• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- interception_linux.cc -----------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of AddressSanitizer, an address sanity checker.
11 //
12 // Windows-specific interception methods.
13 //
14 // This file is implementing several hooking techniques to intercept calls
15 // to functions. The hooks are dynamically installed by modifying the assembly
16 // code.
17 //
18 // The hooking techniques are making assumptions on the way the code is
19 // generated and are safe under these assumptions.
20 //
21 // On 64-bit architecture, there is no direct 64-bit jump instruction. To allow
22 // arbitrary branching on the whole memory space, the notion of trampoline
23 // region is used. A trampoline region is a memory space withing 2G boundary
24 // where it is safe to add custom assembly code to build 64-bit jumps.
25 //
26 // Hooking techniques
27 // ==================
28 //
29 // 1) Detour
30 //
31 //    The Detour hooking technique is assuming the presence of an header with
32 //    padding and an overridable 2-bytes nop instruction (mov edi, edi). The
33 //    nop instruction can safely be replaced by a 2-bytes jump without any need
34 //    to save the instruction. A jump to the target is encoded in the function
35 //    header and the nop instruction is replaced by a short jump to the header.
36 //
37 //        head:  5 x nop                 head:  jmp <hook>
38 //        func:  mov edi, edi    -->     func:  jmp short <head>
39 //               [...]                   real:  [...]
40 //
41 //    This technique is only implemented on 32-bit architecture.
42 //    Most of the time, Windows API are hookable with the detour technique.
43 //
44 // 2) Redirect Jump
45 //
46 //    The redirect jump is applicable when the first instruction is a direct
47 //    jump. The instruction is replaced by jump to the hook.
48 //
49 //        func:  jmp <label>     -->     func:  jmp <hook>
50 //
51 //    On an 64-bit architecture, a trampoline is inserted.
52 //
53 //        func:  jmp <label>     -->     func:  jmp <tramp>
54 //                                              [...]
55 //
56 //                                   [trampoline]
57 //                                      tramp:  jmp QWORD [addr]
58 //                                       addr:  .bytes <hook>
59 //
60 //    Note: <real> is equilavent to <label>.
61 //
62 // 3) HotPatch
63 //
64 //    The HotPatch hooking is assuming the presence of an header with padding
65 //    and a first instruction with at least 2-bytes.
66 //
67 //    The reason to enforce the 2-bytes limitation is to provide the minimal
68 //    space to encode a short jump. HotPatch technique is only rewriting one
69 //    instruction to avoid breaking a sequence of instructions containing a
70 //    branching target.
71 //
72 //    Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag.
73 //      see: https://msdn.microsoft.com/en-us/library/ms173507.aspx
74 //    Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits.
75 //
76 //        head:   5 x nop                head:  jmp <hook>
77 //        func:   <instr>        -->     func:  jmp short <head>
78 //                [...]                  body:  [...]
79 //
80 //                                   [trampoline]
81 //                                       real:  <instr>
82 //                                              jmp <body>
83 //
84 //    On an 64-bit architecture:
85 //
86 //        head:   6 x nop                head:  jmp QWORD [addr1]
87 //        func:   <instr>        -->     func:  jmp short <head>
88 //                [...]                  body:  [...]
89 //
90 //                                   [trampoline]
91 //                                      addr1:  .bytes <hook>
92 //                                       real:  <instr>
93 //                                              jmp QWORD [addr2]
94 //                                      addr2:  .bytes <body>
95 //
96 // 4) Trampoline
97 //
98 //    The Trampoline hooking technique is the most aggressive one. It is
99 //    assuming that there is a sequence of instructions that can be safely
100 //    replaced by a jump (enough room and no incoming branches).
101 //
102 //    Unfortunately, these assumptions can't be safely presumed and code may
103 //    be broken after hooking.
104 //
105 //        func:   <instr>        -->     func:  jmp <hook>
106 //                <instr>
107 //                [...]                  body:  [...]
108 //
109 //                                   [trampoline]
110 //                                       real:  <instr>
111 //                                              <instr>
112 //                                              jmp <body>
113 //
114 //    On an 64-bit architecture:
115 //
116 //        func:   <instr>        -->     func:  jmp QWORD [addr1]
117 //                <instr>
118 //                [...]                  body:  [...]
