1 //===-- SelectionDAGBuilder.h - Selection-DAG building --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef SELECTIONDAGBUILDER_H 15 #define SELECTIONDAGBUILDER_H 16 17 #include "llvm/Constants.h" 18 #include "llvm/CodeGen/SelectionDAG.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/CodeGen/SelectionDAGNodes.h" 22 #include "llvm/CodeGen/ValueTypes.h" 23 #include "llvm/Support/CallSite.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include <vector> 26 27 namespace llvm { 28 29 class AliasAnalysis; 30 class AllocaInst; 31 class BasicBlock; 32 class BitCastInst; 33 class BranchInst; 34 class CallInst; 35 class DbgValueInst; 36 class ExtractElementInst; 37 class ExtractValueInst; 38 class FCmpInst; 39 class FPExtInst; 40 class FPToSIInst; 41 class FPToUIInst; 42 class FPTruncInst; 43 class Function; 44 class FunctionLoweringInfo; 45 class GetElementPtrInst; 46 class GCFunctionInfo; 47 class ICmpInst; 48 class IntToPtrInst; 49 class IndirectBrInst; 50 class InvokeInst; 51 class InsertElementInst; 52 class InsertValueInst; 53 class Instruction; 54 class LoadInst; 55 class MachineBasicBlock; 56 class MachineInstr; 57 class MachineRegisterInfo; 58 class MDNode; 59 class PHINode; 60 class PtrToIntInst; 61 class ReturnInst; 62 class SDDbgValue; 63 class SExtInst; 64 class SelectInst; 65 class ShuffleVectorInst; 66 class SIToFPInst; 67 class StoreInst; 68 class SwitchInst; 69 class TargetData; 70 class TargetLowering; 71 class TruncInst; 72 class UIToFPInst; 73 class UnreachableInst; 74 class UnwindInst; 75 class VAArgInst; 76 class ZExtInst; 77 78 //===----------------------------------------------------------------------===// 79 /// SelectionDAGBuilder - This is the common target-independent lowering 80 /// implementation that is parameterized by a TargetLowering object. 81 /// 82 class SelectionDAGBuilder { 83 /// CurDebugLoc - current file + line number. Changes as we build the DAG. 84 DebugLoc CurDebugLoc; 85 86 DenseMap<const Value*, SDValue> NodeMap; 87 88 /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used 89 /// to preserve debug information for incoming arguments. 90 DenseMap<const Value*, SDValue> UnusedArgNodeMap; 91 92 /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap. 93 class DanglingDebugInfo { 94 const DbgValueInst* DI; 95 DebugLoc dl; 96 unsigned SDNodeOrder; 97 public: DanglingDebugInfo()98 DanglingDebugInfo() : DI(0), dl(DebugLoc()), SDNodeOrder(0) { } DanglingDebugInfo(const DbgValueInst * di,DebugLoc DL,unsigned SDNO)99 DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) : 100 DI(di), dl(DL), SDNodeOrder(SDNO) { } getDI()101 const DbgValueInst* getDI() { return DI; } getdl()102 DebugLoc getdl() { return dl; } getSDNodeOrder()103 unsigned getSDNodeOrder() { return SDNodeOrder; } 104 }; 105 106 /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not 107 /// yet seen the referent. We defer handling these until we do see it. 108 DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap; 109 110 public: 111 /// PendingLoads - Loads are not emitted to the program immediately. We bunch 112 /// them up and then emit token factor nodes when possible. This allows us to 113 /// get simple disambiguation between loads without worrying about alias 114 /// analysis. 115 SmallVector<SDValue, 8> PendingLoads; 116 private: 117 118 /// PendingExports - CopyToReg nodes that copy values to virtual registers 119 /// for export to other blocks need to be emitted before any terminator 120 /// instruction, but they have no other ordering requirements. We bunch them 121 /// up and the emit a single tokenfactor for them just before terminator 122 /// instructions. 123 SmallVector<SDValue, 8> PendingExports; 124 125 /// SDNodeOrder - A unique monotonically increasing number used to order the 126 /// SDNodes we create. 127 unsigned SDNodeOrder; 128 129 /// Case - A struct to record the Value for a switch case, and the 130 /// case's target basic block. 