1 /* Copyright (c) 2014, Google Inc. 2 * 3 * Permission to use, copy, modify, and/or distribute this software for any 4 * purpose with or without fee is hereby granted, provided that the above 5 * copyright notice and this permission notice appear in all copies. 6 * 7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION 12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN 13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ 14 15 #ifndef OPENSSL_HEADER_AEAD_H 16 #define OPENSSL_HEADER_AEAD_H 17 18 #include <openssl/base.h> 19 20 #if defined(__cplusplus) 21 extern "C" { 22 #endif 23 24 25 // Authenticated Encryption with Additional Data. 26 // 27 // AEAD couples confidentiality and integrity in a single primitive. AEAD 28 // algorithms take a key and then can seal and open individual messages. Each 29 // message has a unique, per-message nonce and, optionally, additional data 30 // which is authenticated but not included in the ciphertext. 31 // 32 // The |EVP_AEAD_CTX_init| function initialises an |EVP_AEAD_CTX| structure and 33 // performs any precomputation needed to use |aead| with |key|. The length of 34 // the key, |key_len|, is given in bytes. 35 // 36 // The |tag_len| argument contains the length of the tags, in bytes, and allows 37 // for the processing of truncated authenticators. A zero value indicates that 38 // the default tag length should be used and this is defined as 39 // |EVP_AEAD_DEFAULT_TAG_LENGTH| in order to make the code clear. Using 40 // truncated tags increases an attacker's chance of creating a valid forgery. 41 // Be aware that the attacker's chance may increase more than exponentially as 42 // would naively be expected. 43 // 44 // When no longer needed, the initialised |EVP_AEAD_CTX| structure must be 45 // passed to |EVP_AEAD_CTX_cleanup|, which will deallocate any memory used. 46 // 47 // With an |EVP_AEAD_CTX| in hand, one can seal and open messages. These 48 // operations are intended to meet the standard notions of privacy and 49 // authenticity for authenticated encryption. For formal definitions see 50 // Bellare and Namprempre, "Authenticated encryption: relations among notions 51 // and analysis of the generic composition paradigm," Lecture Notes in Computer 52 // Science B<1976> (2000), 531–545, 53 // http://www-cse.ucsd.edu/~mihir/papers/oem.html. 54 // 55 // When sealing messages, a nonce must be given. The length of the nonce is 56 // fixed by the AEAD in use and is returned by |EVP_AEAD_nonce_length|. *The 57 // nonce must be unique for all messages with the same key*. This is critically 58 // important - nonce reuse may completely undermine the security of the AEAD. 59 // Nonces may be predictable and public, so long as they are unique. Uniqueness 60 // may be achieved with a simple counter or, if large enough, may be generated 61 // randomly. The nonce must be passed into the "open" operation by the receiver 62 // so must either be implicit (e.g. a counter), or must be transmitted along 63 // with the sealed message. 64 // 65 // The "seal" and "open" operations are atomic - an entire message must be 66 // encrypted or decrypted in a single call. Large messages may have to be split 67 // up in order to accommodate this. When doing so, be mindful of the need not to 68 // repeat nonces and the possibility that an attacker could duplicate, reorder 69 // or drop message chunks. For example, using a single key for a given (large) 70 // message and sealing chunks with nonces counting from zero would be secure as 71 // long as the number of chunks was securely transmitted. (Otherwise an 72 // attacker could truncate the message by dropping chunks from the end.) 73 // 74 // The number of chunks could be transmitted by prefixing it to the plaintext, 75 // for example. This also assumes that no other message would ever use the same 76 // key otherwise the rule that nonces must be unique for a given key would be 77 // violated. 78 // 79 // The "seal" and "open" operations also permit additional data to be 80 // authenticated via the |ad| parameter. This data is not included in the 81 // ciphertext and must be identical for both the "seal" and "open" call. This 82 // permits implicit context to be authenticated but may be empty if not needed. 