• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2015 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/compiler/js-inlining-heuristic.h"
6 
7 #include "src/compiler/common-operator.h"
8 #include "src/compiler/compiler-source-position-table.h"
9 #include "src/compiler/node-matchers.h"
10 #include "src/compiler/simplified-operator.h"
11 #include "src/objects-inl.h"
12 #include "src/optimized-compilation-info.h"
13 
14 namespace v8 {
15 namespace internal {
16 namespace compiler {
17 
18 #define TRACE(...)                                      \
19   do {                                                  \
20     if (FLAG_trace_turbo_inlining) PrintF(__VA_ARGS__); \
21   } while (false)
22 
23 namespace {
24 
CollectFunctions(Node * node,Handle<JSFunction> * functions,int functions_size,Handle<SharedFunctionInfo> & shared)25 int CollectFunctions(Node* node, Handle<JSFunction>* functions,
26                      int functions_size, Handle<SharedFunctionInfo>& shared) {
27   DCHECK_NE(0, functions_size);
28   HeapObjectMatcher m(node);
29   if (m.HasValue() && m.Value()->IsJSFunction()) {
30     functions[0] = Handle<JSFunction>::cast(m.Value());
31     return 1;
32   }
33   if (m.IsPhi()) {
34     int const value_input_count = m.node()->op()->ValueInputCount();
35     if (value_input_count > functions_size) return 0;
36     for (int n = 0; n < value_input_count; ++n) {
37       HeapObjectMatcher m(node->InputAt(n));
38       if (!m.HasValue() || !m.Value()->IsJSFunction()) return 0;
39       functions[n] = Handle<JSFunction>::cast(m.Value());
40     }
41     return value_input_count;
42   }
43   if (m.IsJSCreateClosure()) {
44     CreateClosureParameters const& p = CreateClosureParametersOf(m.op());
45     functions[0] = Handle<JSFunction>::null();
46     shared = p.shared_info();
47     return 1;
48   }
49   return 0;
50 }
51 
CanInlineFunction(Handle<SharedFunctionInfo> shared)52 bool CanInlineFunction(Handle<SharedFunctionInfo> shared) {
53   // Built-in functions are handled by the JSCallReducer.
54   if (shared->HasBuiltinFunctionId()) return false;
55 
56   // Only choose user code for inlining.
57   if (!shared->IsUserJavaScript()) return false;
58 
59   // If there is no bytecode array, it is either not compiled or it is compiled
60   // with WebAssembly for the asm.js pipeline. In either case we don't want to
61   // inline.
62   if (!shared->HasBytecodeArray()) return false;
63 
64   // Quick check on the size of the bytecode to avoid inlining large functions.
65   if (shared->GetBytecodeArray()->length() > FLAG_max_inlined_bytecode_size) {
66     return false;
67   }
68 
69   return true;
70 }
71 
IsSmallInlineFunction(Handle<SharedFunctionInfo> shared)72 bool IsSmallInlineFunction(Handle<SharedFunctionInfo> shared) {
73   // Forcibly inline small functions.
74   // Don't forcibly inline functions that weren't compiled yet.
75   if (shared->HasBytecodeArray() && shared->GetBytecodeArray()->length() <=
76                                         FLAG_max_inlined_bytecode_size_small) {
77     return true;
78   }
79   return false;
80 }
81 
82 }  // namespace
83 
Reduce(Node * node)84 Reduction JSInliningHeuristic::Reduce(Node* node) {
85   if (!IrOpcode::IsInlineeOpcode(node->opcode())) return NoChange();
86 
87   // Check if we already saw that {node} before, and if so, just skip it.
88   if (seen_.find(node->id()) != seen_.end()) return NoChange();
89   seen_.insert(node->id());
90 
91   // Check if the {node} is an appropriate candidate for inlining.
