1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) 2 * All rights reserved. 3 * 4 * This package is an SSL implementation written 5 * by Eric Young (eay@cryptsoft.com). 6 * The implementation was written so as to conform with Netscapes SSL. 7 * 8 * This library is free for commercial and non-commercial use as long as 9 * the following conditions are aheared to. The following conditions 10 * apply to all code found in this distribution, be it the RC4, RSA, 11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 12 * included with this distribution is covered by the same copyright terms 13 * except that the holder is Tim Hudson (tjh@cryptsoft.com). 14 * 15 * Copyright remains Eric Young's, and as such any Copyright notices in 16 * the code are not to be removed. 17 * If this package is used in a product, Eric Young should be given attribution 18 * as the author of the parts of the library used. 19 * This can be in the form of a textual message at program startup or 20 * in documentation (online or textual) provided with the package. 21 * 22 * Redistribution and use in source and binary forms, with or without 23 * modification, are permitted provided that the following conditions 24 * are met: 25 * 1. Redistributions of source code must retain the copyright 26 * notice, this list of conditions and the following disclaimer. 27 * 2. Redistributions in binary form must reproduce the above copyright 28 * notice, this list of conditions and the following disclaimer in the 29 * documentation and/or other materials provided with the distribution. 30 * 3. All advertising materials mentioning features or use of this software 31 * must display the following acknowledgement: 32 * "This product includes cryptographic software written by 33 * Eric Young (eay@cryptsoft.com)" 34 * The word 'cryptographic' can be left out if the rouines from the library 35 * being used are not cryptographic related :-). 36 * 4. If you include any Windows specific code (or a derivative thereof) from 37 * the apps directory (application code) you must include an acknowledgement: 38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" 39 * 40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 50 * SUCH DAMAGE. 51 * 52 * The licence and distribution terms for any publically available version or 53 * derivative of this code cannot be changed. i.e. this code cannot simply be 54 * copied and put under another distribution licence 55 * [including the GNU Public Licence.] */ 56 57 #ifndef OPENSSL_HEADER_EVP_H 58 #define OPENSSL_HEADER_EVP_H 59 60 #include <openssl/base.h> 61 62 #include <openssl/thread.h> 63 64 // OpenSSL included digest and cipher functions in this header so we include 65 // them for users that still expect that. 66 // 67 // TODO(fork): clean up callers so that they include what they use. 68 #include <openssl/aead.h> 69 #include <openssl/base64.h> 70 #include <openssl/cipher.h> 71 #include <openssl/digest.h> 72 #include <openssl/nid.h> 73 74 #if defined(__cplusplus) 75 extern "C" { 76 #endif 77 78 79 // EVP abstracts over public/private key algorithms. 80 81 82 // Public key objects. 83 // 84 // An |EVP_PKEY| object represents a public or private key. A given object may 85 // be used concurrently on multiple threads by non-mutating functions, provided 86 // no other thread is concurrently calling a mutating function. Unless otherwise 87 // documented, functions which take a |const| pointer are non-mutating and 88 // functions which take a non-|const| pointer are mutating. 89 90 // EVP_PKEY_new creates a new, empty public-key object and returns it or NULL 91 // on allocation failure. 92 OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new(void); 93 94 // EVP_PKEY_free frees all data referenced by |pkey| and then frees |pkey| 95 // itself. 96 OPENSSL_EXPORT void EVP_PKEY_free(EVP_PKEY *pkey); 97 98 // EVP_PKEY_up_ref increments the reference count of |pkey| and returns one. It 99 // does not mutate |pkey| for thread-safety purposes and may be used 100 // concurrently. 101 OPENSSL_EXPORT int EVP_PKEY_up_ref(EVP_PKEY *pkey); 102 103 // EVP_PKEY_is_opaque returns one if |pkey| is opaque. Opaque keys are backed by 104 // custom implementations which do not expose key material and parameters. It is 105 // an error to attempt to duplicate, export, or compare an opaque key. 106 OPENSSL_EXPORT int EVP_PKEY_is_opaque(const EVP_PKEY *pkey); 107 108 // EVP_PKEY_cmp compares |a| and |b| and returns one if they are equal, zero if 109 // not and a negative number on error. 110 // 111 // WARNING: this differs from the traditional return value of a "cmp" 112 // function. 113 OPENSSL_EXPORT int EVP_PKEY_cmp(const EVP_PKEY *a, const EVP_PKEY *b); 114 115 // EVP_PKEY_copy_parameters sets the parameters of |to| to equal the parameters 116 // of |from|. It returns one on success and zero on error. 117 OPENSSL_EXPORT int EVP_PKEY_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from); 118 119 // EVP_PKEY_missing_parameters returns one if |pkey| is missing needed 120 // parameters or zero if not, or if the algorithm doesn't take parameters. 121 OPENSSL_EXPORT int EVP_PKEY_missing_parameters(const EVP_PKEY *pkey); 122 123 // EVP_PKEY_size returns the maximum size, in bytes, of a signature signed by 124 // |pkey|. For an RSA key, this returns the number of bytes needed to represent 125 // the modulus. For an EC key, this returns the maximum size of a DER-encoded 126 // ECDSA signature. 