119 //
120 //                                   [trampoline]
121 //                                      addr1:  .bytes <hook>
122 //                                       real:  <instr>
123 //                                              <instr>
124 //                                              jmp QWORD [addr2]
125 //                                      addr2:  .bytes <body>
126 //===----------------------------------------------------------------------===//
127 
128 #ifdef _WIN32
129 
130 #include "interception.h"
131 #include "sanitizer_common/sanitizer_platform.h"
132 #define WIN32_LEAN_AND_MEAN
133 #include <windows.h>
134 
135 namespace __interception {
136 
137 static const int kAddressLength = FIRST_32_SECOND_64(4, 8);
138 static const int kJumpInstructionLength = 5;
139 static const int kShortJumpInstructionLength = 2;
140 static const int kIndirectJumpInstructionLength = 6;
141 static const int kBranchLength =
142     FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength);
143 static const int kDirectBranchLength = kBranchLength + kAddressLength;
144 
InterceptionFailed()145 static void InterceptionFailed() {
146   // Do we have a good way to abort with an error message here?
147   __debugbreak();
148 }
149 
DistanceIsWithin2Gig(uptr from,uptr target)150 static bool DistanceIsWithin2Gig(uptr from, uptr target) {
151   if (from < target)
152     return target - from <= (uptr)0x7FFFFFFFU;
153   else
154     return from - target <= (uptr)0x80000000U;
155 }
156 
GetMmapGranularity()157 static uptr GetMmapGranularity() {
158   SYSTEM_INFO si;
159   GetSystemInfo(&si);
160   return si.dwAllocationGranularity;
161 }
162 
RoundUpTo(uptr size,uptr boundary)163 static uptr RoundUpTo(uptr size, uptr boundary) {
164   return (size + boundary - 1) & ~(boundary - 1);
165 }
166 
167 // FIXME: internal_str* and internal_mem* functions should be moved from the
168 // ASan sources into interception/.
169 
_memset(void * p,int value,size_t sz)170 static void _memset(void *p, int value, size_t sz) {
171   for (size_t i = 0; i < sz; ++i)
172     ((char*)p)[i] = (char)value;
173 }
174 
_memcpy(void * dst,void * src,size_t sz)175 static void _memcpy(void *dst, void *src, size_t sz) {
176   char *dst_c = (char*)dst,
177        *src_c = (char*)src;
178   for (size_t i = 0; i < sz; ++i)
179     dst_c[i] = src_c[i];
180 }
181 
ChangeMemoryProtection(uptr address,uptr size,DWORD * old_protection)182 static bool ChangeMemoryProtection(
183     uptr address, uptr size, DWORD *old_protection) {
184   return ::VirtualProtect((void*)address, size,
185                           PAGE_EXECUTE_READWRITE,
186                           old_protection) != FALSE;
187 }
188 
RestoreMemoryProtection(uptr address,uptr size,DWORD old_protection)189 static bool RestoreMemoryProtection(
190     uptr address, uptr size, DWORD old_protection) {
191   DWORD unused;
192   return ::VirtualProtect((void*)address, size,
193                           old_protection,
194                           &unused) != FALSE;
195 }
196 
IsMemoryPadding(uptr address,uptr size)197 static bool IsMemoryPadding(uptr address, uptr size) {
198   u8* function = (u8*)address;
199   for (size_t i = 0; i < size; ++i)
200     if (function[i] != 0x90 && function[i] != 0xCC)
201       return false;
202   return true;
203 }
204 
205 static const u8 kHintNop10Bytes[] = {
206   0x66, 0x66, 0x0F, 0x1F, 0x84,
207   0x00, 0x00, 0x00, 0x00, 0x00
208 };
209 
210 template<class T>
FunctionHasPrefix(uptr address,const T & pattern)211 static bool FunctionHasPrefix(uptr address, const T &pattern) {
212   u8* function = (u8*)address - sizeof(pattern);
213   for (size_t i = 0; i < sizeof(pattern); ++i)
214     if (function[i] != pattern[i])
215       return false;
216   return true;
217 }
218 
FunctionHasPadding(uptr address,uptr size)219 static bool FunctionHasPadding(uptr address, uptr size) {
220   if (IsMemoryPadding(address - size, size))
221     return true;
222   if (size <= sizeof(kHintNop10Bytes) &&
223       FunctionHasPrefix(address, kHintNop10Bytes))
224     return true;
225   return false;
226 }
227 
WritePadding(uptr from,uptr size)228 static void WritePadding(uptr from, uptr size) {
229   _memset((void*)from, 0xCC, (size_t)size);
230 }
231 
CopyInstructions(uptr from,uptr to,uptr size)232 static void CopyInstructions(uptr from, uptr to, uptr size) {
233   _memcpy((void*)from, (void*)to, (size_t)size);
234 }
235 
WriteJumpInstruction(uptr from,uptr target)236 static void WriteJumpInstruction(uptr from, uptr target) {
237   if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target))
238     InterceptionFailed();
239   ptrdiff_t offset = target - from - kJumpInstructionLength;
240   *(u8*)from = 0xE9;
241   *(u32*)(from + 1) = offset;
242 }
243 
WriteShortJumpInstruction(uptr from,uptr target)244 static void WriteShortJumpInstruction(uptr from, uptr target) {
245   sptr offset = target - from - kShortJumpInstructionLength;
246   if (offset < -128 || offset > 127)
247     InterceptionFailed();
248   *(u8*)from = 0xEB;
249   *(u8*)(from + 1) = (u8)offset;
250 }
251 
252 #if SANITIZER_WINDOWS64
WriteIndirectJumpInstruction(uptr from,uptr indirect_target)253 static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) {
254   // jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative
255   // offset.
