1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "thread.h"
18
19 #include <limits.h> // for INT_MAX
20 #include <pthread.h>
21 #include <signal.h>
22 #include <sys/resource.h>
23 #include <sys/time.h>
24
25 #if __has_feature(hwaddress_sanitizer)
26 #include <sanitizer/hwasan_interface.h>
27 #else
28 #define __hwasan_tag_pointer(p, t) (p)
29 #endif
30
31 #include <algorithm>
32 #include <bitset>
33 #include <cerrno>
34 #include <iostream>
35 #include <list>
36 #include <sstream>
37
38 #include "android-base/stringprintf.h"
39 #include "android-base/strings.h"
40
41 #include "arch/context-inl.h"
42 #include "arch/context.h"
43 #include "art_field-inl.h"
44 #include "art_method-inl.h"
45 #include "base/atomic.h"
46 #include "base/bit_utils.h"
47 #include "base/casts.h"
48 #include "arch/context.h"
49 #include "base/file_utils.h"
50 #include "base/memory_tool.h"
51 #include "base/mutex.h"
52 #include "base/stl_util.h"
53 #include "base/systrace.h"
54 #include "base/timing_logger.h"
55 #include "base/to_str.h"
56 #include "base/utils.h"
57 #include "class_linker-inl.h"
58 #include "class_root.h"
59 #include "debugger.h"
60 #include "dex/descriptors_names.h"
61 #include "dex/dex_file-inl.h"
62 #include "dex/dex_file_annotations.h"
63 #include "dex/dex_file_types.h"
64 #include "entrypoints/entrypoint_utils.h"
65 #include "entrypoints/quick/quick_alloc_entrypoints.h"
66 #include "gc/accounting/card_table-inl.h"
67 #include "gc/accounting/heap_bitmap-inl.h"
68 #include "gc/allocator/rosalloc.h"
69 #include "gc/heap.h"
70 #include "gc/space/space-inl.h"
71 #include "gc_root.h"
72 #include "handle_scope-inl.h"
73 #include "indirect_reference_table-inl.h"
74 #include "instrumentation.h"
75 #include "interpreter/interpreter.h"
76 #include "interpreter/mterp/mterp.h"
77 #include "interpreter/shadow_frame-inl.h"
78 #include "java_frame_root_info.h"
79 #include "jni/java_vm_ext.h"
80 #include "jni/jni_internal.h"
81 #include "mirror/class-alloc-inl.h"
82 #include "mirror/class_loader.h"
83 #include "mirror/object_array-alloc-inl.h"
84 #include "mirror/object_array-inl.h"
85 #include "mirror/stack_trace_element.h"
86 #include "monitor.h"
87 #include "monitor_objects_stack_visitor.h"
88 #include "native_stack_dump.h"
89 #include "nativehelper/scoped_local_ref.h"
90 #include "nativehelper/scoped_utf_chars.h"
91 #include "nth_caller_visitor.h"
92 #include "oat_quick_method_header.h"
93 #include "obj_ptr-inl.h"
94 #include "object_lock.h"
95 #include "palette/palette.h"
96 #include "quick/quick_method_frame_info.h"
97 #include "quick_exception_handler.h"
98 #include "read_barrier-inl.h"
99 #include "reflection.h"
100 #include "runtime-inl.h"
101 #include "runtime.h"
102 #include "runtime_callbacks.h"
103 #include "scoped_thread_state_change-inl.h"
104 #include "stack.h"
105 #include "stack_map.h"
106 #include "thread-inl.h"
107 #include "thread_list.h"
108 #include "verifier/method_verifier.h"
109 #include "verify_object.h"
110 #include "well_known_classes.h"
111
112 #if ART_USE_FUTEXES
113 #include "linux/futex.h"
114 #include "sys/syscall.h"
115 #ifndef SYS_futex
116 #define SYS_futex __NR_futex
117 #endif
118 #endif // ART_USE_FUTEXES
119
120 namespace art {
121
122 using android::base::StringAppendV;
123 using android::base::StringPrintf;
124
125 extern "C" NO_RETURN void artDeoptimize(Thread* self);
126
127 bool Thread::is_started_ = false;
128 pthread_key_t Thread::pthread_key_self_;
129 ConditionVariable* Thread::resume_cond_ = nullptr;
130 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
131 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
132 Thread* Thread::jit_sensitive_thread_ = nullptr;
133
134 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
135
136 // For implicit overflow checks we reserve an extra piece of memory at the bottom
137 // of the stack (lowest memory). The higher portion of the memory
138 // is protected against reads and the lower is available for use while
139 // throwing the StackOverflow exception.
140 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
141
142 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
143
InitCardTable()144 void Thread::InitCardTable() {
145 tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
146 }
147
UnimplementedEntryPoint()148 static void UnimplementedEntryPoint() {
149 UNIMPLEMENTED(FATAL);
150 }
151
152 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
153 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active);
154
SetIsGcMarkingAndUpdateEntrypoints(bool is_marking)155 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
156 CHECK(kUseReadBarrier);
157 tls32_.is_gc_marking = is_marking;
158 UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active= */ is_marking);
159 ResetQuickAllocEntryPointsForThread(is_marking);
160 }
161
InitTlsEntryPoints()162 void Thread::InitTlsEntryPoints() {
163 ScopedTrace trace("InitTlsEntryPoints");
164 // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
165 uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
166 uintptr_t* end = reinterpret_cast<uintptr_t*>(
167 reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
168 for (uintptr_t* it = begin; it != end; ++it) {
169 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
170 }
171 InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
172 }
173
ResetQuickAllocEntryPointsForThread(bool is_marking)174 void Thread::ResetQuickAllocEntryPointsForThread(bool is_marking) {
175 if (kUseReadBarrier && kRuntimeISA != InstructionSet::kX86_64) {
176 // Allocation entrypoint switching is currently only implemented for X86_64.
177 is_marking = true;
178 }
179 ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints, is_marking);
180 }
181
182 class DeoptimizationContextRecord {
183 public:
DeoptimizationContextRecord(const JValue & ret_val,bool is_reference,bool from_code,ObjPtr<mirror::Throwable> pending_exception,DeoptimizationMethodType method_type,DeoptimizationContextRecord * link)184 DeoptimizationContextRecord(const JValue& ret_val,
185 bool is_reference,
186 bool from_code,
187 ObjPtr<mirror::Throwable> pending_exception,
188 DeoptimizationMethodType method_type,
189 DeoptimizationContextRecord* link)
190 : ret_val_(ret_val),
191 is_reference_(is_reference),
192 from_code_(from_code),
193 pending_exception_(pending_exception.Ptr()),
194 deopt_method_type_(method_type),
195 link_(link) {}
196
GetReturnValue() const197 JValue GetReturnValue() const { return ret_val_; }
IsReference() const198 bool IsReference() const { return is_reference_; }
GetFromCode() const199 bool GetFromCode() const { return from_code_; }
GetPendingException() const200 ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; }
GetLink() const201 DeoptimizationContextRecord* GetLink() const { return link_; }
GetReturnValueAsGCRoot()202 mirror::Object** GetReturnValueAsGCRoot() {
203 DCHECK(is_reference_);
204 return ret_val_.GetGCRoot();
205 }
GetPendingExceptionAsGCRoot()206 mirror::Object** GetPendingExceptionAsGCRoot() {
207 return reinterpret_cast<mirror::Object**>(&pending_exception_);
208 }
GetDeoptimizationMethodType() const209 DeoptimizationMethodType GetDeoptimizationMethodType() const {
210 return deopt_method_type_;
211 }
212
213 private:
214 // The value returned by the method at the top of the stack before deoptimization.
215 JValue ret_val_;
216
217 // Indicates whether the returned value is a reference. If so, the GC will visit it.
218 const bool is_reference_;
219
220 // Whether the context was created from an explicit deoptimization in the code.
221 const bool from_code_;
222
223 // The exception that was pending before deoptimization (or null if there was no pending
224 // exception).
225 mirror::Throwable* pending_exception_;
226
227 // Whether the context was created for an (idempotent) runtime method.
228 const DeoptimizationMethodType deopt_method_type_;
229
230 // A link to the previous DeoptimizationContextRecord.
231 DeoptimizationContextRecord* const link_;
232
233 DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
234 };
235
236 class StackedShadowFrameRecord {
237 public:
StackedShadowFrameRecord(ShadowFrame * shadow_frame,StackedShadowFrameType type,StackedShadowFrameRecord * link)238 StackedShadowFrameRecord(ShadowFrame* shadow_frame,
239 StackedShadowFrameType type,
240 StackedShadowFrameRecord* link)
241 : shadow_frame_(shadow_frame),
242 type_(type),
243 link_(link) {}
244
GetShadowFrame() const245 ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetType() const246 StackedShadowFrameType GetType() const { return type_; }
GetLink() const247 StackedShadowFrameRecord* GetLink() const { return link_; }
248
249 private:
250 ShadowFrame* const shadow_frame_;
251 const StackedShadowFrameType type_;
252 StackedShadowFrameRecord* const link_;
253
254 DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
255 };
256
PushDeoptimizationContext(const JValue & return_value,bool is_reference,ObjPtr<mirror::Throwable> exception,bool from_code,DeoptimizationMethodType method_type)257 void Thread::PushDeoptimizationContext(const JValue& return_value,
258 bool is_reference,
259 ObjPtr<mirror::Throwable> exception,
260 bool from_code,
261 DeoptimizationMethodType method_type) {
262 DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
263 return_value,
264 is_reference,
265 from_code,
266 exception,
267 method_type,
268 tlsPtr_.deoptimization_context_stack);
269 tlsPtr_.deoptimization_context_stack = record;
270 }
271
PopDeoptimizationContext(JValue * result,ObjPtr<mirror::Throwable> * exception,bool * from_code,DeoptimizationMethodType * method_type)272 void Thread::PopDeoptimizationContext(JValue* result,
273 ObjPtr<mirror::Throwable>* exception,
274 bool* from_code,
275 DeoptimizationMethodType* method_type) {
276 AssertHasDeoptimizationContext();
277 DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
278 tlsPtr_.deoptimization_context_stack = record->GetLink();
279 result->SetJ(record->GetReturnValue().GetJ());
280 *exception = record->GetPendingException();
281 *from_code = record->GetFromCode();
282 *method_type = record->GetDeoptimizationMethodType();
283 delete record;
284 }
285
AssertHasDeoptimizationContext()286 void Thread::AssertHasDeoptimizationContext() {
287 CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
288 << "No deoptimization context for thread " << *this;
289 }
290
291 enum {
292 kPermitAvailable = 0, // Incrementing consumes the permit
293 kNoPermit = 1, // Incrementing marks as waiter waiting
294 kNoPermitWaiterWaiting = 2
295 };
296
Park(bool is_absolute,int64_t time)297 void Thread::Park(bool is_absolute, int64_t time) {
298 DCHECK(this == Thread::Current());
299 #if ART_USE_FUTEXES
300 // Consume the permit, or mark as waiting. This cannot cause park_state to go
301 // outside of its valid range (0, 1, 2), because in all cases where 2 is
302 // assigned it is set back to 1 before returning, and this method cannot run
303 // concurrently with itself since it operates on the current thread.
304 int old_state = tls32_.park_state_.fetch_add(1, std::memory_order_relaxed);
305 if (old_state == kNoPermit) {
306 // no permit was available. block thread until later.
307 Runtime::Current()->GetRuntimeCallbacks()->ThreadParkStart(is_absolute, time);
308 bool timed_out = false;
309 if (!is_absolute && time == 0) {
310 // Thread.getState() is documented to return waiting for untimed parks.
311 ScopedThreadSuspension sts(this, ThreadState::kWaiting);
312 DCHECK_EQ(NumberOfHeldMutexes(), 0u);
313 int result = futex(tls32_.park_state_.Address(),
314 FUTEX_WAIT_PRIVATE,
315 /* sleep if val = */ kNoPermitWaiterWaiting,
316 /* timeout */ nullptr,
317 nullptr,
318 0);
319 // This errno check must happen before the scope is closed, to ensure that
320 // no destructors (such as ScopedThreadSuspension) overwrite errno.
321 if (result == -1) {
322 switch (errno) {
323 case EAGAIN:
324 FALLTHROUGH_INTENDED;
325 case EINTR: break; // park() is allowed to spuriously return
326 default: PLOG(FATAL) << "Failed to park";
327 }
328 }
329 } else if (time > 0) {
330 // Only actually suspend and futex_wait if we're going to wait for some
331 // positive amount of time - the kernel will reject negative times with
332 // EINVAL, and a zero time will just noop.
333
334 // Thread.getState() is documented to return timed wait for timed parks.
335 ScopedThreadSuspension sts(this, ThreadState::kTimedWaiting);
336 DCHECK_EQ(NumberOfHeldMutexes(), 0u);
337 timespec timespec;
338 int result = 0;
339 if (is_absolute) {
340 // Time is millis when scheduled for an absolute time
341 timespec.tv_nsec = (time % 1000) * 1000000;
342 timespec.tv_sec = time / 1000;
343 // This odd looking pattern is recommended by futex documentation to
344 // wait until an absolute deadline, with otherwise identical behavior to
345 // FUTEX_WAIT_PRIVATE. This also allows parkUntil() to return at the
346 // correct time when the system clock changes.
347 result = futex(tls32_.park_state_.Address(),
348 FUTEX_WAIT_BITSET_PRIVATE | FUTEX_CLOCK_REALTIME,
349 /* sleep if val = */ kNoPermitWaiterWaiting,
350 ×pec,
351 nullptr,
352 FUTEX_BITSET_MATCH_ANY);
353 } else {
354 // Time is nanos when scheduled for a relative time
355 timespec.tv_sec = time / 1000000000;
356 timespec.tv_nsec = time % 1000000000;
357 result = futex(tls32_.park_state_.Address(),
358 FUTEX_WAIT_PRIVATE,
359 /* sleep if val = */ kNoPermitWaiterWaiting,
360 ×pec,
361 nullptr,
362 0);
363 }
364 // This errno check must happen before the scope is closed, to ensure that
365 // no destructors (such as ScopedThreadSuspension) overwrite errno.
366 if (result == -1) {
367 switch (errno) {
368 case ETIMEDOUT:
369 timed_out = true;
370 FALLTHROUGH_INTENDED;
371 case EAGAIN:
372 case EINTR: break; // park() is allowed to spuriously return
373 default: PLOG(FATAL) << "Failed to park";
374 }
375 }
376 }
377 // Mark as no longer waiting, and consume permit if there is one.
378 tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed);
379 // TODO: Call to signal jvmti here
380 Runtime::Current()->GetRuntimeCallbacks()->ThreadParkFinished(timed_out);
381 } else {
382 // the fetch_add has consumed the permit. immediately return.
383 DCHECK_EQ(old_state, kPermitAvailable);
384 }
385 #else
386 #pragma clang diagnostic push
387 #pragma clang diagnostic warning "-W#warnings"
388 #warning "LockSupport.park/unpark implemented as noops without FUTEX support."
389 #pragma clang diagnostic pop
390 UNUSED(is_absolute, time);
391 UNIMPLEMENTED(WARNING);
392 sched_yield();
393 #endif
394 }
395
Unpark()396 void Thread::Unpark() {
397 #if ART_USE_FUTEXES
398 // Set permit available; will be consumed either by fetch_add (when the thread
399 // tries to park) or store (when the parked thread is woken up)
400 if (tls32_.park_state_.exchange(kPermitAvailable, std::memory_order_relaxed)
401 == kNoPermitWaiterWaiting) {
402 int result = futex(tls32_.park_state_.Address(),
403 FUTEX_WAKE_PRIVATE,
404 /* number of waiters = */ 1,
405 nullptr,
406 nullptr,
407 0);
408 if (result == -1) {
409 PLOG(FATAL) << "Failed to unpark";
410 }
411 }
412 #else
413 UNIMPLEMENTED(WARNING);
414 #endif
415 }
416
PushStackedShadowFrame(ShadowFrame * sf,StackedShadowFrameType type)417 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
418 StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
419 sf, type, tlsPtr_.stacked_shadow_frame_record);
420 tlsPtr_.stacked_shadow_frame_record = record;
421 }
422
PopStackedShadowFrame(StackedShadowFrameType type,bool must_be_present)423 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
424 StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
425 if (must_be_present) {
426 DCHECK(record != nullptr);
427 } else {
428 if (record == nullptr || record->GetType() != type) {
429 return nullptr;
430 }
431 }
432 tlsPtr_.stacked_shadow_frame_record = record->GetLink();
433 ShadowFrame* shadow_frame = record->GetShadowFrame();
434 delete record;
435 return shadow_frame;
436 }
437
438 class FrameIdToShadowFrame {
439 public:
Create(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next,size_t num_vregs)440 static FrameIdToShadowFrame* Create(size_t frame_id,
441 ShadowFrame* shadow_frame,
442 FrameIdToShadowFrame* next,
443 size_t num_vregs) {
444 // Append a bool array at the end to keep track of what vregs are updated by the debugger.
445 uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
446 return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
447 }
448
Delete(FrameIdToShadowFrame * f)449 static void Delete(FrameIdToShadowFrame* f) {
450 uint8_t* memory = reinterpret_cast<uint8_t*>(f);
451 delete[] memory;
452 }
453
GetFrameId() const454 size_t GetFrameId() const { return frame_id_; }
GetShadowFrame() const455 ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetNext() const456 FrameIdToShadowFrame* GetNext() const { return next_; }
SetNext(FrameIdToShadowFrame * next)457 void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
GetUpdatedVRegFlags()458 bool* GetUpdatedVRegFlags() {
459 return updated_vreg_flags_;
460 }
461
462 private:
FrameIdToShadowFrame(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next)463 FrameIdToShadowFrame(size_t frame_id,
464 ShadowFrame* shadow_frame,
465 FrameIdToShadowFrame* next)
466 : frame_id_(frame_id),
467 shadow_frame_(shadow_frame),
468 next_(next) {}
469
470 const size_t frame_id_;
471 ShadowFrame* const shadow_frame_;
472 FrameIdToShadowFrame* next_;
473 bool updated_vreg_flags_[0];
474
475 DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
476 };
477
FindFrameIdToShadowFrame(FrameIdToShadowFrame * head,size_t frame_id)478 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
479 size_t frame_id) {
480 FrameIdToShadowFrame* found = nullptr;
481 for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
482 if (record->GetFrameId() == frame_id) {
483 if (kIsDebugBuild) {
484 // Sanity check we have at most one record for this frame.
485 CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
486 found = record;
487 } else {
488 return record;
489 }
490 }
491 }
492 return found;
493 }
494
FindDebuggerShadowFrame(size_t frame_id)495 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
496 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
497 tlsPtr_.frame_id_to_shadow_frame, frame_id);
498 if (record != nullptr) {
499 return record->GetShadowFrame();
500 }
501 return nullptr;
502 }
503
504 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
GetUpdatedVRegFlags(size_t frame_id)505 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
506 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
507 tlsPtr_.frame_id_to_shadow_frame, frame_id);
508 CHECK(record != nullptr);
509 return record->GetUpdatedVRegFlags();
510 }
511
FindOrCreateDebuggerShadowFrame(size_t frame_id,uint32_t num_vregs,ArtMethod * method,uint32_t dex_pc)512 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
513 uint32_t num_vregs,
514 ArtMethod* method,
515 uint32_t dex_pc) {
516 ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
517 if (shadow_frame != nullptr) {
518 return shadow_frame;
519 }
520 VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
521 shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
522 FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
523 shadow_frame,
524 tlsPtr_.frame_id_to_shadow_frame,
525 num_vregs);
526 for (uint32_t i = 0; i < num_vregs; i++) {
527 // Do this to clear all references for root visitors.
528 shadow_frame->SetVRegReference(i, nullptr);
529 // This flag will be changed to true if the debugger modifies the value.