131 struct Case { 132 Constant* Low; 133 Constant* High; 134 MachineBasicBlock* BB; 135 uint32_t ExtraWeight; 136 CaseCase137 Case() : Low(0), High(0), BB(0), ExtraWeight(0) { } CaseCase138 Case(Constant* low, Constant* high, MachineBasicBlock* bb, 139 uint32_t extraweight) : Low(low), High(high), BB(bb), 140 ExtraWeight(extraweight) { } 141 sizeCase142 APInt size() const { 143 const APInt &rHigh = cast<ConstantInt>(High)->getValue(); 144 const APInt &rLow = cast<ConstantInt>(Low)->getValue(); 145 return (rHigh - rLow + 1ULL); 146 } 147 }; 148 149 struct CaseBits { 150 uint64_t Mask; 151 MachineBasicBlock* BB; 152 unsigned Bits; 153 CaseBitsCaseBits154 CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits): 155 Mask(mask), BB(bb), Bits(bits) { } 156 }; 157 158 typedef std::vector<Case> CaseVector; 159 typedef std::vector<CaseBits> CaseBitsVector; 160 typedef CaseVector::iterator CaseItr; 161 typedef std::pair<CaseItr, CaseItr> CaseRange; 162 163 /// CaseRec - A struct with ctor used in lowering switches to a binary tree 164 /// of conditional branches. 165 struct CaseRec { CaseRecCaseRec166 CaseRec(MachineBasicBlock *bb, const Constant *lt, const Constant *ge, 167 CaseRange r) : 168 CaseBB(bb), LT(lt), GE(ge), Range(r) {} 169 170 /// CaseBB - The MBB in which to emit the compare and branch 171 MachineBasicBlock *CaseBB; 172 /// LT, GE - If nonzero, we know the current case value must be less-than or 173 /// greater-than-or-equal-to these Constants. 174 const Constant *LT; 175 const Constant *GE; 176 /// Range - A pair of iterators representing the range of case values to be 177 /// processed at this point in the binary search tree. 178 CaseRange Range; 179 }; 180 181 typedef std::vector<CaseRec> CaseRecVector; 182 183 /// The comparison function for sorting the switch case values in the vector. 184 /// WARNING: Case ranges should be disjoint! 185 struct CaseCmp { operatorCaseCmp186 bool operator()(const Case &C1, const Case &C2) { 187 assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High)); 188 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low); 189 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High); 190 return CI1->getValue().slt(CI2->getValue()); 191 } 192 }; 193 194 struct CaseBitsCmp { operatorCaseBitsCmp195 bool operator()(const CaseBits &C1, const CaseBits &C2) { 196 return C1.Bits > C2.Bits; 197 } 198 }; 199 200 size_t Clusterify(CaseVector &Cases, const SwitchInst &SI); 201 202 /// CaseBlock - This structure is used to communicate between 203 /// SelectionDAGBuilder and SDISel for the code generation of additional basic 204 /// blocks needed by multi-case switch statements. 205 struct CaseBlock { 206 CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs, 207 const Value *cmpmiddle, 208 MachineBasicBlock *truebb, MachineBasicBlock *falsebb, 209 MachineBasicBlock *me, 210 uint32_t trueweight = 0, uint32_t falseweight = 0) CCCaseBlock211 : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs), 212 TrueBB(truebb), FalseBB(falsebb), ThisBB(me), 213 TrueWeight(trueweight), FalseWeight(falseweight) { } 214 215 // CC - the condition code to use for the case block's setcc node 216 ISD::CondCode CC; 217 218 // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit. 219 // Emit by default LHS op RHS. MHS is used for range comparisons: 220 // If MHS is not null: (LHS <= MHS) and (MHS <= RHS). 221 const Value *CmpLHS, *CmpMHS, *CmpRHS; 222 223 // TrueBB/FalseBB - the block to branch to if the setcc is true/false. 224 MachineBasicBlock *TrueBB, *FalseBB; 225 226 // ThisBB - the block into which to emit the code for the setcc and branches 227 MachineBasicBlock *ThisBB; 228 229 // TrueWeight/FalseWeight - branch weights. 230 uint32_t TrueWeight, FalseWeight; 231 }; 232 233 struct JumpTable { JumpTableJumpTable234 JumpTable(unsigned R, unsigned J, MachineBasicBlock *M, 235 MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {} 236 237 /// Reg - the virtual register containing the index of the jump table entry 238 //. to jump to. 239 unsigned Reg; 240 /// JTI - the JumpTableIndex for this jump table in the function. 241 unsigned JTI; 242 /// MBB - the MBB into which to emit the code for the indirect jump. 243 MachineBasicBlock *MBB; 244 /// Default - the MBB of the default bb, which is a successor of the range 245 /// check MBB. This is when updating PHI nodes in successors. 