256   // The offset is the distance from then end of the jump instruction to the
257   // memory location containing the targeted address. The displacement is still
258   // 32-bit in x64, so indirect_target must be located within +/- 2GB range.
259   int offset = indirect_target - from - kIndirectJumpInstructionLength;
260   if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength,
261                             indirect_target)) {
262     InterceptionFailed();
263   }
264   *(u16*)from = 0x25FF;
265   *(u32*)(from + 2) = offset;
266 }
267 #endif
268 
WriteBranch(uptr from,uptr indirect_target,uptr target)269 static void WriteBranch(
270     uptr from, uptr indirect_target, uptr target) {
271 #if SANITIZER_WINDOWS64
272   WriteIndirectJumpInstruction(from, indirect_target);
273   *(u64*)indirect_target = target;
274 #else
275   (void)indirect_target;
276   WriteJumpInstruction(from, target);
277 #endif
278 }
279 
WriteDirectBranch(uptr from,uptr target)280 static void WriteDirectBranch(uptr from, uptr target) {
281 #if SANITIZER_WINDOWS64
282   // Emit an indirect jump through immediately following bytes:
283   //   jmp [rip + kBranchLength]
284   //   .quad <target>
285   WriteBranch(from, from + kBranchLength, target);
286 #else
287   WriteJumpInstruction(from, target);
288 #endif
289 }
290 
291 struct TrampolineMemoryRegion {
292   uptr content;
293   uptr allocated_size;
294   uptr max_size;
295 };
296 
297 static const uptr kTrampolineScanLimitRange = 1 << 30;  // 1 gig
298 static const int kMaxTrampolineRegion = 1024;
299 static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion];
300 
AllocateTrampolineRegion(uptr image_address,size_t granularity)301 static void *AllocateTrampolineRegion(uptr image_address, size_t granularity) {
302 #if SANITIZER_WINDOWS64
303   uptr address = image_address;
304   uptr scanned = 0;
305   while (scanned < kTrampolineScanLimitRange) {
306     MEMORY_BASIC_INFORMATION info;
307     if (!::VirtualQuery((void*)address, &info, sizeof(info)))
308       return nullptr;
309 
310     // Check whether a region can be allocated at |address|.
311     if (info.State == MEM_FREE && info.RegionSize >= granularity) {
312       void *page = ::VirtualAlloc((void*)RoundUpTo(address, granularity),
313                                   granularity,
314                                   MEM_RESERVE | MEM_COMMIT,
315                                   PAGE_EXECUTE_READWRITE);
316       return page;
317     }
318 
319     // Move to the next region.
320     address = (uptr)info.BaseAddress + info.RegionSize;
321     scanned += info.RegionSize;
322   }
323   return nullptr;
324 #else
325   return ::VirtualAlloc(nullptr,
326                         granularity,
327                         MEM_RESERVE | MEM_COMMIT,
328                         PAGE_EXECUTE_READWRITE);
329 #endif
330 }
331 
332 // Used by unittests to release mapped memory space.
TestOnlyReleaseTrampolineRegions()333 void TestOnlyReleaseTrampolineRegions() {
334   for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
335     TrampolineMemoryRegion *current = &TrampolineRegions[bucket];
336     if (current->content == 0)
337       return;
338     ::VirtualFree((void*)current->content, 0, MEM_RELEASE);
339     current->content = 0;
340   }
341 }
342 
AllocateMemoryForTrampoline(uptr image_address,size_t size)343 static uptr AllocateMemoryForTrampoline(uptr image_address, size_t size) {
344   // Find a region within 2G with enough space to allocate |size| bytes.
