• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines various functions that are used to clone chunks of LLVM
11 // code for various purposes.  This varies from copying whole modules into new
12 // modules, to cloning functions with different arguments, to inlining
13 // functions, to copying basic blocks to support loop unrolling or superblock
14 // formation, etc.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
19 #define LLVM_TRANSFORMS_UTILS_CLONING_H
20 
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/ValueHandle.h"
27 #include "llvm/Transforms/Utils/ValueMapper.h"
28 #include <functional>
29 #include <memory>
30 #include <vector>
31 
32 namespace llvm {
33 
34 class AllocaInst;
35 class BasicBlock;
36 class BlockFrequencyInfo;
37 class CallInst;
38 class CallGraph;
39 class DebugInfoFinder;
40 class DominatorTree;
41 class Function;
42 class Instruction;
43 class InvokeInst;
44 class Loop;
45 class LoopInfo;
46 class Module;
47 class ProfileSummaryInfo;
48 class ReturnInst;
49 
50 /// Return an exact copy of the specified module
51 ///
52 std::unique_ptr<Module> CloneModule(const Module &M);
53 std::unique_ptr<Module> CloneModule(const Module &M, ValueToValueMapTy &VMap);
54 
55 /// Return a copy of the specified module. The ShouldCloneDefinition function
56 /// controls whether a specific GlobalValue's definition is cloned. If the
57 /// function returns false, the module copy will contain an external reference
58 /// in place of the global definition.
59 std::unique_ptr<Module>
60 CloneModule(const Module &M, ValueToValueMapTy &VMap,
61             function_ref<bool(const GlobalValue *)> ShouldCloneDefinition);
62 
63 /// ClonedCodeInfo - This struct can be used to capture information about code
64 /// being cloned, while it is being cloned.
65 struct ClonedCodeInfo {
66   /// ContainsCalls - This is set to true if the cloned code contains a normal
67   /// call instruction.
68   bool ContainsCalls = false;
69 
70   /// ContainsDynamicAllocas - This is set to true if the cloned code contains
71   /// a 'dynamic' alloca.  Dynamic allocas are allocas that are either not in
72   /// the entry block or they are in the entry block but are not a constant
73   /// size.
74   bool ContainsDynamicAllocas = false;
75 
76   /// All cloned call sites that have operand bundles attached are appended to
77   /// this vector.  This vector may contain nulls or undefs if some of the
78   /// originally inserted callsites were DCE'ed after they were cloned.
79   std::vector<WeakTrackingVH> OperandBundleCallSites;
80 
81   ClonedCodeInfo() = default;
82 };
83 
84 /// CloneBasicBlock - Return a copy of the specified basic block, but without
85 /// embedding the block into a particular function.  The block returned is an
86 /// exact copy of the specified basic block, without any remapping having been
87 /// performed.  Because of this, this is only suitable for applications where
88 /// the basic block will be inserted into the same function that it was cloned
89 /// from (loop unrolling would use this, for example).
90 ///
91 /// Also, note that this function makes a direct copy of the basic block, and
92 /// can thus produce illegal LLVM code.  In particular, it will copy any PHI
93 /// nodes from the original block, even though there are no predecessors for the
94 /// newly cloned block (thus, phi nodes will have to be updated).  Also, this
95 /// block will branch to the old successors of the original block: these
96 /// successors will have to have any PHI nodes updated to account for the new
97 /// incoming edges.
98 ///
99 /// The correlation between instructions in the source and result basic blocks
100 /// is recorded in the VMap map.
101 ///
102 /// If you have a particular suffix you'd like to use to add to any cloned
103 /// names, specify it as the optional third parameter.
104 ///
105 /// If you would like the basic block to be auto-inserted into the end of a
106 /// function, you can specify it as the optional fourth parameter.
107 ///
108 /// If you would like to collect additional information about the cloned
109 /// function, you can specify a ClonedCodeInfo object with the optional fifth
110 /// parameter.
111 ///
112 BasicBlock *CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
113                             const Twine &NameSuffix = "", Function *F = nullptr,
114                             ClonedCodeInfo *CodeInfo = nullptr,
115                             DebugInfoFinder *DIFinder = nullptr);
116 
117 /// CloneFunction - Return a copy of the specified function and add it to that
118 /// function's module.  Also, any references specified in the VMap are changed
119 /// to refer to their mapped value instead of the original one.  If any of the
120 /// arguments to the function are in the VMap, the arguments are deleted from
121 /// the resultant function.  The VMap is updated to include mappings from all of
122 /// the instructions and basicblocks in the function from their old to new
123 /// values.  The final argument captures information about the cloned code if
124 /// non-null.
125 ///
126 /// VMap contains no non-identity GlobalValue mappings and debug info metadata
127 /// will not be cloned.
128 ///
129 Function *CloneFunction(Function *F, ValueToValueMapTy &VMap,
130                         ClonedCodeInfo *CodeInfo = nullptr);
131 
132 /// Clone OldFunc into NewFunc, transforming the old arguments into references
133 /// to VMap values.  Note that if NewFunc already has basic blocks, the ones
134 /// cloned into it will be added to the end of the function.  This function
135 /// fills in a list of return instructions, and can optionally remap types
136 /// and/or append the specified suffix to all values cloned.
137 ///
138 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
139 /// mappings.