530 record->GetUpdatedVRegFlags()[i] = false;
531 }
532 tlsPtr_.frame_id_to_shadow_frame = record;
533 return shadow_frame;
534 }
535
GetCustomTLS(const char * key)536 TLSData* Thread::GetCustomTLS(const char* key) {
537 MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_);
538 auto it = custom_tls_.find(key);
539 return (it != custom_tls_.end()) ? it->second.get() : nullptr;
540 }
541
SetCustomTLS(const char * key,TLSData * data)542 void Thread::SetCustomTLS(const char* key, TLSData* data) {
543 // We will swap the old data (which might be nullptr) with this and then delete it outside of the
544 // custom_tls_lock_.
545 std::unique_ptr<TLSData> old_data(data);
546 {
547 MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_);
548 custom_tls_.GetOrCreate(key, []() { return std::unique_ptr<TLSData>(); }).swap(old_data);
549 }
550 }
551
RemoveDebuggerShadowFrameMapping(size_t frame_id)552 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
553 FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
554 if (head->GetFrameId() == frame_id) {
555 tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
556 FrameIdToShadowFrame::Delete(head);
557 return;
558 }
559 FrameIdToShadowFrame* prev = head;
560 for (FrameIdToShadowFrame* record = head->GetNext();
561 record != nullptr;
562 prev = record, record = record->GetNext()) {
563 if (record->GetFrameId() == frame_id) {
564 prev->SetNext(record->GetNext());
565 FrameIdToShadowFrame::Delete(record);
566 return;
567 }
568 }
569 LOG(FATAL) << "No shadow frame for frame " << frame_id;
570 UNREACHABLE();
571 }
572
InitTid()573 void Thread::InitTid() {
574 tls32_.tid = ::art::GetTid();
575 }
576
InitAfterFork()577 void Thread::InitAfterFork() {
578 // One thread (us) survived the fork, but we have a new tid so we need to
579 // update the value stashed in this Thread*.
580 InitTid();
581 }
582
CreateCallback(void * arg)583 void* Thread::CreateCallback(void* arg) {
584 Thread* self = reinterpret_cast<Thread*>(arg);
585 Runtime* runtime = Runtime::Current();
586 if (runtime == nullptr) {
587 LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
588 return nullptr;
589 }
590 {
591 // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
592 // after self->Init().
593 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
594 // Check that if we got here we cannot be shutting down (as shutdown should never have started
595 // while threads are being born).
596 CHECK(!runtime->IsShuttingDownLocked());
597 // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
598 // a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
599 // the runtime in such a case. In case this ever changes, we need to make sure here to
600 // delete the tmp_jni_env, as we own it at this point.
601 CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
602 self->tlsPtr_.tmp_jni_env = nullptr;
603 Runtime::Current()->EndThreadBirth();
604 }
605 {
606 ScopedObjectAccess soa(self);
607 self->InitStringEntryPoints();
608
609 // Copy peer into self, deleting global reference when done.
610 CHECK(self->tlsPtr_.jpeer != nullptr);
611 self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
612 self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
613 self->tlsPtr_.jpeer = nullptr;
614 self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
615
616 ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority);
617 self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
618
619 runtime->GetRuntimeCallbacks()->ThreadStart(self);
620
621 // Unpark ourselves if the java peer was unparked before it started (see
622 // b/28845097#comment49 for more information)
623
624 ArtField* unparkedField = jni::DecodeArtField(
625 WellKnownClasses::java_lang_Thread_unparkedBeforeStart);
626 bool should_unpark = false;
627 {
628 // Hold the lock here, so that if another thread calls unpark before the thread starts
629 // we don't observe the unparkedBeforeStart field before the unparker writes to it,
630 // which could cause a lost unpark.
631 art::MutexLock mu(soa.Self(), *art::Locks::thread_list_lock_);
632 should_unpark = unparkedField->GetBoolean(self->tlsPtr_.opeer) == JNI_TRUE;
633 }
634 if (should_unpark) {
635 self->Unpark();
636 }
637 // Invoke the 'run' method of our java.lang.Thread.
638 ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
639 jmethodID mid = WellKnownClasses::java_lang_Thread_run;
640 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
641 InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
642 }
643 // Detach and delete self.
644 Runtime::Current()->GetThreadList()->Unregister(self);
645
646 return nullptr;
647 }
648
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> thread_peer)649 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
650 ObjPtr<mirror::Object> thread_peer) {
651 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer);
652 Thread* result = reinterpret_cast64<Thread*>(f->GetLong(thread_peer));
653 // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
654 // to stop it from going away.
655 if (kIsDebugBuild) {
656 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
657 if (result != nullptr && !result->IsSuspended()) {
658 Locks::thread_list_lock_->AssertHeld(soa.Self());
659 }
660 }
661 return result;
662 }
663
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)664 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
665 jobject java_thread) {
666 return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread));
667 }
668
FixStackSize(size_t stack_size)669 static size_t FixStackSize(size_t stack_size) {
670 // A stack size of zero means "use the default".
671 if (stack_size == 0) {
672 stack_size = Runtime::Current()->GetDefaultStackSize();
673 }
674
675 // Dalvik used the bionic pthread default stack size for native threads,
676 // so include that here to support apps that expect large native stacks.
677 stack_size += 1 * MB;
678
679 // Under sanitization, frames of the interpreter may become bigger, both for C code as
680 // well as the ShadowFrame. Ensure a larger minimum size. Otherwise initialization
681 // of all core classes cannot be done in all test circumstances.
682 if (kMemoryToolIsAvailable) {
683 stack_size = std::max(2 * MB, stack_size);
684 }
685
686 // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
687 if (stack_size < PTHREAD_STACK_MIN) {
688 stack_size = PTHREAD_STACK_MIN;
689 }
690
691 if (Runtime::Current()->ExplicitStackOverflowChecks()) {
692 // It's likely that callers are trying to ensure they have at least a certain amount of
693 // stack space, so we should add our reserved space on top of what they requested, rather
694 // than implicitly take it away from them.
695 stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
696 } else {
697 // If we are going to use implicit stack checks, allocate space for the protected
698 // region at the bottom of the stack.
699 stack_size += Thread::kStackOverflowImplicitCheckSize +
700 GetStackOverflowReservedBytes(kRuntimeISA);
701 }
702
703 // Some systems require the stack size to be a multiple of the system page size, so round up.
704 stack_size = RoundUp(stack_size, kPageSize);
705
706 return stack_size;
707 }
708
709 // Return the nearest page-aligned address below the current stack top.
710 NO_INLINE
FindStackTop()711 static uint8_t* FindStackTop() {
712 return reinterpret_cast<uint8_t*>(
713 AlignDown(__builtin_frame_address(0), kPageSize));
714 }
715
716 // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack
717 // overflow is detected. It is located right below the stack_begin_.
718 ATTRIBUTE_NO_SANITIZE_ADDRESS
InstallImplicitProtection()719 void Thread::InstallImplicitProtection() {
720 uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
721 // Page containing current top of stack.
722 uint8_t* stack_top = FindStackTop();
723
724 // Try to directly protect the stack.
725 VLOG(threads) << "installing stack protected region at " << std::hex <<
726 static_cast<void*>(pregion) << " to " <<
727 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
728 if (ProtectStack(/* fatal_on_error= */ false)) {
729 // Tell the kernel that we won't be needing these pages any more.
730 // NB. madvise will probably write zeroes into the memory (on linux it does).
731 uint32_t unwanted_size = stack_top - pregion - kPageSize;
732 madvise(pregion, unwanted_size, MADV_DONTNEED);
733 return;
734 }
735
736 // There is a little complexity here that deserves a special mention. On some
737 // architectures, the stack is created using a VM_GROWSDOWN flag
738 // to prevent memory being allocated when it's not needed. This flag makes the
739 // kernel only allocate memory for the stack by growing down in memory. Because we
740 // want to put an mprotected region far away from that at the stack top, we need
741 // to make sure the pages for the stack are mapped in before we call mprotect.
742 //
743 // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
744 // with a non-mapped stack (usually only the main thread).
745 //
746 // We map in the stack by reading every page from the stack bottom (highest address)
747 // to the stack top. (We then madvise this away.) This must be done by reading from the
748 // current stack pointer downwards.
749 //
750 // Accesses too far below the current machine register corresponding to the stack pointer (e.g.,
751 // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We
752 // thus have to move the stack pointer. We do this portably by using a recursive function with a
753 // large stack frame size.
754
755 // (Defensively) first remove the protection on the protected region as we'll want to read
756 // and write it. Ignore errors.
757 UnprotectStack();
758
759 VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
760 static_cast<void*>(pregion);
761
762 struct RecurseDownStack {
763 // This function has an intentionally large stack size.
764 #pragma GCC diagnostic push
765 #pragma GCC diagnostic ignored "-Wframe-larger-than="
766 NO_INLINE
767 static void Touch(uintptr_t target) {
768 volatile size_t zero = 0;
769 // Use a large local volatile array to ensure a large frame size. Do not use anything close
770 // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but
771 // there is no pragma support for this.
772 // Note: for ASAN we need to shrink the array a bit, as there's other overhead.
773 constexpr size_t kAsanMultiplier =
774 #ifdef ADDRESS_SANITIZER
775 2u;
776 #else
777 1u;
778 #endif
779 volatile char space[kPageSize - (kAsanMultiplier * 256)];
780 char sink ATTRIBUTE_UNUSED = space[zero]; // NOLINT
781 // Remove tag from the pointer. Nop in non-hwasan builds.
782 uintptr_t addr = reinterpret_cast<uintptr_t>(__hwasan_tag_pointer(space, 0));
783 if (addr >= target + kPageSize) {
784 Touch(target);
785 }
786 zero *= 2; // Try to avoid tail recursion.
787 }
788 #pragma GCC diagnostic pop
789 };
790 RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion));
791
792 VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
793 static_cast<void*>(pregion) << " to " <<
794 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
795
796 // Protect the bottom of the stack to prevent read/write to it.
797 ProtectStack(/* fatal_on_error= */ true);
798
799 // Tell the kernel that we won't be needing these pages any more.
800 // NB. madvise will probably write zeroes into the memory (on linux it does).
801 uint32_t unwanted_size = stack_top - pregion - kPageSize;
802 madvise(pregion, unwanted_size, MADV_DONTNEED);
803 }
804
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)805 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
806 CHECK(java_peer != nullptr);
807 Thread* self = static_cast<JNIEnvExt*>(env)->GetSelf();
808
809 if (VLOG_IS_ON(threads)) {
810 ScopedObjectAccess soa(env);
811
812 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
813 ObjPtr<mirror::String> java_name =
814 f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
815 std::string thread_name;
816 if (java_name != nullptr) {
817 thread_name = java_name->ToModifiedUtf8();
818 } else {
819 thread_name = "(Unnamed)";
820 }
821
822 VLOG(threads) << "Creating native thread for " << thread_name;
823 self->Dump(LOG_STREAM(INFO));
824 }
825
826 Runtime* runtime = Runtime::Current();
827
828 // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
829 bool thread_start_during_shutdown = false;
830 {
831 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
832 if (runtime->IsShuttingDownLocked()) {
833 thread_start_during_shutdown = true;
834 } else {
835 runtime->StartThreadBirth();
836 }
837 }
838 if (thread_start_during_shutdown) {
839 ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
840 env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
841 return;
842 }
843
844 Thread* child_thread = new Thread(is_daemon);
845 // Use global JNI ref to hold peer live while child thread starts.
846 child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
847 stack_size = FixStackSize(stack_size);
848
849 // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing
850 // to assign it.
851 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
852 reinterpret_cast<jlong>(child_thread));
853
854 // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
855 // do not have a good way to report this on the child's side.
856 std::string error_msg;
857 std::unique_ptr<JNIEnvExt> child_jni_env_ext(
858 JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
859
860 int pthread_create_result = 0;
861 if (child_jni_env_ext.get() != nullptr) {
862 pthread_t new_pthread;
863 pthread_attr_t attr;
864 child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
865 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
866 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
867 "PTHREAD_CREATE_DETACHED");
868 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
869 pthread_create_result = pthread_create(&new_pthread,
870 &attr,
871 Thread::CreateCallback,
872 child_thread);
873 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
874
875 if (pthread_create_result == 0) {
876 // pthread_create started the new thread. The child is now responsible for managing the
877 // JNIEnvExt we created.
878 // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
879 // between the threads.
880 child_jni_env_ext.release(); // NOLINT pthreads API.
881 return;
882 }
883 }
884
885 // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
886 {
887 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
888 runtime->EndThreadBirth();
889 }
890 // Manually delete the global reference since Thread::Init will not have been run.
891 env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
892 child_thread->tlsPtr_.jpeer = nullptr;
893 delete child_thread;
894 child_thread = nullptr;
895 // TODO: remove from thread group?
896 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
897 {
898 std::string msg(child_jni_env_ext.get() == nullptr ?
899 StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
900 StringPrintf("pthread_create (%s stack) failed: %s",
901 PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
902 ScopedObjectAccess soa(env);
903 soa.Self()->ThrowOutOfMemoryError(msg.c_str());
904 }
905 }
906
Init(ThreadList * thread_list,JavaVMExt * java_vm,JNIEnvExt * jni_env_ext)907 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
908 // This function does all the initialization that must be run by the native thread it applies to.
909 // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
910 // we can handshake with the corresponding native thread when it's ready.) Check this native
911 // thread hasn't been through here already...
912 CHECK(Thread::Current() == nullptr);
913
914 // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
915 // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
916 tlsPtr_.pthread_self = pthread_self();
917 CHECK(is_started_);
918
919 ScopedTrace trace("Thread::Init");
920
921 SetUpAlternateSignalStack();
922 if (!InitStackHwm()) {
923 return false;
924 }
925 InitCpu();
926 InitTlsEntryPoints();
927 RemoveSuspendTrigger();
928 InitCardTable();
929 InitTid();
930 {
931 ScopedTrace trace2("InitInterpreterTls");
932 interpreter::InitInterpreterTls(this);
933 }
934
935 #ifdef ART_TARGET_ANDROID
936 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
937 #else
938 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
939 #endif
940 DCHECK_EQ(Thread::Current(), this);
941
942 tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
943
944 if (jni_env_ext != nullptr) {
945 DCHECK_EQ(jni_env_ext->GetVm(), java_vm);
946 DCHECK_EQ(jni_env_ext->GetSelf(), this);
947 tlsPtr_.jni_env = jni_env_ext;
948 } else {
949 std::string error_msg;
950 tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
951 if (tlsPtr_.jni_env == nullptr) {
952 LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
953 return false;
954 }
955 }
956
957 ScopedTrace trace3("ThreadList::Register");
958 thread_list->Register(this);
959 return true;
960 }
961
962 template <typename PeerAction>
Attach(const char * thread_name,bool as_daemon,PeerAction peer_action)963 Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
964 Runtime* runtime = Runtime::Current();
965 ScopedTrace trace("Thread::Attach");
966 if (runtime == nullptr) {
967 LOG(ERROR) << "Thread attaching to non-existent runtime: " <<
968 ((thread_name != nullptr) ? thread_name : "(Unnamed)");
969 return nullptr;
970 }
971 Thread* self;
972 {
973 ScopedTrace trace2("Thread birth");
974 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
975 if (runtime->IsShuttingDownLocked()) {
976 LOG(WARNING) << "Thread attaching while runtime is shutting down: " <<
977 ((thread_name != nullptr) ? thread_name : "(Unnamed)");
978 return nullptr;
979 } else {
980 Runtime::Current()->StartThreadBirth();
981 self = new Thread(as_daemon);
982 bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
983 Runtime::Current()->EndThreadBirth();
984 if (!init_success) {
985 delete self;
986 return nullptr;
987 }
988 }
989 }
990
991 self->InitStringEntryPoints();
992
993 CHECK_NE(self->GetState(), kRunnable);
994 self->SetState(kNative);
995
996 // Run the action that is acting on the peer.
997 if (!peer_action(self)) {
998 runtime->GetThreadList()->Unregister(self);
999 // Unregister deletes self, no need to do this here.
1000 return nullptr;
1001 }
1002
1003 if (VLOG_IS_ON(threads)) {
1004 if (thread_name != nullptr) {
1005 VLOG(threads) << "Attaching thread " << thread_name;
1006 } else {
1007 VLOG(threads) << "Attaching unnamed thread.";
1008 }
1009 ScopedObjectAccess soa(self);
1010 self->Dump(LOG_STREAM(INFO));
1011 }
1012
1013 {
1014 ScopedObjectAccess soa(self);
1015 runtime->GetRuntimeCallbacks()->ThreadStart(self);
1016 }
1017
1018 return self;
1019 }
1020
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)1021 Thread* Thread::Attach(const char* thread_name,
1022 bool as_daemon,
1023 jobject thread_group,
1024 bool create_peer) {
1025 auto create_peer_action = [&](Thread* self) {
1026 // If we're the main thread, ClassLinker won't be created until after we're attached,
1027 // so that thread needs a two-stage attach. Regular threads don't need this hack.
1028 // In the compiler, all threads need this hack, because no-one's going to be getting
1029 // a native peer!
1030 if (create_peer) {
1031 self->CreatePeer(thread_name, as_daemon, thread_group);
1032 if (self->IsExceptionPending()) {
1033 // We cannot keep the exception around, as we're deleting self. Try to be helpful and log
1034 // it.
1035 {
1036 ScopedObjectAccess soa(self);
1037 LOG(ERROR) << "Exception creating thread peer:";
1038 LOG(ERROR) << self->GetException()->Dump();
1039 self->ClearException();
1040 }
1041 return false;
1042 }
1043 } else {
1044 // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
1045 if (thread_name != nullptr) {
1046 self->tlsPtr_.name->assign(thread_name);
1047 ::art::SetThreadName(thread_name);
1048 } else if (self->GetJniEnv()->IsCheckJniEnabled()) {
1049 LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
1050 }
1051 }
1052 return true;
1053 };
1054 return Attach(thread_name, as_daemon, create_peer_action);
1055 }
1056
Attach(const char * thread_name,bool as_daemon,jobject thread_peer)1057 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
1058 auto set_peer_action = [&](Thread* self) {
1059 // Install the given peer.
1060 {
1061 DCHECK(self == Thread::Current());
1062 ScopedObjectAccess soa(self);
1063 self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr();
1064 }
1065 self->GetJniEnv()->SetLongField(thread_peer,
1066 WellKnownClasses::java_lang_Thread_nativePeer,
1067 reinterpret_cast64<jlong>(self));
1068 return true;
1069 };
1070 return Attach(thread_name, as_daemon, set_peer_action);
1071 }
1072
CreatePeer(const char * name,bool as_daemon,jobject thread_group)1073 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
1074 Runtime* runtime = Runtime::Current();
1075 CHECK(runtime->IsStarted());
1076 JNIEnv* env = tlsPtr_.jni_env;
1077
1078 if (thread_group == nullptr) {
1079 thread_group = runtime->GetMainThreadGroup();
1080 }
1081 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
1082 // Add missing null check in case of OOM b/18297817
1083 if (name != nullptr && thread_name.get() == nullptr) {
1084 CHECK(IsExceptionPending());
1085 return;
1086 }
1087 jint thread_priority = GetNativePriority();
1088 jboolean thread_is_daemon = as_daemon;
1089
1090 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
1091 if (peer.get() == nullptr) {
1092 CHECK(IsExceptionPending());
1093 return;
1094 }
1095 {
1096 ScopedObjectAccess soa(this);
1097 tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr();
1098 }
1099 env->CallNonvirtualVoidMethod(peer.get(),
1100 WellKnownClasses::java_lang_Thread,
1101 WellKnownClasses::java_lang_Thread_init,
1102 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
1103 if (IsExceptionPending()) {
1104 return;
1105 }
1106
1107 Thread* self = this;
1108 DCHECK_EQ(self, Thread::Current());
1109 env->SetLongField(peer.get(),
1110 WellKnownClasses::java_lang_Thread_nativePeer,
1111 reinterpret_cast64<jlong>(self));
1112
1113 ScopedObjectAccess soa(self);
1114 StackHandleScope<1> hs(self);
1115 MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
1116 if (peer_thread_name == nullptr) {
1117 // The Thread constructor should have set the Thread.name to a
1118 // non-null value. However, because we can run without code
1119 // available (in the compiler, in tests), we manually assign the
1120 // fields the constructor should have set.