246 MachineBasicBlock *Default; 247 }; 248 struct JumpTableHeader { 249 JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H, 250 bool E = false): FirstJumpTableHeader251 First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {} 252 APInt First; 253 APInt Last; 254 const Value *SValue; 255 MachineBasicBlock *HeaderBB; 256 bool Emitted; 257 }; 258 typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock; 259 260 struct BitTestCase { BitTestCaseBitTestCase261 BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr): 262 Mask(M), ThisBB(T), TargetBB(Tr) { } 263 uint64_t Mask; 264 MachineBasicBlock *ThisBB; 265 MachineBasicBlock *TargetBB; 266 }; 267 268 typedef SmallVector<BitTestCase, 3> BitTestInfo; 269 270 struct BitTestBlock { BitTestBlockBitTestBlock271 BitTestBlock(APInt F, APInt R, const Value* SV, 272 unsigned Rg, EVT RgVT, bool E, 273 MachineBasicBlock* P, MachineBasicBlock* D, 274 const BitTestInfo& C): 275 First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E), 276 Parent(P), Default(D), Cases(C) { } 277 APInt First; 278 APInt Range; 279 const Value *SValue; 280 unsigned Reg; 281 EVT RegVT; 282 bool Emitted; 283 MachineBasicBlock *Parent; 284 MachineBasicBlock *Default; 285 BitTestInfo Cases; 286 }; 287 288 public: 289 // TLI - This is information that describes the available target features we 290 // need for lowering. This indicates when operations are unavailable, 291 // implemented with a libcall, etc. 292 const TargetMachine &TM; 293 const TargetLowering &TLI; 294 SelectionDAG &DAG; 295 const TargetData *TD; 296 AliasAnalysis *AA; 297 298 /// SwitchCases - Vector of CaseBlock structures used to communicate 299 /// SwitchInst code generation information. 300 std::vector<CaseBlock> SwitchCases; 301 /// JTCases - Vector of JumpTable structures used to communicate 302 /// SwitchInst code generation information. 303 std::vector<JumpTableBlock> JTCases; 304 /// BitTestCases - Vector of BitTestBlock structures used to communicate 305 /// SwitchInst code generation information. 306 std::vector<BitTestBlock> BitTestCases; 307 308 // Emit PHI-node-operand constants only once even if used by multiple 309 // PHI nodes. 310 DenseMap<const Constant *, unsigned> ConstantsOut; 311 312 /// FuncInfo - Information about the function as a whole. 313 /// 314 FunctionLoweringInfo &FuncInfo; 315 316 /// OptLevel - What optimization level we're generating code for. 317 /// 318 CodeGenOpt::Level OptLevel; 319 320 /// GFI - Garbage collection metadata for the function. 321 GCFunctionInfo *GFI; 322 323 /// LPadToCallSiteMap - Map a landing pad to the call site indexes. 324 DenseMap<MachineBasicBlock*, SmallVector<unsigned, 4> > LPadToCallSiteMap; 325 326 /// HasTailCall - This is set to true if a call in the current 327 /// block has been translated as a tail call. In this case, 328 /// no subsequent DAG nodes should be created. 329 /// 330 bool HasTailCall; 331 332 LLVMContext *Context; 333 SelectionDAGBuilder(SelectionDAG & dag,FunctionLoweringInfo & funcinfo,CodeGenOpt::Level ol)334 SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo, 335 CodeGenOpt::Level ol) 336 : SDNodeOrder(0), TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()), 337 DAG(dag), FuncInfo(funcinfo), OptLevel(ol), 338 HasTailCall(false), Context(dag.getContext()) { 339 } 340 341 void init(GCFunctionInfo *gfi, AliasAnalysis &aa); 342 343 /// clear - Clear out the current SelectionDAG and the associated 344 /// state and prepare this SelectionDAGBuilder object to be used 345 /// for a new block. This doesn't clear out information about 346 /// additional blocks that are needed to complete switch lowering 347 /// or PHI node updating; that information is cleared out as it is 348 /// consumed. 349 void clear(); 350 351 /// clearDanglingDebugInfo - Clear the dangling debug information 352 /// map. This function is seperated from the clear so that debug 353 /// information that is dangling in a basic block can be properly 354 /// resolved in a different basic block. This allows the 355 /// SelectionDAG to resolve dangling debug information attached 356 /// to PHI nodes. 357 void clearDanglingDebugInfo(); 358 359 /// getRoot - Return the current virtual root of the Selection DAG, 360 /// flushing any PendingLoad items. This must be done before emitting 361 /// a store or any other node that may need to be ordered after any 362 /// prior load instructions. 363 /// 364 SDValue getRoot(); 365 366 /// getControlRoot - Similar to getRoot, but instead of flushing all the 367 /// PendingLoad items, flush all the PendingExports items. It is necessary 368 /// to do this before emitting a terminator instruction. 