1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_space.h"
18
19 #include <sys/statvfs.h>
20 #include <sys/types.h>
21 #include <unistd.h>
22
23 #include <random>
24
25 #include "android-base/stringprintf.h"
26 #include "android-base/strings.h"
27
28 #include "arch/instruction_set.h"
29 #include "art_field-inl.h"
30 #include "art_method-inl.h"
31 #include "base/array_ref.h"
32 #include "base/bit_memory_region.h"
33 #include "base/callee_save_type.h"
34 #include "base/enums.h"
35 #include "base/file_utils.h"
36 #include "base/macros.h"
37 #include "base/os.h"
38 #include "base/scoped_flock.h"
39 #include "base/stl_util.h"
40 #include "base/systrace.h"
41 #include "base/time_utils.h"
42 #include "base/utils.h"
43 #include "class_root.h"
44 #include "dex/art_dex_file_loader.h"
45 #include "dex/dex_file_loader.h"
46 #include "exec_utils.h"
47 #include "gc/accounting/space_bitmap-inl.h"
48 #include "gc/task_processor.h"
49 #include "image-inl.h"
50 #include "image_space_fs.h"
51 #include "intern_table-inl.h"
52 #include "mirror/class-inl.h"
53 #include "mirror/executable-inl.h"
54 #include "mirror/object-inl.h"
55 #include "mirror/object-refvisitor-inl.h"
56 #include "oat_file.h"
57 #include "runtime.h"
58 #include "space-inl.h"
59
60 namespace art {
61 namespace gc {
62 namespace space {
63
64 using android::base::StringAppendF;
65 using android::base::StringPrintf;
66
67 Atomic<uint32_t> ImageSpace::bitmap_index_(0);
68
ImageSpace(const std::string & image_filename,const char * image_location,MemMap && mem_map,std::unique_ptr<accounting::ContinuousSpaceBitmap> live_bitmap,uint8_t * end)69 ImageSpace::ImageSpace(const std::string& image_filename,
70 const char* image_location,
71 MemMap&& mem_map,
72 std::unique_ptr<accounting::ContinuousSpaceBitmap> live_bitmap,
73 uint8_t* end)
74 : MemMapSpace(image_filename,
75 std::move(mem_map),
76 mem_map.Begin(),
77 end,
78 end,
79 kGcRetentionPolicyNeverCollect),
80 live_bitmap_(std::move(live_bitmap)),
81 oat_file_non_owned_(nullptr),
82 image_location_(image_location) {
83 DCHECK(live_bitmap_ != nullptr);
84 }
85
ChooseRelocationOffsetDelta(int32_t min_delta,int32_t max_delta)86 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
87 CHECK_ALIGNED(min_delta, kPageSize);
88 CHECK_ALIGNED(max_delta, kPageSize);
89 CHECK_LT(min_delta, max_delta);
90
91 int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
92 if (r % 2 == 0) {
93 r = RoundUp(r, kPageSize);
94 } else {
95 r = RoundDown(r, kPageSize);
96 }
97 CHECK_LE(min_delta, r);
98 CHECK_GE(max_delta, r);
99 CHECK_ALIGNED(r, kPageSize);
100 return r;
101 }
102
ChooseRelocationOffsetDelta()103 static int32_t ChooseRelocationOffsetDelta() {
104 return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA);
105 }
106
GenerateImage(const std::string & image_filename,InstructionSet image_isa,std::string * error_msg)107 static bool GenerateImage(const std::string& image_filename,
108 InstructionSet image_isa,
109 std::string* error_msg) {
110 Runtime* runtime = Runtime::Current();
111 const std::vector<std::string>& boot_class_path = runtime->GetBootClassPath();
112 if (boot_class_path.empty()) {
113 *error_msg = "Failed to generate image because no boot class path specified";
114 return false;
115 }
116 // We should clean up so we are more likely to have room for the image.
117 if (Runtime::Current()->IsZygote()) {
118 LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
119 PruneDalvikCache(image_isa);
120 }
121
122 std::vector<std::string> arg_vector;
123
124 std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
125 arg_vector.push_back(dex2oat);
126
127 char* dex2oat_bcp = getenv("DEX2OATBOOTCLASSPATH");
128 std::vector<std::string> dex2oat_bcp_vector;
129 if (dex2oat_bcp != nullptr) {
130 arg_vector.push_back("--runtime-arg");
131 arg_vector.push_back(StringPrintf("-Xbootclasspath:%s", dex2oat_bcp));
132 Split(dex2oat_bcp, ':', &dex2oat_bcp_vector);
133 }
134
135 std::string image_option_string("--image=");
136 image_option_string += image_filename;
137 arg_vector.push_back(image_option_string);
138
139 if (!dex2oat_bcp_vector.empty()) {
140 for (size_t i = 0u; i < dex2oat_bcp_vector.size(); i++) {
141 arg_vector.push_back(std::string("--dex-file=") + dex2oat_bcp_vector[i]);
142 arg_vector.push_back(std::string("--dex-location=") + dex2oat_bcp_vector[i]);
143 }
144 } else {
145 const std::vector<std::string>& boot_class_path_locations =
146 runtime->GetBootClassPathLocations();
147 DCHECK_EQ(boot_class_path.size(), boot_class_path_locations.size());
148 for (size_t i = 0u; i < boot_class_path.size(); i++) {
149 arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
150 arg_vector.push_back(std::string("--dex-location=") + boot_class_path_locations[i]);
151 }
152 }
153
154 std::string oat_file_option_string("--oat-file=");
155 oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename);
156 arg_vector.push_back(oat_file_option_string);
157
158 // Note: we do not generate a fully debuggable boot image so we do not pass the
159 // compiler flag --debuggable here.
160
161 Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
162 CHECK_EQ(image_isa, kRuntimeISA)
163 << "We should always be generating an image for the current isa.";
164
165 int32_t base_offset = ChooseRelocationOffsetDelta();
166 LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
167 << "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
168 arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));
169
170 if (!kIsTargetBuild) {
171 arg_vector.push_back("--host");
172 }
173
174 const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
175 for (size_t i = 0; i < compiler_options.size(); ++i) {
176 arg_vector.push_back(compiler_options[i].c_str());
177 }
178
179 std::string command_line(android::base::Join(arg_vector, ' '));
180 LOG(INFO) << "GenerateImage: " << command_line;
181 return Exec(arg_vector, error_msg);
182 }
183
FindImageFilenameImpl(const char * image_location,const InstructionSet image_isa,bool * has_system,std::string * system_filename,bool * dalvik_cache_exists,std::string * dalvik_cache,bool * is_global_cache,bool * has_cache,std::string * cache_filename)184 static bool FindImageFilenameImpl(const char* image_location,
185 const InstructionSet image_isa,
186 bool* has_system,
187 std::string* system_filename,
188 bool* dalvik_cache_exists,
189 std::string* dalvik_cache,
190 bool* is_global_cache,
191 bool* has_cache,
192 std::string* cache_filename) {
193 DCHECK(dalvik_cache != nullptr);
194
195 *has_system = false;
196 *has_cache = false;
197 // image_location = /system/framework/boot.art
198 // system_image_location = /system/framework/<image_isa>/boot.art
199 std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
200 if (OS::FileExists(system_image_filename.c_str())) {
201 *system_filename = system_image_filename;
202 *has_system = true;
203 }
204
205 bool have_android_data = false;
206 *dalvik_cache_exists = false;
207 GetDalvikCache(GetInstructionSetString(image_isa),
208 /*create_if_absent=*/ true,
209 dalvik_cache,
210 &have_android_data,
211 dalvik_cache_exists,
212 is_global_cache);
213
214 if (*dalvik_cache_exists) {
215 DCHECK(have_android_data);
216 // Always set output location even if it does not exist,
217 // so that the caller knows where to create the image.
218 //
219 // image_location = /system/framework/boot.art
220 // *image_filename = /data/dalvik-cache/<image_isa>/system@framework@boot.art
221 std::string error_msg;
222 if (!GetDalvikCacheFilename(image_location,
223 dalvik_cache->c_str(),
224 cache_filename,
225 &error_msg)) {
226 LOG(WARNING) << error_msg;
227 return *has_system;
228 }
229 *has_cache = OS::FileExists(cache_filename->c_str());
230 }
231 return *has_system || *has_cache;
232 }
233
FindImageFilename(const char * image_location,const InstructionSet image_isa,std::string * system_filename,bool * has_system,std::string * cache_filename,bool * dalvik_cache_exists,bool * has_cache,bool * is_global_cache)234 bool ImageSpace::FindImageFilename(const char* image_location,
235 const InstructionSet image_isa,
236 std::string* system_filename,
237 bool* has_system,
238 std::string* cache_filename,
239 bool* dalvik_cache_exists,
240 bool* has_cache,
241 bool* is_global_cache) {
242 std::string dalvik_cache_unused;
243 return FindImageFilenameImpl(image_location,
244 image_isa,
245 has_system,
246 system_filename,
247 dalvik_cache_exists,
248 &dalvik_cache_unused,
249 is_global_cache,
250 has_cache,
251 cache_filename);
252 }
253
ReadSpecificImageHeader(const char * filename,ImageHeader * image_header)254 static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) {
255 std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
256 if (image_file.get() == nullptr) {
257 return false;
258 }
259 const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader));
260 if (!success || !image_header->IsValid()) {
261 return false;
262 }
263 return true;
264 }
265
ReadSpecificImageHeader(const char * filename,std::string * error_msg)266 static std::unique_ptr<ImageHeader> ReadSpecificImageHeader(const char* filename,
267 std::string* error_msg) {
268 std::unique_ptr<ImageHeader> hdr(new ImageHeader);
269 if (!ReadSpecificImageHeader(filename, hdr.get())) {
270 *error_msg = StringPrintf("Unable to read image header for %s", filename);
271 return nullptr;
272 }
273 return hdr;
274 }
275
ReadImageHeader(const char * image_location,const InstructionSet image_isa,ImageSpaceLoadingOrder order,std::string * error_msg)276 std::unique_ptr<ImageHeader> ImageSpace::ReadImageHeader(const char* image_location,
277 const InstructionSet image_isa,
278 ImageSpaceLoadingOrder order,
279 std::string* error_msg) {
280 std::string system_filename;
281 bool has_system = false;
282 std::string cache_filename;
283 bool has_cache = false;
284 bool dalvik_cache_exists = false;
285 bool is_global_cache = false;
286 if (FindImageFilename(image_location,
287 image_isa,
288 &system_filename,
289 &has_system,
290 &cache_filename,
291 &dalvik_cache_exists,
292 &has_cache,
293 &is_global_cache)) {
294 if (order == ImageSpaceLoadingOrder::kSystemFirst) {
295 if (has_system) {
296 return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
297 }
298 if (has_cache) {
299 return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
300 }
301 } else {
302 if (has_cache) {
303 return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
304 }
305 if (has_system) {
306 return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
307 }
308 }
309 }
310
311 *error_msg = StringPrintf("Unable to find image file for %s", image_location);
312 return nullptr;
313 }
314
CanWriteToDalvikCache(const InstructionSet isa)315 static bool CanWriteToDalvikCache(const InstructionSet isa) {
316 const std::string dalvik_cache = GetDalvikCache(GetInstructionSetString(isa));
317 if (access(dalvik_cache.c_str(), O_RDWR) == 0) {
318 return true;
319 } else if (errno != EACCES) {
320 PLOG(WARNING) << "CanWriteToDalvikCache returned error other than EACCES";
321 }
322 return false;
323 }
324
ImageCreationAllowed(bool is_global_cache,const InstructionSet isa,bool is_zygote,std::string * error_msg)325 static bool ImageCreationAllowed(bool is_global_cache,
326 const InstructionSet isa,
327 bool is_zygote,
328 std::string* error_msg) {
329 // Anyone can write into a "local" cache.
330 if (!is_global_cache) {
331 return true;
332 }
333
334 // Only the zygote running as root is allowed to create the global boot image.
335 // If the zygote is running as non-root (and cannot write to the dalvik-cache),
336 // then image creation is not allowed..
337 if (is_zygote) {
338 return CanWriteToDalvikCache(isa);
339 }
340
341 *error_msg = "Only the zygote can create the global boot image.";
342 return false;
343 }
344
VerifyImageAllocations()345 void ImageSpace::VerifyImageAllocations() {
346 uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
347 while (current < End()) {
348 CHECK_ALIGNED(current, kObjectAlignment);
349 auto* obj = reinterpret_cast<mirror::Object*>(current);
350 CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
351 CHECK(live_bitmap_->Test(obj)) << obj->PrettyTypeOf();
352 if (kUseBakerReadBarrier) {
353 obj->AssertReadBarrierState();
354 }
355 current += RoundUp(obj->SizeOf(), kObjectAlignment);
356 }
357 }
358
359 // Helper class for relocating from one range of memory to another.