1121 if (runtime->IsActiveTransaction()) {
1122 InitPeer<true>(soa,
1123 tlsPtr_.opeer,
1124 thread_is_daemon,
1125 thread_group,
1126 thread_name.get(),
1127 thread_priority);
1128 } else {
1129 InitPeer<false>(soa,
1130 tlsPtr_.opeer,
1131 thread_is_daemon,
1132 thread_group,
1133 thread_name.get(),
1134 thread_priority);
1135 }
1136 peer_thread_name.Assign(GetThreadName());
1137 }
1138 // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
1139 if (peer_thread_name != nullptr) {
1140 SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
1141 }
1142 }
1143
CreateCompileTimePeer(JNIEnv * env,const char * name,bool as_daemon,jobject thread_group)1144 jobject Thread::CreateCompileTimePeer(JNIEnv* env,
1145 const char* name,
1146 bool as_daemon,
1147 jobject thread_group) {
1148 Runtime* runtime = Runtime::Current();
1149 CHECK(!runtime->IsStarted());
1150
1151 if (thread_group == nullptr) {
1152 thread_group = runtime->GetMainThreadGroup();
1153 }
1154 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
1155 // Add missing null check in case of OOM b/18297817
1156 if (name != nullptr && thread_name.get() == nullptr) {
1157 CHECK(Thread::Current()->IsExceptionPending());
1158 return nullptr;
1159 }
1160 jint thread_priority = kNormThreadPriority; // Always normalize to NORM priority.
1161 jboolean thread_is_daemon = as_daemon;
1162
1163 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
1164 if (peer.get() == nullptr) {
1165 CHECK(Thread::Current()->IsExceptionPending());
1166 return nullptr;
1167 }
1168
1169 // We cannot call Thread.init, as it will recursively ask for currentThread.
1170
1171 // The Thread constructor should have set the Thread.name to a
1172 // non-null value. However, because we can run without code
1173 // available (in the compiler, in tests), we manually assign the
1174 // fields the constructor should have set.
1175 ScopedObjectAccessUnchecked soa(Thread::Current());
1176 if (runtime->IsActiveTransaction()) {
1177 InitPeer<true>(soa,
1178 soa.Decode<mirror::Object>(peer.get()),
1179 thread_is_daemon,
1180 thread_group,
1181 thread_name.get(),
1182 thread_priority);
1183 } else {
1184 InitPeer<false>(soa,
1185 soa.Decode<mirror::Object>(peer.get()),
1186 thread_is_daemon,
1187 thread_group,
1188 thread_name.get(),
1189 thread_priority);
1190 }
1191
1192 return peer.release();
1193 }
1194
1195 template<bool kTransactionActive>
InitPeer(ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> peer,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)1196 void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa,
1197 ObjPtr<mirror::Object> peer,
1198 jboolean thread_is_daemon,
1199 jobject thread_group,
1200 jobject thread_name,
1201 jint thread_priority) {
1202 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)->
1203 SetBoolean<kTransactionActive>(peer, thread_is_daemon);
1204 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)->
1205 SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group));
1206 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)->
1207 SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name));
1208 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)->
1209 SetInt<kTransactionActive>(peer, thread_priority);
1210 }
1211
SetThreadName(const char * name)1212 void Thread::SetThreadName(const char* name) {
1213 tlsPtr_.name->assign(name);
1214 ::art::SetThreadName(name);
1215 Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
1216 }
1217
GetThreadStack(pthread_t thread,void ** stack_base,size_t * stack_size,size_t * guard_size)1218 static void GetThreadStack(pthread_t thread,
1219 void** stack_base,
1220 size_t* stack_size,
1221 size_t* guard_size) {
1222 #if defined(__APPLE__)
1223 *stack_size = pthread_get_stacksize_np(thread);
1224 void* stack_addr = pthread_get_stackaddr_np(thread);
1225
1226 // Check whether stack_addr is the base or end of the stack.
1227 // (On Mac OS 10.7, it's the end.)
1228 int stack_variable;
1229 if (stack_addr > &stack_variable) {
1230 *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
1231 } else {
1232 *stack_base = stack_addr;
1233 }
1234
1235 // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
1236 pthread_attr_t attributes;
1237 CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
1238 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1239 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1240 #else
1241 pthread_attr_t attributes;
1242 CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
1243 CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
1244 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1245 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1246
1247 #if defined(__GLIBC__)
1248 // If we're the main thread, check whether we were run with an unlimited stack. In that case,
1249 // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
1250 // will be broken because we'll die long before we get close to 2GB.
1251 bool is_main_thread = (::art::GetTid() == getpid());
1252 if (is_main_thread) {
1253 rlimit stack_limit;
1254 if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
1255 PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
1256 }
1257 if (stack_limit.rlim_cur == RLIM_INFINITY) {
1258 size_t old_stack_size = *stack_size;
1259
1260 // Use the kernel default limit as our size, and adjust the base to match.
1261 *stack_size = 8 * MB;
1262 *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
1263
1264 VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
1265 << " to " << PrettySize(*stack_size)
1266 << " with base " << *stack_base;
1267 }
1268 }
1269 #endif
1270
1271 #endif
1272 }
1273
InitStackHwm()1274 bool Thread::InitStackHwm() {
1275 ScopedTrace trace("InitStackHwm");
1276 void* read_stack_base;
1277 size_t read_stack_size;
1278 size_t read_guard_size;
1279 GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
1280
1281 tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
1282 tlsPtr_.stack_size = read_stack_size;
1283
1284 // The minimum stack size we can cope with is the overflow reserved bytes (typically
1285 // 8K) + the protected region size (4K) + another page (4K). Typically this will
1286 // be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes
1287 // between 8K and 12K.
1288 uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
1289 + 4 * KB;
1290 if (read_stack_size <= min_stack) {
1291 // Note, as we know the stack is small, avoid operations that could use a lot of stack.
1292 LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
1293 __LINE__,
1294 ::android::base::ERROR,
1295 "Attempt to attach a thread with a too-small stack");
1296 return false;
1297 }
1298
1299 // This is included in the SIGQUIT output, but it's useful here for thread debugging.
1300 VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
1301 read_stack_base,
1302 PrettySize(read_stack_size).c_str(),
1303 PrettySize(read_guard_size).c_str());
1304
1305 // Set stack_end_ to the bottom of the stack saving space of stack overflows
1306
1307 Runtime* runtime = Runtime::Current();
1308 bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
1309
1310 ResetDefaultStackEnd();
1311
1312 // Install the protected region if we are doing implicit overflow checks.
1313 if (implicit_stack_check) {
1314 // The thread might have protected region at the bottom. We need
1315 // to install our own region so we need to move the limits
1316 // of the stack to make room for it.
1317
1318 tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
1319 tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
1320 tlsPtr_.stack_size -= read_guard_size;
1321
1322 InstallImplicitProtection();
1323 }
1324
1325 // Sanity check.
1326 CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
1327
1328 return true;
1329 }
1330
ShortDump(std::ostream & os) const1331 void Thread::ShortDump(std::ostream& os) const {
1332 os << "Thread[";
1333 if (GetThreadId() != 0) {
1334 // If we're in kStarting, we won't have a thin lock id or tid yet.
1335 os << GetThreadId()
1336 << ",tid=" << GetTid() << ',';
1337 }
1338 os << GetState()
1339 << ",Thread*=" << this
1340 << ",peer=" << tlsPtr_.opeer
1341 << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
1342 << "]";
1343 }
1344
Dump(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const1345 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map,
1346 bool force_dump_stack) const {
1347 DumpState(os);
1348 DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack);
1349 }
1350
GetThreadName() const1351 ObjPtr<mirror::String> Thread::GetThreadName() const {
1352 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
1353 if (tlsPtr_.opeer == nullptr) {
1354 return nullptr;
1355 }
1356 ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer);
1357 return name == nullptr ? nullptr : name->AsString();
1358 }
1359
GetThreadName(std::string & name) const1360 void Thread::GetThreadName(std::string& name) const {
1361 name.assign(*tlsPtr_.name);
1362 }
1363
GetCpuMicroTime() const1364 uint64_t Thread::GetCpuMicroTime() const {
1365 #if defined(__linux__)
1366 clockid_t cpu_clock_id;
1367 pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
1368 timespec now;
1369 clock_gettime(cpu_clock_id, &now);
1370 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
1371 #else // __APPLE__
1372 UNIMPLEMENTED(WARNING);
1373 return -1;
1374 #endif
1375 }
1376
1377 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)1378 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1379 LOG(ERROR) << *thread << " suspend count already zero.";
1380 Locks::thread_suspend_count_lock_->Unlock(self);
1381 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1382 Locks::mutator_lock_->SharedTryLock(self);
1383 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1384 LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
1385 }
1386 }
1387 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1388 Locks::thread_list_lock_->TryLock(self);
1389 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1390 LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
1391 }
1392 }
1393 std::ostringstream ss;
1394 Runtime::Current()->GetThreadList()->Dump(ss);
1395 LOG(FATAL) << ss.str();
1396 }
1397
ModifySuspendCountInternal(Thread * self,int delta,AtomicInteger * suspend_barrier,SuspendReason reason)1398 bool Thread::ModifySuspendCountInternal(Thread* self,
1399 int delta,
1400 AtomicInteger* suspend_barrier,
1401 SuspendReason reason) {
1402 if (kIsDebugBuild) {
1403 DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
1404 << reason << " " << delta << " " << tls32_.debug_suspend_count << " " << this;
1405 DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
1406 Locks::thread_suspend_count_lock_->AssertHeld(self);
1407 if (this != self && !IsSuspended()) {
1408 Locks::thread_list_lock_->AssertHeld(self);
1409 }
1410 }
1411 // User code suspensions need to be checked more closely since they originate from code outside of
1412 // the runtime's control.
1413 if (UNLIKELY(reason == SuspendReason::kForUserCode)) {
1414 Locks::user_code_suspension_lock_->AssertHeld(self);
1415 if (UNLIKELY(delta + tls32_.user_code_suspend_count < 0)) {
1416 LOG(ERROR) << "attempting to modify suspend count in an illegal way.";
1417 return false;
1418 }
1419 }
1420 if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
1421 UnsafeLogFatalForSuspendCount(self, this);
1422 return false;
1423 }
1424
1425 if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
1426 // Force retry of a suspend request if it's in the middle of a thread flip to avoid a
1427 // deadlock. b/31683379.
1428 return false;
1429 }
1430
1431 uint16_t flags = kSuspendRequest;
1432 if (delta > 0 && suspend_barrier != nullptr) {
1433 uint32_t available_barrier = kMaxSuspendBarriers;
1434 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1435 if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
1436 available_barrier = i;
1437 break;
1438 }
1439 }
1440 if (available_barrier == kMaxSuspendBarriers) {
1441 // No barrier spaces available, we can't add another.
1442 return false;
1443 }
1444 tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
1445 flags |= kActiveSuspendBarrier;
1446 }
1447
1448 tls32_.suspend_count += delta;
1449 switch (reason) {
1450 case SuspendReason::kForDebugger:
1451 tls32_.debug_suspend_count += delta;
1452 break;
1453 case SuspendReason::kForUserCode:
1454 tls32_.user_code_suspend_count += delta;
1455 break;
1456 case SuspendReason::kInternal:
1457 break;
1458 }
1459
1460 if (tls32_.suspend_count == 0) {
1461 AtomicClearFlag(kSuspendRequest);
1462 } else {
1463 // Two bits might be set simultaneously.
1464 tls32_.state_and_flags.as_atomic_int.fetch_or(flags, std::memory_order_seq_cst);
1465 TriggerSuspend();
1466 }
1467 return true;
1468 }
1469
PassActiveSuspendBarriers(Thread * self)1470 bool Thread::PassActiveSuspendBarriers(Thread* self) {
1471 // Grab the suspend_count lock and copy the current set of
1472 // barriers. Then clear the list and the flag. The ModifySuspendCount
1473 // function requires the lock so we prevent a race between setting
1474 // the kActiveSuspendBarrier flag and clearing it.
1475 AtomicInteger* pass_barriers[kMaxSuspendBarriers];
1476 {
1477 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1478 if (!ReadFlag(kActiveSuspendBarrier)) {
1479 // quick exit test: the barriers have already been claimed - this is
1480 // possible as there may be a race to claim and it doesn't matter
1481 // who wins.
1482 // All of the callers of this function (except the SuspendAllInternal)
1483 // will first test the kActiveSuspendBarrier flag without lock. Here
1484 // double-check whether the barrier has been passed with the
1485 // suspend_count lock.
1486 return false;
1487 }
1488
1489 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1490 pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
1491 tlsPtr_.active_suspend_barriers[i] = nullptr;
1492 }
1493 AtomicClearFlag(kActiveSuspendBarrier);
1494 }
1495
1496 uint32_t barrier_count = 0;
1497 for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
1498 AtomicInteger* pending_threads = pass_barriers[i];
1499 if (pending_threads != nullptr) {
1500 bool done = false;
1501 do {
1502 int32_t cur_val = pending_threads->load(std::memory_order_relaxed);
1503 CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
1504 // Reduce value by 1.
1505 done = pending_threads->CompareAndSetWeakRelaxed(cur_val, cur_val - 1);
1506 #if ART_USE_FUTEXES
1507 if (done && (cur_val - 1) == 0) { // Weak CAS may fail spuriously.
1508 futex(pending_threads->Address(), FUTEX_WAKE_PRIVATE, INT_MAX, nullptr, nullptr, 0);
1509 }
1510 #endif
1511 } while (!done);
1512 ++barrier_count;
1513 }
1514 }
1515 CHECK_GT(barrier_count, 0U);
1516 return true;
1517 }
1518
ClearSuspendBarrier(AtomicInteger * target)1519 void Thread::ClearSuspendBarrier(AtomicInteger* target) {
1520 CHECK(ReadFlag(kActiveSuspendBarrier));
1521 bool clear_flag = true;
1522 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1523 AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
1524 if (ptr == target) {
1525 tlsPtr_.active_suspend_barriers[i] = nullptr;
1526 } else if (ptr != nullptr) {
1527 clear_flag = false;
1528 }
1529 }
1530 if (LIKELY(clear_flag)) {
1531 AtomicClearFlag(kActiveSuspendBarrier);
1532 }
1533 }
1534
RunCheckpointFunction()1535 void Thread::RunCheckpointFunction() {
1536 // Grab the suspend_count lock, get the next checkpoint and update all the checkpoint fields. If
1537 // there are no more checkpoints we will also clear the kCheckpointRequest flag.
1538 Closure* checkpoint;
1539 {
1540 MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1541 checkpoint = tlsPtr_.checkpoint_function;
1542 if (!checkpoint_overflow_.empty()) {
1543 // Overflow list not empty, copy the first one out and continue.
1544 tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
1545 checkpoint_overflow_.pop_front();
1546 } else {
1547 // No overflow checkpoints. Clear the kCheckpointRequest flag
1548 tlsPtr_.checkpoint_function = nullptr;
1549 AtomicClearFlag(kCheckpointRequest);
1550 }
1551 }
1552 // Outside the lock, run the checkpoint function.
1553 ScopedTrace trace("Run checkpoint function");
1554 CHECK(checkpoint != nullptr) << "Checkpoint flag set without pending checkpoint";
1555 checkpoint->Run(this);
1556 }
1557
RunEmptyCheckpoint()1558 void Thread::RunEmptyCheckpoint() {
1559 DCHECK_EQ(Thread::Current(), this);
1560 AtomicClearFlag(kEmptyCheckpointRequest);
1561 Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
1562 }
1563
RequestCheckpoint(Closure * function)1564 bool Thread::RequestCheckpoint(Closure* function) {
1565 union StateAndFlags old_state_and_flags;
1566 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1567 if (old_state_and_flags.as_struct.state != kRunnable) {
1568 return false; // Fail, thread is suspended and so can't run a checkpoint.
1569 }
1570
1571 // We must be runnable to request a checkpoint.
1572 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1573 union StateAndFlags new_state_and_flags;
1574 new_state_and_flags.as_int = old_state_and_flags.as_int;
1575 new_state_and_flags.as_struct.flags |= kCheckpointRequest;
1576 bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
1577 old_state_and_flags.as_int, new_state_and_flags.as_int);
1578 if (success) {
1579 // Succeeded setting checkpoint flag, now insert the actual checkpoint.
1580 if (tlsPtr_.checkpoint_function == nullptr) {
1581 tlsPtr_.checkpoint_function = function;
1582 } else {
1583 checkpoint_overflow_.push_back(function);
1584 }
1585 CHECK_EQ(ReadFlag(kCheckpointRequest), true);
1586 TriggerSuspend();
1587 }
1588 return success;
1589 }
1590
RequestEmptyCheckpoint()1591 bool Thread::RequestEmptyCheckpoint() {
1592 union StateAndFlags old_state_and_flags;
1593 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1594 if (old_state_and_flags.as_struct.state != kRunnable) {
1595 // If it's not runnable, we don't need to do anything because it won't be in the middle of a
1596 // heap access (eg. the read barrier).
1597 return false;
1598 }
1599
1600 // We must be runnable to request a checkpoint.
1601 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1602 union StateAndFlags new_state_and_flags;
1603 new_state_and_flags.as_int = old_state_and_flags.as_int;
1604 new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest;
1605 bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
1606 old_state_and_flags.as_int, new_state_and_flags.as_int);
1607 if (success) {
1608 TriggerSuspend();
1609 }
1610 return success;
1611 }
1612
1613 class BarrierClosure : public Closure {
1614 public:
BarrierClosure(Closure * wrapped)1615 explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
1616
Run(Thread * self)1617 void Run(Thread* self) override {
1618 wrapped_->Run(self);
1619 barrier_.Pass(self);
1620 }
1621
Wait(Thread * self,ThreadState suspend_state)1622 void Wait(Thread* self, ThreadState suspend_state) {
1623 if (suspend_state != ThreadState::kRunnable) {
1624 barrier_.Increment<Barrier::kDisallowHoldingLocks>(self, 1);
1625 } else {
1626 barrier_.Increment<Barrier::kAllowHoldingLocks>(self, 1);
1627 }
1628 }
1629
1630 private:
1631 Closure* wrapped_;
1632 Barrier barrier_;
1633 };
1634
1635 // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution.
RequestSynchronousCheckpoint(Closure * function,ThreadState suspend_state)1636 bool Thread::RequestSynchronousCheckpoint(Closure* function, ThreadState suspend_state) {
1637 Thread* self = Thread::Current();
1638 if (this == Thread::Current()) {
1639 Locks::thread_list_lock_->AssertExclusiveHeld(self);
1640 // Unlock the tll before running so that the state is the same regardless of thread.
1641 Locks::thread_list_lock_->ExclusiveUnlock(self);
1642 // Asked to run on this thread. Just run.
1643 function->Run(this);
1644 return true;
1645 }
1646
1647 // The current thread is not this thread.
1648
1649 if (GetState() == ThreadState::kTerminated) {
1650 Locks::thread_list_lock_->ExclusiveUnlock(self);
1651 return false;
1652 }
1653
1654 struct ScopedThreadListLockUnlock {
1655 explicit ScopedThreadListLockUnlock(Thread* self_in) RELEASE(*Locks::thread_list_lock_)
1656 : self_thread(self_in) {
1657 Locks::thread_list_lock_->AssertHeld(self_thread);
1658 Locks::thread_list_lock_->Unlock(self_thread);
1659 }
1660
1661 ~ScopedThreadListLockUnlock() ACQUIRE(*Locks::thread_list_lock_) {
1662 Locks::thread_list_lock_->AssertNotHeld(self_thread);
1663 Locks::thread_list_lock_->Lock(self_thread);
1664 }
1665
1666 Thread* self_thread;
1667 };
1668
1669 for (;;) {
1670 Locks::thread_list_lock_->AssertExclusiveHeld(self);
1671 // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
1672 // suspend-count lock for too long.