345   TrampolineMemoryRegion *region = nullptr;
346   for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
347     TrampolineMemoryRegion* current = &TrampolineRegions[bucket];
348     if (current->content == 0) {
349       // No valid region found, allocate a new region.
350       size_t bucket_size = GetMmapGranularity();
351       void *content = AllocateTrampolineRegion(image_address, bucket_size);
352       if (content == nullptr)
353         return 0U;
354 
355       current->content = (uptr)content;
356       current->allocated_size = 0;
357       current->max_size = bucket_size;
358       region = current;
359       break;
360     } else if (current->max_size - current->allocated_size > size) {
361 #if SANITIZER_WINDOWS64
362         // In 64-bits, the memory space must be allocated within 2G boundary.
363         uptr next_address = current->content + current->allocated_size;
364         if (next_address < image_address ||
365             next_address - image_address >= 0x7FFF0000)
366           continue;
367 #endif
368       // The space can be allocated in the current region.
369       region = current;
370       break;
371     }
372   }
373 
374   // Failed to find a region.
375   if (region == nullptr)
376     return 0U;
377 
378   // Allocate the space in the current region.
379   uptr allocated_space = region->content + region->allocated_size;
380   region->allocated_size += size;
381   WritePadding(allocated_space, size);
382 
383   return allocated_space;
384 }
385 
386 // Returns 0 on error.
GetInstructionSize(uptr address)387 static size_t GetInstructionSize(uptr address) {
388   switch (*(u8*)address) {
389     case 0x90:  // 90 : nop
390       return 1;
391 
392     case 0x50:  // push eax / rax
393     case 0x51:  // push ecx / rcx
394     case 0x52:  // push edx / rdx
395     case 0x53:  // push ebx / rbx
396     case 0x54:  // push esp / rsp
397     case 0x55:  // push ebp / rbp
398     case 0x56:  // push esi / rsi
399     case 0x57:  // push edi / rdi
400     case 0x5D:  // pop ebp / rbp
401       return 1;
402 
403     case 0x6A:  // 6A XX = push XX
404       return 2;
405 
406     case 0xb8:  // b8 XX XX XX XX : mov eax, XX XX XX XX
407     case 0xB9:  // b9 XX XX XX XX : mov ecx, XX XX XX XX
408     case 0xA1:  // A1 XX XX XX XX : mov eax, dword ptr ds:[XXXXXXXX]
409       return 5;
410 
411     // Cannot overwrite control-instruction. Return 0 to indicate failure.
412     case 0xE9:  // E9 XX XX XX XX : jmp <label>
413     case 0xE8:  // E8 XX XX XX XX : call <func>
414     case 0xC3:  // C3 : ret
415     case 0xEB:  // EB XX : jmp XX (short jump)
416     case 0x70:  // 7Y YY : jy XX (short conditional jump)
417     case 0x71:
418     case 0x72:
419     case 0x73:
420     case 0x74:
421     case 0x75:
422     case 0x76:
423     case 0x77:
424     case 0x78:
425     case 0x79:
426     case 0x7A:
427     case 0x7B:
428     case 0x7C:
429     case 0x7D:
430     case 0x7E:
431     case 0x7F:
432       return 0;
433   }
434 
435   switch (*(u16*)(address)) {
436     case 0xFF8B:  // 8B FF : mov edi, edi
437     case 0xEC8B:  // 8B EC : mov ebp, esp
438     case 0xc889:  // 89 C8 : mov eax, ecx
439     case 0xC18B:  // 8B C1 : mov eax, ecx
440     case 0xC033:  // 33 C0 : xor eax, eax
441     case 0xC933:  // 33 C9 : xor ecx, ecx
442     case 0xD233:  // 33 D2 : xor edx, edx
443       return 2;
444 
445     // Cannot overwrite control-instruction. Return 0 to indicate failure.