360 class RelocationRange {
361 public:
362 RelocationRange() = default;
363 RelocationRange(const RelocationRange&) = default;
RelocationRange(uintptr_t source,uintptr_t dest,uintptr_t length)364 RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
365 : source_(source),
366 dest_(dest),
367 length_(length) {}
368
InSource(uintptr_t address) const369 bool InSource(uintptr_t address) const {
370 return address - source_ < length_;
371 }
372
InDest(const void * dest) const373 bool InDest(const void* dest) const {
374 return InDest(reinterpret_cast<uintptr_t>(dest));
375 }
376
InDest(uintptr_t address) const377 bool InDest(uintptr_t address) const {
378 return address - dest_ < length_;
379 }
380
381 // Translate a source address to the destination space.
ToDest(uintptr_t address) const382 uintptr_t ToDest(uintptr_t address) const {
383 DCHECK(InSource(address));
384 return address + Delta();
385 }
386
387 // Returns the delta between the dest from the source.
Delta() const388 uintptr_t Delta() const {
389 return dest_ - source_;
390 }
391
Source() const392 uintptr_t Source() const {
393 return source_;
394 }
395
Dest() const396 uintptr_t Dest() const {
397 return dest_;
398 }
399
Length() const400 uintptr_t Length() const {
401 return length_;
402 }
403
404 private:
405 const uintptr_t source_;
406 const uintptr_t dest_;
407 const uintptr_t length_;
408 };
409
operator <<(std::ostream & os,const RelocationRange & reloc)410 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
411 return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
412 << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
413 << reinterpret_cast<const void*>(reloc.Dest()) << "-"
414 << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
415 }
416
417 template <PointerSize kPointerSize, typename HeapVisitor, typename NativeVisitor>
418 class ImageSpace::PatchObjectVisitor final {
419 public:
PatchObjectVisitor(HeapVisitor heap_visitor,NativeVisitor native_visitor)420 explicit PatchObjectVisitor(HeapVisitor heap_visitor, NativeVisitor native_visitor)
421 : heap_visitor_(heap_visitor), native_visitor_(native_visitor) {}
422
VisitClass(mirror::Class * klass)423 void VisitClass(mirror::Class* klass) REQUIRES_SHARED(Locks::mutator_lock_) {
424 // A mirror::Class object consists of
425 // - instance fields inherited from j.l.Object,
426 // - instance fields inherited from j.l.Class,
427 // - embedded tables (vtable, interface method table),
428 // - static fields of the class itself.
429 // The reference fields are at the start of each field section (this is how the
430 // ClassLinker orders fields; except when that would create a gap between superclass
431 // fields and the first reference of the subclass due to alignment, it can be filled
432 // with smaller fields - but that's not the case for j.l.Object and j.l.Class).
433
434 DCHECK_ALIGNED(klass, kObjectAlignment);
435 static_assert(IsAligned<kHeapReferenceSize>(kObjectAlignment), "Object alignment check.");
436 // First, patch the `klass->klass_`, known to be a reference to the j.l.Class.class.
437 // This should be the only reference field in j.l.Object and we assert that below.
438 PatchReferenceField</*kMayBeNull=*/ false>(klass, mirror::Object::ClassOffset());
439 // Then patch the reference instance fields described by j.l.Class.class.
440 // Use the sizeof(Object) to determine where these reference fields start;
441 // this is the same as `class_class->GetFirstReferenceInstanceFieldOffset()`
442 // after patching but the j.l.Class may not have been patched yet.
443 mirror::Class* class_class = klass->GetClass<kVerifyNone, kWithoutReadBarrier>();
444 size_t num_reference_instance_fields = class_class->NumReferenceInstanceFields<kVerifyNone>();
445 DCHECK_NE(num_reference_instance_fields, 0u);
446 static_assert(IsAligned<kHeapReferenceSize>(sizeof(mirror::Object)), "Size alignment check.");
447 MemberOffset instance_field_offset(sizeof(mirror::Object));
448 for (size_t i = 0; i != num_reference_instance_fields; ++i) {
449 PatchReferenceField(klass, instance_field_offset);
450 static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
451 "Heap reference sizes equality check.");
452 instance_field_offset =
453 MemberOffset(instance_field_offset.Uint32Value() + kHeapReferenceSize);
454 }
455 // Now that we have patched the `super_class_`, if this is the j.l.Class.class,
456 // we can get a reference to j.l.Object.class and assert that it has only one
457 // reference instance field (the `klass_` patched above).
458 if (kIsDebugBuild && klass == class_class) {
459 ObjPtr<mirror::Class> object_class =
460 klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
461 CHECK_EQ(object_class->NumReferenceInstanceFields<kVerifyNone>(), 1u);
462 }
463 // Then patch static fields.
464 size_t num_reference_static_fields = klass->NumReferenceStaticFields<kVerifyNone>();
465 if (num_reference_static_fields != 0u) {
466 MemberOffset static_field_offset =
467 klass->GetFirstReferenceStaticFieldOffset<kVerifyNone>(kPointerSize);
468 for (size_t i = 0; i != num_reference_static_fields; ++i) {
469 PatchReferenceField(klass, static_field_offset);
470 static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
471 "Heap reference sizes equality check.");
472 static_field_offset =
473 MemberOffset(static_field_offset.Uint32Value() + kHeapReferenceSize);
474 }
475 }
476 // Then patch native pointers.
477 klass->FixupNativePointers<kVerifyNone>(klass, kPointerSize, *this);
478 }
479
480 template <typename T>
operator ()(T * ptr,void ** dest_addr ATTRIBUTE_UNUSED) const481 T* operator()(T* ptr, void** dest_addr ATTRIBUTE_UNUSED) const {
482 return (ptr != nullptr) ? native_visitor_(ptr) : nullptr;
483 }
484
VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array)485 void VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array)
486 REQUIRES_SHARED(Locks::mutator_lock_) {
487 // Fully patch the pointer array, including the `klass_` field.
488 PatchReferenceField</*kMayBeNull=*/ false>(pointer_array, mirror::Object::ClassOffset());
489
490 int32_t length = pointer_array->GetLength<kVerifyNone>();
491 for (int32_t i = 0; i != length; ++i) {
492 ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(
493 pointer_array->ElementAddress<kVerifyNone>(i, kPointerSize));
494 PatchNativePointer</*kMayBeNull=*/ false>(method_entry);
495 }
496 }
497
VisitObject(mirror::Object * object)498 void VisitObject(mirror::Object* object) REQUIRES_SHARED(Locks::mutator_lock_) {
499 // Visit all reference fields.
500 object->VisitReferences</*kVisitNativeRoots=*/ false,
501 kVerifyNone,
502 kWithoutReadBarrier>(*this, *this);
503 // This function should not be called for classes.
504 DCHECK(!object->IsClass<kVerifyNone>());
505 }
506
507 // Visitor for VisitReferences().
operator ()(ObjPtr<mirror::Object> object,MemberOffset field_offset,bool is_static) const508 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> object,
509 MemberOffset field_offset,
510 bool is_static)
511 const REQUIRES_SHARED(Locks::mutator_lock_) {
512 DCHECK(!is_static);
513 PatchReferenceField(object, field_offset);
514 }
515 // Visitor for VisitReferences(), java.lang.ref.Reference case.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const516 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
517 REQUIRES_SHARED(Locks::mutator_lock_) {
518 DCHECK(klass->IsTypeOfReferenceClass());
519 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
520 }
521 // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const522 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
523 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const524 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
525
VisitDexCacheArrays(ObjPtr<mirror::DexCache> dex_cache)526 void VisitDexCacheArrays(ObjPtr<mirror::DexCache> dex_cache)
527 REQUIRES_SHARED(Locks::mutator_lock_) {
528 FixupDexCacheArray<mirror::StringDexCacheType>(dex_cache,
529 mirror::DexCache::StringsOffset(),
530 dex_cache->NumStrings<kVerifyNone>());
531 FixupDexCacheArray<mirror::TypeDexCacheType>(dex_cache,
532 mirror::DexCache::ResolvedTypesOffset(),
533 dex_cache->NumResolvedTypes<kVerifyNone>());
534 FixupDexCacheArray<mirror::MethodDexCacheType>(dex_cache,
535 mirror::DexCache::ResolvedMethodsOffset(),
536 dex_cache->NumResolvedMethods<kVerifyNone>());
537 FixupDexCacheArray<mirror::FieldDexCacheType>(dex_cache,
538 mirror::DexCache::ResolvedFieldsOffset(),
539 dex_cache->NumResolvedFields<kVerifyNone>());
540 FixupDexCacheArray<mirror::MethodTypeDexCacheType>(
541 dex_cache,
542 mirror::DexCache::ResolvedMethodTypesOffset(),
543 dex_cache->NumResolvedMethodTypes<kVerifyNone>());
544 FixupDexCacheArray<GcRoot<mirror::CallSite>>(
545 dex_cache,
546 mirror::DexCache::ResolvedCallSitesOffset(),
547 dex_cache->NumResolvedCallSites<kVerifyNone>());
548 FixupDexCacheArray<GcRoot<mirror::String>>(
549 dex_cache,
550 mirror::DexCache::PreResolvedStringsOffset(),
551 dex_cache->NumPreResolvedStrings<kVerifyNone>());
552 }
553
554 template <bool kMayBeNull = true, typename T>
PatchGcRoot(GcRoot<T> * root) const555 ALWAYS_INLINE void PatchGcRoot(/*inout*/GcRoot<T>* root) const
556 REQUIRES_SHARED(Locks::mutator_lock_) {
557 static_assert(sizeof(GcRoot<mirror::Class*>) == sizeof(uint32_t), "GcRoot size check");
558 T* old_value = root->template Read<kWithoutReadBarrier>();
559 DCHECK(kMayBeNull || old_value != nullptr);
560 if (!kMayBeNull || old_value != nullptr) {
561 *root = GcRoot<T>(heap_visitor_(old_value));
562 }
563 }
564
565 template <bool kMayBeNull = true, typename T>
PatchNativePointer(T ** entry) const566 ALWAYS_INLINE void PatchNativePointer(/*inout*/T** entry) const {
567 if (kPointerSize == PointerSize::k64) {
568 uint64_t* raw_entry = reinterpret_cast<uint64_t*>(entry);
569 T* old_value = reinterpret_cast64<T*>(*raw_entry);
570 DCHECK(kMayBeNull || old_value != nullptr);
571 if (!kMayBeNull || old_value != nullptr) {
572 T* new_value = native_visitor_(old_value);
573 *raw_entry = reinterpret_cast64<uint64_t>(new_value);
574 }
575 } else {
576 uint32_t* raw_entry = reinterpret_cast<uint32_t*>(entry);
577 T* old_value = reinterpret_cast32<T*>(*raw_entry);
578 DCHECK(kMayBeNull || old_value != nullptr);
579 if (!kMayBeNull || old_value != nullptr) {
580 T* new_value = native_visitor_(old_value);
581 *raw_entry = reinterpret_cast32<uint32_t>(new_value);
582 }
583 }
584 }
585
586 template <bool kMayBeNull = true>
PatchReferenceField(ObjPtr<mirror::Object> object,MemberOffset offset) const587 ALWAYS_INLINE void PatchReferenceField(ObjPtr<mirror::Object> object, MemberOffset offset) const
588 REQUIRES_SHARED(Locks::mutator_lock_) {
589 ObjPtr<mirror::Object> old_value =
590 object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
591 DCHECK(kMayBeNull || old_value != nullptr);
592 if (!kMayBeNull || old_value != nullptr) {
593 ObjPtr<mirror::Object> new_value = heap_visitor_(old_value.Ptr());
594 object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false,
595 /*kCheckTransaction=*/ true,
596 kVerifyNone>(offset, new_value);
597 }
598 }
599
600 template <typename T>
FixupDexCacheArrayEntry(std::atomic<mirror::DexCachePair<T>> * array,uint32_t index)601 void FixupDexCacheArrayEntry(std::atomic<mirror::DexCachePair<T>>* array, uint32_t index)
602 REQUIRES_SHARED(Locks::mutator_lock_) {
603 static_assert(sizeof(std::atomic<mirror::DexCachePair<T>>) == sizeof(mirror::DexCachePair<T>),
604 "Size check for removing std::atomic<>.");
605 PatchGcRoot(&(reinterpret_cast<mirror::DexCachePair<T>*>(array)[index].object));
606 }
607
608 template <typename T>
FixupDexCacheArrayEntry(std::atomic<mirror::NativeDexCachePair<T>> * array,uint32_t index)609 void FixupDexCacheArrayEntry(std::atomic<mirror::NativeDexCachePair<T>>* array, uint32_t index)
610 REQUIRES_SHARED(Locks::mutator_lock_) {
611 static_assert(sizeof(std::atomic<mirror::NativeDexCachePair<T>>) ==
612 sizeof(mirror::NativeDexCachePair<T>),
613 "Size check for removing std::atomic<>.");
614 mirror::NativeDexCachePair<T> pair =
615 mirror::DexCache::GetNativePairPtrSize(array, index, kPointerSize);
616 if (pair.object != nullptr) {
617 pair.object = native_visitor_(pair.object);
618 mirror::DexCache::SetNativePairPtrSize(array, index, pair, kPointerSize);
619 }
620 }
621
FixupDexCacheArrayEntry(GcRoot<mirror::CallSite> * array,uint32_t index)622 void FixupDexCacheArrayEntry(GcRoot<mirror::CallSite>* array, uint32_t index)
623 REQUIRES_SHARED(Locks::mutator_lock_) {
624 PatchGcRoot(&array[index]);
625 }
626
FixupDexCacheArrayEntry(GcRoot<mirror::String> * array,uint32_t index)627 void FixupDexCacheArrayEntry(GcRoot<mirror::String>* array, uint32_t index)
628 REQUIRES_SHARED(Locks::mutator_lock_) {
629 PatchGcRoot(&array[index]);
630 }
631
632 template <typename EntryType>
FixupDexCacheArray(ObjPtr<mirror::DexCache> dex_cache,MemberOffset array_offset,uint32_t size)633 void FixupDexCacheArray(ObjPtr<mirror::DexCache> dex_cache,
634 MemberOffset array_offset,
635 uint32_t size) REQUIRES_SHARED(Locks::mutator_lock_) {
636 EntryType* old_array =
637 reinterpret_cast64<EntryType*>(dex_cache->GetField64<kVerifyNone>(array_offset));
638 DCHECK_EQ(old_array != nullptr, size != 0u);
639 if (old_array != nullptr) {
640 EntryType* new_array = native_visitor_(old_array);
641 dex_cache->SetField64<kVerifyNone>(array_offset, reinterpret_cast64<uint64_t>(new_array));
642 for (uint32_t i = 0; i != size; ++i) {
643 FixupDexCacheArrayEntry(new_array, i);
644 }
645 }
646 }
647
648 private:
649 // Heap objects visitor.