1673 if (GetState() == ThreadState::kRunnable) {
1674 BarrierClosure barrier_closure(function);
1675 bool installed = false;
1676 {
1677 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1678 installed = RequestCheckpoint(&barrier_closure);
1679 }
1680 if (installed) {
1681 // Relinquish the thread-list lock. We should not wait holding any locks. We cannot
1682 // reacquire it since we don't know if 'this' hasn't been deleted yet.
1683 Locks::thread_list_lock_->ExclusiveUnlock(self);
1684 ScopedThreadStateChange sts(self, suspend_state);
1685 barrier_closure.Wait(self, suspend_state);
1686 return true;
1687 }
1688 // Fall-through.
1689 }
1690
1691 // This thread is not runnable, make sure we stay suspended, then run the checkpoint.
1692 // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
1693 // certain situations.
1694 {
1695 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1696
1697 if (!ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal)) {
1698 // Just retry the loop.
1699 sched_yield();
1700 continue;
1701 }
1702 }
1703
1704 {
1705 // Release for the wait. The suspension will keep us from being deleted. Reacquire after so
1706 // that we can call ModifySuspendCount without racing against ThreadList::Unregister.
1707 ScopedThreadListLockUnlock stllu(self);
1708 {
1709 ScopedThreadStateChange sts(self, suspend_state);
1710 while (GetState() == ThreadState::kRunnable) {
1711 // We became runnable again. Wait till the suspend triggered in ModifySuspendCount
1712 // moves us to suspended.
1713 sched_yield();
1714 }
1715 }
1716
1717 function->Run(this);
1718 }
1719
1720 {
1721 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1722
1723 DCHECK_NE(GetState(), ThreadState::kRunnable);
1724 bool updated = ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1725 DCHECK(updated);
1726 }
1727
1728 {
1729 // Imitate ResumeAll, the thread may be waiting on Thread::resume_cond_ since we raised its
1730 // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
1731 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1732 Thread::resume_cond_->Broadcast(self);
1733 }
1734
1735 // Release the thread_list_lock_ to be consistent with the barrier-closure path.
1736 Locks::thread_list_lock_->ExclusiveUnlock(self);
1737
1738 return true; // We're done, break out of the loop.
1739 }
1740 }
1741
GetFlipFunction()1742 Closure* Thread::GetFlipFunction() {
1743 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1744 Closure* func;
1745 do {
1746 func = atomic_func->load(std::memory_order_relaxed);
1747 if (func == nullptr) {
1748 return nullptr;
1749 }
1750 } while (!atomic_func->CompareAndSetWeakSequentiallyConsistent(func, nullptr));
1751 DCHECK(func != nullptr);
1752 return func;
1753 }
1754
SetFlipFunction(Closure * function)1755 void Thread::SetFlipFunction(Closure* function) {
1756 CHECK(function != nullptr);
1757 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1758 atomic_func->store(function, std::memory_order_seq_cst);
1759 }
1760
FullSuspendCheck()1761 void Thread::FullSuspendCheck() {
1762 ScopedTrace trace(__FUNCTION__);
1763 VLOG(threads) << this << " self-suspending";
1764 // Make thread appear suspended to other threads, release mutator_lock_.
1765 // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1766 ScopedThreadSuspension(this, kSuspended); // NOLINT
1767 VLOG(threads) << this << " self-reviving";
1768 }
1769
GetSchedulerGroupName(pid_t tid)1770 static std::string GetSchedulerGroupName(pid_t tid) {
1771 // /proc/<pid>/cgroup looks like this:
1772 // 2:devices:/
1773 // 1:cpuacct,cpu:/
1774 // We want the third field from the line whose second field contains the "cpu" token.
1775 std::string cgroup_file;
1776 if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
1777 return "";
1778 }
1779 std::vector<std::string> cgroup_lines;
1780 Split(cgroup_file, '\n', &cgroup_lines);
1781 for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1782 std::vector<std::string> cgroup_fields;
1783 Split(cgroup_lines[i], ':', &cgroup_fields);
1784 std::vector<std::string> cgroups;
1785 Split(cgroup_fields[1], ',', &cgroups);
1786 for (size_t j = 0; j < cgroups.size(); ++j) {
1787 if (cgroups[j] == "cpu") {
1788 return cgroup_fields[2].substr(1); // Skip the leading slash.
1789 }
1790 }
1791 }
1792 return "";
1793 }
1794
1795
DumpState(std::ostream & os,const Thread * thread,pid_t tid)1796 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
1797 std::string group_name;
1798 int priority;
1799 bool is_daemon = false;
1800 Thread* self = Thread::Current();
1801
1802 // If flip_function is not null, it means we have run a checkpoint
1803 // before the thread wakes up to execute the flip function and the
1804 // thread roots haven't been forwarded. So the following access to
1805 // the roots (opeer or methods in the frames) would be bad. Run it
1806 // here. TODO: clean up.
1807 if (thread != nullptr) {
1808 ScopedObjectAccessUnchecked soa(self);
1809 Thread* this_thread = const_cast<Thread*>(thread);
1810 Closure* flip_func = this_thread->GetFlipFunction();
1811 if (flip_func != nullptr) {
1812 flip_func->Run(this_thread);
1813 }
1814 }
1815
1816 // Don't do this if we are aborting since the GC may have all the threads suspended. This will
1817 // cause ScopedObjectAccessUnchecked to deadlock.
1818 if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
1819 ScopedObjectAccessUnchecked soa(self);
1820 priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)
1821 ->GetInt(thread->tlsPtr_.opeer);
1822 is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)
1823 ->GetBoolean(thread->tlsPtr_.opeer);
1824
1825 ObjPtr<mirror::Object> thread_group =
1826 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
1827 ->GetObject(thread->tlsPtr_.opeer);
1828
1829 if (thread_group != nullptr) {
1830 ArtField* group_name_field =
1831 jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
1832 ObjPtr<mirror::String> group_name_string =
1833 group_name_field->GetObject(thread_group)->AsString();
1834 group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
1835 }
1836 } else {
1837 priority = GetNativePriority();
1838 }
1839
1840 std::string scheduler_group_name(GetSchedulerGroupName(tid));
1841 if (scheduler_group_name.empty()) {
1842 scheduler_group_name = "default";
1843 }
1844
1845 if (thread != nullptr) {
1846 os << '"' << *thread->tlsPtr_.name << '"';
1847 if (is_daemon) {
1848 os << " daemon";
1849 }
1850 os << " prio=" << priority
1851 << " tid=" << thread->GetThreadId()
1852 << " " << thread->GetState();
1853 if (thread->IsStillStarting()) {
1854 os << " (still starting up)";
1855 }
1856 os << "\n";
1857 } else {
1858 os << '"' << ::art::GetThreadName(tid) << '"'
1859 << " prio=" << priority
1860 << " (not attached)\n";
1861 }
1862
1863 if (thread != nullptr) {
1864 auto suspend_log_fn = [&]() REQUIRES(Locks::thread_suspend_count_lock_) {
1865 os << " | group=\"" << group_name << "\""
1866 << " sCount=" << thread->tls32_.suspend_count
1867 << " dsCount=" << thread->tls32_.debug_suspend_count
1868 << " flags=" << thread->tls32_.state_and_flags.as_struct.flags
1869 << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
1870 << " self=" << reinterpret_cast<const void*>(thread) << "\n";
1871 };
1872 if (Locks::thread_suspend_count_lock_->IsExclusiveHeld(self)) {
1873 Locks::thread_suspend_count_lock_->AssertExclusiveHeld(self); // For annotalysis.
1874 suspend_log_fn();
1875 } else {
1876 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1877 suspend_log_fn();
1878 }
1879 }
1880
1881 os << " | sysTid=" << tid
1882 << " nice=" << getpriority(PRIO_PROCESS, tid)
1883 << " cgrp=" << scheduler_group_name;
1884 if (thread != nullptr) {
1885 int policy;
1886 sched_param sp;
1887 #if !defined(__APPLE__)
1888 // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
1889 policy = sched_getscheduler(tid);
1890 if (policy == -1) {
1891 PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
1892 }
1893 int sched_getparam_result = sched_getparam(tid, &sp);
1894 if (sched_getparam_result == -1) {
1895 PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
1896 sp.sched_priority = -1;
1897 }
1898 #else
1899 CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
1900 __FUNCTION__);
1901 #endif
1902 os << " sched=" << policy << "/" << sp.sched_priority
1903 << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
1904 }
1905 os << "\n";
1906
1907 // Grab the scheduler stats for this thread.
1908 std::string scheduler_stats;
1909 if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)
1910 && !scheduler_stats.empty()) {
1911 scheduler_stats = android::base::Trim(scheduler_stats); // Lose the trailing '\n'.
1912 } else {
1913 scheduler_stats = "0 0 0";
1914 }
1915
1916 char native_thread_state = '?';
1917 int utime = 0;
1918 int stime = 0;
1919 int task_cpu = 0;
1920 GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
1921
1922 os << " | state=" << native_thread_state
1923 << " schedstat=( " << scheduler_stats << " )"
1924 << " utm=" << utime
1925 << " stm=" << stime
1926 << " core=" << task_cpu
1927 << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
1928 if (thread != nullptr) {
1929 os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
1930 << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
1931 << PrettySize(thread->tlsPtr_.stack_size) << "\n";
1932 // Dump the held mutexes.
1933 os << " | held mutexes=";
1934 for (size_t i = 0; i < kLockLevelCount; ++i) {
1935 if (i != kMonitorLock) {
1936 BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
1937 if (mutex != nullptr) {
1938 os << " \"" << mutex->GetName() << "\"";
1939 if (mutex->IsReaderWriterMutex()) {
1940 ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
1941 if (rw_mutex->GetExclusiveOwnerTid() == tid) {
1942 os << "(exclusive held)";
1943 } else {
1944 os << "(shared held)";
1945 }
1946 }
1947 }
1948 }
1949 }
1950 os << "\n";
1951 }
1952 }
1953
DumpState(std::ostream & os) const1954 void Thread::DumpState(std::ostream& os) const {
1955 Thread::DumpState(os, this, GetTid());
1956 }
1957
1958 struct StackDumpVisitor : public MonitorObjectsStackVisitor {
StackDumpVisitorart::StackDumpVisitor1959 StackDumpVisitor(std::ostream& os_in,
1960 Thread* thread_in,
1961 Context* context,
1962 bool can_allocate,
1963 bool check_suspended = true,
1964 bool dump_locks = true)
1965 REQUIRES_SHARED(Locks::mutator_lock_)
1966 : MonitorObjectsStackVisitor(thread_in,
1967 context,
1968 check_suspended,
1969 can_allocate && dump_locks),
1970 os(os_in),
1971 last_method(nullptr),
1972 last_line_number(0),
1973 repetition_count(0) {}
1974
~StackDumpVisitorart::StackDumpVisitor1975 virtual ~StackDumpVisitor() {
1976 if (frame_count == 0) {
1977 os << " (no managed stack frames)\n";
1978 }
1979 }
1980
1981 static constexpr size_t kMaxRepetition = 3u;
1982
StartMethodart::StackDumpVisitor1983 VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
1984 override
1985 REQUIRES_SHARED(Locks::mutator_lock_) {
1986 m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1987 ObjPtr<mirror::DexCache> dex_cache = m->GetDexCache();
1988 int line_number = -1;
1989 if (dex_cache != nullptr) { // be tolerant of bad input
1990 const DexFile* dex_file = dex_cache->GetDexFile();
1991 line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false));
1992 }
1993 if (line_number == last_line_number && last_method == m) {
1994 ++repetition_count;
1995 } else {
1996 if (repetition_count >= kMaxRepetition) {
1997 os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
1998 }
1999 repetition_count = 0;
2000 last_line_number = line_number;
2001 last_method = m;
2002 }
2003
2004 if (repetition_count >= kMaxRepetition) {
2005 // Skip visiting=printing anything.
2006 return VisitMethodResult::kSkipMethod;
2007 }
2008
2009 os << " at " << m->PrettyMethod(false);
2010 if (m->IsNative()) {
2011 os << "(Native method)";
2012 } else {
2013 const char* source_file(m->GetDeclaringClassSourceFile());
2014 os << "(" << (source_file != nullptr ? source_file : "unavailable")
2015 << ":" << line_number << ")";
2016 }
2017 os << "\n";
2018 // Go and visit locks.
2019 return VisitMethodResult::kContinueMethod;
2020 }
2021
EndMethodart::StackDumpVisitor2022 VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) override {
2023 return VisitMethodResult::kContinueMethod;
2024 }
2025
VisitWaitingObjectart::StackDumpVisitor2026 void VisitWaitingObject(ObjPtr<mirror::Object> obj, ThreadState state ATTRIBUTE_UNUSED)
2027 override
2028 REQUIRES_SHARED(Locks::mutator_lock_) {
2029 PrintObject(obj, " - waiting on ", ThreadList::kInvalidThreadId);
2030 }
VisitSleepingObjectart::StackDumpVisitor2031 void VisitSleepingObject(ObjPtr<mirror::Object> obj)
2032 override
2033 REQUIRES_SHARED(Locks::mutator_lock_) {
2034 PrintObject(obj, " - sleeping on ", ThreadList::kInvalidThreadId);
2035 }
VisitBlockedOnObjectart::StackDumpVisitor2036 void VisitBlockedOnObject(ObjPtr<mirror::Object> obj,
2037 ThreadState state,
2038 uint32_t owner_tid)
2039 override
2040 REQUIRES_SHARED(Locks::mutator_lock_) {
2041 const char* msg;
2042 switch (state) {
2043 case kBlocked:
2044 msg = " - waiting to lock ";
2045 break;
2046
2047 case kWaitingForLockInflation:
2048 msg = " - waiting for lock inflation of ";
2049 break;
2050
2051 default:
2052 LOG(FATAL) << "Unreachable";
2053 UNREACHABLE();
2054 }
2055 PrintObject(obj, msg, owner_tid);
2056 }
VisitLockedObjectart::StackDumpVisitor2057 void VisitLockedObject(ObjPtr<mirror::Object> obj)
2058 override
2059 REQUIRES_SHARED(Locks::mutator_lock_) {
2060 PrintObject(obj, " - locked ", ThreadList::kInvalidThreadId);
2061 }
2062
PrintObjectart::StackDumpVisitor2063 void PrintObject(ObjPtr<mirror::Object> obj,
2064 const char* msg,
2065 uint32_t owner_tid) REQUIRES_SHARED(Locks::mutator_lock_) {
2066 if (obj == nullptr) {
2067 os << msg << "an unknown object";
2068 } else {
2069 if ((obj->GetLockWord(true).GetState() == LockWord::kThinLocked) &&
2070 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
2071 // Getting the identity hashcode here would result in lock inflation and suspension of the
2072 // current thread, which isn't safe if this is the only runnable thread.
2073 os << msg << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
2074 reinterpret_cast<intptr_t>(obj.Ptr()),
2075 obj->PrettyTypeOf().c_str());
2076 } else {
2077 // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
2078 // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread
2079 // suspension and move pretty_object.
2080 const std::string pretty_type(obj->PrettyTypeOf());
2081 os << msg << StringPrintf("<0x%08x> (a %s)", obj->IdentityHashCode(), pretty_type.c_str());
2082 }
2083 }
2084 if (owner_tid != ThreadList::kInvalidThreadId) {
2085 os << " held by thread " << owner_tid;
2086 }
2087 os << "\n";
2088 }
2089
2090 std::ostream& os;
2091 ArtMethod* last_method;
2092 int last_line_number;
2093 size_t repetition_count;
2094 };
2095
ShouldShowNativeStack(const Thread * thread)2096 static bool ShouldShowNativeStack(const Thread* thread)
2097 REQUIRES_SHARED(Locks::mutator_lock_) {
2098 ThreadState state = thread->GetState();
2099
2100 // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
2101 if (state > kWaiting && state < kStarting) {
2102 return true;
2103 }
2104
2105 // In an Object.wait variant or Thread.sleep? That's not interesting.
2106 if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
2107 return false;
2108 }
2109
2110 // Threads with no managed stack frames should be shown.
2111 if (!thread->HasManagedStack()) {
2112 return true;
2113 }
2114
2115 // In some other native method? That's interesting.
2116 // We don't just check kNative because native methods will be in state kSuspended if they're
2117 // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
2118 // thread-startup states if it's early enough in their life cycle (http://b/7432159).
2119 ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
2120 return current_method != nullptr && current_method->IsNative();
2121 }
2122
DumpJavaStack(std::ostream & os,bool check_suspended,bool dump_locks) const2123 void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const {
2124 // If flip_function is not null, it means we have run a checkpoint
2125 // before the thread wakes up to execute the flip function and the
2126 // thread roots haven't been forwarded. So the following access to
2127 // the roots (locks or methods in the frames) would be bad. Run it
2128 // here. TODO: clean up.
2129 {
2130 Thread* this_thread = const_cast<Thread*>(this);
2131 Closure* flip_func = this_thread->GetFlipFunction();
2132 if (flip_func != nullptr) {
2133 flip_func->Run(this_thread);
2134 }
2135 }
2136
2137 // Dumping the Java stack involves the verifier for locks. The verifier operates under the
2138 // assumption that there is no exception pending on entry. Thus, stash any pending exception.
2139 // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
2140 // thread.
2141 StackHandleScope<1> scope(Thread::Current());
2142 Handle<mirror::Throwable> exc;
2143 bool have_exception = false;
2144 if (IsExceptionPending()) {
2145 exc = scope.NewHandle(GetException());
2146 const_cast<Thread*>(this)->ClearException();
2147 have_exception = true;
2148 }
2149
2150 std::unique_ptr<Context> context(Context::Create());
2151 StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
2152 !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
2153 dumper.WalkStack();
2154
2155 if (have_exception) {
2156 const_cast<Thread*>(this)->SetException(exc.Get());
2157 }
2158 }
2159
DumpStack(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const2160 void Thread::DumpStack(std::ostream& os,
2161 bool dump_native_stack,
2162 BacktraceMap* backtrace_map,
2163 bool force_dump_stack) const {
2164 // TODO: we call this code when dying but may not have suspended the thread ourself. The
2165 // IsSuspended check is therefore racy with the use for dumping (normally we inhibit
2166 // the race with the thread_suspend_count_lock_).
2167 bool dump_for_abort = (gAborting > 0);
2168 bool safe_to_dump = (this == Thread::Current() || IsSuspended());
2169 if (!kIsDebugBuild) {
2170 // We always want to dump the stack for an abort, however, there is no point dumping another
2171 // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
2172 safe_to_dump = (safe_to_dump || dump_for_abort);
2173 }
2174 if (safe_to_dump || force_dump_stack) {
2175 // If we're currently in native code, dump that stack before dumping the managed stack.
2176 if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
2177 DumpKernelStack(os, GetTid(), " kernel: ", false);
2178 ArtMethod* method =
2179 GetCurrentMethod(nullptr,
2180 /*check_suspended=*/ !force_dump_stack,
2181 /*abort_on_error=*/ !(dump_for_abort || force_dump_stack));
2182 DumpNativeStack(os, GetTid(), backtrace_map, " native: ", method);
2183 }
2184 DumpJavaStack(os,
2185 /*check_suspended=*/ !force_dump_stack,
2186 /*dump_locks=*/ !force_dump_stack);
2187 } else {
2188 os << "Not able to dump stack of thread that isn't suspended";
2189 }
2190 }
2191
ThreadExitCallback(void * arg)2192 void Thread::ThreadExitCallback(void* arg) {
2193 Thread* self = reinterpret_cast<Thread*>(arg);
2194 if (self->tls32_.thread_exit_check_count == 0) {
2195 LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
2196 "going to use a pthread_key_create destructor?): " << *self;
2197 CHECK(is_started_);
2198 #ifdef ART_TARGET_ANDROID
2199 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
2200 #else
2201 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
2202 #endif
2203 self->tls32_.thread_exit_check_count = 1;
2204 } else {
2205 LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
2206 }
2207 }
2208
Startup()2209 void Thread::Startup() {
2210 CHECK(!is_started_);
2211 is_started_ = true;
2212 {
2213 // MutexLock to keep annotalysis happy.