446     case 0x25FF:  // FF 25 XX XX XX XX : jmp [XXXXXXXX]
447       return 0;
448   }
449 
450 #if SANITIZER_WINDOWS64
451   switch (*(u16*)address) {
452     case 0x5040:  // push rax
453     case 0x5140:  // push rcx
454     case 0x5240:  // push rdx
455     case 0x5340:  // push rbx
456     case 0x5440:  // push rsp
457     case 0x5540:  // push rbp
458     case 0x5640:  // push rsi
459     case 0x5740:  // push rdi
460     case 0x5441:  // push r12
461     case 0x5541:  // push r13
462     case 0x5641:  // push r14
463     case 0x5741:  // push r15
464     case 0x9066:  // Two-byte NOP
465       return 2;
466   }
467 
468   switch (0x00FFFFFF & *(u32*)address) {
469     case 0xe58948:    // 48 8b c4 : mov rbp, rsp
470     case 0xc18b48:    // 48 8b c1 : mov rax, rcx
471     case 0xc48b48:    // 48 8b c4 : mov rax, rsp
472     case 0xd9f748:    // 48 f7 d9 : neg rcx
473     case 0xd12b48:    // 48 2b d1 : sub rdx, rcx
474     case 0x07c1f6:    // f6 c1 07 : test cl, 0x7
475     case 0xc0854d:    // 4d 85 c0 : test r8, r8
476     case 0xc2b60f:    // 0f b6 c2 : movzx eax, dl
477     case 0xc03345:    // 45 33 c0 : xor r8d, r8d
478     case 0xd98b4c:    // 4c 8b d9 : mov r11, rcx
479     case 0xd28b4c:    // 4c 8b d2 : mov r10, rdx
480     case 0xd2b60f:    // 0f b6 d2 : movzx edx, dl
481     case 0xca2b48:    // 48 2b ca : sub rcx, rdx
482     case 0x10b70f:    // 0f b7 10 : movzx edx, WORD PTR [rax]
483     case 0xc00b4d:    // 3d 0b c0 : or r8, r8
484     case 0xd18b48:    // 48 8b d1 : mov rdx, rcx
485     case 0xdc8b4c:    // 4c 8b dc : mov r11,rsp
486     case 0xd18b4c:    // 4c 8b d1 : mov r10, rcx
487       return 3;
488 
489     case 0xec8348:    // 48 83 ec XX : sub rsp, XX
490     case 0xf88349:    // 49 83 f8 XX : cmp r8, XX
491     case 0x588948:    // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx
492       return 4;
493 
494     case 0x058b48:    // 48 8b 05 XX XX XX XX :
495                       //   mov rax, QWORD PTR [rip + XXXXXXXX]
496     case 0x25ff48:    // 48 ff 25 XX XX XX XX :
497                       //   rex.W jmp QWORD PTR [rip + XXXXXXXX]
498       return 7;
499   }
500 
501   switch (*(u32*)(address)) {
502     case 0x24448b48:  // 48 8b 44 24 XX : mov rax, qword ptr [rsp + XX]
503     case 0x245c8948:  // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx
504     case 0x24748948:  // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi
505       return 5;
506   }
507 
508 #else
509 
510   switch (*(u16*)address) {
511     case 0x458B:  // 8B 45 XX : mov eax, dword ptr [ebp + XX]
512     case 0x5D8B:  // 8B 5D XX : mov ebx, dword ptr [ebp + XX]
513     case 0x7D8B:  // 8B 7D XX : mov edi, dword ptr [ebp + XX]
514     case 0xEC83:  // 83 EC XX : sub esp, XX
515     case 0x75FF:  // FF 75 XX : push dword ptr [ebp + XX]
516       return 3;
517     case 0xC1F7:  // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX
518     case 0x25FF:  // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX]
519       return 6;
520     case 0x3D83:  // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX
521       return 7;
522     case 0x7D83:  // 83 7D XX YY : cmp dword ptr [ebp + XX], YY
523       return 4;
524   }
525 
526   switch (0x00FFFFFF & *(u32*)address) {
527     case 0x24448A:  // 8A 44 24 XX : mov eal, dword ptr [esp + XX]
528     case 0x24448B:  // 8B 44 24 XX : mov eax, dword ptr [esp + XX]
529     case 0x244C8B:  // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX]
530     case 0x24548B:  // 8B 54 24 XX : mov edx, dword ptr [esp + XX]
531     case 0x24748B:  // 8B 74 24 XX : mov esi, dword ptr [esp + XX]
532     case 0x247C8B:  // 8B 7C 24 XX : mov edi, dword ptr [esp + XX]
533       return 4;
534   }
535 
536   switch (*(u32*)address) {
537     case 0x2444B60F:  // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX]
538       return 5;
539   }
540 #endif
541 
542   // Unknown instruction!
