                         mirror::Object* holder,
3317                                         MemberOffset offset) {
3318   DCHECK(region_space_->IsInFromSpace(from_ref));
3319   // If the class pointer is null, the object is invalid. This could occur for a dangling pointer
3320   // from a previous GC that is either inside or outside the allocated region.
3321   mirror::Class* klass = from_ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
3322   if (UNLIKELY(klass == nullptr)) {
3323     // Remove memory protection from the region space and log debugging information.
3324     region_space_->Unprotect();
3325     heap_->GetVerification()->LogHeapCorruption(holder, offset, from_ref, /* fatal= */ true);
3326   }
3327   // There must not be a read barrier to avoid nested RB that might violate the to-space invariant.
3328   // Note that from_ref is a from space ref so the SizeOf() call will access the from-space meta
3329   // objects, but it's ok and necessary.
3330   size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags>();
3331   size_t region_space_alloc_size = (obj_size <= space::RegionSpace::kRegionSize)
3332       ? RoundUp(obj_size, space::RegionSpace::kAlignment)
3333       : RoundUp(obj_size, space::RegionSpace::kRegionSize);
3334   size_t region_space_bytes_allocated = 0U;
3335   size_t non_moving_space_bytes_allocated = 0U;
3336   size_t bytes_allocated = 0U;
3337   size_t dummy;
3338   bool fall_back_to_non_moving = false;
3339   mirror::Object* to_ref = region_space_->AllocNonvirtual</*kForEvac=*/ true>(
3340       region_space_alloc_size, &region_space_bytes_allocated, nullptr, &dummy);
3341   bytes_allocated = region_space_bytes_allocated;
3342   if (LIKELY(to_ref != nullptr)) {
3343     DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
3344   } else {
3345     // Failed to allocate in the region space. Try the skipped blocks.
3346     to_ref = AllocateInSkippedBlock(self, region_space_alloc_size);
3347     if (to_ref != nullptr) {
3348       // Succeeded to allocate in a skipped block.
3349       if (heap_->use_tlab_) {
3350         // This is necessary for the tlab case as it's not accounted in the space.
3351         region_space_->RecordAlloc(to_ref);
3352       }
3353       bytes_allocated = region_space_alloc_size;
3354       heap_->num_bytes_allocated_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
3355       to_space_bytes_skipped_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
3356       to_space_objects_skipped_.fetch_sub(1, std::memory_order_relaxed);
3357     } else {
3358       // Fall back to the non-moving space.
3359       fall_back_to_non_moving = true;
3360       if (kVerboseMode) {
3361         LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
3362                   << to_space_bytes_skipped_.load(std::memory_order_relaxed)
3363                   << " skipped_objects="
3364                   << to_space_objects_skipped_.load(std::memory_order_relaxed);
3365       }
3366       to_ref = heap_->non_moving_space_->Alloc(self, obj_size,
3367                                                &non_moving_space_bytes_allocated, nullptr, &dummy);
3368       if (UNLIKELY(to_ref == nullptr)) {
3369         LOG(FATAL_WITHOUT_ABORT) << "Fall-back non-moving space allocation failed for a "
3370                                  << obj_size << " byte object in region type "
3371                                  << region_space_->GetRegionType(from_ref);
3372         LOG(FATAL) << "Object address=" << from_ref << " type=" << from_ref->PrettyTypeOf();
3373       }
3374       bytes_allocated = non_moving_space_bytes_allocated;
3375     }
3376   }
3377   DCHECK(to_ref != nullptr);
3378 
3379   // Copy the object excluding the lock word since that is handled in the loop.
3380   to_ref->SetClass(klass);
3381   const size_t kObjectHeaderSize = sizeof(mirror::Object);
3382   DCHECK_GE(obj_size, kObjectHeaderSize);
3383   static_assert(kObjectHeaderSize == sizeof(mirror::HeapReference<mirror::Class>) +
3384                     sizeof(LockWord),
3385                 "Object header size does not match");
3386   // Memcpy can tear for words since it may do byte copy. It is only safe to do this since the
3387   // object in the from space is immutable other than the lock word. b/31423258
3388   memcpy(reinterpret_cast<uint8_t*>(to_ref) + kObjectHeaderSize,
3389          reinterpret_cast<const uint8_t*>(from_ref) + kObjectHeaderSize,
3390          obj_size - kObjectHeaderSize);
3391 
3392   // Attempt to install the forward pointer. This is in a loop as the
3393   // lock word atomic write can fail.