92   Node* callee = node->InputAt(0);
93   Candidate candidate;
94   candidate.node = node;
95   candidate.num_functions = CollectFunctions(
96       callee, candidate.functions, kMaxCallPolymorphism, candidate.shared_info);
97   if (candidate.num_functions == 0) {
98     return NoChange();
99   } else if (candidate.num_functions > 1 && !FLAG_polymorphic_inlining) {
100     TRACE(
101         "Not considering call site #%d:%s, because polymorphic inlining "
102         "is disabled\n",
103         node->id(), node->op()->mnemonic());
104     return NoChange();
105   }
106 
107   bool can_inline = false, small_inline = true;
108   candidate.total_size = 0;
109   Node* frame_state = NodeProperties::GetFrameStateInput(node);
110   FrameStateInfo const& frame_info = FrameStateInfoOf(frame_state->op());
111   Handle<SharedFunctionInfo> frame_shared_info;
112   for (int i = 0; i < candidate.num_functions; ++i) {
113     Handle<SharedFunctionInfo> shared =
114         candidate.functions[i].is_null()
115             ? candidate.shared_info
116             : handle(candidate.functions[i]->shared(), isolate());
117     candidate.can_inline_function[i] = CanInlineFunction(shared);
118     // Do not allow direct recursion i.e. f() -> f(). We still allow indirect
119     // recurion like f() -> g() -> f(). The indirect recursion is helpful in
120     // cases where f() is a small dispatch function that calls the appropriate
121     // function. In the case of direct recursion, we only have some static
122     // information for the first level of inlining and it may not be that useful
123     // to just inline one level in recursive calls. In some cases like tail
124     // recursion we may benefit from recursive inlining, if we have additional
125     // analysis that converts them to iterative implementations. Though it is
126     // not obvious if such an anlysis is needed.
127     if (frame_info.shared_info().ToHandle(&frame_shared_info) &&
128         *frame_shared_info == *shared) {
129       TRACE("Not considering call site #%d:%s, because of recursive inlining\n",
130             node->id(), node->op()->mnemonic());
131       candidate.can_inline_function[i] = false;
132     }
133     if (candidate.can_inline_function[i]) {
134       can_inline = true;
135       candidate.total_size += shared->GetBytecodeArray()->length();
136     }
137     if (!IsSmallInlineFunction(shared)) {
138       small_inline = false;
139     }
140   }
141   if (!can_inline) return NoChange();
142 
143   // Gather feedback on how often this call site has been hit before.
144   if (node->opcode() == IrOpcode::kJSCall) {
145     CallParameters const p = CallParametersOf(node->op());
146     candidate.frequency = p.frequency();
147   } else {
148     ConstructParameters const p = ConstructParametersOf(node->op());
149     candidate.frequency = p.frequency();
150   }
151 
152   // Handling of special inlining modes right away:
153   //  - For restricted inlining: stop all handling at this point.
154   //  - For stressing inlining: immediately handle all functions.
155   switch (mode_) {
156     case kRestrictedInlining:
157       return NoChange();
158     case kStressInlining:
159       return InlineCandidate(candidate, false);
160     case kGeneralInlining:
161       break;
162   }
163 
164   // Don't consider a {candidate} whose frequency is below the
165   // threshold, i.e. a call site that is only hit once every N
166   // invocations of the caller.
167   if (candidate.frequency.IsKnown() &&
168       candidate.frequency.value() < FLAG_min_inlining_frequency) {
169     return NoChange();
170   }
171 
172   // Forcibly inline small functions here. In the case of polymorphic inlining
173   // small_inline is set only when all functions are small.
174   if (small_inline &&
175       cumulative_count_ < FLAG_max_inlined_bytecode_size_absolute) {
176     TRACE("Inlining small function(s) at call site #%d:%s\n", node->id(),
177           node->op()->mnemonic());
178     return InlineCandidate(candidate, true);
179   }
180 
181   // In the general case we remember the candidate for later.
182   candidates_.insert(candidate);
183   return NoChange();
184 }
185 
Finalize()186 void JSInliningHeuristic::Finalize() {
187   if (candidates_.empty()) return;  // Nothing to do without candidates.
188   if (FLAG_trace_turbo_inlining) PrintCandidates();
189 
190   // We inline at most one candidate in every iteration of the fixpoint.