543   // FIXME: Unknown instruction failures might happen when we add a new
544   // interceptor or a new compiler version. In either case, they should result
545   // in visible and readable error messages. However, merely calling abort()
546   // leads to an infinite recursion in CheckFailed.
547   InterceptionFailed();
548   return 0;
549 }
550 
551 // Returns 0 on error.
RoundUpToInstrBoundary(size_t size,uptr address)552 static size_t RoundUpToInstrBoundary(size_t size, uptr address) {
553   size_t cursor = 0;
554   while (cursor < size) {
555     size_t instruction_size = GetInstructionSize(address + cursor);
556     if (!instruction_size)
557       return 0;
558     cursor += instruction_size;
559   }
560   return cursor;
561 }
562 
563 #if !SANITIZER_WINDOWS64
OverrideFunctionWithDetour(uptr old_func,uptr new_func,uptr * orig_old_func)564 bool OverrideFunctionWithDetour(
565     uptr old_func, uptr new_func, uptr *orig_old_func) {
566   const int kDetourHeaderLen = 5;
567   const u16 kDetourInstruction = 0xFF8B;
568 
569   uptr header = (uptr)old_func - kDetourHeaderLen;
570   uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength;
571 
572   // Validate that the function is hookable.
573   if (*(u16*)old_func != kDetourInstruction ||
574       !IsMemoryPadding(header, kDetourHeaderLen))
575     return false;
576 
577   // Change memory protection to writable.
578   DWORD protection = 0;
579   if (!ChangeMemoryProtection(header, patch_length, &protection))
580     return false;
581 
582   // Write a relative jump to the redirected function.
583   WriteJumpInstruction(header, new_func);
584 
585   // Write the short jump to the function prefix.
586   WriteShortJumpInstruction(old_func, header);
587 
588   // Restore previous memory protection.
589   if (!RestoreMemoryProtection(header, patch_length, protection))
590     return false;
591 
592   if (orig_old_func)
593     *orig_old_func = old_func + kShortJumpInstructionLength;
594 
595   return true;
596 }
597 #endif
598 
OverrideFunctionWithRedirectJump(uptr old_func,uptr new_func,uptr * orig_old_func)599 bool OverrideFunctionWithRedirectJump(
600     uptr old_func, uptr new_func, uptr *orig_old_func) {
601   // Check whether the first instruction is a relative jump.
602   if (*(u8*)old_func != 0xE9)
603     return false;
604 
605   if (orig_old_func) {
606     uptr relative_offset = *(u32*)(old_func + 1);
607     uptr absolute_target = old_func + relative_offset + kJumpInstructionLength;
608     *orig_old_func = absolute_target;
609   }
610 
611 #if SANITIZER_WINDOWS64
612   // If needed, get memory space for a trampoline jump.
613   uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength);
614   if (!trampoline)
615     return false;
616   WriteDirectBranch(trampoline, new_func);
617 #endif
618 
619   // Change memory protection to writable.
620   DWORD protection = 0;
621   if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection))
622     return false;
623 
624   // Write a relative jump to the redirected function.
625   WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline));
626 
627   // Restore previous memory protection.
628   if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection))
629     return false;
630 
631   return true;
632 }
633 
OverrideFunctionWithHotPatch(uptr old_func,uptr new_func,uptr * orig_old_func)634 bool OverrideFunctionWithHotPatch(
635     uptr old_func, uptr new_func, uptr *orig_old_func) {
636   const int kHotPatchHeaderLen = kBranchLength;
637 
638   uptr header = (uptr)old_func - kHotPatchHeaderLen;
639   uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength;
640 
641   // Validate that the function is hot patchable.
642   size_t instruction_size = GetInstructionSize(old_func);
643   if (instruction_size < kShortJumpInstructionLength ||
644       !FunctionHasPadding(old_func, kHotPatchHeaderLen))
645     return false;
646 
647   if (orig_old_func) {
648     // Put the needed instructions into the trampoline bytes.
649     uptr trampoline_length = instruction_size + kDirectBranchLength;
650     uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
651     if (!trampoline)
652       return false;
653     CopyInstructions(trampoline, old_func, instruction_size);
654     WriteDirectBranch(trampoline + instruction_size,
655                       old_func + instruction_size);
656     *orig_old_func = trampoline;
657   }
658 
659   // If needed, get memory space for indirect address.