650 HeapVisitor heap_visitor_;
651
652 // Native objects visitor.
653 NativeVisitor native_visitor_;
654 };
655
656 template <typename ReferenceVisitor>
657 class ImageSpace::ClassTableVisitor final {
658 public:
ClassTableVisitor(const ReferenceVisitor & reference_visitor)659 explicit ClassTableVisitor(const ReferenceVisitor& reference_visitor)
660 : reference_visitor_(reference_visitor) {}
661
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const662 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
663 REQUIRES_SHARED(Locks::mutator_lock_) {
664 DCHECK(root->AsMirrorPtr() != nullptr);
665 root->Assign(reference_visitor_(root->AsMirrorPtr()));
666 }
667
668 private:
669 ReferenceVisitor reference_visitor_;
670 };
671
672 // Helper class encapsulating loading, so we can access private ImageSpace members (this is a
673 // nested class), but not declare functions in the header.
674 class ImageSpace::Loader {
675 public:
InitAppImage(const char * image_filename,const char * image_location,const OatFile * oat_file,MemMap * image_reservation,std::string * error_msg)676 static std::unique_ptr<ImageSpace> InitAppImage(const char* image_filename,
677 const char* image_location,
678 const OatFile* oat_file,
679 /*inout*/MemMap* image_reservation,
680 /*out*/std::string* error_msg)
681 REQUIRES_SHARED(Locks::mutator_lock_) {
682 TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
683
684 std::unique_ptr<ImageSpace> space = Init(image_filename,
685 image_location,
686 oat_file,
687 &logger,
688 image_reservation,
689 error_msg);
690 if (space != nullptr) {
691 uint32_t expected_reservation_size =
692 RoundUp(space->GetImageHeader().GetImageSize(), kPageSize);
693 if (!CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
694 !CheckImageComponentCount(*space, /*expected_component_count=*/ 1u, error_msg)) {
695 return nullptr;
696 }
697
698 TimingLogger::ScopedTiming timing("RelocateImage", &logger);
699 ImageHeader* image_header = reinterpret_cast<ImageHeader*>(space->GetMemMap()->Begin());
700 const PointerSize pointer_size = image_header->GetPointerSize();
701 bool result;
702 if (pointer_size == PointerSize::k64) {
703 result = RelocateInPlace<PointerSize::k64>(*image_header,
704 space->GetMemMap()->Begin(),
705 space->GetLiveBitmap(),
706 oat_file,
707 error_msg);
708 } else {
709 result = RelocateInPlace<PointerSize::k32>(*image_header,
710 space->GetMemMap()->Begin(),
711 space->GetLiveBitmap(),
712 oat_file,
713 error_msg);
714 }
715 if (!result) {
716 return nullptr;
717 }
718 Runtime* runtime = Runtime::Current();
719 CHECK_EQ(runtime->GetResolutionMethod(),
720 image_header->GetImageMethod(ImageHeader::kResolutionMethod));
721 CHECK_EQ(runtime->GetImtConflictMethod(),
722 image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
723 CHECK_EQ(runtime->GetImtUnimplementedMethod(),
724 image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
725 CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves),
726 image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod));
727 CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly),
728 image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod));
729 CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs),
730 image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod));
731 CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything),
732 image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod));
733 CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit),
734 image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit));
735 CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck),
736 image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck));
737
738 VLOG(image) << "ImageSpace::Loader::InitAppImage exiting " << *space.get();
739 }
740 if (VLOG_IS_ON(image)) {
741 logger.Dump(LOG_STREAM(INFO));
742 }
743 return space;
744 }
745
Init(const char * image_filename,const char * image_location,const OatFile * oat_file,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)746 static std::unique_ptr<ImageSpace> Init(const char* image_filename,
747 const char* image_location,
748 const OatFile* oat_file,
749 TimingLogger* logger,
750 /*inout*/MemMap* image_reservation,
751 /*out*/std::string* error_msg)
752 REQUIRES_SHARED(Locks::mutator_lock_) {
753 CHECK(image_filename != nullptr);
754 CHECK(image_location != nullptr);
755
756 VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
757
758 std::unique_ptr<File> file;
759 {
760 TimingLogger::ScopedTiming timing("OpenImageFile", logger);
761 file.reset(OS::OpenFileForReading(image_filename));
762 if (file == nullptr) {
763 *error_msg = StringPrintf("Failed to open '%s'", image_filename);
764 return nullptr;
765 }
766 }
767 ImageHeader temp_image_header;
768 ImageHeader* image_header = &temp_image_header;
769 {
770 TimingLogger::ScopedTiming timing("ReadImageHeader", logger);
771 bool success = file->ReadFully(image_header, sizeof(*image_header));
772 if (!success || !image_header->IsValid()) {
773 *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
774 return nullptr;
775 }
776 }
777 // Check that the file is larger or equal to the header size + data size.
778 const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
779 if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) {
780 *error_msg = StringPrintf(
781 "Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
782 image_file_size,
783 static_cast<uint64_t>(sizeof(ImageHeader) + image_header->GetDataSize()));
784 return nullptr;
785 }
786
787 if (oat_file != nullptr) {
788 // If we have an oat file (i.e. for app image), check the oat file checksum.
789 // Otherwise, we open the oat file after the image and check the checksum there.
790 const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
791 const uint32_t image_oat_checksum = image_header->GetOatChecksum();
792 if (oat_checksum != image_oat_checksum) {
793 *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
794 oat_checksum,
795 image_oat_checksum,
796 image_filename);
797 return nullptr;
798 }
799 }
800
801 if (VLOG_IS_ON(startup)) {
802 LOG(INFO) << "Dumping image sections";
803 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
804 const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
805 auto& section = image_header->GetImageSection(section_idx);
806 LOG(INFO) << section_idx << " start="
807 << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " "
808 << section;
809 }
810 }
811
812 const auto& bitmap_section = image_header->GetImageBitmapSection();
813 // The location we want to map from is the first aligned page after the end of the stored
814 // (possibly compressed) data.
815 const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(),
816 kPageSize);
817 const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
818 if (end_of_bitmap != image_file_size) {
819 *error_msg = StringPrintf(
820 "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.",
821 image_file_size,
822 end_of_bitmap);
823 return nullptr;
824 }
825
826 // GetImageBegin is the preferred address to map the image. If we manage to map the
827 // image at the image begin, the amount of fixup work required is minimized.
828 // If it is pic we will retry with error_msg for the2 failure case. Pass a null error_msg to
829 // avoid reading proc maps for a mapping failure and slowing everything down.
830 // For the boot image, we have already reserved the memory and we load the image
831 // into the `image_reservation`.
832 MemMap map = LoadImageFile(
833 image_filename,
834 image_location,
835 *image_header,
836 file->Fd(),
837 logger,
838 image_reservation,
839 error_msg);
840 if (!map.IsValid()) {
841 DCHECK(!error_msg->empty());
842 return nullptr;
843 }
844 DCHECK_EQ(0, memcmp(image_header, map.Begin(), sizeof(ImageHeader)));
845
846 MemMap image_bitmap_map = MemMap::MapFile(bitmap_section.Size(),
847 PROT_READ,
848 MAP_PRIVATE,
849 file->Fd(),
850 image_bitmap_offset,
851 /*low_4gb=*/ false,
852 image_filename,
853 error_msg);
854 if (!image_bitmap_map.IsValid()) {
855 *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
856 return nullptr;
857 }
858 // Loaded the map, use the image header from the file now in case we patch it with
859 // RelocateInPlace.
860 image_header = reinterpret_cast<ImageHeader*>(map.Begin());
861 const uint32_t bitmap_index = ImageSpace::bitmap_index_.fetch_add(1);
862 std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
863 image_filename,
864 bitmap_index));
865 // Bitmap only needs to cover until the end of the mirror objects section.
866 const ImageSection& image_objects = image_header->GetObjectsSection();
867 // We only want the mirror object, not the ArtFields and ArtMethods.
868 uint8_t* const image_end = map.Begin() + image_objects.End();
869 std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap;
870 {
871 TimingLogger::ScopedTiming timing("CreateImageBitmap", logger);
872 bitmap.reset(
873 accounting::ContinuousSpaceBitmap::CreateFromMemMap(
874 bitmap_name,
875 std::move(image_bitmap_map),
876 reinterpret_cast<uint8_t*>(map.Begin()),
877 // Make sure the bitmap is aligned to card size instead of just bitmap word size.
878 RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize)));
879 if (bitmap == nullptr) {
880 *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
881 return nullptr;
882 }
883 }
884 // We only want the mirror object, not the ArtFields and ArtMethods.
885 std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
886 image_location,
887 std::move(map),
888 std::move(bitmap),
889 image_end));
890 space->oat_file_non_owned_ = oat_file;
891 return space;
892 }
893
CheckImageComponentCount(const ImageSpace & space,uint32_t expected_component_count,std::string * error_msg)894 static bool CheckImageComponentCount(const ImageSpace& space,
895 uint32_t expected_component_count,
896 /*out*/std::string* error_msg) {
897 const ImageHeader& header = space.GetImageHeader();
898 if (header.GetComponentCount() != expected_component_count) {
899 *error_msg = StringPrintf("Unexpected component count in %s, received %u, expected %u",
900 space.GetImageFilename().c_str(),
901 header.GetComponentCount(),
902 expected_component_count);
903 return false;
904 }
905 return true;
906 }
907
CheckImageReservationSize(const ImageSpace & space,uint32_t expected_reservation_size,std::string * error_msg)908 static bool CheckImageReservationSize(const ImageSpace& space,
909 uint32_t expected_reservation_size,
910 /*out*/std::string* error_msg) {
911 const ImageHeader& header = space.GetImageHeader();
912 if (header.GetImageReservationSize() != expected_reservation_size) {
913 *error_msg = StringPrintf("Unexpected reservation size in %s, received %u, expected %u",
914 space.GetImageFilename().c_str(),
915 header.GetImageReservationSize(),
916 expected_reservation_size);
917 return false;
918 }
919 return true;
920 }
921
922 private:
LoadImageFile(const char * image_filename,const char * image_location,const ImageHeader & image_header,int fd,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)923 static MemMap LoadImageFile(const char* image_filename,
924 const char* image_location,
925 const ImageHeader& image_header,
926 int fd,
927 TimingLogger* logger,
928 /*inout*/MemMap* image_reservation,
929 /*out*/std::string* error_msg)
930 REQUIRES_SHARED(Locks::mutator_lock_) {
931 TimingLogger::ScopedTiming timing("MapImageFile", logger);
932 std::string temp_error_msg;
933 const bool is_compressed = image_header.HasCompressedBlock();
934 if (!is_compressed) {
935 uint8_t* address = (image_reservation != nullptr) ? image_reservation->Begin() : nullptr;
936 return MemMap::MapFileAtAddress(address,
937 image_header.GetImageSize(),
938 PROT_READ | PROT_WRITE,
939 MAP_PRIVATE,
940 fd,
941 /*start=*/ 0,
942 /*low_4gb=*/ true,
943 image_filename,
944 /*reuse=*/ false,
945 image_reservation,
946 error_msg);
947 }
948
949 // Reserve output and decompress into it.