191   // This is to ensure that we don't consume the full inlining budget
192   // on things that aren't called very often.
193   // TODO(bmeurer): Use std::priority_queue instead of std::set here.
194   while (!candidates_.empty()) {
195     auto i = candidates_.begin();
196     Candidate candidate = *i;
197     candidates_.erase(i);
198 
199     // Make sure we have some extra budget left, so that any small functions
200     // exposed by this function would be given a chance to inline.
201     double size_of_candidate =
202         candidate.total_size * FLAG_reserve_inline_budget_scale_factor;
203     int total_size = cumulative_count_ + static_cast<int>(size_of_candidate);
204     if (total_size > FLAG_max_inlined_bytecode_size_cumulative) {
205       // Try if any smaller functions are available to inline.
206       continue;
207     }
208 
209     // Make sure we don't try to inline dead candidate nodes.
210     if (!candidate.node->IsDead()) {
211       Reduction const reduction = InlineCandidate(candidate, false);
212       if (reduction.Changed()) return;
213     }
214   }
215 }
216 
217 namespace {
218 
219 struct NodeAndIndex {
220   Node* node;
221   int index;
222 };
223 
CollectStateValuesOwnedUses(Node * node,Node * state_values,NodeAndIndex * uses_buffer,size_t * use_count,size_t max_uses)224 bool CollectStateValuesOwnedUses(Node* node, Node* state_values,
225                                  NodeAndIndex* uses_buffer, size_t* use_count,
226                                  size_t max_uses) {
227   // Only accumulate states that are not shared with other users.
228   if (state_values->UseCount() > 1) return true;
229   for (int i = 0; i < state_values->InputCount(); i++) {
230     Node* input = state_values->InputAt(i);
231     if (input->opcode() == IrOpcode::kStateValues) {
232       if (!CollectStateValuesOwnedUses(node, input, uses_buffer, use_count,
233                                        max_uses)) {
234         return false;
235       }
236     } else if (input == node) {
237       if (*use_count >= max_uses) return false;
238       uses_buffer[*use_count] = {state_values, i};
239       (*use_count)++;
240     }
241   }
242   return true;
243 }
244 
245 }  // namespace
246 
DuplicateStateValuesAndRename(Node * state_values,Node * from,Node * to,StateCloneMode mode)247 Node* JSInliningHeuristic::DuplicateStateValuesAndRename(Node* state_values,
248                                                          Node* from, Node* to,
249                                                          StateCloneMode mode) {
250   // Only rename in states that are not shared with other users. This needs to
251   // be in sync with the condition in {CollectStateValuesOwnedUses}.
252   if (state_values->UseCount() > 1) return state_values;
253   Node* copy = mode == kChangeInPlace ? state_values : nullptr;
254   for (int i = 0; i < state_values->InputCount(); i++) {
255     Node* input = state_values->InputAt(i);
256     Node* processed;
257     if (input->opcode() == IrOpcode::kStateValues) {
258       processed = DuplicateStateValuesAndRename(input, from, to, mode);
259     } else if (input == from) {
260       processed = to;
261     } else {
262       processed = input;
263     }
264     if (processed != input) {
265       if (!copy) {
266         copy = graph()->CloneNode(state_values);
267       }
268       copy->ReplaceInput(i, processed);
269     }
270   }
271   return copy ? copy : state_values;
272 }
273 
274 namespace {
275 
CollectFrameStateUniqueUses(Node * node,Node * frame_state,NodeAndIndex * uses_buffer,size_t * use_count,size_t max_uses)276 bool CollectFrameStateUniqueUses(Node* node, Node* frame_state,
277                                  NodeAndIndex* uses_buffer, size_t* use_count,
278                                  size_t max_uses) {
279   // Only accumulate states that are not shared with other users.