660   uptr indirect_address = 0;
661 #if SANITIZER_WINDOWS64
662   indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
663   if (!indirect_address)
664     return false;
665 #endif
666 
667   // Change memory protection to writable.
668   DWORD protection = 0;
669   if (!ChangeMemoryProtection(header, patch_length, &protection))
670     return false;
671 
672   // Write jumps to the redirected function.
673   WriteBranch(header, indirect_address, new_func);
674   WriteShortJumpInstruction(old_func, header);
675 
676   // Restore previous memory protection.
677   if (!RestoreMemoryProtection(header, patch_length, protection))
678     return false;
679 
680   return true;
681 }
682 
OverrideFunctionWithTrampoline(uptr old_func,uptr new_func,uptr * orig_old_func)683 bool OverrideFunctionWithTrampoline(
684     uptr old_func, uptr new_func, uptr *orig_old_func) {
685 
686   size_t instructions_length = kBranchLength;
687   size_t padding_length = 0;
688   uptr indirect_address = 0;
689 
690   if (orig_old_func) {
691     // Find out the number of bytes of the instructions we need to copy
692     // to the trampoline.
693     instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func);
694     if (!instructions_length)
695       return false;
696 
697     // Put the needed instructions into the trampoline bytes.
698     uptr trampoline_length = instructions_length + kDirectBranchLength;
699     uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
700     if (!trampoline)
701       return false;
702     CopyInstructions(trampoline, old_func, instructions_length);
703     WriteDirectBranch(trampoline + instructions_length,
704                       old_func + instructions_length);
705     *orig_old_func = trampoline;
706   }
707 
708 #if SANITIZER_WINDOWS64
709   // Check if the targeted address can be encoded in the function padding.
710   // Otherwise, allocate it in the trampoline region.
711   if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) {
712     indirect_address = old_func - kAddressLength;
713     padding_length = kAddressLength;
714   } else {
715     indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
716     if (!indirect_address)
717       return false;
718   }
719 #endif
720 
721   // Change memory protection to writable.
722   uptr patch_address = old_func - padding_length;
723   uptr patch_length = instructions_length + padding_length;
724   DWORD protection = 0;
725   if (!ChangeMemoryProtection(patch_address, patch_length, &protection))
726     return false;
727 
728   // Patch the original function.
729   WriteBranch(old_func, indirect_address, new_func);
730 
731   // Restore previous memory protection.
732   if (!RestoreMemoryProtection(patch_address, patch_length, protection))
733     return false;
734 
735   return true;
736 }
737 
OverrideFunction(uptr old_func,uptr new_func,uptr * orig_old_func)738 bool OverrideFunction(
739     uptr old_func, uptr new_func, uptr *orig_old_func) {
740 #if !SANITIZER_WINDOWS64
741   if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func))
742     return true;
743 #endif
744   if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func))
745     return true;
746   if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func))
747     return true;
748   if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func))
749     return true;
750   return false;
751 }
752 
InterestingDLLsAvailable()753 static void **InterestingDLLsAvailable() {
754   static const char *InterestingDLLs[] = {
755       "kernel32.dll",
756       "msvcr110.dll",      // VS2012
757       "msvcr120.dll",      // VS2013
758       "vcruntime140.dll",  // VS2015
759       "ucrtbase.dll",      // Universal CRT
760       // NTDLL should go last as it exports some functions that we should
761       // override in the CRT [presumably only used internally].
762       "ntdll.dll", NULL};
763   static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 };
764   if (!result[0]) {
765     for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) {
766       if (HMODULE h = GetModuleHandleA(InterestingDLLs[i]))
767         result[j++] = (void *)h;
768     }
769   }
770   return &result[0];
771 }
772 
773 namespace {
774 // Utility for reading loaded PE images.
775 template <typename T> class RVAPtr {
776  public:
RVAPtr(void * module,uptr rva)777   RVAPtr(void *module, uptr rva)
778       : ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {}
operator T*()779   operator T *() { return ptr_; }
operator ->()780   T *operator->() { return ptr_; }
operator ++()781   T *operator++() { return ++ptr_; }
782 
783  private:
784   T *ptr_;
785 };
786 } // namespace
787 
788 // Internal implementation of GetProcAddress. At least since Windows 8,
789 // GetProcAddress appears to initialize DLLs before returning function pointers
790 // into them. This is problematic for the sanitizers, because they typically
791 // want to intercept malloc *before* MSVCRT initializes. Our internal
792 // implementation walks the export list manually without doing initialization.