3394   while (true) {
3395     LockWord old_lock_word = from_ref->GetLockWord(false);
3396 
3397     if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
3398       // Lost the race. Another thread (either GC or mutator) stored
3399       // the forwarding pointer first. Make the lost copy (to_ref)
3400       // look like a valid but dead (dummy) object and keep it for
3401       // future reuse.
3402       FillWithDummyObject(self, to_ref, bytes_allocated);
3403       if (!fall_back_to_non_moving) {
3404         DCHECK(region_space_->IsInToSpace(to_ref));
3405         if (bytes_allocated > space::RegionSpace::kRegionSize) {
3406           // Free the large alloc.
3407           region_space_->FreeLarge</*kForEvac=*/ true>(to_ref, bytes_allocated);
3408         } else {
3409           // Record the lost copy for later reuse.
3410           heap_->num_bytes_allocated_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3411           to_space_bytes_skipped_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3412           to_space_objects_skipped_.fetch_add(1, std::memory_order_relaxed);
3413           MutexLock mu(self, skipped_blocks_lock_);
3414           skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
3415                                                     reinterpret_cast<uint8_t*>(to_ref)));
3416         }
3417       } else {
3418         DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
3419         DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
3420         // Free the non-moving-space chunk.
3421         heap_->non_moving_space_->Free(self, to_ref);
3422       }
3423 
3424       // Get the winner's forward ptr.
3425       mirror::Object* lost_fwd_ptr = to_ref;
3426       to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
3427       CHECK(to_ref != nullptr);
3428       CHECK_NE(to_ref, lost_fwd_ptr);
3429       CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
3430           << "to_ref=" << to_ref << " " << heap_->DumpSpaces();
3431       CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
3432       return to_ref;
3433     }
3434 
3435     // Copy the old lock word over since we did not copy it yet.
3436     to_ref->SetLockWord(old_lock_word, false);
3437     // Set the gray ptr.
3438     if (kUseBakerReadBarrier) {
3439       to_ref->SetReadBarrierState(ReadBarrier::GrayState());
3440     }
3441 
3442     // Do a fence to prevent the field CAS in ConcurrentCopying::Process from possibly reordering
3443     // before the object copy.
3444     std::atomic_thread_fence(std::memory_order_release);
3445 
3446     LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
3447 
3448     // Try to atomically write the fwd ptr.
3449     bool success = from_ref->CasLockWord(old_lock_word,
3450                                          new_lock_word,
3451                                          CASMode::kWeak,
3452                                          std::memory_order_relaxed);
3453     if (LIKELY(success)) {
3454       // The CAS succeeded.
3455       DCHECK(thread_running_gc_ != nullptr);
3456       if (LIKELY(self == thread_running_gc_)) {
3457         objects_moved_gc_thread_ += 1;
3458         bytes_moved_gc_thread_ += bytes_allocated;
3459       } else {
3460         objects_moved_.fetch_add(1, std::memory_order_relaxed);
3461         bytes_moved_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3462       }
3463 
3464       if (LIKELY(!fall_back_to_non_moving)) {
3465         DCHECK(region_space_->IsInToSpace(to_ref));
3466       } else {
3467         DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
3468         DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
3469         if (!use_generational_cc_ || !young_gen_) {
3470           // Mark it in the live bitmap.
3471           CHECK(!heap_->non_moving_space_->GetLiveBitmap()->AtomicTestAndSet(to_ref));
3472         }
3473         if (!kUseBakerReadBarrier) {
3474           // Mark it in the mark bitmap.
3475           CHECK(!heap_->non_moving_space_->GetMarkBitmap()->AtomicTestAndSet(to_ref));
3476         }
3477       }
3478       if (kUseBakerReadBarrier) {
3479         DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState());
3480       }
3481       DCHECK(GetFwdPtr(from_ref) == to_ref);
3482       CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
3483       PushOntoMarkStack(self, to_ref);
3484       return to_ref;
3485     } else {
3486       // The CAS failed. It may have lost the race or may have failed
3487       // due to monitor/hashcode ops. Either way, retry.
3488     }
3489   }
3490 }
3491 
IsMarked(mirror::Object * from_ref)3492 mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
3493   DCHECK(from_ref != nullptr);
3494   space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
3495   if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
3496     // It's already marked.
3497     return from_ref;
3498   }
3499   mirror::Object* to_ref;
3500   if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
3501     to_ref = GetFwdPtr(from_ref);
3502     DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
3503            heap_->non_moving_space_->HasAddress(to_ref))
3504         << "from_ref=" << from_ref << " to_ref=" << to_ref;
3505   } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
3506     if (IsMarkedInUnevacFromSpace(from_ref)) {
3507       to_ref = from_ref;
3508     } else {
3509       to_ref = nullptr;
3510     }
3511   } else {
3512     // At this point, `from_ref` should not be in the region space
3513     // (i.e. within an "unused" region).