280   if (frame_state->UseCount() > 1) return true;
281   if (frame_state->InputAt(kFrameStateStackInput) == node) {
282     if (*use_count >= max_uses) return false;
283     uses_buffer[*use_count] = {frame_state, kFrameStateStackInput};
284     (*use_count)++;
285   }
286   if (!CollectStateValuesOwnedUses(node,
287                                    frame_state->InputAt(kFrameStateLocalsInput),
288                                    uses_buffer, use_count, max_uses)) {
289     return false;
290   }
291   return true;
292 }
293 
294 }  // namespace
295 
DuplicateFrameStateAndRename(Node * frame_state,Node * from,Node * to,StateCloneMode mode)296 Node* JSInliningHeuristic::DuplicateFrameStateAndRename(Node* frame_state,
297                                                         Node* from, Node* to,
298                                                         StateCloneMode mode) {
299   // Only rename in states that are not shared with other users. This needs to
300   // be in sync with the condition in {DuplicateFrameStateAndRename}.
301   if (frame_state->UseCount() > 1) return frame_state;
302   Node* copy = mode == kChangeInPlace ? frame_state : nullptr;
303   if (frame_state->InputAt(kFrameStateStackInput) == from) {
304     if (!copy) {
305       copy = graph()->CloneNode(frame_state);
306     }
307     copy->ReplaceInput(kFrameStateStackInput, to);
308   }
309   Node* locals = frame_state->InputAt(kFrameStateLocalsInput);
310   Node* new_locals = DuplicateStateValuesAndRename(locals, from, to, mode);
311   if (new_locals != locals) {
312     if (!copy) {
313       copy = graph()->CloneNode(frame_state);
314     }
315     copy->ReplaceInput(kFrameStateLocalsInput, new_locals);
316   }
317   return copy ? copy : frame_state;
318 }
319 
TryReuseDispatch(Node * node,Node * callee,Candidate const & candidate,Node ** if_successes,Node ** calls,Node ** inputs,int input_count)320 bool JSInliningHeuristic::TryReuseDispatch(Node* node, Node* callee,
321                                            Candidate const& candidate,
322                                            Node** if_successes, Node** calls,
323                                            Node** inputs, int input_count) {
324   // We will try to reuse the control flow branch created for computing
325   // the {callee} target of the call. We only reuse the branch if there
326   // is no side-effect between the call and the branch, and if the callee is
327   // only used as the target (and possibly also in the related frame states).
328 
329   int const num_calls = candidate.num_functions;
330 
331   DCHECK_EQ(IrOpcode::kPhi, callee->opcode());
332   DCHECK_EQ(num_calls, callee->op()->ValueInputCount());
333 
334   // We are trying to match the following pattern:
335   //
336   //         C1     C2
337   //          .     .
338   //          |     |
339   //         Merge(merge)  <-----------------+
340   //           ^    ^                        |
341   //  V1  V2   |    |         E1  E2         |
342   //   .  .    |    +----+     .  .          |
343   //   |  |    |         |     |  |          |
344   //  Phi(callee)      EffectPhi(effect_phi) |
345   //     ^                    ^              |
346   //     |                    |              |
347   //     +----+               |              |
348   //     |    |               |              |
349   //     |   StateValues      |              |
350   //     |       ^            |              |
351   //     +----+  |            |              |
352   //     |    |  |            |              |
353   //     |    FrameState      |              |
354   //     |           ^        |              |
355   //     |           |        |          +---+
356   //     |           |        |          |   |
357   //     +----+     Checkpoint(checkpoint)   |
358   //     |    |           ^                  |
359   //     |    StateValues |    +-------------+
360   //     |        |       |    |
361   //     +-----+  |       |    |
362   //     |     |  |       |    |
363   //     |     FrameState |    |
364   //     |             ^  |    |
365   //     +-----------+ |  |    |
366   //                  Call(node)
367   //                   |
368   //                   |
369   //                   .
370   //
371   // The {callee} here is a phi that merges the possible call targets, {node}
372   // is the actual call that we will try to duplicate and connect to the
373   // control that comes into {merge}. There can be a {checkpoint} between
374   // the call and the calle phi.