83 // 84 // The "seal" and "open" operations may work in-place if the |out| and |in| 85 // arguments are equal. Otherwise, if |out| and |in| alias, input data may be 86 // overwritten before it is read. This situation will cause an error. 87 // 88 // The "seal" and "open" operations return one on success and zero on error. 89 90 91 // AEAD algorithms. 92 93 // EVP_aead_aes_128_gcm is AES-128 in Galois Counter Mode. 94 // 95 // Note: AES-GCM should only be used with 12-byte (96-bit) nonces. Although it 96 // is specified to take a variable-length nonce, nonces with other lengths are 97 // effectively randomized, which means one must consider collisions. Unless 98 // implementing an existing protocol which has already specified incorrect 99 // parameters, only use 12-byte nonces. 100 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm(void); 101 102 // EVP_aead_aes_256_gcm is AES-256 in Galois Counter Mode. 103 // 104 // Note: AES-GCM should only be used with 12-byte (96-bit) nonces. Although it 105 // is specified to take a variable-length nonce, nonces with other lengths are 106 // effectively randomized, which means one must consider collisions. Unless 107 // implementing an existing protocol which has already specified incorrect 108 // parameters, only use 12-byte nonces. 109 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm(void); 110 111 // EVP_aead_chacha20_poly1305 is the AEAD built from ChaCha20 and 112 // Poly1305 as described in RFC 7539. 113 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_chacha20_poly1305(void); 114 115 // EVP_aead_xchacha20_poly1305 is ChaCha20-Poly1305 with an extended nonce that 116 // makes random generation of nonces safe. 117 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_xchacha20_poly1305(void); 118 119 // EVP_aead_aes_128_ctr_hmac_sha256 is AES-128 in CTR mode with HMAC-SHA256 for 120 // authentication. The nonce is 12 bytes; the bottom 32-bits are used as the 121 // block counter, thus the maximum plaintext size is 64GB. 122 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ctr_hmac_sha256(void); 123 124 // EVP_aead_aes_256_ctr_hmac_sha256 is AES-256 in CTR mode with HMAC-SHA256 for 125 // authentication. See |EVP_aead_aes_128_ctr_hmac_sha256| for details. 126 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_ctr_hmac_sha256(void); 127 128 // EVP_aead_aes_128_gcm_siv is AES-128 in GCM-SIV mode. See 129 // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02 130 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void); 131 132 // EVP_aead_aes_256_gcm_siv is AES-256 in GCM-SIV mode. See 133 // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02 134 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void); 135 136 // EVP_aead_aes_128_ccm_bluetooth is AES-128-CCM with M=4 and L=2 (4-byte tags 137 // and 13-byte nonces), as decribed in the Bluetooth Core Specification v5.0, 138 // Volume 6, Part E, Section 1. 139 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth(void); 140 141 // EVP_aead_aes_128_ccm_bluetooth_8 is AES-128-CCM with M=8 and L=2 (8-byte tags 142 // and 13-byte nonces), as used in the Bluetooth Mesh Networking Specification 143 // v1.0. 144 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth_8(void); 145 146 // EVP_has_aes_hardware returns one if we enable hardware support for fast and 147 // constant-time AES-GCM. 148 OPENSSL_EXPORT int EVP_has_aes_hardware(void); 149 150 151 // Utility functions. 152 153 // EVP_AEAD_key_length returns the length, in bytes, of the keys used by 154 // |aead|. 155 OPENSSL_EXPORT size_t EVP_AEAD_key_length(const EVP_AEAD *aead); 156 157 // EVP_AEAD_nonce_length returns the length, in bytes, of the per-message nonce 158 // for |aead|. 159 OPENSSL_EXPORT size_t EVP_AEAD_nonce_length(const EVP_AEAD *aead); 160 161 // EVP_AEAD_max_overhead returns the maximum number of additional bytes added 162 // by the act of sealing data with |aead|. 163 OPENSSL_EXPORT size_t EVP_AEAD_max_overhead(const EVP_AEAD *aead); 164 165 // EVP_AEAD_max_tag_len returns the maximum tag length when using |aead|. This 166 // is the largest value that can be passed as |tag_len| to 167 // |EVP_AEAD_CTX_init|. 