950 MemMap map = MemMap::MapAnonymous(image_location,
951 image_header.GetImageSize(),
952 PROT_READ | PROT_WRITE,
953 /*low_4gb=*/ true,
954 image_reservation,
955 error_msg);
956 if (map.IsValid()) {
957 const size_t stored_size = image_header.GetDataSize();
958 MemMap temp_map = MemMap::MapFile(sizeof(ImageHeader) + stored_size,
959 PROT_READ,
960 MAP_PRIVATE,
961 fd,
962 /*start=*/ 0,
963 /*low_4gb=*/ false,
964 image_filename,
965 error_msg);
966 if (!temp_map.IsValid()) {
967 DCHECK(error_msg == nullptr || !error_msg->empty());
968 return MemMap::Invalid();
969 }
970 memcpy(map.Begin(), &image_header, sizeof(ImageHeader));
971
972 Runtime::ScopedThreadPoolUsage stpu;
973 ThreadPool* const pool = stpu.GetThreadPool();
974 const uint64_t start = NanoTime();
975 Thread* const self = Thread::Current();
976 static constexpr size_t kMinBlocks = 2u;
977 const bool use_parallel = pool != nullptr && image_header.GetBlockCount() >= kMinBlocks;
978 for (const ImageHeader::Block& block : image_header.GetBlocks(temp_map.Begin())) {
979 auto function = [&](Thread*) {
980 const uint64_t start2 = NanoTime();
981 ScopedTrace trace("LZ4 decompress block");
982 bool result = block.Decompress(/*out_ptr=*/map.Begin(),
983 /*in_ptr=*/temp_map.Begin(),
984 error_msg);
985 if (!result && error_msg != nullptr) {
986 *error_msg = "Failed to decompress image block " + *error_msg;
987 }
988 VLOG(image) << "Decompress block " << block.GetDataSize() << " -> "
989 << block.GetImageSize() << " in " << PrettyDuration(NanoTime() - start2);
990 };
991 if (use_parallel) {
992 pool->AddTask(self, new FunctionTask(std::move(function)));
993 } else {
994 function(self);
995 }
996 }
997 if (use_parallel) {
998 ScopedTrace trace("Waiting for workers");
999 // Go to native since we don't want to suspend while holding the mutator lock.
1000 ScopedThreadSuspension sts(Thread::Current(), kNative);
1001 pool->Wait(self, true, false);
1002 }
1003 const uint64_t time = NanoTime() - start;
1004 // Add one 1 ns to prevent possible divide by 0.
1005 VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " ("
1006 << PrettySize(static_cast<uint64_t>(map.Size()) * MsToNs(1000) / (time + 1))
1007 << "/s)";
1008 }
1009
1010 return map;
1011 }
1012
1013 class EmptyRange {
1014 public:
InSource(uintptr_t) const1015 ALWAYS_INLINE bool InSource(uintptr_t) const { return false; }
InDest(uintptr_t) const1016 ALWAYS_INLINE bool InDest(uintptr_t) const { return false; }
ToDest(uintptr_t) const1017 ALWAYS_INLINE uintptr_t ToDest(uintptr_t) const { UNREACHABLE(); }
1018 };
1019
1020 template <typename Range0, typename Range1 = EmptyRange, typename Range2 = EmptyRange>
1021 class ForwardAddress {
1022 public:
ForwardAddress(const Range0 & range0=Range0 (),const Range1 & range1=Range1 (),const Range2 & range2=Range2 ())1023 ForwardAddress(const Range0& range0 = Range0(),
1024 const Range1& range1 = Range1(),
1025 const Range2& range2 = Range2())
1026 : range0_(range0), range1_(range1), range2_(range2) {}
1027
1028 // Return the relocated address of a heap object.
1029 // Null checks must be performed in the caller (for performance reasons).
1030 template <typename T>
operator ()(T * src) const1031 ALWAYS_INLINE T* operator()(T* src) const {
1032 DCHECK(src != nullptr);
1033 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
1034 if (range2_.InSource(uint_src)) {
1035 return reinterpret_cast<T*>(range2_.ToDest(uint_src));
1036 }
1037 if (range1_.InSource(uint_src)) {
1038 return reinterpret_cast<T*>(range1_.ToDest(uint_src));
1039 }
1040 CHECK(range0_.InSource(uint_src))
1041 << reinterpret_cast<const void*>(src) << " not in "
1042 << reinterpret_cast<const void*>(range0_.Source()) << "-"
1043 << reinterpret_cast<const void*>(range0_.Source() + range0_.Length());
1044 return reinterpret_cast<T*>(range0_.ToDest(uint_src));
1045 }
1046
1047 private:
1048 const Range0 range0_;
1049 const Range1 range1_;
1050 const Range2 range2_;
1051 };
1052
1053 template <typename Forward>
1054 class FixupRootVisitor {
1055 public:
1056 template<typename... Args>
FixupRootVisitor(Args...args)1057 explicit FixupRootVisitor(Args... args) : forward_(args...) {}
1058
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1059 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1060 REQUIRES_SHARED(Locks::mutator_lock_) {
1061 if (!root->IsNull()) {
1062 VisitRoot(root);
1063 }
1064 }
1065
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1066 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1067 REQUIRES_SHARED(Locks::mutator_lock_) {
1068 mirror::Object* ref = root->AsMirrorPtr();
1069 mirror::Object* new_ref = forward_(ref);
1070 if (ref != new_ref) {
1071 root->Assign(new_ref);
1072 }
1073 }
1074
1075 private:
1076 Forward forward_;
1077 };
1078
1079 template <typename Forward>
1080 class FixupObjectVisitor {
1081 public:
FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap * visited,const Forward & forward)1082 explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
1083 const Forward& forward)
1084 : visited_(visited), forward_(forward) {}
1085
1086 // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1087 ALWAYS_INLINE void VisitRootIfNonNull(
1088 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
1089
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1090 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
1091 const {}
1092
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1093 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
1094 MemberOffset offset,
1095 bool is_static ATTRIBUTE_UNUSED) const
1096 NO_THREAD_SAFETY_ANALYSIS {
1097 // Space is not yet added to the heap, don't do a read barrier.
1098 mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
1099 offset);
1100 if (ref != nullptr) {
1101 // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
1102 // image.
1103 obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, forward_(ref));
1104 }
1105 }
1106
1107 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const1108 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
1109 ObjPtr<mirror::Reference> ref) const
1110 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1111 mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>();
1112 if (obj != nullptr) {
1113 ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
1114 mirror::Reference::ReferentOffset(),
1115 forward_(obj));
1116 }
1117 }
1118
operator ()(mirror::Object * obj) const1119 void operator()(mirror::Object* obj) const
1120 NO_THREAD_SAFETY_ANALYSIS {
1121 if (!visited_->Set(obj)) {
1122 // Not already visited.
1123 obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
1124 *this,
1125 *this);
1126 CHECK(!obj->IsClass());
1127 }
1128 }
1129
1130 private:
1131 gc::accounting::ContinuousSpaceBitmap* const visited_;
1132 Forward forward_;
1133 };
1134
1135 // Relocate an image space mapped at target_base which possibly used to be at a different base
1136 // address. In place means modifying a single ImageSpace in place rather than relocating from
1137 // one ImageSpace to another.
1138 template <PointerSize kPointerSize>
RelocateInPlace(ImageHeader & image_header,uint8_t * target_base,accounting::ContinuousSpaceBitmap * bitmap,const OatFile * app_oat_file,std::string * error_msg)1139 static bool RelocateInPlace(ImageHeader& image_header,
1140 uint8_t* target_base,
1141 accounting::ContinuousSpaceBitmap* bitmap,
1142 const OatFile* app_oat_file,
1143 std::string* error_msg) {
1144 DCHECK(error_msg != nullptr);
1145 // Set up sections.
1146 uint32_t boot_image_begin = 0;
1147 uint32_t boot_image_end = 0;
1148 uint32_t boot_oat_begin = 0;
1149 uint32_t boot_oat_end = 0;
1150 gc::Heap* const heap = Runtime::Current()->GetHeap();
1151 heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
1152 if (boot_image_begin == boot_image_end) {
1153 *error_msg = "Can not relocate app image without boot image space";
1154 return false;
1155 }
1156 if (boot_oat_begin == boot_oat_end) {
1157 *error_msg = "Can not relocate app image without boot oat file";
1158 return false;
1159 }
1160 const uint32_t boot_image_size = boot_oat_end - boot_image_begin;
1161 const uint32_t image_header_boot_image_size = image_header.GetBootImageSize();
1162 if (boot_image_size != image_header_boot_image_size) {
1163 *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %"
1164 PRIu64,
1165 static_cast<uint64_t>(boot_image_size),
1166 static_cast<uint64_t>(image_header_boot_image_size));
1167 return false;
1168 }
1169 const ImageSection& objects_section = image_header.GetObjectsSection();
1170 // Where the app image objects are mapped to.
1171 uint8_t* objects_location = target_base + objects_section.Offset();
1172 TimingLogger logger(__FUNCTION__, true, false);
1173 RelocationRange boot_image(image_header.GetBootImageBegin(),
1174 boot_image_begin,
1175 boot_image_size);
1176 // Metadata is everything after the objects section, use exclusion to be safe.
1177 RelocationRange app_image_metadata(
1178 reinterpret_cast<uintptr_t>(image_header.GetImageBegin()) + objects_section.End(),
1179 reinterpret_cast<uintptr_t>(target_base) + objects_section.End(),
1180 image_header.GetImageSize() - objects_section.End());
1181 // App image heap objects, may be mapped in the heap.
1182 RelocationRange app_image_objects(
1183 reinterpret_cast<uintptr_t>(image_header.GetImageBegin()) + objects_section.Offset(),
1184 reinterpret_cast<uintptr_t>(objects_location),
1185 objects_section.Size());
1186 // Use the oat data section since this is where the OatFile::Begin is.
1187 RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()),
1188 // Not necessarily in low 4GB.
1189 reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
1190 image_header.GetOatDataEnd() - image_header.GetOatDataBegin());
1191 VLOG(image) << "App image metadata " << app_image_metadata;
1192 VLOG(image) << "App image objects " << app_image_objects;
1193 VLOG(image) << "App oat " << app_oat;
1194 VLOG(image) << "Boot image " << boot_image;
1195 // True if we need to fixup any heap pointers.
1196 const bool fixup_image = boot_image.Delta() != 0 || app_image_metadata.Delta() != 0 ||
1197 app_image_objects.Delta() != 0;
1198 if (!fixup_image) {
1199 // Nothing to fix up.
1200 return true;
1201 }
1202 ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1203
1204 using ForwardObject = ForwardAddress<RelocationRange, RelocationRange>;
1205 ForwardObject forward_object(boot_image, app_image_objects);
1206 ForwardObject forward_metadata(boot_image, app_image_metadata);
1207 using ForwardCode = ForwardAddress<RelocationRange, RelocationRange>;
1208 ForwardCode forward_code(boot_image, app_oat);
1209 PatchObjectVisitor<kPointerSize, ForwardObject, ForwardCode> patch_object_visitor(
1210 forward_object,
1211 forward_metadata);
1212 if (fixup_image) {
1213 // Two pass approach, fix up all classes first, then fix up non class-objects.
1214 // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
1215 std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap(
1216 gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
1217 target_base,
1218 image_header.GetImageSize()));
1219 {
1220 TimingLogger::ScopedTiming timing("Fixup classes", &logger);
1221 const auto& class_table_section = image_header.GetClassTableSection();
1222 if (class_table_section.Size() > 0u) {
1223 ScopedObjectAccess soa(Thread::Current());
1224 ClassTableVisitor class_table_visitor(forward_object);
1225 size_t read_count = 0u;
1226 const uint8_t* data = target_base + class_table_section.Offset();
1227 // We avoid making a copy of the data since we want modifications to be propagated to the
1228 // memory map.
1229 ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
1230 for (ClassTable::TableSlot& slot : temp_set) {
1231 slot.VisitRoot(class_table_visitor);
1232 mirror::Class* klass = slot.Read<kWithoutReadBarrier>();
1233 if (!app_image_objects.InDest(klass)) {
1234 continue;
1235 }
1236 const bool already_marked = visited_bitmap->Set(klass);
1237 CHECK(!already_marked) << "App image class already visited";
1238 patch_object_visitor.VisitClass(klass);
1239 // Then patch the non-embedded vtable and iftable.
1240 ObjPtr<mirror::PointerArray> vtable =
1241 klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
1242 if (vtable != nullptr &&
1243 app_image_objects.InDest(vtable.Ptr()) &&
1244 !visited_bitmap->Set(vtable.Ptr())) {
1245 patch_object_visitor.VisitPointerArray(vtable);
1246 }
1247 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
1248 if (iftable != nullptr && app_image_objects.InDest(iftable.Ptr())) {
1249 // Avoid processing the fields of iftable since we will process them later anyways
1250 // below.