140 ///
141 void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
142                        ValueToValueMapTy &VMap, bool ModuleLevelChanges,
143                        SmallVectorImpl<ReturnInst*> &Returns,
144                        const char *NameSuffix = "",
145                        ClonedCodeInfo *CodeInfo = nullptr,
146                        ValueMapTypeRemapper *TypeMapper = nullptr,
147                        ValueMaterializer *Materializer = nullptr);
148 
149 void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
150                                const Instruction *StartingInst,
151                                ValueToValueMapTy &VMap, bool ModuleLevelChanges,
152                                SmallVectorImpl<ReturnInst *> &Returns,
153                                const char *NameSuffix = "",
154                                ClonedCodeInfo *CodeInfo = nullptr);
155 
156 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
157 /// except that it does some simple constant prop and DCE on the fly.  The
158 /// effect of this is to copy significantly less code in cases where (for
159 /// example) a function call with constant arguments is inlined, and those
160 /// constant arguments cause a significant amount of code in the callee to be
161 /// dead.  Since this doesn't produce an exactly copy of the input, it can't be
162 /// used for things like CloneFunction or CloneModule.
163 ///
164 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
165 /// mappings.
166 ///
167 void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
168                                ValueToValueMapTy &VMap, bool ModuleLevelChanges,
169                                SmallVectorImpl<ReturnInst*> &Returns,
170                                const char *NameSuffix = "",
171                                ClonedCodeInfo *CodeInfo = nullptr,
172                                Instruction *TheCall = nullptr);
173 
174 /// InlineFunctionInfo - This class captures the data input to the
175 /// InlineFunction call, and records the auxiliary results produced by it.
176 class InlineFunctionInfo {
177 public:
178   explicit InlineFunctionInfo(CallGraph *cg = nullptr,
179                               std::function<AssumptionCache &(Function &)>
180                                   *GetAssumptionCache = nullptr,
181                               ProfileSummaryInfo *PSI = nullptr,
182                               BlockFrequencyInfo *CallerBFI = nullptr,
183                               BlockFrequencyInfo *CalleeBFI = nullptr)
CG(cg)184       : CG(cg), GetAssumptionCache(GetAssumptionCache), PSI(PSI),
185         CallerBFI(CallerBFI), CalleeBFI(CalleeBFI) {}
186 
187   /// CG - If non-null, InlineFunction will update the callgraph to reflect the
188   /// changes it makes.
189   CallGraph *CG;
190   std::function<AssumptionCache &(Function &)> *GetAssumptionCache;
191   ProfileSummaryInfo *PSI;
192   BlockFrequencyInfo *CallerBFI, *CalleeBFI;
193 
194   /// StaticAllocas - InlineFunction fills this in with all static allocas that
195   /// get copied into the caller.
196   SmallVector<AllocaInst *, 4> StaticAllocas;
197 
198   /// InlinedCalls - InlineFunction fills this in with callsites that were
199   /// inlined from the callee.  This is only filled in if CG is non-null.
200   SmallVector<WeakTrackingVH, 8> InlinedCalls;
201 
202   /// All of the new call sites inlined into the caller.
203   ///
204   /// 'InlineFunction' fills this in by scanning the inlined instructions, and
205   /// only if CG is null. If CG is non-null, instead the value handle
206   /// `InlinedCalls` above is used.
207   SmallVector<CallSite, 8> InlinedCallSites;
208 
reset()209   void reset() {
210     StaticAllocas.clear();
211     InlinedCalls.clear();
212     InlinedCallSites.clear();
213   }
214 };
215 
216 /// InlineFunction - This function inlines the called function into the basic
217 /// block of the caller.  This returns false if it is not possible to inline
218 /// this call.  The program is still in a well defined state if this occurs
219 /// though.
220 ///
221 /// Note that this only does one level of inlining.  For example, if the
222 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
223 /// exists in the instruction stream.  Similarly this will inline a recursive
224 /// function by one level.
225 ///
226 /// Note that while this routine is allowed to cleanup and optimize the
227 /// *inlined* code to minimize the actual inserted code, it must not delete
228 /// code in the caller as users of this routine may have pointers to
229 /// instructions in the caller that need to remain stable.
230 ///
231 /// If ForwardVarArgsTo is passed, inlining a function with varargs is allowed
232 /// and all varargs at the callsite will be passed to any calls to
233 /// ForwardVarArgsTo. The caller of InlineFunction has to make sure any varargs
234 /// are only used by ForwardVarArgsTo.
235 bool InlineFunction(CallInst *C, InlineFunctionInfo &IFI,
236                     AAResults *CalleeAAR = nullptr, bool InsertLifetime = true);
237 bool InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
238                     AAResults *CalleeAAR = nullptr, bool InsertLifetime = true);
239 bool InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
240                     AAResults *CalleeAAR = nullptr, bool InsertLifetime = true,
241                     Function *ForwardVarArgsTo = nullptr);
242 
243 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
244 /// Blocks.
245 ///
246 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
247 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
248 /// Note: Only innermost loops are supported.
249 Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
250                              Loop *OrigLoop, ValueToValueMapTy &VMap,
251                              const Twine &NameSuffix, LoopInfo *LI,
252                              DominatorTree *DT,
253                              SmallVectorImpl<BasicBlock *> &Blocks);
254 
255 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
256 void remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock *> &Blocks,
257                                ValueToValueMapTy &VMap);
258 
259 /// Split edge between BB and PredBB and duplicate all non-Phi instructions
260 /// from BB between its beginning and the StopAt instruction into the split
261 /// block. Phi nodes are not duplicated, but their uses are handled correctly:
262 /// we replace them with the uses of corresponding Phi inputs. ValueMapping
263 /// is used to map the original instructions from BB to their newly-created
264 /// copies. Returns the split block.
265 BasicBlock *
266 DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB,
267                                     Instruction *StopAt,
268                                     ValueToValueMapTy &ValueMapping,
269                                     DominatorTree *DT = nullptr);
270 } // end namespace llvm
271 
272 #endif // LLVM_TRANSFORMS_UTILS_CLONING_H
273