127 OPENSSL_EXPORT int EVP_PKEY_size(const EVP_PKEY *pkey); 128 129 // EVP_PKEY_bits returns the "size", in bits, of |pkey|. For an RSA key, this 130 // returns the bit length of the modulus. For an EC key, this returns the bit 131 // length of the group order. 132 OPENSSL_EXPORT int EVP_PKEY_bits(const EVP_PKEY *pkey); 133 134 // EVP_PKEY_id returns the type of |pkey|, which is one of the |EVP_PKEY_*| 135 // values. 136 OPENSSL_EXPORT int EVP_PKEY_id(const EVP_PKEY *pkey); 137 138 // EVP_PKEY_type returns |nid| if |nid| is a known key type and |NID_undef| 139 // otherwise. 140 OPENSSL_EXPORT int EVP_PKEY_type(int nid); 141 142 143 // Getting and setting concrete public key types. 144 // 145 // The following functions get and set the underlying public key in an 146 // |EVP_PKEY| object. The |set1| functions take an additional reference to the 147 // underlying key and return one on success or zero if |key| is NULL. The 148 // |assign| functions adopt the caller's reference and return one on success or 149 // zero if |key| is NULL. The |get1| functions return a fresh reference to the 150 // underlying object or NULL if |pkey| is not of the correct type. The |get0| 151 // functions behave the same but return a non-owning pointer. 152 // 153 // The |get0| and |get1| functions take |const| pointers and are thus 154 // non-mutating for thread-safety purposes, but mutating functions on the 155 // returned lower-level objects are considered to also mutate the |EVP_PKEY| and 156 // may not be called concurrently with other operations on the |EVP_PKEY|. 157 158 OPENSSL_EXPORT int EVP_PKEY_set1_RSA(EVP_PKEY *pkey, RSA *key); 159 OPENSSL_EXPORT int EVP_PKEY_assign_RSA(EVP_PKEY *pkey, RSA *key); 160 OPENSSL_EXPORT RSA *EVP_PKEY_get0_RSA(const EVP_PKEY *pkey); 161 OPENSSL_EXPORT RSA *EVP_PKEY_get1_RSA(const EVP_PKEY *pkey); 162 163 OPENSSL_EXPORT int EVP_PKEY_set1_DSA(EVP_PKEY *pkey, DSA *key); 164 OPENSSL_EXPORT int EVP_PKEY_assign_DSA(EVP_PKEY *pkey, DSA *key); 165 OPENSSL_EXPORT DSA *EVP_PKEY_get0_DSA(const EVP_PKEY *pkey); 166 OPENSSL_EXPORT DSA *EVP_PKEY_get1_DSA(const EVP_PKEY *pkey); 167 168 OPENSSL_EXPORT int EVP_PKEY_set1_EC_KEY(EVP_PKEY *pkey, EC_KEY *key); 169 OPENSSL_EXPORT int EVP_PKEY_assign_EC_KEY(EVP_PKEY *pkey, EC_KEY *key); 170 OPENSSL_EXPORT EC_KEY *EVP_PKEY_get0_EC_KEY(const EVP_PKEY *pkey); 171 OPENSSL_EXPORT EC_KEY *EVP_PKEY_get1_EC_KEY(const EVP_PKEY *pkey); 172 173 // EVP_PKEY_new_ed25519_public returns a newly allocated |EVP_PKEY| wrapping an 174 // Ed25519 public key, or NULL on allocation error. 175 OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new_ed25519_public( 176 const uint8_t public_key[32]); 177 178 // EVP_PKEY_new_ed25519_private returns a newly allocated |EVP_PKEY| wrapping an 179 // Ed25519 private key, or NULL on allocation error. 180 OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new_ed25519_private( 181 const uint8_t private_key[64]); 182 183 #define EVP_PKEY_NONE NID_undef 184 #define EVP_PKEY_RSA NID_rsaEncryption 185 #define EVP_PKEY_RSA_PSS NID_rsassaPss 186 #define EVP_PKEY_DSA NID_dsa 187 #define EVP_PKEY_EC NID_X9_62_id_ecPublicKey 188 #define EVP_PKEY_ED25519 NID_ED25519 189 190 // EVP_PKEY_assign sets the underlying key of |pkey| to |key|, which must be of 191 // the given type. It returns one if successful or zero if the |type| argument 192 // is not one of the |EVP_PKEY_*| values or if |key| is NULL. 193 OPENSSL_EXPORT int EVP_PKEY_assign(EVP_PKEY *pkey, int type, void *key); 194 195 // EVP_PKEY_set_type sets the type of |pkey| to |type|. It returns one if 196 // successful or zero if the |type| argument is not one of the |EVP_PKEY_*| 197 // values. If |pkey| is NULL, it simply reports whether the type is known. 198 OPENSSL_EXPORT int EVP_PKEY_set_type(EVP_PKEY *pkey, int type); 199 200 // EVP_PKEY_cmp_parameters compares the parameters of |a| and |b|. It returns 201 // one if they match, zero if not, or a negative number of on error. 202 // 203 // WARNING: the return value differs from the usual return value convention. 204 OPENSSL_EXPORT int EVP_PKEY_cmp_parameters(const EVP_PKEY *a, 205 const EVP_PKEY *b); 206 207 208 // ASN.1 functions 209 210 // EVP_parse_public_key decodes a DER-encoded SubjectPublicKeyInfo structure 211 // (RFC 5280) from |cbs| and advances |cbs|. It returns a newly-allocated 212 // |EVP_PKEY| or NULL on error. If the key is an EC key, the curve is guaranteed 213 // to be set. 214 // 215 // The caller must check the type of the parsed public key to ensure it is 216 // suitable and validate other desired key properties such as RSA modulus size 217 // or EC curve. 218 OPENSSL_EXPORT EVP_PKEY *EVP_parse_public_key(CBS *cbs); 219 220 // EVP_marshal_public_key marshals |key| as a DER-encoded SubjectPublicKeyInfo 221 // structure (RFC 5280) and appends the result to |cbb|. It returns one on 222 // success and zero on error. 223 OPENSSL_EXPORT int EVP_marshal_public_key(CBB *cbb, const EVP_PKEY *key); 224 225 // EVP_parse_private_key decodes a DER-encoded PrivateKeyInfo structure (RFC 226 // 5208) from |cbs| and advances |cbs|. It returns a newly-allocated |EVP_PKEY| 227 // or NULL on error. 228 // 229 // The caller must check the type of the parsed private key to ensure it is 230 // suitable and validate other desired key properties such as RSA modulus size 231 // or EC curve. 232 // 233 // A PrivateKeyInfo ends with an optional set of attributes. These are not 234 // processed and so this function will silently ignore any trailing data in the 235 // structure. 