375   //
376   // The idea is to get rid of the merge, effect phi and phi, then duplicate
377   // the call (with all the frame states and such), and connect the duplicated
378   // calls and states directly to the inputs of the ex-phi, ex-effect-phi and
379   // ex-merge. The tricky part is to make sure that there is no interference
380   // from the outside. In particular, there should not be any unaccounted uses
381   // of the  phi, effect-phi and merge because we will remove them from
382   // the graph.
383   //
384   //     V1              E1   C1  V2   E2               C2
385   //     .                .    .  .    .                .
386   //     |                |    |  |    |                |
387   //     +----+           |    |  +----+                |
388   //     |    |           |    |  |    |                |
389   //     |   StateValues  |    |  |   StateValues       |
390   //     |       ^        |    |  |       ^             |
391   //     +----+  |        |    |  +----+  |             |
392   //     |    |  |        |    |  |    |  |             |
393   //     |    FrameState  |    |  |    FrameState       |
394   //     |           ^    |    |  |           ^         |
395   //     |           |    |    |  |           |         |
396   //     |           |    |    |  |           |         |
397   //     +----+     Checkpoint |  +----+     Checkpoint |
398   //     |    |           ^    |  |    |           ^    |
399   //     |    StateValues |    |  |    StateValues |    |
400   //     |        |       |    |  |        |       |    |
401   //     +-----+  |       |    |  +-----+  |       |    |
402   //     |     |  |       |    |  |     |  |       |    |
403   //     |     FrameState |    |  |     FrameState |    |
404   //     |              ^ |    |  |              ^ |    |
405   //     +-------------+| |    |  +-------------+| |    |
406   //                   Call----+                Call----+
407   //                     |                       |
408   //                     +-------+  +------------+
409   //                             |  |
410   //                             Merge
411   //                             EffectPhi
412   //                             Phi
413   //                              |
414   //                             ...
415 
416   // If there is a control node between the callee computation
417   // and the call, bail out.
418   Node* merge = NodeProperties::GetControlInput(callee);
419   if (NodeProperties::GetControlInput(node) != merge) return false;
420 
421   // If there is a non-checkpoint effect node between the callee computation
422   // and the call, bail out. We will drop any checkpoint between the call and
423   // the callee phi because the callee computation should have its own
424   // checkpoint that the call can fall back to.
425   Node* checkpoint = nullptr;
426   Node* effect = NodeProperties::GetEffectInput(node);
427   if (effect->opcode() == IrOpcode::kCheckpoint) {
428     checkpoint = effect;
429     if (NodeProperties::GetControlInput(checkpoint) != merge) return false;
430     effect = NodeProperties::GetEffectInput(effect);
431   }
432   if (effect->opcode() != IrOpcode::kEffectPhi) return false;
433   if (NodeProperties::GetControlInput(effect) != merge) return false;
434   Node* effect_phi = effect;
435 
436   // The effect phi, the callee, the call and the checkpoint must be the only
437   // users of the merge.
438   for (Node* merge_use : merge->uses()) {
439     if (merge_use != effect_phi && merge_use != callee && merge_use != node &&
440         merge_use != checkpoint) {
441       return false;
442     }
443   }
444 
445   // The effect phi must be only used by the checkpoint or the call.
446   for (Node* effect_phi_use : effect_phi->uses()) {
447     if (effect_phi_use != node && effect_phi_use != checkpoint) return false;
448   }
449 
450   // We must replace the callee phi with the appropriate constant in
451   // the entire subgraph reachable by inputs from the call (terminating
452   // at phis and merges). Since we do not want to walk (and later duplicate)
453   // the subgraph here, we limit the possible uses to this set:
454   //
455   // 1. In the call (as a target).
456   // 2. The checkpoint between the call and the callee computation merge.
457   // 3. The lazy deoptimization frame state.
458   //
459   // This corresponds to the most common pattern, where the function is
460   // called with only local variables or constants as arguments.
461   //
462   // To check the uses, we first collect all the occurrences of callee in 1, 2
463   // and 3, and then we check that all uses of callee are in the collected
464   // occurrences. If there is an unaccounted use, we do not try to rewire
465   // the control flow.
466   //
467   // Note: With CFG, this would be much easier and more robust - we would just
468   // duplicate all the nodes between the merge and the call, replacing all
469   // occurrences of the {callee} phi with the appropriate constant.