2214 //
2215 // Note we use null for the thread because Thread::Current can
2216 // return garbage since (is_started_ == true) and
2217 // Thread::pthread_key_self_ is not yet initialized.
2218 // This was seen on glibc.
2219 MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
2220 resume_cond_ = new ConditionVariable("Thread resumption condition variable",
2221 *Locks::thread_suspend_count_lock_);
2222 }
2223
2224 // Allocate a TLS slot.
2225 CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
2226 "self key");
2227
2228 // Double-check the TLS slot allocation.
2229 if (pthread_getspecific(pthread_key_self_) != nullptr) {
2230 LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
2231 }
2232 }
2233
FinishStartup()2234 void Thread::FinishStartup() {
2235 Runtime* runtime = Runtime::Current();
2236 CHECK(runtime->IsStarted());
2237
2238 // Finish attaching the main thread.
2239 ScopedObjectAccess soa(Thread::Current());
2240 soa.Self()->CreatePeer("main", false, runtime->GetMainThreadGroup());
2241 soa.Self()->AssertNoPendingException();
2242
2243 runtime->RunRootClinits(soa.Self());
2244
2245 // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
2246 // threads, this is done in Thread.start() on the Java side.
2247 soa.Self()->NotifyThreadGroup(soa, runtime->GetMainThreadGroup());
2248 soa.Self()->AssertNoPendingException();
2249 }
2250
Shutdown()2251 void Thread::Shutdown() {
2252 CHECK(is_started_);
2253 is_started_ = false;
2254 CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
2255 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
2256 if (resume_cond_ != nullptr) {
2257 delete resume_cond_;
2258 resume_cond_ = nullptr;
2259 }
2260 }
2261
NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable & soa,jobject thread_group)2262 void Thread::NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group) {
2263 ScopedLocalRef<jobject> thread_jobject(
2264 soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer()));
2265 ScopedLocalRef<jobject> thread_group_jobject_scoped(
2266 soa.Env(), nullptr);
2267 jobject thread_group_jobject = thread_group;
2268 if (thread_group == nullptr || kIsDebugBuild) {
2269 // There is always a group set. Retrieve it.
2270 thread_group_jobject_scoped.reset(
2271 soa.Env()->GetObjectField(thread_jobject.get(),
2272 WellKnownClasses::java_lang_Thread_group));
2273 thread_group_jobject = thread_group_jobject_scoped.get();
2274 if (kIsDebugBuild && thread_group != nullptr) {
2275 CHECK(soa.Env()->IsSameObject(thread_group, thread_group_jobject));
2276 }
2277 }
2278 soa.Env()->CallNonvirtualVoidMethod(thread_group_jobject,
2279 WellKnownClasses::java_lang_ThreadGroup,
2280 WellKnownClasses::java_lang_ThreadGroup_add,
2281 thread_jobject.get());
2282 }
2283
Thread(bool daemon)2284 Thread::Thread(bool daemon)
2285 : tls32_(daemon),
2286 wait_monitor_(nullptr),
2287 is_runtime_thread_(false) {
2288 wait_mutex_ = new Mutex("a thread wait mutex", LockLevel::kThreadWaitLock);
2289 wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
2290 tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
2291 tlsPtr_.name = new std::string(kThreadNameDuringStartup);
2292
2293 static_assert((sizeof(Thread) % 4) == 0U,
2294 "art::Thread has a size which is not a multiple of 4.");
2295 tls32_.state_and_flags.as_struct.flags = 0;
2296 tls32_.state_and_flags.as_struct.state = kNative;
2297 tls32_.interrupted.store(false, std::memory_order_relaxed);
2298 // Initialize with no permit; if the java Thread was unparked before being
2299 // started, it will unpark itself before calling into java code.
2300 tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed);
2301 memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
2302 std::fill(tlsPtr_.rosalloc_runs,
2303 tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
2304 gc::allocator::RosAlloc::GetDedicatedFullRun());
2305 tlsPtr_.checkpoint_function = nullptr;
2306 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
2307 tlsPtr_.active_suspend_barriers[i] = nullptr;
2308 }
2309 tlsPtr_.flip_function = nullptr;
2310 tlsPtr_.thread_local_mark_stack = nullptr;
2311 tls32_.is_transitioning_to_runnable = false;
2312 tls32_.use_mterp = false;
2313 }
2314
NotifyInTheadList()2315 void Thread::NotifyInTheadList() {
2316 tls32_.use_mterp = interpreter::CanUseMterp();
2317 }
2318
CanLoadClasses() const2319 bool Thread::CanLoadClasses() const {
2320 return !IsRuntimeThread() || !Runtime::Current()->IsJavaDebuggable();
2321 }
2322
IsStillStarting() const2323 bool Thread::IsStillStarting() const {
2324 // You might think you can check whether the state is kStarting, but for much of thread startup,
2325 // the thread is in kNative; it might also be in kVmWait.
2326 // You might think you can check whether the peer is null, but the peer is actually created and
2327 // assigned fairly early on, and needs to be.
2328 // It turns out that the last thing to change is the thread name; that's a good proxy for "has
2329 // this thread _ever_ entered kRunnable".
2330 return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
2331 (*tlsPtr_.name == kThreadNameDuringStartup);
2332 }
2333
AssertPendingException() const2334 void Thread::AssertPendingException() const {
2335 CHECK(IsExceptionPending()) << "Pending exception expected.";
2336 }
2337
AssertPendingOOMException() const2338 void Thread::AssertPendingOOMException() const {
2339 AssertPendingException();
2340 auto* e = GetException();
2341 CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
2342 << e->Dump();
2343 }
2344
AssertNoPendingException() const2345 void Thread::AssertNoPendingException() const {
2346 if (UNLIKELY(IsExceptionPending())) {
2347 ScopedObjectAccess soa(Thread::Current());
2348 LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
2349 }
2350 }
2351
AssertNoPendingExceptionForNewException(const char * msg) const2352 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
2353 if (UNLIKELY(IsExceptionPending())) {
2354 ScopedObjectAccess soa(Thread::Current());
2355 LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
2356 << GetException()->Dump();
2357 }
2358 }
2359
2360 class MonitorExitVisitor : public SingleRootVisitor {
2361 public:
MonitorExitVisitor(Thread * self)2362 explicit MonitorExitVisitor(Thread* self) : self_(self) { }
2363
2364 // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
VisitRoot(mirror::Object * entered_monitor,const RootInfo & info ATTRIBUTE_UNUSED)2365 void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
2366 override NO_THREAD_SAFETY_ANALYSIS {
2367 if (self_->HoldsLock(entered_monitor)) {
2368 LOG(WARNING) << "Calling MonitorExit on object "
2369 << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
2370 << " left locked by native thread "
2371 << *Thread::Current() << " which is detaching";
2372 entered_monitor->MonitorExit(self_);
2373 }
2374 }
2375
2376 private:
2377 Thread* const self_;
2378 };
2379
Destroy()2380 void Thread::Destroy() {
2381 Thread* self = this;
2382 DCHECK_EQ(self, Thread::Current());
2383
2384 if (tlsPtr_.jni_env != nullptr) {
2385 {
2386 ScopedObjectAccess soa(self);
2387 MonitorExitVisitor visitor(self);
2388 // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
2389 tlsPtr_.jni_env->monitors_.VisitRoots(&visitor, RootInfo(kRootVMInternal));
2390 }
2391 // Release locally held global references which releasing may require the mutator lock.
2392 if (tlsPtr_.jpeer != nullptr) {
2393 // If pthread_create fails we don't have a jni env here.
2394 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
2395 tlsPtr_.jpeer = nullptr;
2396 }
2397 if (tlsPtr_.class_loader_override != nullptr) {
2398 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
2399 tlsPtr_.class_loader_override = nullptr;
2400 }
2401 }
2402
2403 if (tlsPtr_.opeer != nullptr) {
2404 ScopedObjectAccess soa(self);
2405 // We may need to call user-supplied managed code, do this before final clean-up.
2406 HandleUncaughtExceptions(soa);
2407 RemoveFromThreadGroup(soa);
2408 Runtime* runtime = Runtime::Current();
2409 if (runtime != nullptr) {
2410 runtime->GetRuntimeCallbacks()->ThreadDeath(self);
2411 }
2412
2413 // this.nativePeer = 0;
2414 if (Runtime::Current()->IsActiveTransaction()) {
2415 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2416 ->SetLong<true>(tlsPtr_.opeer, 0);
2417 } else {
2418 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2419 ->SetLong<false>(tlsPtr_.opeer, 0);
2420 }
2421
2422 // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
2423 // who is waiting.
2424 ObjPtr<mirror::Object> lock =
2425 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
2426 // (This conditional is only needed for tests, where Thread.lock won't have been set.)
2427 if (lock != nullptr) {
2428 StackHandleScope<1> hs(self);
2429 Handle<mirror::Object> h_obj(hs.NewHandle(lock));
2430 ObjectLock<mirror::Object> locker(self, h_obj);
2431 locker.NotifyAll();
2432 }
2433 tlsPtr_.opeer = nullptr;
2434 }
2435
2436 {
2437 ScopedObjectAccess soa(self);
2438 Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
2439 if (kUseReadBarrier) {
2440 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
2441 }
2442 }
2443 }
2444
~Thread()2445 Thread::~Thread() {
2446 CHECK(tlsPtr_.class_loader_override == nullptr);
2447 CHECK(tlsPtr_.jpeer == nullptr);
2448 CHECK(tlsPtr_.opeer == nullptr);
2449 bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run?
2450 if (initialized) {
2451 delete tlsPtr_.jni_env;
2452 tlsPtr_.jni_env = nullptr;
2453 }
2454 CHECK_NE(GetState(), kRunnable);
2455 CHECK(!ReadFlag(kCheckpointRequest));
2456 CHECK(!ReadFlag(kEmptyCheckpointRequest));
2457 CHECK(tlsPtr_.checkpoint_function == nullptr);
2458 CHECK_EQ(checkpoint_overflow_.size(), 0u);
2459 CHECK(tlsPtr_.flip_function == nullptr);
2460 CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
2461
2462 // Make sure we processed all deoptimization requests.
2463 CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
2464 CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
2465 "Not all deoptimized frames have been consumed by the debugger.";
2466
2467 // We may be deleting a still born thread.
2468 SetStateUnsafe(kTerminated);
2469
2470 delete wait_cond_;
2471 delete wait_mutex_;
2472
2473 if (tlsPtr_.long_jump_context != nullptr) {
2474 delete tlsPtr_.long_jump_context;
2475 }
2476
2477 if (initialized) {
2478 CleanupCpu();
2479 }
2480
2481 if (tlsPtr_.single_step_control != nullptr) {
2482 delete tlsPtr_.single_step_control;
2483 }
2484 delete tlsPtr_.instrumentation_stack;
2485 delete tlsPtr_.name;
2486 delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
2487
2488 Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
2489
2490 TearDownAlternateSignalStack();
2491 }
2492
HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable & soa)2493 void Thread::HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) {
2494 if (!IsExceptionPending()) {
2495 return;
2496 }
2497 ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2498 ScopedThreadStateChange tsc(this, kNative);
2499
2500 // Get and clear the exception.
2501 ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
2502 tlsPtr_.jni_env->ExceptionClear();
2503
2504 // Call the Thread instance's dispatchUncaughtException(Throwable)
2505 tlsPtr_.jni_env->CallVoidMethod(peer.get(),
2506 WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
2507 exception.get());
2508
2509 // If the dispatchUncaughtException threw, clear that exception too.
2510 tlsPtr_.jni_env->ExceptionClear();
2511 }
2512
RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable & soa)2513 void Thread::RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) {
2514 // this.group.removeThread(this);
2515 // group can be null if we're in the compiler or a test.
2516 ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
2517 ->GetObject(tlsPtr_.opeer);
2518 if (ogroup != nullptr) {
2519 ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
2520 ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2521 ScopedThreadStateChange tsc(soa.Self(), kNative);
2522 tlsPtr_.jni_env->CallVoidMethod(group.get(),
2523 WellKnownClasses::java_lang_ThreadGroup_removeThread,
2524 peer.get());
2525 }
2526 }
2527
HandleScopeContains(jobject obj) const2528 bool Thread::HandleScopeContains(jobject obj) const {
2529 StackReference<mirror::Object>* hs_entry =
2530 reinterpret_cast<StackReference<mirror::Object>*>(obj);
2531 for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
2532 if (cur->Contains(hs_entry)) {
2533 return true;
2534 }
2535 }
2536 // JNI code invoked from portable code uses shadow frames rather than the handle scope.
2537 return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
2538 }
2539
HandleScopeVisitRoots(RootVisitor * visitor,pid_t thread_id)2540 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, pid_t thread_id) {
2541 BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
2542 visitor, RootInfo(kRootNativeStack, thread_id));
2543 for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
2544 cur->VisitRoots(buffered_visitor);
2545 }
2546 }
2547
DecodeJObject(jobject obj) const2548 ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
2549 if (obj == nullptr) {
2550 return nullptr;
2551 }
2552 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2553 IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2554 ObjPtr<mirror::Object> result;
2555 bool expect_null = false;
2556 // The "kinds" below are sorted by the frequency we expect to encounter them.
2557 if (kind == kLocal) {
2558 IndirectReferenceTable& locals = tlsPtr_.jni_env->locals_;
2559 // Local references do not need a read barrier.
2560 result = locals.Get<kWithoutReadBarrier>(ref);
2561 } else if (kind == kHandleScopeOrInvalid) {
2562 // TODO: make stack indirect reference table lookup more efficient.
2563 // Check if this is a local reference in the handle scope.
2564 if (LIKELY(HandleScopeContains(obj))) {
2565 // Read from handle scope.
2566 result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
2567 VerifyObject(result);
2568 } else {
2569 tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of invalid jobject %p", obj);
2570 expect_null = true;
2571 result = nullptr;
2572 }
2573 } else if (kind == kGlobal) {
2574 result = tlsPtr_.jni_env->vm_->DecodeGlobal(ref);
2575 } else {
2576 DCHECK_EQ(kind, kWeakGlobal);
2577 result = tlsPtr_.jni_env->vm_->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
2578 if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
2579 // This is a special case where it's okay to return null.
2580 expect_null = true;
2581 result = nullptr;
2582 }
2583 }
2584
2585 if (UNLIKELY(!expect_null && result == nullptr)) {
2586 tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of deleted %s %p",
2587 ToStr<IndirectRefKind>(kind).c_str(), obj);
2588 }
2589 return result;
2590 }
2591
IsJWeakCleared(jweak obj) const2592 bool Thread::IsJWeakCleared(jweak obj) const {
2593 CHECK(obj != nullptr);
2594 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2595 IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2596 CHECK_EQ(kind, kWeakGlobal);
2597 return tlsPtr_.jni_env->vm_->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
2598 }
2599
2600 // Implements java.lang.Thread.interrupted.
Interrupted()2601 bool Thread::Interrupted() {
2602 DCHECK_EQ(Thread::Current(), this);
2603 // No other thread can concurrently reset the interrupted flag.
2604 bool interrupted = tls32_.interrupted.load(std::memory_order_seq_cst);
2605 if (interrupted) {
2606 tls32_.interrupted.store(false, std::memory_order_seq_cst);
2607 }
2608 return interrupted;
2609 }
2610
2611 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()2612 bool Thread::IsInterrupted() {
2613 return tls32_.interrupted.load(std::memory_order_seq_cst);
2614 }
2615
Interrupt(Thread * self)2616 void Thread::Interrupt(Thread* self) {
2617 {
2618 MutexLock mu(self, *wait_mutex_);
2619 if (tls32_.interrupted.load(std::memory_order_seq_cst)) {
2620 return;
2621 }
2622 tls32_.interrupted.store(true, std::memory_order_seq_cst);
2623 NotifyLocked(self);
2624 }
2625 Unpark();
2626 }
2627
Notify()2628 void Thread::Notify() {
2629 Thread* self = Thread::Current();
2630 MutexLock mu(self, *wait_mutex_);
2631 NotifyLocked(self);
2632 }
2633
NotifyLocked(Thread * self)2634 void Thread::NotifyLocked(Thread* self) {
2635 if (wait_monitor_ != nullptr) {
2636 wait_cond_->Signal(self);
2637 }
2638 }
2639
SetClassLoaderOverride(jobject class_loader_override)2640 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
2641 if (tlsPtr_.class_loader_override != nullptr) {
2642 GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
2643 }
2644 tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
2645 }
2646
2647 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
2648
2649 // Counts the stack trace depth and also fetches the first max_saved_frames frames.
2650 class FetchStackTraceVisitor : public StackVisitor {
2651 public:
FetchStackTraceVisitor(Thread * thread,ArtMethodDexPcPair * saved_frames=nullptr,size_t max_saved_frames=0)2652 explicit FetchStackTraceVisitor(Thread* thread,
2653 ArtMethodDexPcPair* saved_frames = nullptr,
2654 size_t max_saved_frames = 0)
2655 REQUIRES_SHARED(Locks::mutator_lock_)
2656 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2657 saved_frames_(saved_frames),
2658 max_saved_frames_(max_saved_frames) {}
2659
VisitFrame()2660 bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
2661 // We want to skip frames up to and including the exception's constructor.
2662 // Note we also skip the frame if it doesn't have a method (namely the callee
2663 // save frame)
2664 ArtMethod* m = GetMethod();
2665 if (skipping_ && !m->IsRuntimeMethod() &&
2666 !GetClassRoot<mirror::Throwable>()->IsAssignableFrom(m->GetDeclaringClass())) {
2667 skipping_ = false;
2668 }
2669 if (!skipping_) {
2670 if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save).
2671 if (depth_ < max_saved_frames_) {
2672 saved_frames_[depth_].first = m;
2673 saved_frames_[depth_].second = m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc();
2674 }
2675 ++depth_;
2676 }
2677 } else {
2678 ++skip_depth_;
2679 }
2680 return true;
2681 }
2682
GetDepth() const2683 uint32_t GetDepth() const {
2684 return depth_;
2685 }
2686
GetSkipDepth() const2687 uint32_t GetSkipDepth() const {
2688 return skip_depth_;
2689 }
2690
2691 private:
2692 uint32_t depth_ = 0;
2693 uint32_t skip_depth_ = 0;
2694 bool skipping_ = true;
2695 ArtMethodDexPcPair* saved_frames_;
2696 const size_t max_saved_frames_;
2697
2698 DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
2699 };
2700
2701 template<bool kTransactionActive>
2702 class BuildInternalStackTraceVisitor : public StackVisitor {
2703 public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)2704 BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
2705 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2706 self_(self),
2707 skip_depth_(skip_depth),
2708 pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
2709
Init(int depth)2710 bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
2711 // Allocate method trace as an object array where the first element is a pointer array that
2712 // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
2713 // class of the ArtMethod pointers.
2714 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2715 StackHandleScope<1> hs(self_);
2716 ObjPtr<mirror::Class> array_class =
2717 GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker);
2718 // The first element is the methods and dex pc array, the other elements are declaring classes
2719 // for the methods to ensure classes in the stack trace don't get unloaded.
2720 Handle<mirror::ObjectArray<mirror::Object>> trace(
2721 hs.NewHandle(
2722 mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
2723 if (trace == nullptr) {
2724 // Acquire uninterruptible_ in all paths.