168 OPENSSL_EXPORT size_t EVP_AEAD_max_tag_len(const EVP_AEAD *aead); 169 170 171 // AEAD operations. 172 173 union evp_aead_ctx_st_state { 174 uint8_t opaque[580]; 175 uint64_t alignment; 176 }; 177 178 // An EVP_AEAD_CTX represents an AEAD algorithm configured with a specific key 179 // and message-independent IV. 180 typedef struct evp_aead_ctx_st { 181 const EVP_AEAD *aead; 182 union evp_aead_ctx_st_state state; 183 // tag_len may contain the actual length of the authentication tag if it is 184 // known at initialization time. 185 uint8_t tag_len; 186 } EVP_AEAD_CTX; 187 188 // EVP_AEAD_MAX_KEY_LENGTH contains the maximum key length used by 189 // any AEAD defined in this header. 190 #define EVP_AEAD_MAX_KEY_LENGTH 80 191 192 // EVP_AEAD_MAX_NONCE_LENGTH contains the maximum nonce length used by 193 // any AEAD defined in this header. 194 #define EVP_AEAD_MAX_NONCE_LENGTH 24 195 196 // EVP_AEAD_MAX_OVERHEAD contains the maximum overhead used by any AEAD 197 // defined in this header. 198 #define EVP_AEAD_MAX_OVERHEAD 64 199 200 // EVP_AEAD_DEFAULT_TAG_LENGTH is a magic value that can be passed to 201 // EVP_AEAD_CTX_init to indicate that the default tag length for an AEAD should 202 // be used. 203 #define EVP_AEAD_DEFAULT_TAG_LENGTH 0 204 205 // EVP_AEAD_CTX_zero sets an uninitialized |ctx| to the zero state. It must be 206 // initialized with |EVP_AEAD_CTX_init| before use. It is safe, but not 207 // necessary, to call |EVP_AEAD_CTX_cleanup| in this state. This may be used for 208 // more uniform cleanup of |EVP_AEAD_CTX|. 209 OPENSSL_EXPORT void EVP_AEAD_CTX_zero(EVP_AEAD_CTX *ctx); 210 211 // EVP_AEAD_CTX_new allocates an |EVP_AEAD_CTX|, calls |EVP_AEAD_CTX_init| and 212 // returns the |EVP_AEAD_CTX|, or NULL on error. 213 OPENSSL_EXPORT EVP_AEAD_CTX *EVP_AEAD_CTX_new(const EVP_AEAD *aead, 214 const uint8_t *key, 215 size_t key_len, size_t tag_len); 216 217 // EVP_AEAD_CTX_free calls |EVP_AEAD_CTX_cleanup| and |OPENSSL_free| on 218 // |ctx|. 219 OPENSSL_EXPORT void EVP_AEAD_CTX_free(EVP_AEAD_CTX *ctx); 220 221 // EVP_AEAD_CTX_init initializes |ctx| for the given AEAD algorithm. The |impl| 222 // argument is ignored and should be NULL. Authentication tags may be truncated 223 // by passing a size as |tag_len|. A |tag_len| of zero indicates the default 224 // tag length and this is defined as EVP_AEAD_DEFAULT_TAG_LENGTH for 225 // readability. 226 // 227 // Returns 1 on success. Otherwise returns 0 and pushes to the error stack. In 228 // the error case, you do not need to call |EVP_AEAD_CTX_cleanup|, but it's 229 // harmless to do so. 230 OPENSSL_EXPORT int EVP_AEAD_CTX_init(EVP_AEAD_CTX *ctx, const EVP_AEAD *aead, 231 const uint8_t *key, size_t key_len, 232 size_t tag_len, ENGINE *impl); 233 234 // EVP_AEAD_CTX_cleanup frees any data allocated by |ctx|. It is a no-op to 235 // call |EVP_AEAD_CTX_cleanup| on a |EVP_AEAD_CTX| that has been |memset| to 236 // all zeros. 237 OPENSSL_EXPORT void EVP_AEAD_CTX_cleanup(EVP_AEAD_CTX *ctx); 238 239 // EVP_AEAD_CTX_seal encrypts and authenticates |in_len| bytes from |in| and 240 // authenticates |ad_len| bytes from |ad| and writes the result to |out|. It 241 // returns one on success and zero otherwise. 242 // 243 // This function may be called concurrently with itself or any other seal/open 244 // function on the same |EVP_AEAD_CTX|. 245 // 246 // At most |max_out_len| bytes are written to |out| and, in order to ensure 247 // success, |max_out_len| should be |in_len| plus the result of 248 // |EVP_AEAD_max_overhead|. On successful return, |*out_len| is set to the 249 // actual number of bytes written. 250 // 251 // The length of |nonce|, |nonce_len|, must be equal to the result of 252 // |EVP_AEAD_nonce_length| for this AEAD. 253 // 254 // |EVP_AEAD_CTX_seal| never results in a partial output. If |max_out_len| is 255 // insufficient, zero will be returned. If any error occurs, |out| will be 256 // filled with zero bytes and |*out_len| set to zero. 257 // 258 // If |in| and |out| alias then |out| must be == |in|. 