1251 int32_t ifcount = klass->GetIfTableCount<kVerifyNone>();
1252 for (int32_t i = 0; i != ifcount; ++i) {
1253 ObjPtr<mirror::PointerArray> unpatched_ifarray =
1254 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
1255 if (unpatched_ifarray != nullptr) {
1256 // The iftable has not been patched, so we need to explicitly adjust the pointer.
1257 ObjPtr<mirror::PointerArray> ifarray = forward_object(unpatched_ifarray.Ptr());
1258 if (app_image_objects.InDest(ifarray.Ptr()) &&
1259 !visited_bitmap->Set(ifarray.Ptr())) {
1260 patch_object_visitor.VisitPointerArray(ifarray);
1261 }
1262 }
1263 }
1264 }
1265 }
1266 }
1267 }
1268
1269 // Fixup objects may read fields in the boot image, use the mutator lock here for sanity.
1270 // Though its probably not required.
1271 TimingLogger::ScopedTiming timing("Fixup objects", &logger);
1272 ScopedObjectAccess soa(Thread::Current());
1273 // Need to update the image to be at the target base.
1274 uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
1275 uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
1276 FixupObjectVisitor<ForwardObject> fixup_object_visitor(visited_bitmap.get(), forward_object);
1277 bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
1278 // Fixup image roots.
1279 CHECK(app_image_objects.InSource(reinterpret_cast<uintptr_t>(
1280 image_header.GetImageRoots<kWithoutReadBarrier>().Ptr())));
1281 image_header.RelocateImageObjects(app_image_objects.Delta());
1282 CHECK_EQ(image_header.GetImageBegin(), target_base);
1283 // Fix up dex cache DexFile pointers.
1284 ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
1285 image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)
1286 ->AsObjectArray<mirror::DexCache, kVerifyNone>();
1287 for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
1288 ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i);
1289 CHECK(dex_cache != nullptr);
1290 patch_object_visitor.VisitDexCacheArrays(dex_cache);
1291 }
1292 }
1293 {
1294 // Only touches objects in the app image, no need for mutator lock.
1295 TimingLogger::ScopedTiming timing("Fixup methods", &logger);
1296 image_header.VisitPackedArtMethods([&](ArtMethod& method) NO_THREAD_SAFETY_ANALYSIS {
1297 // TODO: Consider a separate visitor for runtime vs normal methods.
1298 if (UNLIKELY(method.IsRuntimeMethod())) {
1299 ImtConflictTable* table = method.GetImtConflictTable(kPointerSize);
1300 if (table != nullptr) {
1301 ImtConflictTable* new_table = forward_metadata(table);
1302 if (table != new_table) {
1303 method.SetImtConflictTable(new_table, kPointerSize);
1304 }
1305 }
1306 const void* old_code = method.GetEntryPointFromQuickCompiledCodePtrSize(kPointerSize);
1307 const void* new_code = forward_code(old_code);
1308 if (old_code != new_code) {
1309 method.SetEntryPointFromQuickCompiledCodePtrSize(new_code, kPointerSize);
1310 }
1311 } else {
1312 method.UpdateObjectsForImageRelocation(forward_object);
1313 method.UpdateEntrypoints(forward_code, kPointerSize);
1314 }
1315 }, target_base, kPointerSize);
1316 }
1317 if (fixup_image) {
1318 {
1319 // Only touches objects in the app image, no need for mutator lock.
1320 TimingLogger::ScopedTiming timing("Fixup fields", &logger);
1321 image_header.VisitPackedArtFields([&](ArtField& field) NO_THREAD_SAFETY_ANALYSIS {
1322 field.UpdateObjects(forward_object);
1323 }, target_base);
1324 }
1325 {
1326 TimingLogger::ScopedTiming timing("Fixup imt", &logger);
1327 image_header.VisitPackedImTables(forward_metadata, target_base, kPointerSize);
1328 }
1329 {
1330 TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
1331 image_header.VisitPackedImtConflictTables(forward_metadata, target_base, kPointerSize);
1332 }
1333 // In the app image case, the image methods are actually in the boot image.
1334 image_header.RelocateImageMethods(boot_image.Delta());
1335 // Fix up the intern table.
1336 const auto& intern_table_section = image_header.GetInternedStringsSection();
1337 if (intern_table_section.Size() > 0u) {
1338 TimingLogger::ScopedTiming timing("Fixup intern table", &logger);
1339 ScopedObjectAccess soa(Thread::Current());
1340 // Fixup the pointers in the newly written intern table to contain image addresses.
1341 InternTable temp_intern_table;
1342 // Note that we require that ReadFromMemory does not make an internal copy of the elements
1343 // so that the VisitRoots() will update the memory directly rather than the copies.
1344 temp_intern_table.AddTableFromMemory(target_base + intern_table_section.Offset(),
1345 [&](InternTable::UnorderedSet& strings)
1346 REQUIRES_SHARED(Locks::mutator_lock_) {
1347 for (GcRoot<mirror::String>& root : strings) {
1348 root = GcRoot<mirror::String>(forward_object(root.Read<kWithoutReadBarrier>()));
1349 }
1350 }, /*is_boot_image=*/ false);
1351 }
1352 }
1353 if (VLOG_IS_ON(image)) {
1354 logger.Dump(LOG_STREAM(INFO));
1355 }
1356 return true;
1357 }
1358 };
1359
1360 class ImageSpace::BootImageLoader {
1361 public:
BootImageLoader(const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,const std::string & image_location,InstructionSet image_isa,bool relocate,bool executable,bool is_zygote)1362 BootImageLoader(const std::vector<std::string>& boot_class_path,
1363 const std::vector<std::string>& boot_class_path_locations,
1364 const std::string& image_location,
1365 InstructionSet image_isa,
1366 bool relocate,
1367 bool executable,
1368 bool is_zygote)
1369 : boot_class_path_(boot_class_path),
1370 boot_class_path_locations_(boot_class_path_locations),
1371 image_location_(image_location),
1372 image_isa_(image_isa),
1373 relocate_(relocate),
1374 executable_(executable),
1375 is_zygote_(is_zygote),
1376 has_system_(false),
1377 has_cache_(false),
1378 is_global_cache_(true),
1379 dalvik_cache_exists_(false),
1380 dalvik_cache_(),
1381 cache_filename_() {
1382 }
1383
IsZygote() const1384 bool IsZygote() const { return is_zygote_; }
1385
FindImageFiles()1386 void FindImageFiles() {
1387 std::string system_filename;
1388 bool found_image = FindImageFilenameImpl(image_location_.c_str(),
1389 image_isa_,
1390 &has_system_,
1391 &system_filename,
1392 &dalvik_cache_exists_,
1393 &dalvik_cache_,
1394 &is_global_cache_,
1395 &has_cache_,
1396 &cache_filename_);
1397 DCHECK(!dalvik_cache_exists_ || !dalvik_cache_.empty());
1398 DCHECK_EQ(found_image, has_system_ || has_cache_);
1399 }
1400
HasSystem() const1401 bool HasSystem() const { return has_system_; }
HasCache() const1402 bool HasCache() const { return has_cache_; }
1403
DalvikCacheExists() const1404 bool DalvikCacheExists() const { return dalvik_cache_exists_; }
IsGlobalCache() const1405 bool IsGlobalCache() const { return is_global_cache_; }
1406
GetDalvikCache() const1407 const std::string& GetDalvikCache() const {
1408 return dalvik_cache_;
1409 }
1410
GetCacheFilename() const1411 const std::string& GetCacheFilename() const {
1412 return cache_filename_;
1413 }
1414
LoadFromSystem(bool validate_oat_file,size_t extra_reservation_size,std::vector<std::unique_ptr<space::ImageSpace>> * boot_image_spaces,MemMap * extra_reservation,std::string * error_msg)1415 bool LoadFromSystem(bool validate_oat_file,
1416 size_t extra_reservation_size,
1417 /*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces,
1418 /*out*/MemMap* extra_reservation,
1419 /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
1420 TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
1421 std::string filename = GetSystemImageFilename(image_location_.c_str(), image_isa_);
1422
1423 if (!LoadFromFile(filename,
1424 validate_oat_file,
1425 extra_reservation_size,
1426 &logger,
1427 boot_image_spaces,
1428 extra_reservation,
1429 error_msg)) {
1430 return false;
1431 }
1432
1433 if (VLOG_IS_ON(image)) {
1434 LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromSystem exiting "
1435 << boot_image_spaces->front();
1436 logger.Dump(LOG_STREAM(INFO));
1437 }
1438 return true;
1439 }
1440
LoadFromDalvikCache(bool validate_oat_file,size_t extra_reservation_size,std::vector<std::unique_ptr<space::ImageSpace>> * boot_image_spaces,MemMap * extra_reservation,std::string * error_msg)1441 bool LoadFromDalvikCache(
1442 bool validate_oat_file,
1443 size_t extra_reservation_size,
1444 /*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces,
1445 /*out*/MemMap* extra_reservation,
1446 /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
1447 TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
1448 DCHECK(DalvikCacheExists());
1449
1450 if (!LoadFromFile(cache_filename_,
1451 validate_oat_file,
1452 extra_reservation_size,
1453 &logger,
1454 boot_image_spaces,
1455 extra_reservation,
1456 error_msg)) {
1457 return false;
1458 }
1459
1460 if (VLOG_IS_ON(image)) {
1461 LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromDalvikCache exiting "
1462 << boot_image_spaces->front();
1463 logger.Dump(LOG_STREAM(INFO));
1464 }
1465 return true;
1466 }
1467
1468 private:
LoadFromFile(const std::string & filename,bool validate_oat_file,size_t extra_reservation_size,TimingLogger * logger,std::vector<std::unique_ptr<space::ImageSpace>> * boot_image_spaces,MemMap * extra_reservation,std::string * error_msg)1469 bool LoadFromFile(
1470 const std::string& filename,
1471 bool validate_oat_file,
1472 size_t extra_reservation_size,
1473 TimingLogger* logger,
1474 /*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces,
1475 /*out*/MemMap* extra_reservation,
1476 /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
1477 ImageHeader system_hdr;
1478 if (!ReadSpecificImageHeader(filename.c_str(), &system_hdr)) {
1479 *error_msg = StringPrintf("Cannot read header of %s", filename.c_str());
1480 return false;
1481 }
1482 if (system_hdr.GetComponentCount() == 0u ||
1483 system_hdr.GetComponentCount() > boot_class_path_.size()) {
1484 *error_msg = StringPrintf("Unexpected component count in %s, received %u, "
1485 "expected non-zero and <= %zu",
1486 filename.c_str(),
1487 system_hdr.GetComponentCount(),
1488 boot_class_path_.size());
1489 return false;
1490 }
1491 MemMap image_reservation;
1492 MemMap local_extra_reservation;
1493 if (!ReserveBootImageMemory(system_hdr.GetImageReservationSize(),
1494 reinterpret_cast32<uint32_t>(system_hdr.GetImageBegin()),
1495 extra_reservation_size,
1496 &image_reservation,
1497 &local_extra_reservation,
1498 error_msg)) {
1499 return false;
1500 }
1501
1502 ArrayRef<const std::string> provided_locations(boot_class_path_locations_.data(),
1503 system_hdr.GetComponentCount());
1504 std::vector<std::string> locations =
1505 ExpandMultiImageLocations(provided_locations, image_location_);
1506 std::vector<std::string> filenames =
1507 ExpandMultiImageLocations(provided_locations, filename);
1508 DCHECK_EQ(locations.size(), filenames.size());
1509 std::vector<std::unique_ptr<ImageSpace>> spaces;
1510 spaces.reserve(locations.size());
1511 for (std::size_t i = 0u, size = locations.size(); i != size; ++i) {
1512 spaces.push_back(Load(locations[i], filenames[i], logger, &image_reservation, error_msg));
1513 const ImageSpace* space = spaces.back().get();
1514 if (space == nullptr) {
1515 return false;
1516 }
1517 uint32_t expected_component_count = (i == 0u) ? system_hdr.GetComponentCount() : 0u;
1518 uint32_t expected_reservation_size = (i == 0u) ? system_hdr.GetImageReservationSize() : 0u;
1519 if (!Loader::CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
1520 !Loader::CheckImageComponentCount(*space, expected_component_count, error_msg)) {
1521 return false;
1522 }
1523 }
1524 for (size_t i = 0u, size = spaces.size(); i != size; ++i) {
1525 std::string expected_boot_class_path =
1526 (i == 0u) ? android::base::Join(provided_locations, ':') : std::string();
1527 if (!OpenOatFile(spaces[i].get(),
1528 boot_class_path_[i],
1529 expected_boot_class_path,
1530 validate_oat_file,
1531 logger,
1532 &image_reservation,
1533 error_msg)) {
1534 return false;
1535 }
1536 }
1537 if (!CheckReservationExhausted(image_reservation, error_msg)) {
1538 return false;
1539 }
1540
1541 MaybeRelocateSpaces(spaces, logger);
1542 boot_image_spaces->swap(spaces);
1543 *extra_reservation = std::move(local_extra_reservation);
1544 return true;
1545 }
1546
1547 private:
1548 class RelocateVisitor {
1549 public:
RelocateVisitor(uint32_t diff)1550 explicit RelocateVisitor(uint32_t diff) : diff_(diff) {}
1551
1552 template <typename T>
operator ()(T * src) const1553 ALWAYS_INLINE T* operator()(T* src) const {
1554 DCHECK(src != nullptr);
1555 return reinterpret_cast32<T*>(reinterpret_cast32<uint32_t>(src) + diff_);
1556 }
1557
1558 private:
1559 const uint32_t diff_;
1560 };
1561
PointerAddress(ArtMethod * method,MemberOffset offset)1562 static void** PointerAddress(ArtMethod* method, MemberOffset offset) {
1563 return reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(method) + offset.Uint32Value());
1564 }
1565
1566 template <PointerSize kPointerSize>
DoRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>> & spaces,uint32_t diff)1567 static void DoRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>>& spaces,
1568 uint32_t diff) REQUIRES_SHARED(Locks::mutator_lock_) {
1569 std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> patched_objects(
1570 gc::accounting::ContinuousSpaceBitmap::Create(
1571 "Marked objects",
1572 spaces.front()->Begin(),
1573 spaces.back()->End() - spaces.front()->Begin()));
1574 using PatchRelocateVisitor = PatchObjectVisitor<kPointerSize, RelocateVisitor, RelocateVisitor>;
1575 RelocateVisitor relocate_visitor(diff);
1576 PatchRelocateVisitor patch_object_visitor(relocate_visitor, relocate_visitor);
1577
1578 mirror::Class* dcheck_class_class = nullptr; // Used only for a DCHECK().