236 OPENSSL_EXPORT EVP_PKEY *EVP_parse_private_key(CBS *cbs); 237 238 // EVP_marshal_private_key marshals |key| as a DER-encoded PrivateKeyInfo 239 // structure (RFC 5208) and appends the result to |cbb|. It returns one on 240 // success and zero on error. 241 OPENSSL_EXPORT int EVP_marshal_private_key(CBB *cbb, const EVP_PKEY *key); 242 243 244 // Signing 245 246 // EVP_DigestSignInit sets up |ctx| for a signing operation with |type| and 247 // |pkey|. The |ctx| argument must have been initialised with 248 // |EVP_MD_CTX_init|. If |pctx| is not NULL, the |EVP_PKEY_CTX| of the signing 249 // operation will be written to |*pctx|; this can be used to set alternative 250 // signing options. 251 // 252 // For single-shot signing algorithms which do not use a pre-hash, such as 253 // Ed25519, |type| should be NULL. The |EVP_MD_CTX| itself is unused but is 254 // present so the API is uniform. See |EVP_DigestSign|. 255 // 256 // This function does not mutate |pkey| for thread-safety purposes and may be 257 // used concurrently with other non-mutating functions on |pkey|. 258 // 259 // It returns one on success, or zero on error. 260 OPENSSL_EXPORT int EVP_DigestSignInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx, 261 const EVP_MD *type, ENGINE *e, 262 EVP_PKEY *pkey); 263 264 // EVP_DigestSignUpdate appends |len| bytes from |data| to the data which will 265 // be signed in |EVP_DigestSignFinal|. It returns one. 266 // 267 // This function performs a streaming signing operation and will fail for 268 // signature algorithms which do not support this. Use |EVP_DigestSign| for a 269 // single-shot operation. 270 OPENSSL_EXPORT int EVP_DigestSignUpdate(EVP_MD_CTX *ctx, const void *data, 271 size_t len); 272 273 // EVP_DigestSignFinal signs the data that has been included by one or more 274 // calls to |EVP_DigestSignUpdate|. If |out_sig| is NULL then |*out_sig_len| is 275 // set to the maximum number of output bytes. Otherwise, on entry, 276 // |*out_sig_len| must contain the length of the |out_sig| buffer. If the call 277 // is successful, the signature is written to |out_sig| and |*out_sig_len| is 278 // set to its length. 279 // 280 // This function performs a streaming signing operation and will fail for 281 // signature algorithms which do not support this. Use |EVP_DigestSign| for a 282 // single-shot operation. 283 // 284 // It returns one on success, or zero on error. 285 OPENSSL_EXPORT int EVP_DigestSignFinal(EVP_MD_CTX *ctx, uint8_t *out_sig, 286 size_t *out_sig_len); 287 288 // EVP_DigestSign signs |data_len| bytes from |data| using |ctx|. If |out_sig| 289 // is NULL then |*out_sig_len| is set to the maximum number of output 290 // bytes. Otherwise, on entry, |*out_sig_len| must contain the length of the 291 // |out_sig| buffer. If the call is successful, the signature is written to 292 // |out_sig| and |*out_sig_len| is set to its length. 293 // 294 // It returns one on success and zero on error. 295 OPENSSL_EXPORT int EVP_DigestSign(EVP_MD_CTX *ctx, uint8_t *out_sig, 296 size_t *out_sig_len, const uint8_t *data, 297 size_t data_len); 298 299 300 // Verifying 301 302 // EVP_DigestVerifyInit sets up |ctx| for a signature verification operation 303 // with |type| and |pkey|. The |ctx| argument must have been initialised with 304 // |EVP_MD_CTX_init|. If |pctx| is not NULL, the |EVP_PKEY_CTX| of the signing 305 // operation will be written to |*pctx|; this can be used to set alternative 306 // signing options. 307 // 308 // For single-shot signing algorithms which do not use a pre-hash, such as 309 // Ed25519, |type| should be NULL. The |EVP_MD_CTX| itself is unused but is 310 // present so the API is uniform. See |EVP_DigestVerify|. 311 // 312 // This function does not mutate |pkey| for thread-safety purposes and may be 313 // used concurrently with other non-mutating functions on |pkey|. 314 // 315 // It returns one on success, or zero on error. 316 OPENSSL_EXPORT int EVP_DigestVerifyInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx, 317 const EVP_MD *type, ENGINE *e, 318 EVP_PKEY *pkey); 319 320 // EVP_DigestVerifyUpdate appends |len| bytes from |data| to the data which 321 // will be verified by |EVP_DigestVerifyFinal|. It returns one. 322 // 323 // This function performs streaming signature verification and will fail for 324 // signature algorithms which do not support this. Use |EVP_PKEY_verify_message| 325 // for a single-shot verification. 326 OPENSSL_EXPORT int EVP_DigestVerifyUpdate(EVP_MD_CTX *ctx, const void *data, 327 size_t len); 328 329 // EVP_DigestVerifyFinal verifies that |sig_len| bytes of |sig| are a valid 330 // signature for the data that has been included by one or more calls to 331 // |EVP_DigestVerifyUpdate|. It returns one on success and zero otherwise. 332 // 333 // This function performs streaming signature verification and will fail for 334 // signature algorithms which do not support this. Use |EVP_PKEY_verify_message| 335 // for a single-shot verification. 336 OPENSSL_EXPORT int EVP_DigestVerifyFinal(EVP_MD_CTX *ctx, const uint8_t *sig, 337 size_t sig_len); 338 339 // EVP_DigestVerify verifies that |sig_len| bytes from |sig| are a valid 340 // signature for |data|. It returns one on success or zero on error. 341 OPENSSL_EXPORT int EVP_DigestVerify(EVP_MD_CTX *ctx, const uint8_t *sig, 342 size_t sig_len, const uint8_t *data, 343 size_t len); 344 345 346 // Signing (old functions) 347 348 // EVP_SignInit_ex configures |ctx|, which must already have been initialised, 349 // for a fresh signing operation using the hash function |type|. It returns one 350 // on success and zero otherwise. 