259 OPENSSL_EXPORT int EVP_AEAD_CTX_seal(const EVP_AEAD_CTX *ctx, uint8_t *out, 260 size_t *out_len, size_t max_out_len, 261 const uint8_t *nonce, size_t nonce_len, 262 const uint8_t *in, size_t in_len, 263 const uint8_t *ad, size_t ad_len); 264 265 // EVP_AEAD_CTX_open authenticates |in_len| bytes from |in| and |ad_len| bytes 266 // from |ad| and decrypts at most |in_len| bytes into |out|. It returns one on 267 // success and zero otherwise. 268 // 269 // This function may be called concurrently with itself or any other seal/open 270 // function on the same |EVP_AEAD_CTX|. 271 // 272 // At most |in_len| bytes are written to |out|. In order to ensure success, 273 // |max_out_len| should be at least |in_len|. On successful return, |*out_len| 274 // is set to the the actual number of bytes written. 275 // 276 // The length of |nonce|, |nonce_len|, must be equal to the result of 277 // |EVP_AEAD_nonce_length| for this AEAD. 278 // 279 // |EVP_AEAD_CTX_open| never results in a partial output. If |max_out_len| is 280 // insufficient, zero will be returned. If any error occurs, |out| will be 281 // filled with zero bytes and |*out_len| set to zero. 282 // 283 // If |in| and |out| alias then |out| must be == |in|. 284 OPENSSL_EXPORT int EVP_AEAD_CTX_open(const EVP_AEAD_CTX *ctx, uint8_t *out, 285 size_t *out_len, size_t max_out_len, 286 const uint8_t *nonce, size_t nonce_len, 287 const uint8_t *in, size_t in_len, 288 const uint8_t *ad, size_t ad_len); 289 290 // EVP_AEAD_CTX_seal_scatter encrypts and authenticates |in_len| bytes from |in| 291 // and authenticates |ad_len| bytes from |ad|. It writes |in_len| bytes of 292 // ciphertext to |out| and the authentication tag to |out_tag|. It returns one 293 // on success and zero otherwise. 294 // 295 // This function may be called concurrently with itself or any other seal/open 296 // function on the same |EVP_AEAD_CTX|. 297 // 298 // Exactly |in_len| bytes are written to |out|, and up to 299 // |EVP_AEAD_max_overhead+extra_in_len| bytes to |out_tag|. On successful 300 // return, |*out_tag_len| is set to the actual number of bytes written to 301 // |out_tag|. 302 // 303 // |extra_in| may point to an additional plaintext input buffer if the cipher 304 // supports it. If present, |extra_in_len| additional bytes of plaintext are 305 // encrypted and authenticated, and the ciphertext is written (before the tag) 306 // to |out_tag|. |max_out_tag_len| must be sized to allow for the additional 307 // |extra_in_len| bytes. 308 // 309 // The length of |nonce|, |nonce_len|, must be equal to the result of 310 // |EVP_AEAD_nonce_length| for this AEAD. 311 // 312 // |EVP_AEAD_CTX_seal_scatter| never results in a partial output. If 313 // |max_out_tag_len| is insufficient, zero will be returned. If any error 314 // occurs, |out| and |out_tag| will be filled with zero bytes and |*out_tag_len| 315 // set to zero. 316 // 317 // If |in| and |out| alias then |out| must be == |in|. |out_tag| may not alias 318 // any other argument. 319 OPENSSL_EXPORT int EVP_AEAD_CTX_seal_scatter( 320 const EVP_AEAD_CTX *ctx, uint8_t *out, 321 uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len, 322 const uint8_t *nonce, size_t nonce_len, 323 const uint8_t *in, size_t in_len, 324 const uint8_t *extra_in, size_t extra_in_len, 325 const uint8_t *ad, size_t ad_len); 326 327 // EVP_AEAD_CTX_open_gather decrypts and authenticates |in_len| bytes from |in| 328 // and authenticates |ad_len| bytes from |ad| using |in_tag_len| bytes of 329 // authentication tag from |in_tag|. If successful, it writes |in_len| bytes of 330 // plaintext to |out|. It returns one on success and zero otherwise. 331 // 332 // This function may be called concurrently with itself or any other seal/open 333 // function on the same |EVP_AEAD_CTX|. 334 // 335 // The length of |nonce|, |nonce_len|, must be equal to the result of 336 // |EVP_AEAD_nonce_length| for this AEAD. 337 // 338 // |EVP_AEAD_CTX_open_gather| never results in a partial output. If any error 339 // occurs, |out| will be filled with zero bytes. 340 // 341 // If |in| and |out| alias then |out| must be == |in|. 