369 /// 370 SDValue getControlRoot(); 371 getCurDebugLoc()372 DebugLoc getCurDebugLoc() const { return CurDebugLoc; } 373 getSDNodeOrder()374 unsigned getSDNodeOrder() const { return SDNodeOrder; } 375 376 void CopyValueToVirtualRegister(const Value *V, unsigned Reg); 377 378 /// AssignOrderingToNode - Assign an ordering to the node. The order is gotten 379 /// from how the code appeared in the source. The ordering is used by the 380 /// scheduler to effectively turn off scheduling. 381 void AssignOrderingToNode(const SDNode *Node); 382 383 void visit(const Instruction &I); 384 385 void visit(unsigned Opcode, const User &I); 386 387 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 388 // generate the debug data structures now that we've seen its definition. 389 void resolveDanglingDebugInfo(const Value *V, SDValue Val); 390 SDValue getValue(const Value *V); 391 SDValue getNonRegisterValue(const Value *V); 392 SDValue getValueImpl(const Value *V); 393 setValue(const Value * V,SDValue NewN)394 void setValue(const Value *V, SDValue NewN) { 395 SDValue &N = NodeMap[V]; 396 assert(N.getNode() == 0 && "Already set a value for this node!"); 397 N = NewN; 398 } 399 setUnusedArgValue(const Value * V,SDValue NewN)400 void setUnusedArgValue(const Value *V, SDValue NewN) { 401 SDValue &N = UnusedArgNodeMap[V]; 402 assert(N.getNode() == 0 && "Already set a value for this node!"); 403 N = NewN; 404 } 405 406 void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, 407 MachineBasicBlock *FBB, MachineBasicBlock *CurBB, 408 MachineBasicBlock *SwitchBB, unsigned Opc); 409 void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, 410 MachineBasicBlock *FBB, 411 MachineBasicBlock *CurBB, 412 MachineBasicBlock *SwitchBB); 413 bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases); 414 bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB); 415 void CopyToExportRegsIfNeeded(const Value *V); 416 void ExportFromCurrentBlock(const Value *V); 417 void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall, 418 MachineBasicBlock *LandingPad = NULL); 419 420 /// UpdateSplitBlock - When an MBB was split during scheduling, update the 421 /// references that ned to refer to the last resulting block. 422 void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last); 423 424 private: 425 // Terminator instructions. 426 void visitRet(const ReturnInst &I); 427 void visitBr(const BranchInst &I); 428 void visitSwitch(const SwitchInst &I); 429 void visitIndirectBr(const IndirectBrInst &I); visitUnreachable(const UnreachableInst & I)430 void visitUnreachable(const UnreachableInst &I) { /* noop */ } 431 432 // Helpers for visitSwitch 433 bool handleSmallSwitchRange(CaseRec& CR, 434 CaseRecVector& WorkList, 435 const Value* SV, 436 MachineBasicBlock* Default, 437 MachineBasicBlock *SwitchBB); 438 bool handleJTSwitchCase(CaseRec& CR, 439 CaseRecVector& WorkList, 440 const Value* SV, 441 MachineBasicBlock* Default, 442 MachineBasicBlock *SwitchBB); 443 bool handleBTSplitSwitchCase(CaseRec& CR, 444 CaseRecVector& WorkList, 445 const Value* SV, 446 MachineBasicBlock* Default, 447 MachineBasicBlock *SwitchBB); 448 bool handleBitTestsSwitchCase(CaseRec& CR, 449 CaseRecVector& WorkList, 450 const Value* SV, 451 MachineBasicBlock* Default, 452 MachineBasicBlock *SwitchBB); 453 454 uint32_t getEdgeWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst); 455 void addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 456 uint32_t Weight = 0); 457 public: 458 void visitSwitchCase(CaseBlock &CB, 459 MachineBasicBlock *SwitchBB); 460 void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB); 461 void visitBitTestCase(BitTestBlock &BB, 462 MachineBasicBlock* NextMBB, 463 unsigned Reg, 464 BitTestCase &B, 465 MachineBasicBlock *SwitchBB); 466 void visitJumpTable(JumpTable &JT); 467 void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH, 468 MachineBasicBlock *SwitchBB); 469 470 private: 471 // These all get lowered before this pass. 472 void visitInvoke(const InvokeInst &I); 473 void visitResume(const ResumeInst &I); 474 void visitUnwind(const UnwindInst &I); 475 476 void visitBinary(const User &I, unsigned OpCode); 477 void visitShift(const User &I, unsigned Opcode); visitAdd(const User & I)478 void visitAdd(const User &I) { visitBinary(I, ISD::ADD); } visitFAdd(const User & I)479 void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); } visitSub(const User & I)480 void visitSub(const User &I) { visitBinary(I, ISD::SUB); } 481 void visitFSub(const User &I); visitMul(const User & I)482 void visitMul(const User &I) { visitBinary(I, ISD::MUL); } visitFMul(const User & I)483 void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); } visitURem(const User & I)484 void visitURem(const User &I) { visitBinary(I, ISD::UREM); } visitSRem(const User & I)485 void visitSRem(const User &I) { visitBinary(I, ISD::SREM); } visitFRem(const User & I)486 void visitFRem(const User &I) { visitBinary(I, ISD::FREM); } visitUDiv(const User & I)487 void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); } 488 void visitSDiv(const User &I); visitFDiv(const User & I)489 void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); } visitAnd(const User & I)490 void visitAnd (const User &I) { visitBinary(I, ISD::AND); } visitOr(const User & I)491 void visitOr (const User &I) { visitBinary(I, ISD::OR); } visitXor(const User & I)492 void visitXor (const User &I) { visitBinary(I, ISD::XOR); } visitShl(const User & I)493 void visitShl (const User &I) { visitShift(I, ISD::SHL); } visitLShr(const User & I)494 void visitLShr(const User &I) { visitShift(I, ISD::SRL); } visitAShr(const User & I)495 void visitAShr(const User &I) { visitShift(I, ISD::SRA); } 496 void visitICmp(const User &I); 497 void visitFCmp(const User &I); 498 // Visit the conversion instructions 499 void visitTrunc(const User &I); 500 void visitZExt(const User &I); 501 void visitSExt(const User &I); 502 void visitFPTrunc(const User &I); 503 void visitFPExt(const User &I); 504 void visitFPToUI(const User &I); 505 void visitFPToSI(const User &I); 506 void visitUIToFP(const User &I); 507 void visitSIToFP(const User &I); 508 void visitPtrToInt(const User &I); 509 void visitIntToPtr(const User &I); 510 void visitBitCast(const User &I); 511 512 void visitExtractElement(const User &I); 513 void visitInsertElement(const User &I); 514 void visitShuffleVector(const User &I); 515 516 void visitExtractValue(const ExtractValueInst &I); 517 void visitInsertValue(const InsertValueInst &I); 518 void visitLandingPad(const LandingPadInst &I); 519 520 void visitGetElementPtr(const User &I); 521 void visitSelect(const User &I); 522 523 void visitAlloca(const AllocaInst &I); 524 void visitLoad(const LoadInst &I); 525 void visitStore(const StoreInst &I); 526 void visitAtomicCmpXchg(const AtomicCmpXchgInst &I); 527 void visitAtomicRMW(const AtomicRMWInst &I); 528 void visitFence(const FenceInst &I); 529 void visitPHI(const PHINode &I); 530 void visitCall(const CallInst &I); 531 bool visitMemCmpCall(const CallInst &I); 532 void visitAtomicLoad(const LoadInst &I); 533 void visitAtomicStore(const StoreInst &I); 534 535 void visitInlineAsm(ImmutableCallSite CS); 536 const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic); 537 void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic); 538 539 void visitPow(const CallInst &I); 540 void visitExp2(const CallInst &I); 541 void visitExp(const CallInst &I); 542 void visitLog(const CallInst &I); 543 void visitLog2(const CallInst &I); 544 void visitLog10(const CallInst &I); 545 546 void visitVAStart(const CallInst &I); 547 void visitVAArg(const VAArgInst &I); 548 void visitVAEnd(const CallInst &I); 549 void visitVACopy(const CallInst &I); 550 visitUserOp1(const Instruction & I)551 void visitUserOp1(const Instruction &I) { 552 llvm_unreachable("UserOp1 should not exist at instruction selection time!"); 553 } visitUserOp2(const Instruction & I)554 void visitUserOp2(const Instruction &I) { 555 llvm_unreachable("UserOp2 should not exist at instruction selection time!"); 556 } 557 558 const char *implVisitAluOverflow(const CallInst &I, ISD::NodeType Op); 559 560 void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB); 561 562 /// EmitFuncArgumentDbgValue - If V is an function argument then create 563 /// corresponding DBG_VALUE machine instruction for it now. At the end of 564 /// instruction selection, they will be inserted to the entry BB. 565 bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 566 int64_t Offset, const SDValue &N); 567 }; 568 569 } // end namespace llvm 570 571 #endif 572