470 
471   // First compute the set of uses that are only reachable from 2 and 3.
472   const size_t kMaxUses = 8;
473   NodeAndIndex replaceable_uses[kMaxUses];
474   size_t replaceable_uses_count = 0;
475 
476   // Collect the uses to check case 2.
477   Node* checkpoint_state = nullptr;
478   if (checkpoint) {
479     checkpoint_state = checkpoint->InputAt(0);
480     if (!CollectFrameStateUniqueUses(callee, checkpoint_state, replaceable_uses,
481                                      &replaceable_uses_count, kMaxUses)) {
482       return false;
483     }
484   }
485 
486   // Collect the uses to check case 3.
487   Node* frame_state = NodeProperties::GetFrameStateInput(node);
488   if (!CollectFrameStateUniqueUses(callee, frame_state, replaceable_uses,
489                                    &replaceable_uses_count, kMaxUses)) {
490     return false;
491   }
492 
493   // Bail out if there is a use of {callee} that is not reachable from 1, 2
494   // and 3.
495   for (Edge edge : callee->use_edges()) {
496     // Case 1 (use by the call as a target).
497     if (edge.from() == node && edge.index() == 0) continue;
498     // Case 2 and 3 - used in checkpoint and/or lazy deopt frame states.
499     bool found = false;
500     for (size_t i = 0; i < replaceable_uses_count; i++) {
501       if (replaceable_uses[i].node == edge.from() &&
502           replaceable_uses[i].index == edge.index()) {
503         found = true;
504         break;
505       }
506     }
507     if (!found) return false;
508   }
509 
510   // Clone the call and the framestate, including the uniquely reachable
511   // state values, making sure that we replace the phi with the constant.
512   for (int i = 0; i < num_calls; ++i) {
513     // Clone the calls for each branch.
514     // We need to specialize the calls to the correct target, effect, and
515     // control. We also need to duplicate the checkpoint and the lazy
516     // frame state, and change all the uses of the callee to the constant
517     // callee.
518     Node* target = callee->InputAt(i);
519     Node* effect = effect_phi->InputAt(i);
520     Node* control = merge->InputAt(i);
521 
522     if (checkpoint) {
523       // Duplicate the checkpoint.
524       Node* new_checkpoint_state = DuplicateFrameStateAndRename(
525           checkpoint_state, callee, target,
526           (i == num_calls - 1) ? kChangeInPlace : kCloneState);
527       effect = graph()->NewNode(checkpoint->op(), new_checkpoint_state, effect,
528                                 control);
529     }
530 
531     // Duplicate the call.
532     Node* new_lazy_frame_state = DuplicateFrameStateAndRename(
533         frame_state, callee, target,
534         (i == num_calls - 1) ? kChangeInPlace : kCloneState);
535     inputs[0] = target;
536     inputs[input_count - 3] = new_lazy_frame_state;
537     inputs[input_count - 2] = effect;
538     inputs[input_count - 1] = control;
539     calls[i] = if_successes[i] =
540         graph()->NewNode(node->op(), input_count, inputs);
541   }
542 
543   // Mark the control inputs dead, so that we can kill the merge.
544   node->ReplaceInput(input_count - 1, jsgraph()->Dead());
545   callee->ReplaceInput(num_calls, jsgraph()->Dead());
546   effect_phi->ReplaceInput(num_calls, jsgraph()->Dead());
547   if (checkpoint) {
548     checkpoint->ReplaceInput(2, jsgraph()->Dead());
549   }
550 
551   merge->Kill();
552   return true;
553 }
554 
CreateOrReuseDispatch(Node * node,Node * callee,Candidate const & candidate,Node ** if_successes,Node ** calls,Node ** inputs,int input_count)555 void JSInliningHeuristic::CreateOrReuseDispatch(Node* node, Node* callee,
556                                                 Candidate const& candidate,
557                                                 Node** if_successes,
558                                                 Node** calls, Node** inputs,
559                                                 int input_count) {
560   SourcePositionTable::Scope position(
561       source_positions_, source_positions_->GetSourcePosition(node));
562   if (TryReuseDispatch(node, callee, candidate, if_successes, calls, inputs,
563                        input_count)) {
564     return;
565   }
566 
567   Node* fallthrough_control = NodeProperties::GetControlInput(node);
568   int const num_calls = candidate.num_functions;
569 
570   // Create the appropriate control flow to dispatch to the cloned calls.