InternalGetProcAddress(void * module,const char * func_name)793 uptr InternalGetProcAddress(void *module, const char *func_name) {
794   // Check that the module header is full and present.
795   RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
796   RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
797   if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ"
798       headers->Signature != IMAGE_NT_SIGNATURE ||           // "PE\0\0"
799       headers->FileHeader.SizeOfOptionalHeader <
800           sizeof(IMAGE_OPTIONAL_HEADER)) {
801     return 0;
802   }
803 
804   IMAGE_DATA_DIRECTORY *export_directory =
805       &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
806   RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module,
807                                          export_directory->VirtualAddress);
808   RVAPtr<DWORD> functions(module, exports->AddressOfFunctions);
809   RVAPtr<DWORD> names(module, exports->AddressOfNames);
810   RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals);
811 
812   for (DWORD i = 0; i < exports->NumberOfNames; i++) {
813     RVAPtr<char> name(module, names[i]);
814     if (!strcmp(func_name, name)) {
815       DWORD index = ordinals[i];
816       RVAPtr<char> func(module, functions[index]);
817       return (uptr)(char *)func;
818     }
819   }
820 
821   return 0;
822 }
823 
GetFunctionAddressInDLLs(const char * func_name,uptr * func_addr)824 static bool GetFunctionAddressInDLLs(const char *func_name, uptr *func_addr) {
825   *func_addr = 0;
826   void **DLLs = InterestingDLLsAvailable();
827   for (size_t i = 0; *func_addr == 0 && DLLs[i]; ++i)
828     *func_addr = InternalGetProcAddress(DLLs[i], func_name);
829   return (*func_addr != 0);
830 }
831 
OverrideFunction(const char * name,uptr new_func,uptr * orig_old_func)832 bool OverrideFunction(const char *name, uptr new_func, uptr *orig_old_func) {
833   uptr orig_func;
834   if (!GetFunctionAddressInDLLs(name, &orig_func))
835     return false;
836   return OverrideFunction(orig_func, new_func, orig_old_func);
837 }
838 
OverrideImportedFunction(const char * module_to_patch,const char * imported_module,const char * function_name,uptr new_function,uptr * orig_old_func)839 bool OverrideImportedFunction(const char *module_to_patch,
840                               const char *imported_module,
841                               const char *function_name, uptr new_function,
842                               uptr *orig_old_func) {
843   HMODULE module = GetModuleHandleA(module_to_patch);
844   if (!module)
845     return false;
846 
847   // Check that the module header is full and present.
848   RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
849   RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
850   if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ"
851       headers->Signature != IMAGE_NT_SIGNATURE ||            // "PE\0\0"
852       headers->FileHeader.SizeOfOptionalHeader <
853           sizeof(IMAGE_OPTIONAL_HEADER)) {
854     return false;
855   }
856 
857   IMAGE_DATA_DIRECTORY *import_directory =
858       &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
859 
860   // Iterate the list of imported DLLs. FirstThunk will be null for the last
861   // entry.
862   RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module,
863                                           import_directory->VirtualAddress);
864   for (; imports->FirstThunk != 0; ++imports) {
865     RVAPtr<const char> modname(module, imports->Name);
866     if (_stricmp(&*modname, imported_module) == 0)
867       break;
868   }
869   if (imports->FirstThunk == 0)
870     return false;
871 
872   // We have two parallel arrays: the import address table (IAT) and the table
873   // of names. They start out containing the same data, but the loader rewrites
874   // the IAT to hold imported addresses and leaves the name table in
875   // OriginalFirstThunk alone.
876   RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk);
877   RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk);
878   for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) {
879     if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) {
880       RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name(
881           module, name_table->u1.ForwarderString);
882       const char *funcname = &import_by_name->Name[0];
883       if (strcmp(funcname, function_name) == 0)
884         break;
885     }
886   }
887   if (name_table->u1.Ordinal == 0)
888     return false;
889 
890   // Now we have the correct IAT entry. Do the swap. We have to make the page
891   // read/write first.
892   if (orig_old_func)
893     *orig_old_func = iat->u1.AddressOfData;
894   DWORD old_prot, unused_prot;
895   if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE,
896                       &old_prot))
897     return false;
898   iat->u1.AddressOfData = new_function;
899   if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot))
900     return false;  // Not clear if this failure bothers us.
901   return true;
902 }
903 
904 }  // namespace __interception
905 
906 #endif  // _WIN32
907