1579 for (const std::unique_ptr<ImageSpace>& space : spaces) {
1580 // First patch the image header. The `diff` is OK for patching 32-bit fields but
1581 // the 64-bit method fields in the ImageHeader may need a negative `delta`.
1582 reinterpret_cast<ImageHeader*>(space->Begin())->RelocateImage(
1583 (reinterpret_cast32<uint32_t>(space->Begin()) >= -diff) // Would `begin+diff` overflow?
1584 ? -static_cast<int64_t>(-diff) : static_cast<int64_t>(diff));
1585
1586 // Patch fields and methods.
1587 const ImageHeader& image_header = space->GetImageHeader();
1588 image_header.VisitPackedArtFields([&](ArtField& field) REQUIRES_SHARED(Locks::mutator_lock_) {
1589 patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(
1590 &field.DeclaringClassRoot());
1591 }, space->Begin());
1592 image_header.VisitPackedArtMethods([&](ArtMethod& method)
1593 REQUIRES_SHARED(Locks::mutator_lock_) {
1594 patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot());
1595 void** data_address = PointerAddress(&method, ArtMethod::DataOffset(kPointerSize));
1596 patch_object_visitor.PatchNativePointer(data_address);
1597 void** entrypoint_address =
1598 PointerAddress(&method, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kPointerSize));
1599 patch_object_visitor.PatchNativePointer(entrypoint_address);
1600 }, space->Begin(), kPointerSize);
1601 auto method_table_visitor = [&](ArtMethod* method) {
1602 DCHECK(method != nullptr);
1603 return relocate_visitor(method);
1604 };
1605 image_header.VisitPackedImTables(method_table_visitor, space->Begin(), kPointerSize);
1606 image_header.VisitPackedImtConflictTables(method_table_visitor, space->Begin(), kPointerSize);
1607
1608 // Patch the intern table.
1609 if (image_header.GetInternedStringsSection().Size() != 0u) {
1610 const uint8_t* data = space->Begin() + image_header.GetInternedStringsSection().Offset();
1611 size_t read_count;
1612 InternTable::UnorderedSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
1613 for (GcRoot<mirror::String>& slot : temp_set) {
1614 patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(&slot);
1615 }
1616 }
1617
1618 // Patch the class table and classes, so that we can traverse class hierarchy to
1619 // determine the types of other objects when we visit them later.
1620 if (image_header.GetClassTableSection().Size() != 0u) {
1621 uint8_t* data = space->Begin() + image_header.GetClassTableSection().Offset();
1622 size_t read_count;
1623 ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
1624 DCHECK(!temp_set.empty());
1625 ClassTableVisitor class_table_visitor(relocate_visitor);
1626 for (ClassTable::TableSlot& slot : temp_set) {
1627 slot.VisitRoot(class_table_visitor);
1628 mirror::Class* klass = slot.Read<kWithoutReadBarrier>();
1629 DCHECK(klass != nullptr);
1630 patched_objects->Set(klass);
1631 patch_object_visitor.VisitClass(klass);
1632 if (kIsDebugBuild) {
1633 mirror::Class* class_class = klass->GetClass<kVerifyNone, kWithoutReadBarrier>();
1634 if (dcheck_class_class == nullptr) {
1635 dcheck_class_class = class_class;
1636 } else {
1637 CHECK_EQ(class_class, dcheck_class_class);
1638 }
1639 }
1640 // Then patch the non-embedded vtable and iftable.
1641 ObjPtr<mirror::PointerArray> vtable =
1642 klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
1643 if (vtable != nullptr && !patched_objects->Set(vtable.Ptr())) {
1644 patch_object_visitor.VisitPointerArray(vtable);
1645 }
1646 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
1647 if (iftable != nullptr) {
1648 int32_t ifcount = klass->GetIfTableCount<kVerifyNone>();
1649 for (int32_t i = 0; i != ifcount; ++i) {
1650 ObjPtr<mirror::PointerArray> unpatched_ifarray =
1651 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
1652 if (unpatched_ifarray != nullptr) {
1653 // The iftable has not been patched, so we need to explicitly adjust the pointer.
1654 ObjPtr<mirror::PointerArray> ifarray = relocate_visitor(unpatched_ifarray.Ptr());
1655 if (!patched_objects->Set(ifarray.Ptr())) {
1656 patch_object_visitor.VisitPointerArray(ifarray);
1657 }
1658 }
1659 }
1660 }
1661 }
1662 }
1663 }
1664
1665 // Patch class roots now, so that we can recognize mirror::Method and mirror::Constructor.
1666 ObjPtr<mirror::Class> method_class;
1667 ObjPtr<mirror::Class> constructor_class;
1668 {
1669 const ImageSpace* space = spaces.front().get();
1670 const ImageHeader& image_header = space->GetImageHeader();
1671
1672 ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots =
1673 image_header.GetImageRoots<kWithoutReadBarrier>();
1674 patched_objects->Set(image_roots.Ptr());
1675 patch_object_visitor.VisitObject(image_roots.Ptr());
1676
1677 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
1678 ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(
1679 image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kClassRoots));
1680 patched_objects->Set(class_roots.Ptr());
1681 patch_object_visitor.VisitObject(class_roots.Ptr());
1682
1683 method_class = GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots);
1684 constructor_class = GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots);
1685 }
1686
1687 for (size_t s = 0u, size = spaces.size(); s != size; ++s) {
1688 const ImageSpace* space = spaces[s].get();
1689 const ImageHeader& image_header = space->GetImageHeader();
1690
1691 static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check");
1692 uint32_t objects_end = image_header.GetObjectsSection().Size();
1693 DCHECK_ALIGNED(objects_end, kObjectAlignment);
1694 for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) {
1695 mirror::Object* object = reinterpret_cast<mirror::Object*>(space->Begin() + pos);
1696 if (!patched_objects->Test(object)) {
1697 // This is the last pass over objects, so we do not need to Set().
1698 patch_object_visitor.VisitObject(object);
1699 ObjPtr<mirror::Class> klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>();
1700 if (klass->IsDexCacheClass<kVerifyNone>()) {
1701 // Patch dex cache array pointers and elements.
1702 ObjPtr<mirror::DexCache> dex_cache =
1703 object->AsDexCache<kVerifyNone, kWithoutReadBarrier>();
1704 patch_object_visitor.VisitDexCacheArrays(dex_cache);
1705 } else if (klass == method_class || klass == constructor_class) {
1706 // Patch the ArtMethod* in the mirror::Executable subobject.
1707 ObjPtr<mirror::Executable> as_executable =
1708 ObjPtr<mirror::Executable>::DownCast(object);
1709 ArtMethod* unpatched_method = as_executable->GetArtMethod<kVerifyNone>();
1710 ArtMethod* patched_method = relocate_visitor(unpatched_method);
1711 as_executable->SetArtMethod</*kTransactionActive=*/ false,
1712 /*kCheckTransaction=*/ true,
1713 kVerifyNone>(patched_method);
1714 }
1715 }
1716 pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
1717 }
1718 }
1719 }
1720
MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>> & spaces,TimingLogger * logger)1721 void MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>>& spaces,
1722 TimingLogger* logger)
1723 REQUIRES_SHARED(Locks::mutator_lock_) {
1724 TimingLogger::ScopedTiming timing("MaybeRelocateSpaces", logger);
1725 ImageSpace* first_space = spaces.front().get();
1726 const ImageHeader& first_space_header = first_space->GetImageHeader();
1727 uint32_t diff =
1728 static_cast<uint32_t>(first_space->Begin() - first_space_header.GetImageBegin());
1729 if (!relocate_) {
1730 DCHECK_EQ(diff, 0u);
1731 return;
1732 }
1733
1734 PointerSize pointer_size = first_space_header.GetPointerSize();
1735 if (pointer_size == PointerSize::k64) {
1736 DoRelocateSpaces<PointerSize::k64>(spaces, diff);
1737 } else {
1738 DoRelocateSpaces<PointerSize::k32>(spaces, diff);
1739 }
1740 }
1741
Load(const std::string & image_location,const std::string & image_filename,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)1742 std::unique_ptr<ImageSpace> Load(const std::string& image_location,
1743 const std::string& image_filename,
1744 TimingLogger* logger,
1745 /*inout*/MemMap* image_reservation,
1746 /*out*/std::string* error_msg)
1747 REQUIRES_SHARED(Locks::mutator_lock_) {
1748 // Should this be a RDWR lock? This is only a defensive measure, as at
1749 // this point the image should exist.
1750 // However, only the zygote can write into the global dalvik-cache, so
1751 // restrict to zygote processes, or any process that isn't using
1752 // /data/dalvik-cache (which we assume to be allowed to write there).
1753 const bool rw_lock = is_zygote_ || !is_global_cache_;
1754
1755 // Note that we must not use the file descriptor associated with
1756 // ScopedFlock::GetFile to Init the image file. We want the file
1757 // descriptor (and the associated exclusive lock) to be released when
1758 // we leave Create.
1759 ScopedFlock image = LockedFile::Open(image_filename.c_str(),
1760 /*flags=*/ rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY,
1761 /*block=*/ true,
1762 error_msg);
1763
1764 VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
1765 << image_location;
1766 // If we are in /system we can assume the image is good. We can also
1767 // assume this if we are using a relocated image (i.e. image checksum
1768 // matches) since this is only different by the offset. We need this to
1769 // make sure that host tests continue to work.
1770 // Since we are the boot image, pass null since we load the oat file from the boot image oat
1771 // file name.
1772 return Loader::Init(image_filename.c_str(),
1773 image_location.c_str(),
1774 /*oat_file=*/ nullptr,
1775 logger,
1776 image_reservation,
1777 error_msg);
1778 }
1779
OpenOatFile(ImageSpace * space,const std::string & dex_filename,const std::string & expected_boot_class_path,bool validate_oat_file,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)1780 bool OpenOatFile(ImageSpace* space,
1781 const std::string& dex_filename,
1782 const std::string& expected_boot_class_path,
1783 bool validate_oat_file,
1784 TimingLogger* logger,
1785 /*inout*/MemMap* image_reservation,
1786 /*out*/std::string* error_msg) {
1787 // VerifyImageAllocations() will be called later in Runtime::Init()
1788 // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
1789 // and ArtField::java_lang_reflect_ArtField_, which are used from
1790 // Object::SizeOf() which VerifyImageAllocations() calls, are not
1791 // set yet at this point.