571   for (int i = 0; i < num_calls; ++i) {
572     // TODO(2206): Make comparison be based on underlying SharedFunctionInfo
573     // instead of the target JSFunction reference directly.
574     Node* target = jsgraph()->HeapConstant(candidate.functions[i]);
575     if (i != (num_calls - 1)) {
576       Node* check =
577           graph()->NewNode(simplified()->ReferenceEqual(), callee, target);
578       Node* branch =
579           graph()->NewNode(common()->Branch(), check, fallthrough_control);
580       fallthrough_control = graph()->NewNode(common()->IfFalse(), branch);
581       if_successes[i] = graph()->NewNode(common()->IfTrue(), branch);
582     } else {
583       if_successes[i] = fallthrough_control;
584     }
585 
586     // Clone the calls for each branch.
587     // The first input to the call is the actual target (which we specialize
588     // to the known {target}); the last input is the control dependency.
589     // We also specialize the new.target of JSConstruct {node}s if it refers
590     // to the same node as the {node}'s target input, so that we can later
591     // properly inline the JSCreate operations.
592     if (node->opcode() == IrOpcode::kJSConstruct && inputs[0] == inputs[1]) {
593       inputs[1] = target;
594     }
595     inputs[0] = target;
596     inputs[input_count - 1] = if_successes[i];
597     calls[i] = if_successes[i] =
598         graph()->NewNode(node->op(), input_count, inputs);
599   }
600 }
601 
InlineCandidate(Candidate const & candidate,bool small_function)602 Reduction JSInliningHeuristic::InlineCandidate(Candidate const& candidate,
603                                                bool small_function) {
604   int const num_calls = candidate.num_functions;
605   Node* const node = candidate.node;
606   if (num_calls == 1) {
607     Handle<SharedFunctionInfo> shared =
608         candidate.functions[0].is_null()
609             ? candidate.shared_info
610             : handle(candidate.functions[0]->shared(), isolate());
611     Reduction const reduction = inliner_.ReduceJSCall(node);
612     if (reduction.Changed()) {
613       cumulative_count_ += shared->GetBytecodeArray()->length();
614     }
615     return reduction;
616   }
617 
618   // Expand the JSCall/JSConstruct node to a subgraph first if
619   // we have multiple known target functions.
620   DCHECK_LT(1, num_calls);
621   Node* calls[kMaxCallPolymorphism + 1];
622   Node* if_successes[kMaxCallPolymorphism];
623   Node* callee = NodeProperties::GetValueInput(node, 0);
624 
625   // Setup the inputs for the cloned call nodes.
626   int const input_count = node->InputCount();
627   Node** inputs = graph()->zone()->NewArray<Node*>(input_count);
628   for (int i = 0; i < input_count; ++i) {
629     inputs[i] = node->InputAt(i);
630   }
631 
632   // Create the appropriate control flow to dispatch to the cloned calls.
633   CreateOrReuseDispatch(node, callee, candidate, if_successes, calls, inputs,
634                         input_count);
635 
636   // Check if we have an exception projection for the call {node}.
637   Node* if_exception = nullptr;
638   if (NodeProperties::IsExceptionalCall(node, &if_exception)) {
639     Node* if_exceptions[kMaxCallPolymorphism + 1];
640     for (int i = 0; i < num_calls; ++i) {
641       if_successes[i] = graph()->NewNode(common()->IfSuccess(), calls[i]);
642       if_exceptions[i] =
643           graph()->NewNode(common()->IfException(), calls[i], calls[i]);
644     }
645 
646     // Morph the {if_exception} projection into a join.