2725 self_->StartAssertNoThreadSuspension("Building internal stack trace");
2726 self_->AssertPendingOOMException();
2727 return false;
2728 }
2729 ObjPtr<mirror::PointerArray> methods_and_pcs =
2730 class_linker->AllocPointerArray(self_, depth * 2);
2731 const char* last_no_suspend_cause =
2732 self_->StartAssertNoThreadSuspension("Building internal stack trace");
2733 if (methods_and_pcs == nullptr) {
2734 self_->AssertPendingOOMException();
2735 return false;
2736 }
2737 trace->Set(0, methods_and_pcs);
2738 trace_ = trace.Get();
2739 // If We are called from native, use non-transactional mode.
2740 CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
2741 return true;
2742 }
2743
RELEASE(Roles::uninterruptible_)2744 virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
2745 self_->EndAssertNoThreadSuspension(nullptr);
2746 }
2747
VisitFrame()2748 bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
2749 if (trace_ == nullptr) {
2750 return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError.
2751 }
2752 if (skip_depth_ > 0) {
2753 skip_depth_--;
2754 return true;
2755 }
2756 ArtMethod* m = GetMethod();
2757 if (m->IsRuntimeMethod()) {
2758 return true; // Ignore runtime frames (in particular callee save).
2759 }
2760 AddFrame(m, m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc());
2761 return true;
2762 }
2763
AddFrame(ArtMethod * method,uint32_t dex_pc)2764 void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2765 ObjPtr<mirror::PointerArray> trace_methods_and_pcs = GetTraceMethodsAndPCs();
2766 trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, method, pointer_size_);
2767 trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
2768 trace_methods_and_pcs->GetLength() / 2 + count_,
2769 dex_pc,
2770 pointer_size_);
2771 // Save the declaring class of the method to ensure that the declaring classes of the methods
2772 // do not get unloaded while the stack trace is live.
2773 trace_->Set(count_ + 1, method->GetDeclaringClass());
2774 ++count_;
2775 }
2776
GetTraceMethodsAndPCs() const2777 ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
2778 return ObjPtr<mirror::PointerArray>::DownCast(trace_->Get(0));
2779 }
2780
GetInternalStackTrace() const2781 mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
2782 return trace_;
2783 }
2784
2785 private:
2786 Thread* const self_;
2787 // How many more frames to skip.
2788 int32_t skip_depth_;
2789 // Current position down stack trace.
2790 uint32_t count_ = 0;
2791 // An object array where the first element is a pointer array that contains the ArtMethod
2792 // pointers on the stack and dex PCs. The rest of the elements are the declaring
2793 // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
2794 // the i'th frame.
2795 mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
2796 // For cross compilation.
2797 const PointerSize pointer_size_;
2798
2799 DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
2800 };
2801
2802 template<bool kTransactionActive>
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const2803 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2804 // Compute depth of stack, save frames if possible to avoid needing to recompute many.
2805 constexpr size_t kMaxSavedFrames = 256;
2806 std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
2807 FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
2808 &saved_frames[0],
2809 kMaxSavedFrames);
2810 count_visitor.WalkStack();
2811 const uint32_t depth = count_visitor.GetDepth();
2812 const uint32_t skip_depth = count_visitor.GetSkipDepth();
2813
2814 // Build internal stack trace.
2815 BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
2816 const_cast<Thread*>(this),
2817 skip_depth);
2818 if (!build_trace_visitor.Init(depth)) {
2819 return nullptr; // Allocation failed.
2820 }
2821 // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
2822 // than doing the stack walk twice.
2823 if (depth < kMaxSavedFrames) {
2824 for (size_t i = 0; i < depth; ++i) {
2825 build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
2826 }
2827 } else {
2828 build_trace_visitor.WalkStack();
2829 }
2830
2831 mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
2832 if (kIsDebugBuild) {
2833 ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
2834 // Second half of trace_methods is dex PCs.
2835 for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
2836 auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
2837 i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
2838 CHECK(method != nullptr);
2839 }
2840 }
2841 return soa.AddLocalReference<jobject>(trace);
2842 }
2843 template jobject Thread::CreateInternalStackTrace<false>(
2844 const ScopedObjectAccessAlreadyRunnable& soa) const;
2845 template jobject Thread::CreateInternalStackTrace<true>(
2846 const ScopedObjectAccessAlreadyRunnable& soa) const;
2847
IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const2848 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
2849 // Only count the depth since we do not pass a stack frame array as an argument.
2850 FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
2851 count_visitor.WalkStack();
2852 return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
2853 }
2854
CreateStackTraceElement(const ScopedObjectAccessAlreadyRunnable & soa,ArtMethod * method,uint32_t dex_pc)2855 static ObjPtr<mirror::StackTraceElement> CreateStackTraceElement(
2856 const ScopedObjectAccessAlreadyRunnable& soa,
2857 ArtMethod* method,
2858 uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2859 int32_t line_number;
2860 StackHandleScope<3> hs(soa.Self());
2861 auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
2862 auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
2863 if (method->IsProxyMethod()) {
2864 line_number = -1;
2865 class_name_object.Assign(method->GetDeclaringClass()->GetName());
2866 // source_name_object intentionally left null for proxy methods
2867 } else {
2868 line_number = method->GetLineNumFromDexPC(dex_pc);
2869 // Allocate element, potentially triggering GC
2870 // TODO: reuse class_name_object via Class::name_?
2871 const char* descriptor = method->GetDeclaringClassDescriptor();
2872 CHECK(descriptor != nullptr);
2873 std::string class_name(PrettyDescriptor(descriptor));
2874 class_name_object.Assign(
2875 mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
2876 if (class_name_object == nullptr) {
2877 soa.Self()->AssertPendingOOMException();
2878 return nullptr;
2879 }
2880 const char* source_file = method->GetDeclaringClassSourceFile();
2881 if (line_number == -1) {
2882 // Make the line_number field of StackTraceElement hold the dex pc.
2883 // source_name_object is intentionally left null if we failed to map the dex pc to
2884 // a line number (most probably because there is no debug info). See b/30183883.
2885 line_number = dex_pc;
2886 } else {
2887 if (source_file != nullptr) {
2888 source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
2889 if (source_name_object == nullptr) {
2890 soa.Self()->AssertPendingOOMException();
2891 return nullptr;
2892 }
2893 }
2894 }
2895 }
2896 const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
2897 CHECK(method_name != nullptr);
2898 Handle<mirror::String> method_name_object(
2899 hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
2900 if (method_name_object == nullptr) {
2901 return nullptr;
2902 }
2903 return mirror::StackTraceElement::Alloc(soa.Self(),
2904 class_name_object,
2905 method_name_object,
2906 source_name_object,
2907 line_number);
2908 }
2909
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)2910 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
2911 const ScopedObjectAccessAlreadyRunnable& soa,
2912 jobject internal,
2913 jobjectArray output_array,
2914 int* stack_depth) {
2915 // Decode the internal stack trace into the depth, method trace and PC trace.
2916 // Subtract one for the methods and PC trace.
2917 int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
2918 DCHECK_GE(depth, 0);
2919
2920 ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
2921
2922 jobjectArray result;
2923
2924 if (output_array != nullptr) {
2925 // Reuse the array we were given.
2926 result = output_array;
2927 // ...adjusting the number of frames we'll write to not exceed the array length.
2928 const int32_t traces_length =
2929 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
2930 depth = std::min(depth, traces_length);
2931 } else {
2932 // Create java_trace array and place in local reference table
2933 ObjPtr<mirror::ObjectArray<mirror::StackTraceElement>> java_traces =
2934 class_linker->AllocStackTraceElementArray(soa.Self(), depth);
2935 if (java_traces == nullptr) {
2936 return nullptr;
2937 }
2938 result = soa.AddLocalReference<jobjectArray>(java_traces);
2939 }
2940
2941 if (stack_depth != nullptr) {
2942 *stack_depth = depth;
2943 }
2944
2945 for (int32_t i = 0; i < depth; ++i) {
2946 ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
2947 soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
2948 // Methods and dex PC trace is element 0.
2949 DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
2950 const ObjPtr<mirror::PointerArray> method_trace =
2951 ObjPtr<mirror::PointerArray>::DownCast(decoded_traces->Get(0));
2952 // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
2953 ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
2954 uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
2955 i + method_trace->GetLength() / 2, kRuntimePointerSize);
2956 const ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(soa, method, dex_pc);
2957 if (obj == nullptr) {
2958 return nullptr;
2959 }
2960 // We are called from native: use non-transactional mode.
2961 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(i, obj);
2962 }
2963 return result;
2964 }
2965
CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const2966 jobjectArray Thread::CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2967 // This code allocates. Do not allow it to operate with a pending exception.
2968 if (IsExceptionPending()) {
2969 return nullptr;
2970 }
2971
2972 // If flip_function is not null, it means we have run a checkpoint
2973 // before the thread wakes up to execute the flip function and the
2974 // thread roots haven't been forwarded. So the following access to
2975 // the roots (locks or methods in the frames) would be bad. Run it
2976 // here. TODO: clean up.
2977 // Note: copied from DumpJavaStack.
2978 {
2979 Thread* this_thread = const_cast<Thread*>(this);
2980 Closure* flip_func = this_thread->GetFlipFunction();
2981 if (flip_func != nullptr) {
2982 flip_func->Run(this_thread);
2983 }
2984 }
2985
2986 class CollectFramesAndLocksStackVisitor : public MonitorObjectsStackVisitor {
2987 public:
2988 CollectFramesAndLocksStackVisitor(const ScopedObjectAccessAlreadyRunnable& soaa_in,
2989 Thread* self,
2990 Context* context)
2991 : MonitorObjectsStackVisitor(self, context),
2992 wait_jobject_(soaa_in.Env(), nullptr),
2993 block_jobject_(soaa_in.Env(), nullptr),
2994 soaa_(soaa_in) {}
2995
2996 protected:
2997 VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
2998 override
2999 REQUIRES_SHARED(Locks::mutator_lock_) {
3000 ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(
3001 soaa_, m, GetDexPc(/* abort on error */ false));
3002 if (obj == nullptr) {
3003 return VisitMethodResult::kEndStackWalk;
3004 }
3005 stack_trace_elements_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj.Ptr()));
3006 return VisitMethodResult::kContinueMethod;
3007 }
3008
3009 VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) override {
3010 lock_objects_.push_back({});
3011 lock_objects_[lock_objects_.size() - 1].swap(frame_lock_objects_);
3012
3013 DCHECK_EQ(lock_objects_.size(), stack_trace_elements_.size());
3014
3015 return VisitMethodResult::kContinueMethod;
3016 }
3017
3018 void VisitWaitingObject(ObjPtr<mirror::Object> obj, ThreadState state ATTRIBUTE_UNUSED)
3019 override
3020 REQUIRES_SHARED(Locks::mutator_lock_) {
3021 wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3022 }
3023 void VisitSleepingObject(ObjPtr<mirror::Object> obj)
3024 override
3025 REQUIRES_SHARED(Locks::mutator_lock_) {
3026 wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3027 }
3028 void VisitBlockedOnObject(ObjPtr<mirror::Object> obj,
3029 ThreadState state ATTRIBUTE_UNUSED,
3030 uint32_t owner_tid ATTRIBUTE_UNUSED)
3031 override
3032 REQUIRES_SHARED(Locks::mutator_lock_) {
3033 block_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3034 }
3035 void VisitLockedObject(ObjPtr<mirror::Object> obj)
3036 override
3037 REQUIRES_SHARED(Locks::mutator_lock_) {
3038 frame_lock_objects_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj));
3039 }
3040
3041 public:
3042 std::vector<ScopedLocalRef<jobject>> stack_trace_elements_;
3043 ScopedLocalRef<jobject> wait_jobject_;
3044 ScopedLocalRef<jobject> block_jobject_;
3045 std::vector<std::vector<ScopedLocalRef<jobject>>> lock_objects_;
3046
3047 private:
3048 const ScopedObjectAccessAlreadyRunnable& soaa_;
3049
3050 std::vector<ScopedLocalRef<jobject>> frame_lock_objects_;
3051 };
3052
3053 std::unique_ptr<Context> context(Context::Create());
3054 CollectFramesAndLocksStackVisitor dumper(soa, const_cast<Thread*>(this), context.get());
3055 dumper.WalkStack();
3056
3057 // There should not be a pending exception. Otherwise, return with it pending.
3058 if (IsExceptionPending()) {
3059 return nullptr;
3060 }
3061
3062 // Now go and create Java arrays.
3063
3064 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3065
3066 StackHandleScope<6> hs(soa.Self());
3067 Handle<mirror::Class> h_aste_array_class = hs.NewHandle(class_linker->FindSystemClass(
3068 soa.Self(),
3069 "[Ldalvik/system/AnnotatedStackTraceElement;"));
3070 if (h_aste_array_class == nullptr) {
3071 return nullptr;
3072 }
3073 Handle<mirror::Class> h_aste_class = hs.NewHandle(h_aste_array_class->GetComponentType());
3074
3075 Handle<mirror::Class> h_o_array_class =
3076 hs.NewHandle(GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker));
3077 DCHECK(h_o_array_class != nullptr); // Class roots must be already initialized.
3078
3079
3080 // Make sure the AnnotatedStackTraceElement.class is initialized, b/76208924 .
3081 class_linker->EnsureInitialized(soa.Self(),
3082 h_aste_class,
3083 /* can_init_fields= */ true,
3084 /* can_init_parents= */ true);
3085 if (soa.Self()->IsExceptionPending()) {
3086 // This should not fail in a healthy runtime.
3087 return nullptr;
3088 }
3089
3090 ArtField* stack_trace_element_field = h_aste_class->FindField(
3091 soa.Self(), h_aste_class.Get(), "stackTraceElement", "Ljava/lang/StackTraceElement;");
3092 DCHECK(stack_trace_element_field != nullptr);
3093 ArtField* held_locks_field = h_aste_class->FindField(
3094 soa.Self(), h_aste_class.Get(), "heldLocks", "[Ljava/lang/Object;");
3095 DCHECK(held_locks_field != nullptr);
3096 ArtField* blocked_on_field = h_aste_class->FindField(
3097 soa.Self(), h_aste_class.Get(), "blockedOn", "Ljava/lang/Object;");
3098 DCHECK(blocked_on_field != nullptr);
3099
3100 size_t length = dumper.stack_trace_elements_.size();
3101 ObjPtr<mirror::ObjectArray<mirror::Object>> array =
3102 mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(), h_aste_array_class.Get(), length);
3103 if (array == nullptr) {
3104 soa.Self()->AssertPendingOOMException();
3105 return nullptr;
3106 }
3107
3108 ScopedLocalRef<jobjectArray> result(soa.Env(), soa.Env()->AddLocalReference<jobjectArray>(array));
3109
3110 MutableHandle<mirror::Object> handle(hs.NewHandle<mirror::Object>(nullptr));
3111 MutableHandle<mirror::ObjectArray<mirror::Object>> handle2(
3112 hs.NewHandle<mirror::ObjectArray<mirror::Object>>(nullptr));
3113 for (size_t i = 0; i != length; ++i) {
3114 handle.Assign(h_aste_class->AllocObject(soa.Self()));
3115 if (handle == nullptr) {
3116 soa.Self()->AssertPendingOOMException();
3117 return nullptr;
3118 }
3119
3120 // Set stack trace element.
3121 stack_trace_element_field->SetObject<false>(
3122 handle.Get(), soa.Decode<mirror::Object>(dumper.stack_trace_elements_[i].get()));
3123
3124 // Create locked-on array.
3125 if (!dumper.lock_objects_[i].empty()) {
3126 handle2.Assign(mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(),
3127 h_o_array_class.Get(),
3128 dumper.lock_objects_[i].size()));
3129 if (handle2 == nullptr) {
3130 soa.Self()->AssertPendingOOMException();
3131 return nullptr;
3132 }
3133 int32_t j = 0;
3134 for (auto& scoped_local : dumper.lock_objects_[i]) {
3135 if (scoped_local == nullptr) {
3136 continue;
3137 }
3138 handle2->Set(j, soa.Decode<mirror::Object>(scoped_local.get()));
3139 DCHECK(!soa.Self()->IsExceptionPending());
3140 j++;
3141 }
3142 held_locks_field->SetObject<false>(handle.Get(), handle2.Get());
3143 }
3144
3145 // Set blocked-on object.
3146 if (i == 0) {
3147 if (dumper.block_jobject_ != nullptr) {
3148 blocked_on_field->SetObject<false>(
3149 handle.Get(), soa.Decode<mirror::Object>(dumper.block_jobject_.get()));
3150 }
3151 }
3152
3153 ScopedLocalRef<jobject> elem(soa.Env(), soa.AddLocalReference<jobject>(handle.Get()));
3154 soa.Env()->SetObjectArrayElement(result.get(), i, elem.get());
3155 DCHECK(!soa.Self()->IsExceptionPending());
3156 }
3157
3158 return result.release();
3159 }
3160
ThrowNewExceptionF(const char * exception_class_descriptor,const char * fmt,...)3161 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
3162 va_list args;
3163 va_start(args, fmt);
3164 ThrowNewExceptionV(exception_class_descriptor, fmt, args);
3165 va_end(args);
3166 }
3167
ThrowNewExceptionV(const char * exception_class_descriptor,const char * fmt,va_list ap)3168 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
3169 const char* fmt, va_list ap) {
3170 std::string msg;
3171 StringAppendV(&msg, fmt, ap);
3172 ThrowNewException(exception_class_descriptor, msg.c_str());
3173 }
3174
ThrowNewException(const char * exception_class_descriptor,const char * msg)3175 void Thread::ThrowNewException(const char* exception_class_descriptor,
3176 const char* msg) {
3177 // Callers should either clear or call ThrowNewWrappedException.
3178 AssertNoPendingExceptionForNewException(msg);
3179 ThrowNewWrappedException(exception_class_descriptor, msg);
3180 }
3181
GetCurrentClassLoader(Thread * self)3182 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
3183 REQUIRES_SHARED(Locks::mutator_lock_) {
3184 ArtMethod* method = self->GetCurrentMethod(nullptr);
3185 return method != nullptr
3186 ? method->GetDeclaringClass()->GetClassLoader()
3187 : nullptr;
3188 }
3189
ThrowNewWrappedException(const char * exception_class_descriptor,const char * msg)3190 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
3191 const char* msg) {
3192 DCHECK_EQ(this, Thread::Current());
3193 ScopedObjectAccessUnchecked soa(this);
3194 StackHandleScope<3> hs(soa.Self());
3195 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
3196 ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
3197 ClearException();
3198 Runtime* runtime = Runtime::Current();
3199 auto* cl = runtime->GetClassLinker();
3200 Handle<mirror::Class> exception_class(
3201 hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
3202 if (UNLIKELY(exception_class == nullptr)) {
3203 CHECK(IsExceptionPending());
3204 LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
3205 return;
3206 }
3207
3208 if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
3209 true))) {
3210 DCHECK(IsExceptionPending());
3211 return;
3212 }
3213 DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
3214 Handle<mirror::Throwable> exception(
3215 hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
3216
3217 // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
3218 if (exception == nullptr) {
3219 Dump(LOG_STREAM(WARNING)); // The pre-allocated OOME has no stack, so help out and log one.
3220 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
3221 return;
3222 }
3223
3224 // Choose an appropriate constructor and set up the arguments.
3225 const char* signature;
3226 ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
3227 if (msg != nullptr) {
3228 // Ensure we remember this and the method over the String allocation.
3229 msg_string.reset(
3230 soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
3231 if (UNLIKELY(msg_string.get() == nullptr)) {
3232 CHECK(IsExceptionPending()); // OOME.
3233 return;
3234 }
3235 if (cause.get() == nullptr) {
3236 signature = "(Ljava/lang/String;)V";
3237 } else {
3238 signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
3239 }
3240 } else {
3241 if (cause.get() == nullptr) {
3242 signature = "()V";
3243 } else {
3244 signature = "(Ljava/lang/Throwable;)V";
3245 }
3246 }
3247 ArtMethod* exception_init_method =
3248 exception_class->FindConstructor(signature, cl->GetImagePointerSize());
3249
3250 CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
3251 << PrettyDescriptor(exception_class_descriptor);
3252
3253 if (UNLIKELY(!runtime->IsStarted())) {
3254 // Something is trying to throw an exception without a started runtime, which is the common
3255 // case in the compiler. We won't be able to invoke the constructor of the exception, so set
3256 // the exception fields directly.