3514     DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
3515     // from_ref is in a non-moving space.
3516     if (immune_spaces_.ContainsObject(from_ref)) {
3517       // An immune object is alive.
3518       to_ref = from_ref;
3519     } else {
3520       // Non-immune non-moving space. Use the mark bitmap.
3521       if (IsMarkedInNonMovingSpace(from_ref)) {
3522         // Already marked.
3523         to_ref = from_ref;
3524       } else {
3525         to_ref = nullptr;
3526       }
3527     }
3528   }
3529   return to_ref;
3530 }
3531 
IsOnAllocStack(mirror::Object * ref)3532 bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
3533   // TODO: Explain why this is here. What release operation does it pair with?
3534   std::atomic_thread_fence(std::memory_order_acquire);
3535   accounting::ObjectStack* alloc_stack = GetAllocationStack();
3536   return alloc_stack->Contains(ref);
3537 }
3538 
MarkNonMoving(Thread * const self,mirror::Object * ref,mirror::Object * holder,MemberOffset offset)3539 mirror::Object* ConcurrentCopying::MarkNonMoving(Thread* const self,
3540                                                  mirror::Object* ref,
3541                                                  mirror::Object* holder,
3542                                                  MemberOffset offset) {
3543   // ref is in a non-moving space (from_ref == to_ref).
3544   DCHECK(!region_space_->HasAddress(ref)) << ref;
3545   DCHECK(!immune_spaces_.ContainsObject(ref));
3546   // Use the mark bitmap.
3547   accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3548   accounting::LargeObjectBitmap* los_bitmap = nullptr;
3549   const bool is_los = !mark_bitmap->HasAddress(ref);
3550   if (is_los) {
3551     if (!IsAligned<kPageSize>(ref)) {
3552       // Ref is a large object that is not aligned, it must be heap
3553       // corruption. Remove memory protection and dump data before
3554       // AtomicSetReadBarrierState since it will fault if the address is not
3555       // valid.
3556       region_space_->Unprotect();
3557       heap_->GetVerification()->LogHeapCorruption(holder, offset, ref, /* fatal= */ true);
3558     }
3559     DCHECK(heap_->GetLargeObjectsSpace())
3560         << "ref=" << ref
3561         << " doesn't belong to non-moving space and large object space doesn't exist";
3562     los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3563     DCHECK(los_bitmap->HasAddress(ref));
3564   }
3565   if (use_generational_cc_) {
3566     // The sticky-bit CC collector is only compatible with Baker-style read barriers.
3567     DCHECK(kUseBakerReadBarrier);
3568     // Not done scanning, use AtomicSetReadBarrierPointer.
3569     if (!done_scanning_.load(std::memory_order_acquire)) {
3570       // Since the mark bitmap is still filled in from last GC, we can not use that or else the
3571       // mutator may see references to the from space. Instead, use the Baker pointer itself as
3572       // the mark bit.
3573       //
3574       // We need to avoid marking objects that are on allocation stack as that will lead to a
3575       // situation (after this GC cycle is finished) where some object(s) are on both allocation
3576       // stack and live bitmap. This leads to visiting the same object(s) twice during a heapdump
3577       // (b/117426281).
3578       if (!IsOnAllocStack(ref) &&
3579           ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState())) {
3580         // TODO: We don't actually need to scan this object later, we just need to clear the gray
3581         // bit.
3582         // We don't need to mark newly allocated objects (those in allocation stack) as they can
3583         // only point to to-space objects. Also, they are considered live till the next GC cycle.
3584         PushOntoMarkStack(self, ref);
3585       }
3586       return ref;
3587     }
3588   }
3589   if (!is_los && mark_bitmap->Test(ref)) {
3590     // Already marked.
3591   } else if (is_los && los_bitmap->Test(ref)) {
3592     // Already marked in LOS.
3593   } else if (IsOnAllocStack(ref)) {
3594     // If it's on the allocation stack, it's considered marked. Keep it white (non-gray).
3595     // Objects on the allocation stack need not be marked.
3596     if (!is_los) {
3597       DCHECK(!mark_bitmap->Test(ref));
3598     } else {
3599       DCHECK(!los_bitmap->Test(ref));
3600     }
3601     if (kUseBakerReadBarrier) {
3602       DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState());
3603     }
3604   } else {
3605     // Not marked nor on the allocation stack. Try to mark it.
3606     // This may or may not succeed, which is ok.