342 OPENSSL_EXPORT int EVP_AEAD_CTX_open_gather( 343 const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *nonce, 344 size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *in_tag, 345 size_t in_tag_len, const uint8_t *ad, size_t ad_len); 346 347 // EVP_AEAD_CTX_aead returns the underlying AEAD for |ctx|, or NULL if one has 348 // not been set. 349 OPENSSL_EXPORT const EVP_AEAD *EVP_AEAD_CTX_aead(const EVP_AEAD_CTX *ctx); 350 351 352 // TLS-specific AEAD algorithms. 353 // 354 // These AEAD primitives do not meet the definition of generic AEADs. They are 355 // all specific to TLS and should not be used outside of that context. They must 356 // be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful, and may 357 // not be used concurrently. Any nonces are used as IVs, so they must be 358 // unpredictable. They only accept an |ad| parameter of length 11 (the standard 359 // TLS one with length omitted). 360 361 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void); 362 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void); 363 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void); 364 365 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void); 366 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void); 367 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha256_tls(void); 368 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha384_tls(void); 369 370 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void); 371 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void); 372 373 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_null_sha1_tls(void); 374 375 // EVP_aead_aes_128_gcm_tls12 is AES-128 in Galois Counter Mode using the TLS 376 // 1.2 nonce construction. 377 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_tls12(void); 378 379 // EVP_aead_aes_256_gcm_tls12 is AES-256 in Galois Counter Mode using the TLS 380 // 1.2 nonce construction. 381 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_tls12(void); 382 383 // EVP_aead_aes_128_gcm_tls13 is AES-128 in Galois Counter Mode using the TLS 384 // 1.3 nonce construction. 385 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_tls13(void); 386 387 // EVP_aead_aes_256_gcm_tls13 is AES-256 in Galois Counter Mode using the TLS 388 // 1.3 nonce construction. 389 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_tls13(void); 390 391 392 // Obscure functions. 393 394 // evp_aead_direction_t denotes the direction of an AEAD operation. 395 enum evp_aead_direction_t { 396 evp_aead_open, 397 evp_aead_seal, 398 }; 399 400 // EVP_AEAD_CTX_init_with_direction calls |EVP_AEAD_CTX_init| for normal 401 // AEADs. For TLS-specific and SSL3-specific AEADs, it initializes |ctx| for a 402 // given direction. 403 OPENSSL_EXPORT int EVP_AEAD_CTX_init_with_direction( 404 EVP_AEAD_CTX *ctx, const EVP_AEAD *aead, const uint8_t *key, size_t key_len, 405 size_t tag_len, enum evp_aead_direction_t dir); 406 407 // EVP_AEAD_CTX_get_iv sets |*out_len| to the length of the IV for |ctx| and 408 // sets |*out_iv| to point to that many bytes of the current IV. This is only 409 // meaningful for AEADs with implicit IVs (i.e. CBC mode in TLS 1.0). 410 // 411 // It returns one on success or zero on error. 412 OPENSSL_EXPORT int EVP_AEAD_CTX_get_iv(const EVP_AEAD_CTX *ctx, 413 const uint8_t **out_iv, size_t *out_len); 414 415 // EVP_AEAD_CTX_tag_len computes the exact byte length of the tag written by 416 // |EVP_AEAD_CTX_seal_scatter| and writes it to |*out_tag_len|. It returns one 417 // on success or zero on error. |in_len| and |extra_in_len| must equal the 418 // arguments of the same names passed to |EVP_AEAD_CTX_seal_scatter|. 419 OPENSSL_EXPORT int EVP_AEAD_CTX_tag_len(const EVP_AEAD_CTX *ctx, 420 size_t *out_tag_len, 421 const size_t in_len, 422 const size_t extra_in_len); 423 424 425 #if defined(__cplusplus) 426 } // extern C 427 428 #if !defined(BORINGSSL_NO_CXX) 429 extern "C++" { 430 431 BSSL_NAMESPACE_BEGIN 432 433 using ScopedEVP_AEAD_CTX = 434 internal::StackAllocated<EVP_AEAD_CTX, void, EVP_AEAD_CTX_zero, 435 EVP_AEAD_CTX_cleanup>; 436 437 BORINGSSL_MAKE_DELETER(EVP_AEAD_CTX, EVP_AEAD_CTX_free) 438 439 BSSL_NAMESPACE_END 440 441 } // extern C++ 442 #endif 443 444 #endif 445 446 #endif // OPENSSL_HEADER_AEAD_H 447