3257 if (msg != nullptr) {
3258 exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
3259 }
3260 if (cause.get() != nullptr) {
3261 exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
3262 }
3263 ScopedLocalRef<jobject> trace(GetJniEnv(),
3264 Runtime::Current()->IsActiveTransaction()
3265 ? CreateInternalStackTrace<true>(soa)
3266 : CreateInternalStackTrace<false>(soa));
3267 if (trace.get() != nullptr) {
3268 exception->SetStackState(DecodeJObject(trace.get()).Ptr());
3269 }
3270 SetException(exception.Get());
3271 } else {
3272 jvalue jv_args[2];
3273 size_t i = 0;
3274
3275 if (msg != nullptr) {
3276 jv_args[i].l = msg_string.get();
3277 ++i;
3278 }
3279 if (cause.get() != nullptr) {
3280 jv_args[i].l = cause.get();
3281 ++i;
3282 }
3283 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
3284 InvokeWithJValues(soa, ref.get(), jni::EncodeArtMethod(exception_init_method), jv_args);
3285 if (LIKELY(!IsExceptionPending())) {
3286 SetException(exception.Get());
3287 }
3288 }
3289 }
3290
ThrowOutOfMemoryError(const char * msg)3291 void Thread::ThrowOutOfMemoryError(const char* msg) {
3292 LOG(WARNING) << "Throwing OutOfMemoryError "
3293 << '"' << msg << '"'
3294 << " (VmSize " << GetProcessStatus("VmSize")
3295 << (tls32_.throwing_OutOfMemoryError ? ", recursive case)" : ")");
3296 if (!tls32_.throwing_OutOfMemoryError) {
3297 tls32_.throwing_OutOfMemoryError = true;
3298 ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
3299 tls32_.throwing_OutOfMemoryError = false;
3300 } else {
3301 Dump(LOG_STREAM(WARNING)); // The pre-allocated OOME has no stack, so help out and log one.
3302 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
3303 }
3304 }
3305
CurrentFromGdb()3306 Thread* Thread::CurrentFromGdb() {
3307 return Thread::Current();
3308 }
3309
DumpFromGdb() const3310 void Thread::DumpFromGdb() const {
3311 std::ostringstream ss;
3312 Dump(ss);
3313 std::string str(ss.str());
3314 // log to stderr for debugging command line processes
3315 std::cerr << str;
3316 #ifdef ART_TARGET_ANDROID
3317 // log to logcat for debugging frameworks processes
3318 LOG(INFO) << str;
3319 #endif
3320 }
3321
3322 // Explicitly instantiate 32 and 64bit thread offset dumping support.
3323 template
3324 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
3325 template
3326 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
3327
3328 template<PointerSize ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)3329 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
3330 #define DO_THREAD_OFFSET(x, y) \
3331 if (offset == (x).Uint32Value()) { \
3332 os << (y); \
3333 return; \
3334 }
3335 DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
3336 DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
3337 DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
3338 DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
3339 DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
3340 DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
3341 DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
3342 DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
3343 DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking")
3344 DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
3345 DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
3346 DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
3347 DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
3348 #undef DO_THREAD_OFFSET
3349
3350 #define JNI_ENTRY_POINT_INFO(x) \
3351 if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3352 os << #x; \
3353 return; \
3354 }
3355 JNI_ENTRY_POINT_INFO(pDlsymLookup)
3356 #undef JNI_ENTRY_POINT_INFO
3357
3358 #define QUICK_ENTRY_POINT_INFO(x) \
3359 if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3360 os << #x; \
3361 return; \
3362 }
3363 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
3364 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
3365 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
3366 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
3367 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
3368 QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
3369 QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
3370 QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
3371 QUICK_ENTRY_POINT_INFO(pAllocStringObject)
3372 QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
3373 QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
3374 QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
3375 QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
3376 QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
3377 QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
3378 QUICK_ENTRY_POINT_INFO(pResolveTypeAndVerifyAccess)
3379 QUICK_ENTRY_POINT_INFO(pResolveType)
3380 QUICK_ENTRY_POINT_INFO(pResolveString)
3381 QUICK_ENTRY_POINT_INFO(pSet8Instance)
3382 QUICK_ENTRY_POINT_INFO(pSet8Static)
3383 QUICK_ENTRY_POINT_INFO(pSet16Instance)
3384 QUICK_ENTRY_POINT_INFO(pSet16Static)
3385 QUICK_ENTRY_POINT_INFO(pSet32Instance)
3386 QUICK_ENTRY_POINT_INFO(pSet32Static)
3387 QUICK_ENTRY_POINT_INFO(pSet64Instance)
3388 QUICK_ENTRY_POINT_INFO(pSet64Static)
3389 QUICK_ENTRY_POINT_INFO(pSetObjInstance)
3390 QUICK_ENTRY_POINT_INFO(pSetObjStatic)
3391 QUICK_ENTRY_POINT_INFO(pGetByteInstance)
3392 QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
3393 QUICK_ENTRY_POINT_INFO(pGetByteStatic)
3394 QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
3395 QUICK_ENTRY_POINT_INFO(pGetShortInstance)
3396 QUICK_ENTRY_POINT_INFO(pGetCharInstance)
3397 QUICK_ENTRY_POINT_INFO(pGetShortStatic)
3398 QUICK_ENTRY_POINT_INFO(pGetCharStatic)
3399 QUICK_ENTRY_POINT_INFO(pGet32Instance)
3400 QUICK_ENTRY_POINT_INFO(pGet32Static)
3401 QUICK_ENTRY_POINT_INFO(pGet64Instance)
3402 QUICK_ENTRY_POINT_INFO(pGet64Static)
3403 QUICK_ENTRY_POINT_INFO(pGetObjInstance)
3404 QUICK_ENTRY_POINT_INFO(pGetObjStatic)
3405 QUICK_ENTRY_POINT_INFO(pAputObject)
3406 QUICK_ENTRY_POINT_INFO(pJniMethodStart)
3407 QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
3408 QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
3409 QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
3410 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
3411 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
3412 QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
3413 QUICK_ENTRY_POINT_INFO(pLockObject)
3414 QUICK_ENTRY_POINT_INFO(pUnlockObject)
3415 QUICK_ENTRY_POINT_INFO(pCmpgDouble)
3416 QUICK_ENTRY_POINT_INFO(pCmpgFloat)
3417 QUICK_ENTRY_POINT_INFO(pCmplDouble)
3418 QUICK_ENTRY_POINT_INFO(pCmplFloat)
3419 QUICK_ENTRY_POINT_INFO(pCos)
3420 QUICK_ENTRY_POINT_INFO(pSin)
3421 QUICK_ENTRY_POINT_INFO(pAcos)
3422 QUICK_ENTRY_POINT_INFO(pAsin)
3423 QUICK_ENTRY_POINT_INFO(pAtan)
3424 QUICK_ENTRY_POINT_INFO(pAtan2)
3425 QUICK_ENTRY_POINT_INFO(pCbrt)
3426 QUICK_ENTRY_POINT_INFO(pCosh)
3427 QUICK_ENTRY_POINT_INFO(pExp)
3428 QUICK_ENTRY_POINT_INFO(pExpm1)
3429 QUICK_ENTRY_POINT_INFO(pHypot)
3430 QUICK_ENTRY_POINT_INFO(pLog)
3431 QUICK_ENTRY_POINT_INFO(pLog10)
3432 QUICK_ENTRY_POINT_INFO(pNextAfter)
3433 QUICK_ENTRY_POINT_INFO(pSinh)
3434 QUICK_ENTRY_POINT_INFO(pTan)
3435 QUICK_ENTRY_POINT_INFO(pTanh)
3436 QUICK_ENTRY_POINT_INFO(pFmod)
3437 QUICK_ENTRY_POINT_INFO(pL2d)
3438 QUICK_ENTRY_POINT_INFO(pFmodf)
3439 QUICK_ENTRY_POINT_INFO(pL2f)
3440 QUICK_ENTRY_POINT_INFO(pD2iz)
3441 QUICK_ENTRY_POINT_INFO(pF2iz)
3442 QUICK_ENTRY_POINT_INFO(pIdivmod)
3443 QUICK_ENTRY_POINT_INFO(pD2l)
3444 QUICK_ENTRY_POINT_INFO(pF2l)
3445 QUICK_ENTRY_POINT_INFO(pLdiv)
3446 QUICK_ENTRY_POINT_INFO(pLmod)
3447 QUICK_ENTRY_POINT_INFO(pLmul)
3448 QUICK_ENTRY_POINT_INFO(pShlLong)
3449 QUICK_ENTRY_POINT_INFO(pShrLong)
3450 QUICK_ENTRY_POINT_INFO(pUshrLong)
3451 QUICK_ENTRY_POINT_INFO(pIndexOf)
3452 QUICK_ENTRY_POINT_INFO(pStringCompareTo)
3453 QUICK_ENTRY_POINT_INFO(pMemcpy)
3454 QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
3455 QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
3456 QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
3457 QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
3458 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
3459 QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
3460 QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
3461 QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
3462 QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
3463 QUICK_ENTRY_POINT_INFO(pTestSuspend)
3464 QUICK_ENTRY_POINT_INFO(pDeliverException)
3465 QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
3466 QUICK_ENTRY_POINT_INFO(pThrowDivZero)
3467 QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
3468 QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
3469 QUICK_ENTRY_POINT_INFO(pDeoptimize)
3470 QUICK_ENTRY_POINT_INFO(pA64Load)
3471 QUICK_ENTRY_POINT_INFO(pA64Store)
3472 QUICK_ENTRY_POINT_INFO(pNewEmptyString)
3473 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
3474 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
3475 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
3476 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
3477 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
3478 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
3479 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
3480 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
3481 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
3482 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
3483 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
3484 QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
3485 QUICK_ENTRY_POINT_INFO(pNewStringFromString)
3486 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
3487 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
3488 QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
3489 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
3490 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
3491 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
3492 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
3493 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
3494 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
3495 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
3496 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
3497 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
3498 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
3499 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
3500 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
3501 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
3502 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
3503 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
3504 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
3505 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
3506 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
3507 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
3508 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
3509 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
3510 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
3511 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
3512 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
3513 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
3514 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
3515 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
3516 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
3517 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
3518 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
3519 QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
3520 QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
3521
3522 QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
3523 QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
3524 #undef QUICK_ENTRY_POINT_INFO
3525
3526 os << offset;
3527 }
3528
QuickDeliverException()3529 void Thread::QuickDeliverException() {
3530 // Get exception from thread.
3531 ObjPtr<mirror::Throwable> exception = GetException();
3532 CHECK(exception != nullptr);
3533 if (exception == GetDeoptimizationException()) {
3534 artDeoptimize(this);
3535 UNREACHABLE();
3536 }
3537
3538 ReadBarrier::MaybeAssertToSpaceInvariant(exception.Ptr());
3539
3540 // This is a real exception: let the instrumentation know about it.
3541 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
3542 if (instrumentation->HasExceptionThrownListeners() &&
3543 IsExceptionThrownByCurrentMethod(exception)) {
3544 // Instrumentation may cause GC so keep the exception object safe.
3545 StackHandleScope<1> hs(this);
3546 HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
3547 instrumentation->ExceptionThrownEvent(this, exception.Ptr());
3548 }
3549 // Does instrumentation need to deoptimize the stack or otherwise go to interpreter for something?
3550 // Note: we do this *after* reporting the exception to instrumentation in case it now requires
3551 // deoptimization. It may happen if a debugger is attached and requests new events (single-step,
3552 // breakpoint, ...) when the exception is reported.
3553 //
3554 // Note we need to check for both force_frame_pop and force_retry_instruction. The first is
3555 // expected to happen fairly regularly but the second can only happen if we are using
3556 // instrumentation trampolines (for example with DDMS tracing). That forces us to do deopt later
3557 // and see every frame being popped. We don't need to handle it any differently.
3558 ShadowFrame* cf;
3559 bool force_deopt;
3560 {
3561 NthCallerVisitor visitor(this, 0, false);
3562 visitor.WalkStack();
3563 cf = visitor.GetCurrentShadowFrame();
3564 if (cf == nullptr) {
3565 cf = FindDebuggerShadowFrame(visitor.GetFrameId());
3566 }
3567 bool force_frame_pop = cf != nullptr && cf->GetForcePopFrame();
3568 bool force_retry_instr = cf != nullptr && cf->GetForceRetryInstruction();
3569 if (kIsDebugBuild && force_frame_pop) {
3570 NthCallerVisitor penultimate_visitor(this, 1, false);
3571 penultimate_visitor.WalkStack();
3572 ShadowFrame* penultimate_frame = penultimate_visitor.GetCurrentShadowFrame();
3573 if (penultimate_frame == nullptr) {
3574 penultimate_frame = FindDebuggerShadowFrame(penultimate_visitor.GetFrameId());
3575 }
3576 DCHECK(penultimate_frame != nullptr &&
3577 penultimate_frame->GetForceRetryInstruction())
3578 << "Force pop frame without retry instruction found. penultimate frame is null: "
3579 << (penultimate_frame == nullptr ? "true" : "false");
3580 }
3581 force_deopt = force_frame_pop || force_retry_instr;
3582 }
3583 if (Dbg::IsForcedInterpreterNeededForException(this) || force_deopt || IsForceInterpreter()) {
3584 NthCallerVisitor visitor(this, 0, false);
3585 visitor.WalkStack();
3586 if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) {
3587 // method_type shouldn't matter due to exception handling.
3588 const DeoptimizationMethodType method_type = DeoptimizationMethodType::kDefault;
3589 // Save the exception into the deoptimization context so it can be restored
3590 // before entering the interpreter.
3591 if (force_deopt) {
3592 VLOG(deopt) << "Deopting " << cf->GetMethod()->PrettyMethod() << " for frame-pop";
3593 DCHECK(Runtime::Current()->AreNonStandardExitsEnabled());
3594 // Get rid of the exception since we are doing a framepop instead.
3595 LOG(WARNING) << "Suppressing pending exception for retry-instruction/frame-pop: "
3596 << exception->Dump();
3597 ClearException();
3598 }
3599 PushDeoptimizationContext(
3600 JValue(),
3601 /* is_reference= */ false,
3602 (force_deopt ? nullptr : exception),
3603 /* from_code= */ false,
3604 method_type);
3605 artDeoptimize(this);
3606 UNREACHABLE();
3607 } else {
3608 LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
3609 << visitor.caller->PrettyMethod();
3610 }
3611 }
3612
3613 // Don't leave exception visible while we try to find the handler, which may cause class
3614 // resolution.
3615 ClearException();
3616 QuickExceptionHandler exception_handler(this, false);
3617 exception_handler.FindCatch(exception);
3618 if (exception_handler.GetClearException()) {
3619 // Exception was cleared as part of delivery.
3620 DCHECK(!IsExceptionPending());
3621 } else {
3622 // Exception was put back with a throw location.
3623 DCHECK(IsExceptionPending());
3624 // Check the to-space invariant on the re-installed exception (if applicable).
3625 ReadBarrier::MaybeAssertToSpaceInvariant(GetException());
3626 }
3627 exception_handler.DoLongJump();
3628 }
3629
GetLongJumpContext()3630 Context* Thread::GetLongJumpContext() {
3631 Context* result = tlsPtr_.long_jump_context;
3632 if (result == nullptr) {
3633 result = Context::Create();
3634 } else {
3635 tlsPtr_.long_jump_context = nullptr; // Avoid context being shared.
3636 result->Reset();
3637 }
3638 return result;
3639 }
3640
GetCurrentMethod(uint32_t * dex_pc_out,bool check_suspended,bool abort_on_error) const3641 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc_out,
3642 bool check_suspended,
3643 bool abort_on_error) const {
3644 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
3645 // so we don't abort in a special situation (thinlocked monitor) when dumping the Java
3646 // stack.
3647 ArtMethod* method = nullptr;
3648 uint32_t dex_pc = dex::kDexNoIndex;
3649 StackVisitor::WalkStack(
3650 [&](const StackVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
3651 ArtMethod* m = visitor->GetMethod();
3652 if (m->IsRuntimeMethod()) {
3653 // Continue if this is a runtime method.
3654 return true;
3655 }
3656 method = m;
3657 dex_pc = visitor->GetDexPc(abort_on_error);
3658 return false;
3659 },
3660 const_cast<Thread*>(this),
3661 /* context= */ nullptr,
3662 StackVisitor::StackWalkKind::kIncludeInlinedFrames,
3663 check_suspended);
3664
3665 if (dex_pc_out != nullptr) {
3666 *dex_pc_out = dex_pc;
3667 }
3668 return method;
3669 }
3670
HoldsLock(ObjPtr<mirror::Object> object) const3671 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
3672 return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
3673 }
3674
3675 extern std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
3676 REQUIRES_SHARED(Locks::mutator_lock_);
3677
3678 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
3679 template <typename RootVisitor, bool kPrecise = false>
3680 class ReferenceMapVisitor : public StackVisitor {
3681 public:
ReferenceMapVisitor(Thread * thread,Context * context,RootVisitor & visitor)3682 ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
3683 REQUIRES_SHARED(Locks::mutator_lock_)
3684 // We are visiting the references in compiled frames, so we do not need
3685 // to know the inlined frames.
3686 : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
3687 visitor_(visitor) {}
3688
VisitFrame()3689 bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
3690 if (false) {
3691 LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
3692 << StringPrintf("@ PC:%04x", GetDexPc());
3693 }
3694 ShadowFrame* shadow_frame = GetCurrentShadowFrame();
3695 if (shadow_frame != nullptr) {
3696 VisitShadowFrame(shadow_frame);
3697 } else {
3698 VisitQuickFrame();
3699 }
3700 return true;
3701 }
3702
VisitShadowFrame(ShadowFrame * shadow_frame)3703 void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
3704 ArtMethod* m = shadow_frame->GetMethod();
3705 VisitDeclaringClass(m);
3706 DCHECK(m != nullptr);
3707 size_t num_regs = shadow_frame->NumberOfVRegs();
3708 DCHECK(m->IsNative() || shadow_frame->HasReferenceArray());
3709 // handle scope for JNI or References for interpreter.
3710 for (size_t reg = 0; reg < num_regs; ++reg) {
3711 mirror::Object* ref = shadow_frame->GetVRegReference(reg);
3712 if (ref != nullptr) {
3713 mirror::Object* new_ref = ref;
3714 visitor_(&new_ref, reg, this);
3715 if (new_ref != ref) {
3716 shadow_frame->SetVRegReference(reg, new_ref);
3717 }
3718 }
3719 }
3720 // Mark lock count map required for structured locking checks.
3721 shadow_frame->GetLockCountData().VisitMonitors(visitor_, /* vreg= */ -1, this);
3722 }
3723
3724 private:
3725 // Visiting the declaring class is necessary so that we don't unload the class of a method that
3726 // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
3727 // the threads do not all hold the heap bitmap lock for parallel GC.
VisitDeclaringClass(ArtMethod * method)3728 void VisitDeclaringClass(ArtMethod* method)
3729 REQUIRES_SHARED(Locks::mutator_lock_)
3730 NO_THREAD_SAFETY_ANALYSIS {
3731 ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
3732 // klass can be null for runtime methods.