351 // 352 // (In order to initialise |ctx|, either obtain it initialised with 353 // |EVP_MD_CTX_create|, or use |EVP_MD_CTX_init|.) 354 OPENSSL_EXPORT int EVP_SignInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, 355 ENGINE *impl); 356 357 // EVP_SignInit is a deprecated version of |EVP_SignInit_ex|. 358 // 359 // TODO(fork): remove. 360 OPENSSL_EXPORT int EVP_SignInit(EVP_MD_CTX *ctx, const EVP_MD *type); 361 362 // EVP_SignUpdate appends |len| bytes from |data| to the data which will be 363 // signed in |EVP_SignFinal|. 364 OPENSSL_EXPORT int EVP_SignUpdate(EVP_MD_CTX *ctx, const void *data, 365 size_t len); 366 367 // EVP_SignFinal signs the data that has been included by one or more calls to 368 // |EVP_SignUpdate|, using the key |pkey|, and writes it to |sig|. On entry, 369 // |sig| must point to at least |EVP_PKEY_size(pkey)| bytes of space. The 370 // actual size of the signature is written to |*out_sig_len|. 371 // 372 // It returns one on success and zero otherwise. 373 // 374 // It does not modify |ctx|, thus it's possible to continue to use |ctx| in 375 // order to sign a longer message. It also does not mutate |pkey| for 376 // thread-safety purposes and may be used concurrently with other non-mutating 377 // functions on |pkey|. 378 OPENSSL_EXPORT int EVP_SignFinal(const EVP_MD_CTX *ctx, uint8_t *sig, 379 unsigned int *out_sig_len, EVP_PKEY *pkey); 380 381 382 // Verifying (old functions) 383 384 // EVP_VerifyInit_ex configures |ctx|, which must already have been 385 // initialised, for a fresh signature verification operation using the hash 386 // function |type|. It returns one on success and zero otherwise. 387 // 388 // (In order to initialise |ctx|, either obtain it initialised with 389 // |EVP_MD_CTX_create|, or use |EVP_MD_CTX_init|.) 390 OPENSSL_EXPORT int EVP_VerifyInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, 391 ENGINE *impl); 392 393 // EVP_VerifyInit is a deprecated version of |EVP_VerifyInit_ex|. 394 // 395 // TODO(fork): remove. 396 OPENSSL_EXPORT int EVP_VerifyInit(EVP_MD_CTX *ctx, const EVP_MD *type); 397 398 // EVP_VerifyUpdate appends |len| bytes from |data| to the data which will be 399 // signed in |EVP_VerifyFinal|. 400 OPENSSL_EXPORT int EVP_VerifyUpdate(EVP_MD_CTX *ctx, const void *data, 401 size_t len); 402 403 // EVP_VerifyFinal verifies that |sig_len| bytes of |sig| are a valid 404 // signature, by |pkey|, for the data that has been included by one or more 405 // calls to |EVP_VerifyUpdate|. 406 // 407 // It returns one on success and zero otherwise. 408 // 409 // It does not modify |ctx|, thus it's possible to continue to use |ctx| in 410 // order to verify a longer message. It also does not mutate |pkey| for 411 // thread-safety purposes and may be used concurrently with other non-mutating 412 // functions on |pkey|. 413 OPENSSL_EXPORT int EVP_VerifyFinal(EVP_MD_CTX *ctx, const uint8_t *sig, 414 size_t sig_len, EVP_PKEY *pkey); 415 416 417 // Printing 418 419 // EVP_PKEY_print_public prints a textual representation of the public key in 420 // |pkey| to |out|. Returns one on success or zero otherwise. 421 OPENSSL_EXPORT int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, 422 int indent, ASN1_PCTX *pctx); 423 424 // EVP_PKEY_print_private prints a textual representation of the private key in 425 // |pkey| to |out|. Returns one on success or zero otherwise. 426 OPENSSL_EXPORT int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, 427 int indent, ASN1_PCTX *pctx); 428 429 // EVP_PKEY_print_params prints a textual representation of the parameters in 430 // |pkey| to |out|. Returns one on success or zero otherwise. 431 OPENSSL_EXPORT int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, 432 int indent, ASN1_PCTX *pctx); 433 434 435 // Password stretching. 436 // 437 // Password stretching functions take a low-entropy password and apply a slow 438 // function that results in a key suitable for use in symmetric 439 // cryptography. 440 441 // PKCS5_PBKDF2_HMAC computes |iterations| iterations of PBKDF2 of |password| 442 // and |salt|, using |digest|, and outputs |key_len| bytes to |out_key|. It 443 // returns one on success and zero on allocation failure or if iterations is 0. 444 OPENSSL_EXPORT int PKCS5_PBKDF2_HMAC(const char *password, size_t password_len, 445 const uint8_t *salt, size_t salt_len, 446 unsigned iterations, const EVP_MD *digest, 447 size_t key_len, uint8_t *out_key); 448 449 // PKCS5_PBKDF2_HMAC_SHA1 is the same as PKCS5_PBKDF2_HMAC, but with |digest| 450 // fixed to |EVP_sha1|. 451 OPENSSL_EXPORT int PKCS5_PBKDF2_HMAC_SHA1(const char *password, 452 size_t password_len, 453 const uint8_t *salt, size_t salt_len, 454 unsigned iterations, size_t key_len, 455 uint8_t *out_key); 456 457 // EVP_PBE_scrypt expands |password| into a secret key of length |key_len| using 458 // scrypt, as described in RFC 7914, and writes the result to |out_key|. It 459 // returns one on success and zero on allocation failure, if the memory required 460 // for the operation exceeds |max_mem|, or if any of the parameters are invalid 461 // as described below. 462 // 463 // |N|, |r|, and |p| are as described in RFC 7914 section 6. They determine the 464 // cost of the operation. If |max_mem| is zero, a defult limit of 32MiB will be 465 // used. 466 // 467 // The parameters are considered invalid under any of the following conditions: 468 // - |r| or |p| are zero 469 // - |p| > (2^30 - 1) / |r| 470 // - |N| is not a power of two 471 // - |N| > 2^32 472 // - |N| > 2^(128 * |r| / 8) 473 OPENSSL_EXPORT int EVP_PBE_scrypt(const char *password, size_t password_len, 474 const uint8_t *salt, size_t salt_len, 475 uint64_t N, uint64_t r, uint64_t p, 476 size_t max_mem, uint8_t *out_key, 477 size_t key_len); 478 479 480 // Public key contexts. 