3607     bool success = false;
3608     if (kUseBakerReadBarrier) {
3609       success = ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(),
3610                                                ReadBarrier::GrayState());
3611     } else {
3612       success = is_los ?
3613           !los_bitmap->AtomicTestAndSet(ref) :
3614           !mark_bitmap->AtomicTestAndSet(ref);
3615     }
3616     if (success) {
3617       if (kUseBakerReadBarrier) {
3618         DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState());
3619       }
3620       PushOntoMarkStack(self, ref);
3621     }
3622   }
3623   return ref;
3624 }
3625 
FinishPhase()3626 void ConcurrentCopying::FinishPhase() {
3627   Thread* const self = Thread::Current();
3628   {
3629     MutexLock mu(self, mark_stack_lock_);
3630     CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
3631   }
3632   // kVerifyNoMissingCardMarks relies on the region space cards not being cleared to avoid false
3633   // positives.
3634   if (!kVerifyNoMissingCardMarks && !use_generational_cc_) {
3635     TimingLogger::ScopedTiming split("ClearRegionSpaceCards", GetTimings());
3636     // We do not currently use the region space cards at all, madvise them away to save ram.
3637     heap_->GetCardTable()->ClearCardRange(region_space_->Begin(), region_space_->Limit());
3638   } else if (use_generational_cc_ && !young_gen_) {
3639     region_space_inter_region_bitmap_->Clear();
3640     non_moving_space_inter_region_bitmap_->Clear();
3641   }
3642   {
3643     MutexLock mu(self, skipped_blocks_lock_);
3644     skipped_blocks_map_.clear();
3645   }
3646   {
3647     ReaderMutexLock mu(self, *Locks::mutator_lock_);
3648     {
3649       WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3650       heap_->ClearMarkedObjects();
3651     }
3652     if (kUseBakerReadBarrier && kFilterModUnionCards) {
3653       TimingLogger::ScopedTiming split("FilterModUnionCards", GetTimings());
3654       ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3655       for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
3656         DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
3657         accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
3658         // Filter out cards that don't need to be set.
3659         if (table != nullptr) {
3660           table->FilterCards();
3661         }
3662       }
3663     }
3664     if (kUseBakerReadBarrier) {
3665       TimingLogger::ScopedTiming split("EmptyRBMarkBitStack", GetTimings());
3666       DCHECK(rb_mark_bit_stack_ != nullptr);
3667       const auto* limit = rb_mark_bit_stack_->End();
3668       for (StackReference<mirror::Object>* it = rb_mark_bit_stack_->Begin(); it != limit; ++it) {
3669         CHECK(it->AsMirrorPtr()->AtomicSetMarkBit(1, 0))
3670             << "rb_mark_bit_stack_->Begin()" << rb_mark_bit_stack_->Begin() << '\n'
3671             << "rb_mark_bit_stack_->End()" << rb_mark_bit_stack_->End() << '\n'
3672             << "rb_mark_bit_stack_->IsFull()"
3673             << std::boolalpha << rb_mark_bit_stack_->IsFull() << std::noboolalpha << '\n'
3674             << DumpReferenceInfo(it->AsMirrorPtr(), "*it");
3675       }
3676       rb_mark_bit_stack_->Reset();
3677     }
3678   }
3679   if (measure_read_barrier_slow_path_) {
3680     MutexLock mu(self, rb_slow_path_histogram_lock_);
3681     rb_slow_path_time_histogram_.AdjustAndAddValue(
3682         rb_slow_path_ns_.load(std::memory_order_relaxed));
3683     rb_slow_path_count_total_ += rb_slow_path_count_.load(std::memory_order_relaxed);
3684     rb_slow_path_count_gc_total_ += rb_slow_path_count_gc_.load(std::memory_order_relaxed);
3685   }
3686 }
3687 
IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)3688 bool ConcurrentCopying::IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object>* field,
3689                                                     bool do_atomic_update) {
3690   mirror::Object* from_ref = field->AsMirrorPtr();
3691   if (from_ref == nullptr) {
3692     return true;
3693   }
3694   mirror::Object* to_ref = IsMarked(from_ref);
3695   if (to_ref == nullptr) {
3696     return false;
3697   }
3698   if (from_ref != to_ref) {
3699     if (do_atomic_update) {
3700       do {
3701         if (field->AsMirrorPtr() != from_ref) {
3702           // Concurrently overwritten by a mutator.
3703           break;
3704         }
3705       } while (!field->CasWeakRelaxed(from_ref, to_ref));
3706     } else {
3707       // TODO: Why is this seq_cst when the above is relaxed? Document memory ordering.