1792 DCHECK(image_reservation != nullptr);
1793 std::unique_ptr<OatFile> oat_file;
1794 {
1795 TimingLogger::ScopedTiming timing("OpenOatFile", logger);
1796 std::string oat_filename =
1797 ImageHeader::GetOatLocationFromImageLocation(space->GetImageFilename());
1798 std::string oat_location =
1799 ImageHeader::GetOatLocationFromImageLocation(space->GetImageLocation());
1800
1801 oat_file.reset(OatFile::Open(/*zip_fd=*/ -1,
1802 oat_filename,
1803 oat_location,
1804 executable_,
1805 /*low_4gb=*/ false,
1806 /*abs_dex_location=*/ dex_filename.c_str(),
1807 image_reservation,
1808 error_msg));
1809 if (oat_file == nullptr) {
1810 *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
1811 oat_filename.c_str(),
1812 space->GetName(),
1813 error_msg->c_str());
1814 return false;
1815 }
1816 const ImageHeader& image_header = space->GetImageHeader();
1817 uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
1818 uint32_t image_oat_checksum = image_header.GetOatChecksum();
1819 if (oat_checksum != image_oat_checksum) {
1820 *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum"
1821 " 0x%x in image %s",
1822 oat_checksum,
1823 image_oat_checksum,
1824 space->GetName());
1825 return false;
1826 }
1827 const char* oat_boot_class_path =
1828 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathKey);
1829 oat_boot_class_path = (oat_boot_class_path != nullptr) ? oat_boot_class_path : "";
1830 if (expected_boot_class_path != oat_boot_class_path) {
1831 *error_msg = StringPrintf("Failed to match oat boot class path %s to expected "
1832 "boot class path %s in image %s",
1833 oat_boot_class_path,
1834 expected_boot_class_path.c_str(),
1835 space->GetName());
1836 return false;
1837 }
1838 ptrdiff_t relocation_diff = space->Begin() - image_header.GetImageBegin();
1839 CHECK(image_header.GetOatDataBegin() != nullptr);
1840 uint8_t* oat_data_begin = image_header.GetOatDataBegin() + relocation_diff;
1841 if (oat_file->Begin() != oat_data_begin) {
1842 *error_msg = StringPrintf("Oat file '%s' referenced from image %s has unexpected begin"
1843 " %p v. %p",
1844 oat_filename.c_str(),
1845 space->GetName(),
1846 oat_file->Begin(),
1847 oat_data_begin);
1848 return false;
1849 }
1850 }
1851 if (validate_oat_file) {
1852 TimingLogger::ScopedTiming timing("ValidateOatFile", logger);
1853 if (!ImageSpace::ValidateOatFile(*oat_file, error_msg)) {
1854 DCHECK(!error_msg->empty());
1855 return false;
1856 }
1857 }
1858 space->oat_file_ = std::move(oat_file);
1859 space->oat_file_non_owned_ = space->oat_file_.get();
1860 return true;
1861 }
1862
ReserveBootImageMemory(uint32_t reservation_size,uint32_t image_start,size_t extra_reservation_size,MemMap * image_reservation,MemMap * extra_reservation,std::string * error_msg)1863 bool ReserveBootImageMemory(uint32_t reservation_size,
1864 uint32_t image_start,
1865 size_t extra_reservation_size,
1866 /*out*/MemMap* image_reservation,
1867 /*out*/MemMap* extra_reservation,
1868 /*out*/std::string* error_msg) {
1869 DCHECK_ALIGNED(reservation_size, kPageSize);
1870 DCHECK_ALIGNED(image_start, kPageSize);
1871 DCHECK(!image_reservation->IsValid());
1872 DCHECK_LT(extra_reservation_size, std::numeric_limits<uint32_t>::max() - reservation_size);
1873 size_t total_size = reservation_size + extra_reservation_size;
1874 // If relocating, choose a random address for ALSR.
1875 uint32_t addr = relocate_ ? ART_BASE_ADDRESS + ChooseRelocationOffsetDelta() : image_start;
1876 *image_reservation =
1877 MemMap::MapAnonymous("Boot image reservation",
1878 reinterpret_cast32<uint8_t*>(addr),
1879 total_size,
1880 PROT_NONE,
1881 /*low_4gb=*/ true,
1882 /*reuse=*/ false,
1883 /*reservation=*/ nullptr,
1884 error_msg);
1885 if (!image_reservation->IsValid()) {
1886 return false;
1887 }
1888 DCHECK(!extra_reservation->IsValid());
1889 if (extra_reservation_size != 0u) {
1890 DCHECK_ALIGNED(extra_reservation_size, kPageSize);
1891 DCHECK_LT(extra_reservation_size, image_reservation->Size());
1892 uint8_t* split = image_reservation->End() - extra_reservation_size;
1893 *extra_reservation = image_reservation->RemapAtEnd(split,
1894 "Boot image extra reservation",
1895 PROT_NONE,
1896 error_msg);
1897 if (!extra_reservation->IsValid()) {
1898 return false;
1899 }
1900 }
1901
1902 return true;
1903 }
1904
CheckReservationExhausted(const MemMap & image_reservation,std::string * error_msg)1905 bool CheckReservationExhausted(const MemMap& image_reservation, /*out*/std::string* error_msg) {
1906 if (image_reservation.IsValid()) {
1907 *error_msg = StringPrintf("Excessive image reservation after loading boot image: %p-%p",
1908 image_reservation.Begin(),
1909 image_reservation.End());
1910 return false;
1911 }
1912 return true;
1913 }
1914
1915 const std::vector<std::string>& boot_class_path_;
1916 const std::vector<std::string>& boot_class_path_locations_;
1917 const std::string& image_location_;
1918 InstructionSet image_isa_;
1919 bool relocate_;
1920 bool executable_;
1921 bool is_zygote_;
1922 bool has_system_;
1923 bool has_cache_;
1924 bool is_global_cache_;
1925 bool dalvik_cache_exists_;
1926 std::string dalvik_cache_;
1927 std::string cache_filename_;
1928 };
1929
1930 static constexpr uint64_t kLowSpaceValue = 50 * MB;
1931 static constexpr uint64_t kTmpFsSentinelValue = 384 * MB;
1932
1933 // Read the free space of the cache partition and make a decision whether to keep the generated
1934 // image. This is to try to mitigate situations where the system might run out of space later.
CheckSpace(const std::string & cache_filename,std::string * error_msg)1935 static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) {
1936 // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes.
1937 struct statvfs buf;
1938
1939 int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf));
1940 if (res != 0) {
1941 // Could not stat. Conservatively tell the system to delete the image.
1942 *error_msg = "Could not stat the filesystem, assuming low-memory situation.";
1943 return false;
1944 }
1945
1946 uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks);
1947 // Zygote is privileged, but other things are not. Use bavail.
1948 uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail);
1949
1950 // Take the overall size as an indicator for a tmpfs, which is being used for the decryption
1951 // environment. We do not want to fail quickening the boot image there, as it is beneficial
1952 // for time-to-UI.
1953 if (fs_overall_size > kTmpFsSentinelValue) {
1954 if (fs_free_size < kLowSpaceValue) {
1955 *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available, need at "
1956 "least %" PRIu64 ".",
1957 static_cast<double>(fs_free_size) / MB,
1958 kLowSpaceValue / MB);
1959 return false;
1960 }
1961 }
1962 return true;
1963 }
1964
LoadBootImage(const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,const std::string & image_location,const InstructionSet image_isa,ImageSpaceLoadingOrder order,bool relocate,bool executable,bool is_zygote,size_t extra_reservation_size,std::vector<std::unique_ptr<space::ImageSpace>> * boot_image_spaces,MemMap * extra_reservation)1965 bool ImageSpace::LoadBootImage(
1966 const std::vector<std::string>& boot_class_path,
1967 const std::vector<std::string>& boot_class_path_locations,
1968 const std::string& image_location,
1969 const InstructionSet image_isa,
1970 ImageSpaceLoadingOrder order,
1971 bool relocate,
1972 bool executable,
1973 bool is_zygote,
1974 size_t extra_reservation_size,
1975 /*out*/std::vector<std::unique_ptr<space::ImageSpace>>* boot_image_spaces,
1976 /*out*/MemMap* extra_reservation) {
1977 ScopedTrace trace(__FUNCTION__);
1978
1979 DCHECK(boot_image_spaces != nullptr);
1980 DCHECK(boot_image_spaces->empty());
1981 DCHECK_ALIGNED(extra_reservation_size, kPageSize);
1982 DCHECK(extra_reservation != nullptr);
1983 DCHECK_NE(image_isa, InstructionSet::kNone);
1984
1985 if (image_location.empty()) {
1986 return false;
1987 }
1988
1989 BootImageLoader loader(boot_class_path,
1990 boot_class_path_locations,
1991 image_location,
1992 image_isa,
1993 relocate,
1994 executable,
1995 is_zygote);
1996
1997 // Step 0: Extra zygote work.
1998
1999 // Step 0.a: If we're the zygote, mark boot.
2000 if (loader.IsZygote() && CanWriteToDalvikCache(image_isa)) {
2001 MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots());
2002 }
2003
2004 loader.FindImageFiles();
2005
2006 // Step 0.b: If we're the zygote, check for free space, and prune the cache preemptively,
2007 // if necessary. While the runtime may be fine (it is pretty tolerant to
2008 // out-of-disk-space situations), other parts of the platform are not.
2009 //
2010 // The advantage of doing this proactively is that the later steps are simplified,
2011 // i.e., we do not need to code retries.
2012 bool low_space = false;
2013 if (loader.IsZygote() && loader.DalvikCacheExists()) {
2014 // Extra checks for the zygote. These only apply when loading the first image, explained below.
2015 const std::string& dalvik_cache = loader.GetDalvikCache();
2016 DCHECK(!dalvik_cache.empty());
2017 std::string local_error_msg;
2018 bool check_space = CheckSpace(dalvik_cache, &local_error_msg);
2019 if (!check_space) {
2020 LOG(WARNING) << local_error_msg << " Preemptively pruning the dalvik cache.";
2021 PruneDalvikCache(image_isa);
2022
2023 // Re-evaluate the image.
2024 loader.FindImageFiles();
2025
2026 // Disable compilation/patching - we do not want to fill up the space again.
2027 low_space = true;
2028 }
2029 }
2030
2031 // Collect all the errors.
2032 std::vector<std::string> error_msgs;
2033
2034 auto try_load_from = [&](auto has_fn, auto load_fn, bool validate_oat_file) {
2035 if ((loader.*has_fn)()) {
2036 std::string local_error_msg;
2037 if ((loader.*load_fn)(validate_oat_file,
2038 extra_reservation_size,
2039 boot_image_spaces,
2040 extra_reservation,
2041 &local_error_msg)) {
2042 return true;
2043 }
2044 error_msgs.push_back(local_error_msg);
2045 }
2046 return false;
2047 };
2048
2049 auto try_load_from_system = [&]() {
2050 return try_load_from(&BootImageLoader::HasSystem, &BootImageLoader::LoadFromSystem, false);
2051 };
2052 auto try_load_from_cache = [&]() {
2053 return try_load_from(&BootImageLoader::HasCache, &BootImageLoader::LoadFromDalvikCache, true);
2054 };
2055
2056 auto invoke_sequentially = [](auto first, auto second) {
2057 return first() || second();
2058 };
2059
2060 // Step 1+2: Check system and cache images in the asked-for order.
2061 if (order == ImageSpaceLoadingOrder::kSystemFirst) {
2062 if (invoke_sequentially(try_load_from_system, try_load_from_cache)) {
2063 return true;
2064 }
2065 } else {
2066 if (invoke_sequentially(try_load_from_cache, try_load_from_system)) {
2067 return true;
2068 }
2069 }
2070
2071 // Step 3: We do not have an existing image in /system,
2072 // so generate an image into the dalvik cache.
2073 if (!loader.HasSystem() && loader.DalvikCacheExists()) {
2074 std::string local_error_msg;
2075 if (low_space || !Runtime::Current()->IsImageDex2OatEnabled()) {
2076 local_error_msg = "Image compilation disabled.";
2077 } else if (ImageCreationAllowed(loader.IsGlobalCache(),
2078 image_isa,
2079 is_zygote,
2080 &local_error_msg)) {
2081 bool compilation_success =
2082 GenerateImage(loader.GetCacheFilename(), image_isa, &local_error_msg);
2083 if (compilation_success) {
2084 if (loader.LoadFromDalvikCache(/*validate_oat_file=*/ false,
2085 extra_reservation_size,
2086 boot_image_spaces,
2087 extra_reservation,
2088 &local_error_msg)) {
2089 return true;
2090 }
2091 }
2092 }
2093 error_msgs.push_back(StringPrintf("Cannot compile image to %s: %s",
2094 loader.GetCacheFilename().c_str(),
2095 local_error_msg.c_str()));
2096 }
2097
2098 // We failed. Prune the cache the free up space, create a compound error message
2099 // and return false.
2100 if (loader.DalvikCacheExists()) {
2101 PruneDalvikCache(image_isa);
2102 }
2103
2104 std::ostringstream oss;
2105 bool first = true;
2106 for (const auto& msg : error_msgs) {
2107 if (!first) {
2108 oss << "\n ";
2109 }
2110 oss << msg;
2111 }
2112
2113 LOG(ERROR) << "Could not create image space with image file '" << image_location << "'. "
2114 << "Attempting to fall back to imageless running. Error was: " << oss.str();
2115
2116 return false;
2117 }
2118
~ImageSpace()2119 ImageSpace::~ImageSpace() {
2120 // Everything done by member destructors. Classes forward-declared in header are now defined.
2121 }
2122
CreateFromAppImage(const char * image,const OatFile * oat_file,std::string * error_msg)2123 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image,
2124 const OatFile* oat_file,
2125 std::string* error_msg) {
2126 // Note: The oat file has already been validated.