481 // 482 // |EVP_PKEY_CTX| objects hold the context of an operation (e.g. signing or 483 // encrypting) that uses a public key. 484 485 // EVP_PKEY_CTX_new allocates a fresh |EVP_PKEY_CTX| for use with |pkey|. It 486 // returns the context or NULL on error. 487 OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_new(EVP_PKEY *pkey, ENGINE *e); 488 489 // EVP_PKEY_CTX_new_id allocates a fresh |EVP_PKEY_CTX| for a key of type |id| 490 // (e.g. |EVP_PKEY_HMAC|). This can be used for key generation where 491 // |EVP_PKEY_CTX_new| can't be used because there isn't an |EVP_PKEY| to pass 492 // it. It returns the context or NULL on error. 493 OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_new_id(int id, ENGINE *e); 494 495 // EVP_PKEY_CTX_free frees |ctx| and the data it owns. 496 OPENSSL_EXPORT void EVP_PKEY_CTX_free(EVP_PKEY_CTX *ctx); 497 498 // EVP_PKEY_CTX_dup allocates a fresh |EVP_PKEY_CTX| and sets it equal to the 499 // state of |ctx|. It returns the fresh |EVP_PKEY_CTX| or NULL on error. 500 OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_dup(EVP_PKEY_CTX *ctx); 501 502 // EVP_PKEY_CTX_get0_pkey returns the |EVP_PKEY| associated with |ctx|. 503 OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_CTX_get0_pkey(EVP_PKEY_CTX *ctx); 504 505 // EVP_PKEY_sign_init initialises an |EVP_PKEY_CTX| for a signing operation. It 506 // should be called before |EVP_PKEY_sign|. 507 // 508 // It returns one on success or zero on error. 509 OPENSSL_EXPORT int EVP_PKEY_sign_init(EVP_PKEY_CTX *ctx); 510 511 // EVP_PKEY_sign signs |digest_len| bytes from |digest| using |ctx|. If |sig| is 512 // NULL, the maximum size of the signature is written to 513 // |out_sig_len|. Otherwise, |*sig_len| must contain the number of bytes of 514 // space available at |sig|. If sufficient, the signature will be written to 515 // |sig| and |*sig_len| updated with the true length. 516 // 517 // This function expects a pre-hashed input and will fail for signature 518 // algorithms which do not support this. Use |EVP_DigestSignInit| to sign an 519 // unhashed input. 520 // 521 // WARNING: Setting |sig| to NULL only gives the maximum size of the 522 // signature. The actual signature may be smaller. 523 // 524 // It returns one on success or zero on error. (Note: this differs from 525 // OpenSSL, which can also return negative values to indicate an error. ) 526 OPENSSL_EXPORT int EVP_PKEY_sign(EVP_PKEY_CTX *ctx, uint8_t *sig, 527 size_t *sig_len, const uint8_t *digest, 528 size_t digest_len); 529 530 // EVP_PKEY_verify_init initialises an |EVP_PKEY_CTX| for a signature 531 // verification operation. It should be called before |EVP_PKEY_verify|. 532 // 533 // It returns one on success or zero on error. 534 OPENSSL_EXPORT int EVP_PKEY_verify_init(EVP_PKEY_CTX *ctx); 535 536 // EVP_PKEY_verify verifies that |sig_len| bytes from |sig| are a valid 537 // signature for |digest|. 538 // 539 // This function expects a pre-hashed input and will fail for signature 540 // algorithms which do not support this. Use |EVP_DigestVerifyInit| to verify a 541 // signature given the unhashed input. 542 // 543 // It returns one on success or zero on error. 544 OPENSSL_EXPORT int EVP_PKEY_verify(EVP_PKEY_CTX *ctx, const uint8_t *sig, 545 size_t sig_len, const uint8_t *digest, 546 size_t digest_len); 547 548 // EVP_PKEY_encrypt_init initialises an |EVP_PKEY_CTX| for an encryption 549 // operation. It should be called before |EVP_PKEY_encrypt|. 550 // 551 // It returns one on success or zero on error. 552 OPENSSL_EXPORT int EVP_PKEY_encrypt_init(EVP_PKEY_CTX *ctx); 553 554 // EVP_PKEY_encrypt encrypts |in_len| bytes from |in|. If |out| is NULL, the 555 // maximum size of the ciphertext is written to |out_len|. Otherwise, |*out_len| 556 // must contain the number of bytes of space available at |out|. If sufficient, 557 // the ciphertext will be written to |out| and |*out_len| updated with the true 558 // length. 559 // 560 // WARNING: Setting |out| to NULL only gives the maximum size of the 561 // ciphertext. The actual ciphertext may be smaller. 562 // 563 // It returns one on success or zero on error. 564 OPENSSL_EXPORT int EVP_PKEY_encrypt(EVP_PKEY_CTX *ctx, uint8_t *out, 565 size_t *out_len, const uint8_t *in, 566 size_t in_len); 567 568 // EVP_PKEY_decrypt_init initialises an |EVP_PKEY_CTX| for a decryption 569 // operation. It should be called before |EVP_PKEY_decrypt|. 570 // 571 // It returns one on success or zero on error. 572 OPENSSL_EXPORT int EVP_PKEY_decrypt_init(EVP_PKEY_CTX *ctx); 573 574 // EVP_PKEY_decrypt decrypts |in_len| bytes from |in|. If |out| is NULL, the 575 // maximum size of the plaintext is written to |out_len|. Otherwise, |*out_len| 576 // must contain the number of bytes of space available at |out|. If sufficient, 577 // the ciphertext will be written to |out| and |*out_len| updated with the true 578 // length. 579 // 580 // WARNING: Setting |out| to NULL only gives the maximum size of the 581 // plaintext. The actual plaintext may be smaller. 582 // 583 // It returns one on success or zero on error. 584 OPENSSL_EXPORT int EVP_PKEY_decrypt(EVP_PKEY_CTX *ctx, uint8_t *out, 585 size_t *out_len, const uint8_t *in, 586 size_t in_len); 587 588 // EVP_PKEY_verify_recover_init initialises an |EVP_PKEY_CTX| for a public-key 589 // decryption operation. It should be called before |EVP_PKEY_verify_recover|. 