3708       field->Assign</* kIsVolatile= */ true>(to_ref);
3709     }
3710   }
3711   return true;
3712 }
3713 
MarkObject(mirror::Object * from_ref)3714 mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
3715   return Mark(Thread::Current(), from_ref);
3716 }
3717 
DelayReferenceReferent(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> reference)3718 void ConcurrentCopying::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
3719                                                ObjPtr<mirror::Reference> reference) {
3720   heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
3721 }
3722 
ProcessReferences(Thread * self)3723 void ConcurrentCopying::ProcessReferences(Thread* self) {
3724   TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
3725   // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
3726   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3727   GetHeap()->GetReferenceProcessor()->ProcessReferences(
3728       /*concurrent=*/ true, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
3729 }
3730 
RevokeAllThreadLocalBuffers()3731 void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
3732   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
3733   region_space_->RevokeAllThreadLocalBuffers();
3734 }
3735 
MarkFromReadBarrierWithMeasurements(Thread * const self,mirror::Object * from_ref)3736 mirror::Object* ConcurrentCopying::MarkFromReadBarrierWithMeasurements(Thread* const self,
3737                                                                        mirror::Object* from_ref) {
3738   if (self != thread_running_gc_) {
3739     rb_slow_path_count_.fetch_add(1u, std::memory_order_relaxed);
3740   } else {
3741     rb_slow_path_count_gc_.fetch_add(1u, std::memory_order_relaxed);
3742   }
3743   ScopedTrace tr(__FUNCTION__);
3744   const uint64_t start_time = measure_read_barrier_slow_path_ ? NanoTime() : 0u;
3745   mirror::Object* ret =
3746       Mark</*kGrayImmuneObject=*/true, /*kNoUnEvac=*/false, /*kFromGCThread=*/false>(self,
3747                                                                                      from_ref);
3748   if (measure_read_barrier_slow_path_) {
3749     rb_slow_path_ns_.fetch_add(NanoTime() - start_time, std::memory_order_relaxed);
3750   }
3751   return ret;
3752 }
3753 
DumpPerformanceInfo(std::ostream & os)3754 void ConcurrentCopying::DumpPerformanceInfo(std::ostream& os) {
3755   GarbageCollector::DumpPerformanceInfo(os);
3756   size_t num_gc_cycles = GetCumulativeTimings().GetIterations();
3757   MutexLock mu(Thread::Current(), rb_slow_path_histogram_lock_);
3758   if (rb_slow_path_time_histogram_.SampleSize() > 0) {
3759     Histogram<uint64_t>::CumulativeData cumulative_data;
3760     rb_slow_path_time_histogram_.CreateHistogram(&cumulative_data);
3761     rb_slow_path_time_histogram_.PrintConfidenceIntervals(os, 0.99, cumulative_data);
3762   }
3763   if (rb_slow_path_count_total_ > 0) {
3764     os << "Slow path count " << rb_slow_path_count_total_ << "\n";
3765   }
3766   if (rb_slow_path_count_gc_total_ > 0) {
3767     os << "GC slow path count " << rb_slow_path_count_gc_total_ << "\n";
3768   }
3769 
3770   os << "Average " << (young_gen_ ? "minor" : "major") << " GC reclaim bytes ratio "
3771      << (reclaimed_bytes_ratio_sum_ / num_gc_cycles) << " over " << num_gc_cycles
3772      << " GC cycles\n";
3773 
3774   os << "Average " << (young_gen_ ? "minor" : "major") << " GC copied live bytes ratio "
3775      << (copied_live_bytes_ratio_sum_ / gc_count_) << " over " << gc_count_
3776      << " " << (young_gen_ ? "minor" : "major") << " GCs\n";
3777 
3778   os << "Cumulative bytes moved "
3779      << cumulative_bytes_moved_.load(std::memory_order_relaxed) << "\n";
3780   os << "Cumulative objects moved "
3781      << cumulative_objects_moved_.load(std::memory_order_relaxed) << "\n";
3782 
3783   os << "Peak regions allocated "
3784      << region_space_->GetMaxPeakNumNonFreeRegions() << " ("
3785      << PrettySize(region_space_->GetMaxPeakNumNonFreeRegions() * space::RegionSpace::kRegionSize)
3786      << ") / " << region_space_->GetNumRegions() / 2 << " ("
3787      << PrettySize(region_space_->GetNumRegions() * space::RegionSpace::kRegionSize / 2)
3788      << ")\n";
3789 }
3790 
3791 }  // namespace collector
3792 }  // namespace gc
3793 }  // namespace art
3794