3733 if (klass != nullptr) {
3734 if (kVerifyImageObjectsMarked) {
3735 gc::Heap* const heap = Runtime::Current()->GetHeap();
3736 gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
3737 /*fail_ok=*/true);
3738 if (space != nullptr && space->IsImageSpace()) {
3739 bool failed = false;
3740 if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
3741 failed = true;
3742 LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
3743 } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
3744 failed = true;
3745 LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
3746 }
3747 if (failed) {
3748 GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
3749 space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
3750 LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
3751 << " klass@" << klass.Ptr();
3752 // Pretty info last in case it crashes.
3753 LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
3754 << klass->PrettyClass();
3755 }
3756 }
3757 }
3758 mirror::Object* new_ref = klass.Ptr();
3759 visitor_(&new_ref, /* vreg= */ -1, this);
3760 if (new_ref != klass) {
3761 method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
3762 }
3763 }
3764 }
3765
3766 template <typename T>
3767 ALWAYS_INLINE
VisitQuickFrameWithVregCallback()3768 inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
3769 ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
3770 DCHECK(cur_quick_frame != nullptr);
3771 ArtMethod* m = *cur_quick_frame;
3772 VisitDeclaringClass(m);
3773
3774 // Process register map (which native and runtime methods don't have)
3775 if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
3776 const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
3777 DCHECK(method_header->IsOptimized());
3778 StackReference<mirror::Object>* vreg_base =
3779 reinterpret_cast<StackReference<mirror::Object>*>(cur_quick_frame);
3780 uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
3781 CodeInfo code_info(method_header, kPrecise
3782 ? CodeInfo::DecodeFlags::AllTables // We will need dex register maps.
3783 : CodeInfo::DecodeFlags::GcMasksOnly);
3784 StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
3785 DCHECK(map.IsValid());
3786
3787 T vreg_info(m, code_info, map, visitor_);
3788
3789 // Visit stack entries that hold pointers.
3790 BitMemoryRegion stack_mask = code_info.GetStackMaskOf(map);
3791 for (size_t i = 0; i < stack_mask.size_in_bits(); ++i) {
3792 if (stack_mask.LoadBit(i)) {
3793 StackReference<mirror::Object>* ref_addr = vreg_base + i;
3794 mirror::Object* ref = ref_addr->AsMirrorPtr();
3795 if (ref != nullptr) {
3796 mirror::Object* new_ref = ref;
3797 vreg_info.VisitStack(&new_ref, i, this);
3798 if (ref != new_ref) {
3799 ref_addr->Assign(new_ref);
3800 }
3801 }
3802 }
3803 }
3804 // Visit callee-save registers that hold pointers.
3805 uint32_t register_mask = code_info.GetRegisterMaskOf(map);
3806 for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
3807 if (register_mask & (1 << i)) {
3808 mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
3809 if (kIsDebugBuild && ref_addr == nullptr) {
3810 std::string thread_name;
3811 GetThread()->GetThreadName(thread_name);
3812 LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
3813 DescribeStack(GetThread());
3814 LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
3815 << "set in register_mask=" << register_mask << " at " << DescribeLocation();
3816 }
3817 if (*ref_addr != nullptr) {
3818 vreg_info.VisitRegister(ref_addr, i, this);
3819 }
3820 }
3821 }
3822 } else if (!m->IsRuntimeMethod() && m->IsProxyMethod()) {
3823 // If this is a proxy method, visit its reference arguments.
3824 DCHECK(!m->IsStatic());
3825 DCHECK(!m->IsNative());
3826 std::vector<StackReference<mirror::Object>*> ref_addrs =
3827 GetProxyReferenceArguments(cur_quick_frame);
3828 for (StackReference<mirror::Object>* ref_addr : ref_addrs) {
3829 mirror::Object* ref = ref_addr->AsMirrorPtr();
3830 if (ref != nullptr) {
3831 mirror::Object* new_ref = ref;
3832 visitor_(&new_ref, /* vreg= */ -1, this);
3833 if (ref != new_ref) {
3834 ref_addr->Assign(new_ref);
3835 }
3836 }
3837 }
3838 }
3839 }
3840
VisitQuickFrame()3841 void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3842 if (kPrecise) {
3843 VisitQuickFramePrecise();
3844 } else {
3845 VisitQuickFrameNonPrecise();
3846 }
3847 }
3848
VisitQuickFrameNonPrecise()3849 void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3850 struct UndefinedVRegInfo {
3851 UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
3852 const CodeInfo& code_info ATTRIBUTE_UNUSED,
3853 const StackMap& map ATTRIBUTE_UNUSED,
3854 RootVisitor& _visitor)
3855 : visitor(_visitor) {
3856 }
3857
3858 ALWAYS_INLINE
3859 void VisitStack(mirror::Object** ref,
3860 size_t stack_index ATTRIBUTE_UNUSED,
3861 const StackVisitor* stack_visitor)
3862 REQUIRES_SHARED(Locks::mutator_lock_) {
3863 visitor(ref, -1, stack_visitor);
3864 }
3865
3866 ALWAYS_INLINE
3867 void VisitRegister(mirror::Object** ref,
3868 size_t register_index ATTRIBUTE_UNUSED,
3869 const StackVisitor* stack_visitor)
3870 REQUIRES_SHARED(Locks::mutator_lock_) {
3871 visitor(ref, -1, stack_visitor);
3872 }
3873
3874 RootVisitor& visitor;
3875 };
3876 VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
3877 }
3878
VisitQuickFramePrecise()3879 void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3880 struct StackMapVRegInfo {
3881 StackMapVRegInfo(ArtMethod* method,
3882 const CodeInfo& _code_info,
3883 const StackMap& map,
3884 RootVisitor& _visitor)
3885 : number_of_dex_registers(method->DexInstructionData().RegistersSize()),
3886 code_info(_code_info),
3887 dex_register_map(code_info.GetDexRegisterMapOf(map)),
3888 visitor(_visitor) {
3889 }
3890
3891 // TODO: If necessary, we should consider caching a reverse map instead of the linear
3892 // lookups for each location.
3893 void FindWithType(const size_t index,
3894 const DexRegisterLocation::Kind kind,
3895 mirror::Object** ref,
3896 const StackVisitor* stack_visitor)
3897 REQUIRES_SHARED(Locks::mutator_lock_) {
3898 bool found = false;
3899 for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
3900 DexRegisterLocation location = dex_register_map[dex_reg];
3901 if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
3902 visitor(ref, dex_reg, stack_visitor);
3903 found = true;
3904 }
3905 }
3906
3907 if (!found) {
3908 // If nothing found, report with -1.
3909 visitor(ref, -1, stack_visitor);
3910 }
3911 }
3912
3913 void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
3914 REQUIRES_SHARED(Locks::mutator_lock_) {
3915 const size_t stack_offset = stack_index * kFrameSlotSize;
3916 FindWithType(stack_offset,
3917 DexRegisterLocation::Kind::kInStack,
3918 ref,
3919 stack_visitor);
3920 }
3921
3922 void VisitRegister(mirror::Object** ref,
3923 size_t register_index,
3924 const StackVisitor* stack_visitor)
3925 REQUIRES_SHARED(Locks::mutator_lock_) {
3926 FindWithType(register_index,
3927 DexRegisterLocation::Kind::kInRegister,
3928 ref,
3929 stack_visitor);
3930 }
3931
3932 size_t number_of_dex_registers;
3933 const CodeInfo& code_info;
3934 DexRegisterMap dex_register_map;
3935 RootVisitor& visitor;
3936 };
3937 VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
3938 }
3939
3940 // Visitor for when we visit a root.
3941 RootVisitor& visitor_;
3942 };
3943
3944 class RootCallbackVisitor {
3945 public:
RootCallbackVisitor(RootVisitor * visitor,uint32_t tid)3946 RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
3947
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const3948 void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
3949 REQUIRES_SHARED(Locks::mutator_lock_) {
3950 visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
3951 }
3952
3953 private:
3954 RootVisitor* const visitor_;
3955 const uint32_t tid_;
3956 };
3957
3958 template <bool kPrecise>
VisitRoots(RootVisitor * visitor)3959 void Thread::VisitRoots(RootVisitor* visitor) {
3960 const pid_t thread_id = GetThreadId();
3961 visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
3962 if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
3963 visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
3964 RootInfo(kRootNativeStack, thread_id));
3965 }
3966 if (tlsPtr_.async_exception != nullptr) {
3967 visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.async_exception),
3968 RootInfo(kRootNativeStack, thread_id));
3969 }
3970 visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
3971 tlsPtr_.jni_env->VisitJniLocalRoots(visitor, RootInfo(kRootJNILocal, thread_id));
3972 tlsPtr_.jni_env->VisitMonitorRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
3973 HandleScopeVisitRoots(visitor, thread_id);
3974 if (tlsPtr_.debug_invoke_req != nullptr) {
3975 tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
3976 }
3977 // Visit roots for deoptimization.
3978 if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
3979 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3980 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
3981 for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
3982 record != nullptr;
3983 record = record->GetLink()) {
3984 for (ShadowFrame* shadow_frame = record->GetShadowFrame();
3985 shadow_frame != nullptr;
3986 shadow_frame = shadow_frame->GetLink()) {
3987 mapper.VisitShadowFrame(shadow_frame);
3988 }
3989 }
3990 }
3991 for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
3992 record != nullptr;
3993 record = record->GetLink()) {
3994 if (record->IsReference()) {
3995 visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
3996 RootInfo(kRootThreadObject, thread_id));
3997 }
3998 visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
3999 RootInfo(kRootThreadObject, thread_id));
4000 }
4001 if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
4002 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4003 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
4004 for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
4005 record != nullptr;
4006 record = record->GetNext()) {
4007 mapper.VisitShadowFrame(record->GetShadowFrame());
4008 }
4009 }
4010 for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
4011 verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
4012 }
4013 // Visit roots on this thread's stack
4014 RuntimeContextType context;
4015 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4016 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback);
4017 mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
4018 for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
4019 visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
4020 }
4021 }
4022
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)4023 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
4024 if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
4025 VisitRoots</* kPrecise= */ true>(visitor);
4026 } else {
4027 VisitRoots</* kPrecise= */ false>(visitor);
4028 }
4029 }
4030
4031 class VerifyRootVisitor : public SingleRootVisitor {
4032 public:
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)4033 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
4034 override REQUIRES_SHARED(Locks::mutator_lock_) {
4035 VerifyObject(root);
4036 }
4037 };
4038
VerifyStackImpl()4039 void Thread::VerifyStackImpl() {
4040 if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
4041 VerifyRootVisitor visitor;
4042 std::unique_ptr<Context> context(Context::Create());
4043 RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
4044 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
4045 mapper.WalkStack();
4046 }
4047 }
4048
4049 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()4050 void Thread::SetStackEndForStackOverflow() {
4051 // During stack overflow we allow use of the full stack.
4052 if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
4053 // However, we seem to have already extended to use the full stack.
4054 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
4055 << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
4056 DumpStack(LOG_STREAM(ERROR));
4057 LOG(FATAL) << "Recursive stack overflow.";
4058 }
4059
4060 tlsPtr_.stack_end = tlsPtr_.stack_begin;
4061
4062 // Remove the stack overflow protection if is it set up.
4063 bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
4064 if (implicit_stack_check) {
4065 if (!UnprotectStack()) {
4066 LOG(ERROR) << "Unable to remove stack protection for stack overflow";
4067 }
4068 }
4069 }
4070
SetTlab(uint8_t * start,uint8_t * end,uint8_t * limit)4071 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
4072 DCHECK_LE(start, end);
4073 DCHECK_LE(end, limit);
4074 tlsPtr_.thread_local_start = start;
4075 tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start;
4076 tlsPtr_.thread_local_end = end;
4077 tlsPtr_.thread_local_limit = limit;
4078 tlsPtr_.thread_local_objects = 0;
4079 }
4080
HasTlab() const4081 bool Thread::HasTlab() const {
4082 bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
4083 if (has_tlab) {
4084 DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
4085 } else {
4086 DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
4087 }
4088 return has_tlab;
4089 }
4090
operator <<(std::ostream & os,const Thread & thread)4091 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
4092 thread.ShortDump(os);
4093 return os;
4094 }
4095
ProtectStack(bool fatal_on_error)4096 bool Thread::ProtectStack(bool fatal_on_error) {
4097 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
4098 VLOG(threads) << "Protecting stack at " << pregion;
4099 if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
4100 if (fatal_on_error) {
4101 LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
4102 "Reason: "
4103 << strerror(errno) << " size: " << kStackOverflowProtectedSize;
4104 }
4105 return false;
4106 }
4107 return true;
4108 }
4109
UnprotectStack()4110 bool Thread::UnprotectStack() {
4111 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
4112 VLOG(threads) << "Unprotecting stack at " << pregion;
4113 return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
4114 }
4115
ActivateSingleStepControl(SingleStepControl * ssc)4116 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
4117 CHECK(Dbg::IsDebuggerActive());
4118 CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
4119 CHECK(ssc != nullptr);
4120 tlsPtr_.single_step_control = ssc;
4121 }
4122
DeactivateSingleStepControl()4123 void Thread::DeactivateSingleStepControl() {
4124 CHECK(Dbg::IsDebuggerActive());
4125 CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
4126 SingleStepControl* ssc = GetSingleStepControl();
4127 tlsPtr_.single_step_control = nullptr;
4128 delete ssc;
4129 }
4130
SetDebugInvokeReq(DebugInvokeReq * req)4131 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
4132 CHECK(Dbg::IsDebuggerActive());
4133 CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
4134 CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
4135 CHECK(req != nullptr);
4136 tlsPtr_.debug_invoke_req = req;
4137 }
4138
ClearDebugInvokeReq()4139 void Thread::ClearDebugInvokeReq() {
4140 CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
4141 CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
4142 DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
4143 tlsPtr_.debug_invoke_req = nullptr;
4144 delete req;
4145 }
4146
PushVerifier(verifier::MethodVerifier * verifier)4147 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
4148 verifier->link_ = tlsPtr_.method_verifier;
4149 tlsPtr_.method_verifier = verifier;
4150 }
4151
PopVerifier(verifier::MethodVerifier * verifier)4152 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
4153 CHECK_EQ(tlsPtr_.method_verifier, verifier);
4154 tlsPtr_.method_verifier = verifier->link_;
4155 }
4156
NumberOfHeldMutexes() const4157 size_t Thread::NumberOfHeldMutexes() const {
4158 size_t count = 0;
4159 for (BaseMutex* mu : tlsPtr_.held_mutexes) {
4160 count += mu != nullptr ? 1 : 0;
4161 }
4162 return count;
4163 }
4164
DeoptimizeWithDeoptimizationException(JValue * result)4165 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
4166 DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
4167 ClearException();
4168 ShadowFrame* shadow_frame =
4169 PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
4170 ObjPtr<mirror::Throwable> pending_exception;
4171 bool from_code = false;
4172 DeoptimizationMethodType method_type;
4173 PopDeoptimizationContext(result, &pending_exception, &from_code, &method_type);
4174 SetTopOfStack(nullptr);
4175 SetTopOfShadowStack(shadow_frame);
4176
4177 // Restore the exception that was pending before deoptimization then interpret the
4178 // deoptimized frames.
4179 if (pending_exception != nullptr) {
4180 SetException(pending_exception);
4181 }
4182 interpreter::EnterInterpreterFromDeoptimize(this,
4183 shadow_frame,
4184 result,
4185 from_code,
4186 method_type);
4187 }
4188
SetAsyncException(ObjPtr<mirror::Throwable> new_exception)4189 void Thread::SetAsyncException(ObjPtr<mirror::Throwable> new_exception) {
4190 CHECK(new_exception != nullptr);
4191 Runtime::Current()->SetAsyncExceptionsThrown();
4192 if (kIsDebugBuild) {
4193 // Make sure we are in a checkpoint.
4194 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
4195 CHECK(this == Thread::Current() || GetSuspendCount() >= 1)
4196 << "It doesn't look like this was called in a checkpoint! this: "
4197 << this << " count: " << GetSuspendCount();
4198 }
4199 tlsPtr_.async_exception = new_exception.Ptr();
4200 }
4201
ObserveAsyncException()4202 bool Thread::ObserveAsyncException() {
4203 DCHECK(this == Thread::Current());
4204 if (tlsPtr_.async_exception != nullptr) {
4205 if (tlsPtr_.exception != nullptr) {
4206 LOG(WARNING) << "Overwriting pending exception with async exception. Pending exception is: "
4207 << tlsPtr_.exception->Dump();
4208 LOG(WARNING) << "Async exception is " << tlsPtr_.async_exception->Dump();
4209 }
4210 tlsPtr_.exception = tlsPtr_.async_exception;
4211 tlsPtr_.async_exception = nullptr;
4212 return true;
4213 } else {
4214 return IsExceptionPending();
4215 }
4216 }
4217
SetException(ObjPtr<mirror::Throwable> new_exception)4218 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
4219 CHECK(new_exception != nullptr);
4220 // TODO: DCHECK(!IsExceptionPending());
4221 tlsPtr_.exception = new_exception.Ptr();
4222 }
4223
IsAotCompiler()4224 bool Thread::IsAotCompiler() {
4225 return Runtime::Current()->IsAotCompiler();
4226 }
4227
GetPeerFromOtherThread() const4228 mirror::Object* Thread::GetPeerFromOtherThread() const {
4229 DCHECK(tlsPtr_.jpeer == nullptr);
4230 mirror::Object* peer = tlsPtr_.opeer;
4231 if (kUseReadBarrier && Current()->GetIsGcMarking()) {
4232 // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
4233 // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
4234 // mark/forward it here.
4235 peer = art::ReadBarrier::Mark(peer);
4236 }
4237 return peer;
4238 }
4239
SetReadBarrierEntrypoints()4240 void Thread::SetReadBarrierEntrypoints() {
4241 // Make sure entrypoints aren't null.
4242 UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active=*/ true);
4243 }
4244
ClearAllInterpreterCaches()4245 void Thread::ClearAllInterpreterCaches() {
4246 static struct ClearInterpreterCacheClosure : Closure {
4247 void Run(Thread* thread) override {
4248 thread->GetInterpreterCache()->Clear(thread);
4249 }
4250 } closure;
4251 Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
4252 }
4253
4254
ReleaseLongJumpContextInternal()4255 void Thread::ReleaseLongJumpContextInternal() {
4256 // Each QuickExceptionHandler gets a long jump context and uses
4257 // it for doing the long jump, after finding catch blocks/doing deoptimization.
4258 // Both finding catch blocks and deoptimization can trigger another
4259 // exception such as a result of class loading. So there can be nested
4260 // cases of exception handling and multiple contexts being used.
4261 // ReleaseLongJumpContext tries to save the context in tlsPtr_.long_jump_context
4262 // for reuse so there is no need to always allocate a new one each time when
4263 // getting a context. Since we only keep one context for reuse, delete the
4264 // existing one since the passed in context is yet to be used for longjump.
4265 delete tlsPtr_.long_jump_context;
4266 }
4267
SetNativePriority(int new_priority)4268 void Thread::SetNativePriority(int new_priority) {
4269 // ART tests on JVM can reach this code path, use tid = 0 as shorthand for current thread.
4270 PaletteStatus status = PaletteSchedSetPriority(0, new_priority);
4271 CHECK(status == PaletteStatus::kOkay || status == PaletteStatus::kCheckErrno);
4272 }
4273
GetNativePriority()4274 int Thread::GetNativePriority() {
4275 int priority = 0;
4276 // ART tests on JVM can reach this code path, use tid = 0 as shorthand for current thread.
4277 PaletteStatus status = PaletteSchedGetPriority(0, &priority);
4278 CHECK(status == PaletteStatus::kOkay || status == PaletteStatus::kCheckErrno);
4279 return priority;
4280 }
4281
IsSystemDaemon() const4282 bool Thread::IsSystemDaemon() const {
4283 if (GetPeer() == nullptr) {
4284 return false;
4285 }
4286 return jni::DecodeArtField(
4287 WellKnownClasses::java_lang_Thread_systemDaemon)->GetBoolean(GetPeer());
4288 }
4289
4290 } // namespace art
4291