590 // 591 // Public-key decryption is a very obscure operation that is only implemented 592 // by RSA keys. It is effectively a signature verification operation that 593 // returns the signed message directly. It is almost certainly not what you 594 // want. 595 // 596 // It returns one on success or zero on error. 597 OPENSSL_EXPORT int EVP_PKEY_verify_recover_init(EVP_PKEY_CTX *ctx); 598 599 // EVP_PKEY_verify_recover decrypts |sig_len| bytes from |sig|. If |out| is 600 // NULL, the maximum size of the plaintext is written to |out_len|. Otherwise, 601 // |*out_len| must contain the number of bytes of space available at |out|. If 602 // sufficient, the ciphertext will be written to |out| and |*out_len| updated 603 // with the true length. 604 // 605 // WARNING: Setting |out| to NULL only gives the maximum size of the 606 // plaintext. The actual plaintext may be smaller. 607 // 608 // See the warning about this operation in |EVP_PKEY_verify_recover_init|. It 609 // is probably not what you want. 610 // 611 // It returns one on success or zero on error. 612 OPENSSL_EXPORT int EVP_PKEY_verify_recover(EVP_PKEY_CTX *ctx, uint8_t *out, 613 size_t *out_len, const uint8_t *sig, 614 size_t siglen); 615 616 // EVP_PKEY_derive_init initialises an |EVP_PKEY_CTX| for a key derivation 617 // operation. It should be called before |EVP_PKEY_derive_set_peer| and 618 // |EVP_PKEY_derive|. 619 // 620 // It returns one on success or zero on error. 621 OPENSSL_EXPORT int EVP_PKEY_derive_init(EVP_PKEY_CTX *ctx); 622 623 // EVP_PKEY_derive_set_peer sets the peer's key to be used for key derivation 624 // by |ctx| to |peer|. It should be called after |EVP_PKEY_derive_init|. (For 625 // example, this is used to set the peer's key in (EC)DH.) It returns one on 626 // success and zero on error. 627 OPENSSL_EXPORT int EVP_PKEY_derive_set_peer(EVP_PKEY_CTX *ctx, EVP_PKEY *peer); 628 629 // EVP_PKEY_derive derives a shared key between the two keys configured in 630 // |ctx|. If |key| is non-NULL then, on entry, |out_key_len| must contain the 631 // amount of space at |key|. If sufficient then the shared key will be written 632 // to |key| and |*out_key_len| will be set to the length. If |key| is NULL then 633 // |out_key_len| will be set to the maximum length. 634 // 635 // WARNING: Setting |out| to NULL only gives the maximum size of the key. The 636 // actual key may be smaller. 637 // 638 // It returns one on success and zero on error. 639 OPENSSL_EXPORT int EVP_PKEY_derive(EVP_PKEY_CTX *ctx, uint8_t *key, 640 size_t *out_key_len); 641 642 // EVP_PKEY_keygen_init initialises an |EVP_PKEY_CTX| for a key generation 643 // operation. It should be called before |EVP_PKEY_keygen|. 644 // 645 // It returns one on success or zero on error. 646 OPENSSL_EXPORT int EVP_PKEY_keygen_init(EVP_PKEY_CTX *ctx); 647 648 // EVP_PKEY_keygen performs a key generation operation using the values from 649 // |ctx|. If |*out_pkey| is non-NULL, it overwrites |*out_pkey| with the 650 // resulting key. Otherwise, it sets |*out_pkey| to a newly-allocated |EVP_PKEY| 651 // containing the result. It returns one on success or zero on error. 652 OPENSSL_EXPORT int EVP_PKEY_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY **out_pkey); 653 654 // EVP_PKEY_paramgen_init initialises an |EVP_PKEY_CTX| for a parameter 655 // generation operation. It should be called before |EVP_PKEY_paramgen|. 656 // 657 // It returns one on success or zero on error. 658 OPENSSL_EXPORT int EVP_PKEY_paramgen_init(EVP_PKEY_CTX *ctx); 659 660 // EVP_PKEY_paramgen performs a parameter generation using the values from 661 // |ctx|. If |*out_pkey| is non-NULL, it overwrites |*out_pkey| with the 662 // resulting parameters, but no key. Otherwise, it sets |*out_pkey| to a 663 // newly-allocated |EVP_PKEY| containing the result. It returns one on success 664 // or zero on error. 665 OPENSSL_EXPORT int EVP_PKEY_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY **out_pkey); 666 667 668 // Generic control functions. 669 670 // EVP_PKEY_CTX_set_signature_md sets |md| as the digest to be used in a 671 // signature operation. It returns one on success or zero on error. 672 OPENSSL_EXPORT int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, 673 const EVP_MD *md); 674 675 // EVP_PKEY_CTX_get_signature_md sets |*out_md| to the digest to be used in a 676 // signature operation. It returns one on success or zero on error. 677 OPENSSL_EXPORT int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx, 678 const EVP_MD **out_md); 679 680 681 // RSA specific control functions. 682 683 // EVP_PKEY_CTX_set_rsa_padding sets the padding type to use. It should be one 684 // of the |RSA_*_PADDING| values. Returns one on success or zero on error. 685 OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int padding); 686 687 // EVP_PKEY_CTX_get_rsa_padding sets |*out_padding| to the current padding 688 // value, which is one of the |RSA_*_PADDING| values. Returns one on success or 689 // zero on error. 690 OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, 691 int *out_padding); 692 693 // EVP_PKEY_CTX_set_rsa_pss_saltlen sets the length of the salt in a PSS-padded 694 // signature. A value of -1 cause the salt to be the same length as the digest 695 // in the signature. A value of -2 causes the salt to be the maximum length 696 // that will fit when signing and recovered from the signature when verifying. 