2127 return Loader::InitAppImage(image,
2128 image,
2129 oat_file,
2130 /*image_reservation=*/ nullptr,
2131 error_msg);
2132 }
2133
GetOatFile() const2134 const OatFile* ImageSpace::GetOatFile() const {
2135 return oat_file_non_owned_;
2136 }
2137
ReleaseOatFile()2138 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
2139 CHECK(oat_file_ != nullptr);
2140 return std::move(oat_file_);
2141 }
2142
Dump(std::ostream & os) const2143 void ImageSpace::Dump(std::ostream& os) const {
2144 os << GetType()
2145 << " begin=" << reinterpret_cast<void*>(Begin())
2146 << ",end=" << reinterpret_cast<void*>(End())
2147 << ",size=" << PrettySize(Size())
2148 << ",name=\"" << GetName() << "\"]";
2149 }
2150
ValidateOatFile(const OatFile & oat_file,std::string * error_msg)2151 bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) {
2152 const ArtDexFileLoader dex_file_loader;
2153 for (const OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) {
2154 const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
2155
2156 // Skip multidex locations - These will be checked when we visit their
2157 // corresponding primary non-multidex location.
2158 if (DexFileLoader::IsMultiDexLocation(dex_file_location.c_str())) {
2159 continue;
2160 }
2161
2162 std::vector<uint32_t> checksums;
2163 if (!dex_file_loader.GetMultiDexChecksums(dex_file_location.c_str(), &checksums, error_msg)) {
2164 *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' "
2165 "referenced by oat file %s: %s",
2166 dex_file_location.c_str(),
2167 oat_file.GetLocation().c_str(),
2168 error_msg->c_str());
2169 return false;
2170 }
2171 CHECK(!checksums.empty());
2172 if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) {
2173 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
2174 "'%s' and dex file '%s' (0x%x != 0x%x)",
2175 oat_file.GetLocation().c_str(),
2176 dex_file_location.c_str(),
2177 oat_dex_file->GetDexFileLocationChecksum(),
2178 checksums[0]);
2179 return false;
2180 }
2181
2182 // Verify checksums for any related multidex entries.
2183 for (size_t i = 1; i < checksums.size(); i++) {
2184 std::string multi_dex_location = DexFileLoader::GetMultiDexLocation(
2185 i,
2186 dex_file_location.c_str());
2187 const OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(),
2188 nullptr,
2189 error_msg);
2190 if (multi_dex == nullptr) {
2191 *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'",
2192 oat_file.GetLocation().c_str(),
2193 multi_dex_location.c_str());
2194 return false;
2195 }
2196
2197 if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) {
2198 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
2199 "'%s' and dex file '%s' (0x%x != 0x%x)",
2200 oat_file.GetLocation().c_str(),
2201 multi_dex_location.c_str(),
2202 multi_dex->GetDexFileLocationChecksum(),
2203 checksums[i]);
2204 return false;
2205 }
2206 }
2207 }
2208 return true;
2209 }
2210
GetBootClassPathChecksums(ArrayRef<const std::string> boot_class_path,const std::string & image_location,InstructionSet image_isa,ImageSpaceLoadingOrder order,std::string * error_msg)2211 std::string ImageSpace::GetBootClassPathChecksums(ArrayRef<const std::string> boot_class_path,
2212 const std::string& image_location,
2213 InstructionSet image_isa,
2214 ImageSpaceLoadingOrder order,
2215 /*out*/std::string* error_msg) {
2216 std::string system_filename;
2217 bool has_system = false;
2218 std::string cache_filename;
2219 bool has_cache = false;
2220 bool dalvik_cache_exists = false;
2221 bool is_global_cache = false;
2222 if (!FindImageFilename(image_location.c_str(),
2223 image_isa,
2224 &system_filename,
2225 &has_system,
2226 &cache_filename,
2227 &dalvik_cache_exists,
2228 &has_cache,
2229 &is_global_cache)) {
2230 *error_msg = StringPrintf("Unable to find image file for %s and %s",
2231 image_location.c_str(),
2232 GetInstructionSetString(image_isa));
2233 return std::string();
2234 }
2235
2236 DCHECK(has_system || has_cache);
2237 const std::string& filename = (order == ImageSpaceLoadingOrder::kSystemFirst)
2238 ? (has_system ? system_filename : cache_filename)
2239 : (has_cache ? cache_filename : system_filename);
2240 std::unique_ptr<ImageHeader> header = ReadSpecificImageHeader(filename.c_str(), error_msg);
2241 if (header == nullptr) {
2242 return std::string();
2243 }
2244 if (header->GetComponentCount() == 0u || header->GetComponentCount() > boot_class_path.size()) {
2245 *error_msg = StringPrintf("Unexpected component count in %s, received %u, "
2246 "expected non-zero and <= %zu",
2247 filename.c_str(),
2248 header->GetComponentCount(),
2249 boot_class_path.size());
2250 return std::string();
2251 }
2252
2253 std::string boot_image_checksum =
2254 StringPrintf("i;%d/%08x", header->GetComponentCount(), header->GetImageChecksum());
2255 ArrayRef<const std::string> boot_class_path_tail =
2256 ArrayRef<const std::string>(boot_class_path).SubArray(header->GetComponentCount());
2257 for (const std::string& bcp_filename : boot_class_path_tail) {
2258 std::vector<std::unique_ptr<const DexFile>> dex_files;
2259 const ArtDexFileLoader dex_file_loader;
2260 if (!dex_file_loader.Open(bcp_filename.c_str(),
2261 bcp_filename, // The location does not matter here.
2262 /*verify=*/ false,
2263 /*verify_checksum=*/ false,
2264 error_msg,
2265 &dex_files)) {
2266 return std::string();
2267 }
2268 DCHECK(!dex_files.empty());
2269 StringAppendF(&boot_image_checksum, ":d");
2270 for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
2271 StringAppendF(&boot_image_checksum, "/%08x", dex_file->GetLocationChecksum());
2272 }
2273 }
2274 return boot_image_checksum;
2275 }
2276
GetBootClassPathChecksums(const std::vector<ImageSpace * > & image_spaces,const std::vector<const DexFile * > & boot_class_path)2277 std::string ImageSpace::GetBootClassPathChecksums(
2278 const std::vector<ImageSpace*>& image_spaces,
2279 const std::vector<const DexFile*>& boot_class_path) {
2280 size_t pos = 0u;
2281 std::string boot_image_checksum;
2282
2283 if (!image_spaces.empty()) {
2284 const ImageHeader& primary_header = image_spaces.front()->GetImageHeader();
2285 uint32_t component_count = primary_header.GetComponentCount();
2286 DCHECK_EQ(component_count, image_spaces.size());
2287 boot_image_checksum =
2288 StringPrintf("i;%d/%08x", component_count, primary_header.GetImageChecksum());
2289 for (const ImageSpace* space : image_spaces) {
2290 size_t num_dex_files = space->oat_file_non_owned_->GetOatDexFiles().size();
2291 if (kIsDebugBuild) {
2292 CHECK_NE(num_dex_files, 0u);
2293 CHECK_LE(space->oat_file_non_owned_->GetOatDexFiles().size(), boot_class_path.size() - pos);
2294 for (size_t i = 0; i != num_dex_files; ++i) {
2295 CHECK_EQ(space->oat_file_non_owned_->GetOatDexFiles()[i]->GetDexFileLocation(),
2296 boot_class_path[pos + i]->GetLocation());
2297 }
2298 }
2299 pos += num_dex_files;
2300 }
2301 }
2302
2303 ArrayRef<const DexFile* const> boot_class_path_tail =
2304 ArrayRef<const DexFile* const>(boot_class_path).SubArray(pos);
2305 DCHECK(boot_class_path_tail.empty() ||
2306 !DexFileLoader::IsMultiDexLocation(boot_class_path_tail.front()->GetLocation().c_str()));
2307 for (const DexFile* dex_file : boot_class_path_tail) {
2308 if (!DexFileLoader::IsMultiDexLocation(dex_file->GetLocation().c_str())) {
2309 StringAppendF(&boot_image_checksum, boot_image_checksum.empty() ? "d" : ":d");
2310 }
2311 StringAppendF(&boot_image_checksum, "/%08x", dex_file->GetLocationChecksum());
2312 }
2313 return boot_image_checksum;
2314 }
2315
ExpandMultiImageLocations(const std::vector<std::string> & dex_locations,const std::string & image_location)2316 std::vector<std::string> ImageSpace::ExpandMultiImageLocations(
2317 const std::vector<std::string>& dex_locations,
2318 const std::string& image_location) {
2319 return ExpandMultiImageLocations(ArrayRef<const std::string>(dex_locations), image_location);
2320 }
2321
ExpandMultiImageLocations(ArrayRef<const std::string> dex_locations,const std::string & image_location)2322 std::vector<std::string> ImageSpace::ExpandMultiImageLocations(
2323 ArrayRef<const std::string> dex_locations,
2324 const std::string& image_location) {
2325 DCHECK(!dex_locations.empty());
2326
2327 // Find the path.
2328 size_t last_slash = image_location.rfind('/');
2329 CHECK_NE(last_slash, std::string::npos);
2330
2331 // We also need to honor path components that were encoded through '@'. Otherwise the loading
2332 // code won't be able to find the images.
2333 if (image_location.find('@', last_slash) != std::string::npos) {
2334 last_slash = image_location.rfind('@');
2335 }
2336
2337 // Find the dot separating the primary image name from the extension.
2338 size_t last_dot = image_location.rfind('.');
2339 // Extract the extension and base (the path and primary image name).
2340 std::string extension;
2341 std::string base = image_location;
2342 if (last_dot != std::string::npos && last_dot > last_slash) {
2343 extension = image_location.substr(last_dot); // Including the dot.
2344 base.resize(last_dot);
2345 }
2346 // For non-empty primary image name, add '-' to the `base`.
2347 if (last_slash + 1u != base.size()) {
2348 base += '-';
2349 }
2350
2351 std::vector<std::string> locations;
2352 locations.reserve(dex_locations.size());
2353 locations.push_back(image_location);
2354
2355 // Now create the other names. Use a counted loop to skip the first one.
2356 for (size_t i = 1u; i < dex_locations.size(); ++i) {
2357 // Replace path with `base` (i.e. image path and prefix) and replace the original
2358 // extension (if any) with `extension`.
2359 std::string name = dex_locations[i];
2360 size_t last_dex_slash = name.rfind('/');
2361 if (last_dex_slash != std::string::npos) {
2362 name = name.substr(last_dex_slash + 1);
2363 }
2364 size_t last_dex_dot = name.rfind('.');
2365 if (last_dex_dot != std::string::npos) {
2366 name.resize(last_dex_dot);
2367 }
2368 locations.push_back(base + name + extension);
2369 }
2370 return locations;
2371 }
2372
DumpSections(std::ostream & os) const2373 void ImageSpace::DumpSections(std::ostream& os) const {
2374 const uint8_t* base = Begin();
2375 const ImageHeader& header = GetImageHeader();
2376 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
2377 auto section_type = static_cast<ImageHeader::ImageSections>(i);
2378 const ImageSection& section = header.GetImageSection(section_type);
2379 os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
2380 << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
2381 }
2382 }
2383
DisablePreResolvedStrings()2384 void ImageSpace::DisablePreResolvedStrings() {
2385 // Clear dex cache pointers.
2386 ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
2387 GetImageHeader().GetImageRoot(ImageHeader::kDexCaches)->AsObjectArray<mirror::DexCache>();
2388 for (size_t len = dex_caches->GetLength(), i = 0; i < len; ++i) {
2389 ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
2390 dex_cache->ClearPreResolvedStrings();
2391 }
2392 }
2393
ReleaseMetadata()2394 void ImageSpace::ReleaseMetadata() {
2395 const ImageSection& metadata = GetImageHeader().GetMetadataSection();
2396 VLOG(image) << "Releasing " << metadata.Size() << " image metadata bytes";
2397 // In the case where new app images may have been added around the checkpoint, ensure that we
2398 // don't madvise the cache for these.
2399 ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
2400 GetImageHeader().GetImageRoot(ImageHeader::kDexCaches)->AsObjectArray<mirror::DexCache>();
2401 bool have_startup_cache = false;
2402 for (size_t len = dex_caches->GetLength(), i = 0; i < len; ++i) {
2403 ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
2404 if (dex_cache->NumPreResolvedStrings() != 0u) {
2405 have_startup_cache = true;
2406 }
2407 }
2408 // Only safe to do for images that have their preresolved strings caches disabled. This is because
2409 // uncompressed images madvise to the original unrelocated image contents.
2410 if (!have_startup_cache) {
2411 // Avoid using ZeroAndReleasePages since the zero fill might not be word atomic.
2412 uint8_t* const page_begin = AlignUp(Begin() + metadata.Offset(), kPageSize);
2413 uint8_t* const page_end = AlignDown(Begin() + metadata.End(), kPageSize);
2414 if (page_begin < page_end) {
2415 CHECK_NE(madvise(page_begin, page_end - page_begin, MADV_DONTNEED), -1) << "madvise failed";
2416 }
2417 }
2418 }
2419
2420 } // namespace space
2421 } // namespace gc
2422 } // namespace art
2423