647     Node* exception_control =
648         graph()->NewNode(common()->Merge(num_calls), num_calls, if_exceptions);
649     if_exceptions[num_calls] = exception_control;
650     Node* exception_effect = graph()->NewNode(common()->EffectPhi(num_calls),
651                                               num_calls + 1, if_exceptions);
652     Node* exception_value = graph()->NewNode(
653         common()->Phi(MachineRepresentation::kTagged, num_calls), num_calls + 1,
654         if_exceptions);
655     ReplaceWithValue(if_exception, exception_value, exception_effect,
656                      exception_control);
657   }
658 
659   // Morph the original call site into a join of the dispatched call sites.
660   Node* control =
661       graph()->NewNode(common()->Merge(num_calls), num_calls, if_successes);
662   calls[num_calls] = control;
663   Node* effect =
664       graph()->NewNode(common()->EffectPhi(num_calls), num_calls + 1, calls);
665   Node* value =
666       graph()->NewNode(common()->Phi(MachineRepresentation::kTagged, num_calls),
667                        num_calls + 1, calls);
668   ReplaceWithValue(node, value, effect, control);
669 
670   // Inline the individual, cloned call sites.
671   for (int i = 0; i < num_calls; ++i) {
672     Handle<JSFunction> function = candidate.functions[i];
673     Node* node = calls[i];
674     if (small_function ||
675         (candidate.can_inline_function[i] &&
676          cumulative_count_ < FLAG_max_inlined_bytecode_size_cumulative)) {
677       Reduction const reduction = inliner_.ReduceJSCall(node);
678       if (reduction.Changed()) {
679         // Killing the call node is not strictly necessary, but it is safer to
680         // make sure we do not resurrect the node.
681         node->Kill();
682         cumulative_count_ += function->shared()->GetBytecodeArray()->length();
683       }
684     }
685   }
686 
687   return Replace(value);
688 }
689 
operator ()(const Candidate & left,const Candidate & right) const690 bool JSInliningHeuristic::CandidateCompare::operator()(
691     const Candidate& left, const Candidate& right) const {
692   if (right.frequency.IsUnknown()) {
693     if (left.frequency.IsUnknown()) {
694       // If left and right are both unknown then the ordering is indeterminate,
695       // which breaks strict weak ordering requirements, so we fall back to the
696       // node id as a tie breaker.
697       return left.node->id() > right.node->id();
698     }
699     return true;
700   } else if (left.frequency.IsUnknown()) {
701     return false;
702   } else if (left.frequency.value() > right.frequency.value()) {
703     return true;
704   } else if (left.frequency.value() < right.frequency.value()) {
705     return false;
706   } else {
707     return left.node->id() > right.node->id();
708   }
709 }
710 
PrintCandidates()711 void JSInliningHeuristic::PrintCandidates() {
712   StdoutStream os;
713   os << "Candidates for inlining (size=" << candidates_.size() << "):\n";
714   for (const Candidate& candidate : candidates_) {
715     os << "  #" << candidate.node->id() << ":"
716        << candidate.node->op()->mnemonic()
717        << ", frequency: " << candidate.frequency << std::endl;
718     for (int i = 0; i < candidate.num_functions; ++i) {
719       Handle<SharedFunctionInfo> shared =
720           candidate.functions[i].is_null()
721               ? candidate.shared_info
722               : handle(candidate.functions[i]->shared(), isolate());
723       PrintF("  - size:%d, name: %s\n", shared->GetBytecodeArray()->length(),
724              shared->DebugName()->ToCString().get());
725     }
726   }
727 }
728 
graph() const729 Graph* JSInliningHeuristic::graph() const { return jsgraph()->graph(); }
730 
common() const731 CommonOperatorBuilder* JSInliningHeuristic::common() const {
732   return jsgraph()->common();
733 }
734 
simplified() const735 SimplifiedOperatorBuilder* JSInliningHeuristic::simplified() const {
736   return jsgraph()->simplified();
737 }
738 
739 #undef TRACE
740 
741 }  // namespace compiler
742 }  // namespace internal
743 }  // namespace v8
744