697 // Otherwise the value gives the size of the salt in bytes. 698 // 699 // If unsure, use -1. 700 // 701 // Returns one on success or zero on error. 702 OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, 703 int salt_len); 704 705 // EVP_PKEY_CTX_get_rsa_pss_saltlen sets |*out_salt_len| to the salt length of 706 // a PSS-padded signature. See the documentation for 707 // |EVP_PKEY_CTX_set_rsa_pss_saltlen| for details of the special values that it 708 // can take. 709 // 710 // Returns one on success or zero on error. 711 OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, 712 int *out_salt_len); 713 714 // EVP_PKEY_CTX_set_rsa_keygen_bits sets the size of the desired RSA modulus, 715 // in bits, for key generation. Returns one on success or zero on 716 // error. 717 OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, 718 int bits); 719 720 // EVP_PKEY_CTX_set_rsa_keygen_pubexp sets |e| as the public exponent for key 721 // generation. Returns one on success or zero on error. 722 OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, 723 BIGNUM *e); 724 725 // EVP_PKEY_CTX_set_rsa_oaep_md sets |md| as the digest used in OAEP padding. 726 // Returns one on success or zero on error. 727 OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, 728 const EVP_MD *md); 729 730 // EVP_PKEY_CTX_get_rsa_oaep_md sets |*out_md| to the digest function used in 731 // OAEP padding. Returns one on success or zero on error. 732 OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, 733 const EVP_MD **out_md); 734 735 // EVP_PKEY_CTX_set_rsa_mgf1_md sets |md| as the digest used in MGF1. Returns 736 // one on success or zero on error. 737 OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, 738 const EVP_MD *md); 739 740 // EVP_PKEY_CTX_get_rsa_mgf1_md sets |*out_md| to the digest function used in 741 // MGF1. Returns one on success or zero on error. 742 OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, 743 const EVP_MD **out_md); 744 745 // EVP_PKEY_CTX_set0_rsa_oaep_label sets |label_len| bytes from |label| as the 746 // label used in OAEP. DANGER: On success, this call takes ownership of |label| 747 // and will call |OPENSSL_free| on it when |ctx| is destroyed. 748 // 749 // Returns one on success or zero on error. 750 OPENSSL_EXPORT int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, 751 uint8_t *label, 752 size_t label_len); 753 754 // EVP_PKEY_CTX_get0_rsa_oaep_label sets |*out_label| to point to the internal 755 // buffer containing the OAEP label (which may be NULL) and returns the length 756 // of the label or a negative value on error. 757 // 758 // WARNING: the return value differs from the usual return value convention. 759 OPENSSL_EXPORT int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, 760 const uint8_t **out_label); 761 762 763 // EC specific control functions. 764 765 // EVP_PKEY_CTX_set_ec_paramgen_curve_nid sets the curve used for 766 // |EVP_PKEY_keygen| or |EVP_PKEY_paramgen| operations to |nid|. It returns one 767 // on success and zero on error. 768 OPENSSL_EXPORT int EVP_PKEY_CTX_set_ec_paramgen_curve_nid(EVP_PKEY_CTX *ctx, 769 int nid); 770 771 772 // Deprecated functions. 773 774 // EVP_PKEY_DH is defined for compatibility, but it is impossible to create an 775 // |EVP_PKEY| of that type. 776 #define EVP_PKEY_DH NID_dhKeyAgreement 777 778 // EVP_PKEY_RSA2 was historically an alternate form for RSA public keys (OID 779 // 2.5.8.1.1), but is no longer accepted. 780 #define EVP_PKEY_RSA2 NID_rsa 781 782 // OpenSSL_add_all_algorithms does nothing. 783 OPENSSL_EXPORT void OpenSSL_add_all_algorithms(void); 784 785 // OPENSSL_add_all_algorithms_conf does nothing. 786 OPENSSL_EXPORT void OPENSSL_add_all_algorithms_conf(void); 787 788 // OpenSSL_add_all_ciphers does nothing. 789 OPENSSL_EXPORT void OpenSSL_add_all_ciphers(void); 790 791 // OpenSSL_add_all_digests does nothing. 792 OPENSSL_EXPORT void OpenSSL_add_all_digests(void); 793 794 // EVP_cleanup does nothing. 795 OPENSSL_EXPORT void EVP_cleanup(void); 796 797 OPENSSL_EXPORT void EVP_CIPHER_do_all_sorted( 798 void (*callback)(const EVP_CIPHER *cipher, const char *name, 799 const char *unused, void *arg), 800 void *arg); 801 802 OPENSSL_EXPORT void EVP_MD_do_all_sorted(void (*callback)(const EVP_MD *cipher, 803 const char *name, 804 const char *unused, 805 void *arg), 806 void *arg); 807 808 // i2d_PrivateKey marshals a private key from |key| to an ASN.1, DER 809 // structure. If |outp| is not NULL then the result is written to |*outp| and 810 // |*outp| is advanced just past the output. It returns the number of bytes in 811 // the result, whether written or not, or a negative value on error. 812 // 813 // RSA keys are serialized as a DER-encoded RSAPublicKey (RFC 3447) structure. 814 // EC keys are serialized as a DER-encoded ECPrivateKey (RFC 5915) structure. 815 // 816 // Use |RSA_marshal_private_key| or |EC_KEY_marshal_private_key| instead. 817 OPENSSL_EXPORT int i2d_PrivateKey(const EVP_PKEY *key, uint8_t **outp); 818 819 // i2d_PublicKey marshals a public key from |key| to a type-specific format. 820 // If |outp| is not NULL then the result is written to |*outp| and 821 // |*outp| is advanced just past the output. It returns the number of bytes in 822 // the result, whether written or not, or a negative value on error. 823 // 824 // RSA keys are serialized as a DER-encoded RSAPublicKey (RFC 3447) structure. 825 // EC keys are serialized as an EC point per SEC 1. 826 // 827 // Use |RSA_marshal_public_key| or |EC_POINT_point2cbb| instead. 828 OPENSSL_EXPORT int i2d_PublicKey(const EVP_PKEY *key, uint8_t **outp); 829 830 // d2i_PrivateKey parses an ASN.1, DER-encoded, private key from |len| bytes at 831 // |*inp|. If |out| is not NULL then, on exit, a pointer to the result is in 832 // |*out|. Note that, even if |*out| is already non-NULL on entry, it will not 833 // be written to. Rather, a fresh |EVP_PKEY| is allocated and the previous one 834 // is freed. On successful exit, |*inp| is advanced past the DER structure. It 835 // returns the result or NULL on error. 836 // 837 // This function tries to detect one of several formats. Instead, use 838 // |EVP_parse_private_key| for a PrivateKeyInfo, |RSA_parse_private_key| for an 839 // RSAPrivateKey, and |EC_parse_private_key| for an ECPrivateKey. 840 OPENSSL_EXPORT EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **out, 841 const uint8_t **inp, long len); 842 843 // d2i_AutoPrivateKey acts the same as |d2i_PrivateKey|, but detects the type 844 // of the private key. 845 // 846 // This function tries to detect one of several formats. Instead, use 847 // |EVP_parse_private_key| for a PrivateKeyInfo, |RSA_parse_private_key| for an 848 // RSAPrivateKey, and |EC_parse_private_key| for an ECPrivateKey. 849 OPENSSL_EXPORT EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **out, const uint8_t **inp, 850 long len); 851 852 // d2i_PublicKey parse a public key from |len| bytes at |*inp| in a type- 853 // specific format specified by |type|. If |out| is not NULL then, on exit, a 854 // pointer to the result is in |*out|. Note that, even if |*out| is already non- 855 // NULL on entry, it will not be written to. Rather, a fresh |EVP_PKEY| is 856 // allocated and the previous one is freed. On successful exit, |*inp| is 857 // advanced past the decoded key. It returns the result or NULL on error. 858 // 859 // RSA keys are parsed as a DER-encoded RSAPublicKey (RFC 3447) structure. 860 // Parsing EC keys is not supported by this function. 861 // 862 // Use |RSA_parse_public_key| instead. 863 OPENSSL_EXPORT EVP_PKEY *d2i_PublicKey(int type, EVP_PKEY **out, 864 const uint8_t **inp, long len); 865 866 // EVP_PKEY_get0_DH returns NULL. 867 OPENSSL_EXPORT DH *EVP_PKEY_get0_DH(const EVP_PKEY *pkey); 868 869 // EVP_PKEY_get1_DH returns NULL. 870 OPENSSL_EXPORT DH *EVP_PKEY_get1_DH(const EVP_PKEY *pkey); 871 872 // EVP_PKEY_CTX_set_ec_param_enc returns one if |encoding| is 873 // |OPENSSL_EC_NAMED_CURVE| or zero with an error otherwise. 874 OPENSSL_EXPORT int EVP_PKEY_CTX_set_ec_param_enc(EVP_PKEY_CTX *ctx, 875 int encoding); 876 877 878 // Preprocessor compatibility section (hidden). 879 // 880 // Historically, a number of APIs were implemented in OpenSSL as macros and 881 // constants to 'ctrl' functions. To avoid breaking #ifdefs in consumers, this 882 // section defines a number of legacy macros. 883 884 // |BORINGSSL_PREFIX| already makes each of these symbols into macros, so there 885 // is no need to define conflicting macros. 886 #if !defined(BORINGSSL_PREFIX) 887 #define EVP_PKEY_CTX_set_rsa_oaep_md EVP_PKEY_CTX_set_rsa_oaep_md 888 #define EVP_PKEY_CTX_set0_rsa_oaep_label EVP_PKEY_CTX_set0_rsa_oaep_label 889 #endif 890 891 892 // Private structures. 893 894 struct evp_pkey_st { 895 CRYPTO_refcount_t references; 896 897 // type contains one of the EVP_PKEY_* values or NID_undef and determines 898 // which element (if any) of the |pkey| union is valid. 899 int type; 900 901 union { 902 void *ptr; 903 RSA *rsa; 904 DSA *dsa; 905 DH *dh; 906 EC_KEY *ec; 907 } pkey; 908 909 // ameth contains a pointer to a method table that contains many ASN.1 910 // methods for the key type. 911 const EVP_PKEY_ASN1_METHOD *ameth; 912 } /* EVP_PKEY */; 913 914 915 #if defined(__cplusplus) 916 } // extern C 917 918 extern "C++" { 919 BSSL_NAMESPACE_BEGIN 920 921 BORINGSSL_MAKE_DELETER(EVP_PKEY, EVP_PKEY_free) 922 BORINGSSL_MAKE_UP_REF(EVP_PKEY, EVP_PKEY_up_ref) 923 BORINGSSL_MAKE_DELETER(EVP_PKEY_CTX, EVP_PKEY_CTX_free) 924 925 BSSL_NAMESPACE_END 926 927 } // extern C++ 928 929 #endif 930 931 #define EVP_R_BUFFER_TOO_SMALL 100 932 #define EVP_R_COMMAND_NOT_SUPPORTED 101 933 #define EVP_R_DECODE_ERROR 102 934 #define EVP_R_DIFFERENT_KEY_TYPES 103 935 #define EVP_R_DIFFERENT_PARAMETERS 104 936 #define EVP_R_ENCODE_ERROR 105 937 #define EVP_R_EXPECTING_AN_EC_KEY_KEY 106 938 #define EVP_R_EXPECTING_AN_RSA_KEY 107 939 #define EVP_R_EXPECTING_A_DSA_KEY 108 940 #define EVP_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE 109 941 #define EVP_R_INVALID_DIGEST_LENGTH 110 942 #define EVP_R_INVALID_DIGEST_TYPE 111 943 #define EVP_R_INVALID_KEYBITS 112 944 #define EVP_R_INVALID_MGF1_MD 113 945 #define EVP_R_INVALID_OPERATION 114 946 #define EVP_R_INVALID_PADDING_MODE 115 947 #define EVP_R_INVALID_PSS_SALTLEN 116 948 #define EVP_R_KEYS_NOT_SET 117 949 #define EVP_R_MISSING_PARAMETERS 118 950 #define EVP_R_NO_DEFAULT_DIGEST 119 951 #define EVP_R_NO_KEY_SET 120 952 #define EVP_R_NO_MDC2_SUPPORT 121 953 #define EVP_R_NO_NID_FOR_CURVE 122 954 #define EVP_R_NO_OPERATION_SET 123 955 #define EVP_R_NO_PARAMETERS_SET 124 956 #define EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE 125 957 #define EVP_R_OPERATON_NOT_INITIALIZED 126 958 #define EVP_R_UNKNOWN_PUBLIC_KEY_TYPE 127 959 #define EVP_R_UNSUPPORTED_ALGORITHM 128 960 #define EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE 129 961 #define EVP_R_NOT_A_PRIVATE_KEY 130 962 #define EVP_R_INVALID_SIGNATURE 131 963 #define EVP_R_MEMORY_LIMIT_EXCEEDED 132 964 #define EVP_R_INVALID_PARAMETERS 133 965 966 #endif // OPENSSL_HEADER_EVP_H 967