1 //===-- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which inserts x86 AVX vzeroupper instructions
11 // before calls to SSE encoded functions. This avoids transition latency
12 // penalty when transferring control between AVX encoded instructions and old
13 // SSE encoding mode.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "X86.h"
18 #include "X86InstrInfo.h"
19 #include "X86Subtarget.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 using namespace llvm;
29
30 #define DEBUG_TYPE "x86-vzeroupper"
31
32 STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
33
34 namespace {
35
36 class VZeroUpperInserter : public MachineFunctionPass {
37 public:
38
VZeroUpperInserter()39 VZeroUpperInserter() : MachineFunctionPass(ID) {}
40 bool runOnMachineFunction(MachineFunction &MF) override;
getRequiredProperties() const41 MachineFunctionProperties getRequiredProperties() const override {
42 return MachineFunctionProperties().set(
43 MachineFunctionProperties::Property::AllVRegsAllocated);
44 }
getPassName() const45 const char *getPassName() const override {return "X86 vzeroupper inserter";}
46
47 private:
48
49 void processBasicBlock(MachineBasicBlock &MBB);
50 void insertVZeroUpper(MachineBasicBlock::iterator I,
51 MachineBasicBlock &MBB);
52 void addDirtySuccessor(MachineBasicBlock &MBB);
53
54 typedef enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY } BlockExitState;
55 static const char* getBlockExitStateName(BlockExitState ST);
56
57 // Core algorithm state:
58 // BlockState - Each block is either:
59 // - PASS_THROUGH: There are neither YMM dirtying instructions nor
60 // vzeroupper instructions in this block.
61 // - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
62 // block that will ensure that YMM is clean on exit.
63 // - EXITS_DIRTY: An instruction in the block dirties YMM and no
64 // subsequent vzeroupper in the block clears it.
65 //
66 // AddedToDirtySuccessors - This flag is raised when a block is added to the
67 // DirtySuccessors list to ensure that it's not
68 // added multiple times.
69 //
70 // FirstUnguardedCall - Records the location of the first unguarded call in
71 // each basic block that may need to be guarded by a
72 // vzeroupper. We won't know whether it actually needs
73 // to be guarded until we discover a predecessor that
74 // is DIRTY_OUT.
75 struct BlockState {
BlockState__anonb321e3ee0111::VZeroUpperInserter::BlockState76 BlockState() : ExitState(PASS_THROUGH), AddedToDirtySuccessors(false) {}
77 BlockExitState ExitState;
78 bool AddedToDirtySuccessors;
79 MachineBasicBlock::iterator FirstUnguardedCall;
80 };
81 typedef SmallVector<BlockState, 8> BlockStateMap;
82 typedef SmallVector<MachineBasicBlock*, 8> DirtySuccessorsWorkList;
83
84 BlockStateMap BlockStates;
85 DirtySuccessorsWorkList DirtySuccessors;
86 bool EverMadeChange;
87 bool IsX86INTR;
88 const TargetInstrInfo *TII;
89
90 static char ID;
91 };
92
93 char VZeroUpperInserter::ID = 0;
94 }
95
createX86IssueVZeroUpperPass()96 FunctionPass *llvm::createX86IssueVZeroUpperPass() {
97 return new VZeroUpperInserter();
98 }
99
getBlockExitStateName(BlockExitState ST)100 const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) {
101 switch (ST) {
102 case PASS_THROUGH: return "Pass-through";
103 case EXITS_DIRTY: return "Exits-dirty";
104 case EXITS_CLEAN: return "Exits-clean";
105 }
106 llvm_unreachable("Invalid block exit state.");
107 }
108
isYmmReg(unsigned Reg)109 static bool isYmmReg(unsigned Reg) {
110 return (Reg >= X86::YMM0 && Reg <= X86::YMM15);
111 }
112
checkFnHasLiveInYmm(MachineRegisterInfo & MRI)113 static bool checkFnHasLiveInYmm(MachineRegisterInfo &MRI) {
114 for (MachineRegisterInfo::livein_iterator I = MRI.livein_begin(),
115 E = MRI.livein_end(); I != E; ++I)
116 if (isYmmReg(I->first))
117 return true;
118
119 return false;
120 }
121
clobbersAllYmmRegs(const MachineOperand & MO)122 static bool clobbersAllYmmRegs(const MachineOperand &MO) {
123 for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
124 if (!MO.clobbersPhysReg(reg))
125 return false;
126 }
127 return true;
128 }
129
hasYmmReg(MachineInstr & MI)130 static bool hasYmmReg(MachineInstr &MI) {
131 for (const MachineOperand &MO : MI.operands()) {
132 if (MI.isCall() && MO.isRegMask() && !clobbersAllYmmRegs(MO))
133 return true;
134 if (!MO.isReg())
135 continue;
136 if (MO.isDebug())
137 continue;
138 if (isYmmReg(MO.getReg()))
139 return true;
140 }
141 return false;
142 }
143
144 /// Check if any YMM register will be clobbered by this instruction.
callClobbersAnyYmmReg(MachineInstr & MI)145 static bool callClobbersAnyYmmReg(MachineInstr &MI) {
146 assert(MI.isCall() && "Can only be called on call instructions.");
147 for (const MachineOperand &MO : MI.operands()) {
148 if (!MO.isRegMask())
149 continue;
150 for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
151 if (MO.clobbersPhysReg(reg))
152 return true;
153 }
154 }
155 return false;
156 }
157
158 /// Insert a vzeroupper instruction before I.
insertVZeroUpper(MachineBasicBlock::iterator I,MachineBasicBlock & MBB)159 void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I,
160 MachineBasicBlock &MBB) {
161 DebugLoc dl = I->getDebugLoc();
162 BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER));
163 ++NumVZU;
164 EverMadeChange = true;
165 }
166
167 /// Add MBB to the DirtySuccessors list if it hasn't already been added.
addDirtySuccessor(MachineBasicBlock & MBB)168 void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) {
169 if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) {
170 DirtySuccessors.push_back(&MBB);
171 BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true;
172 }
173 }
174
175 /// Loop over all of the instructions in the basic block, inserting vzeroupper
176 /// instructions before function calls.
processBasicBlock(MachineBasicBlock & MBB)177 void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) {
178
179 // Start by assuming that the block is PASS_THROUGH which implies no unguarded
180 // calls.
181 BlockExitState CurState = PASS_THROUGH;
182 BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end();
183
184 for (MachineInstr &MI : MBB) {
185 // No need for vzeroupper before iret in interrupt handler function,
186 // epilogue will restore YMM registers if needed.
187 bool IsReturnFromX86INTR = IsX86INTR && MI.isReturn();
188 bool IsControlFlow = MI.isCall() || MI.isReturn();
189
190 // An existing VZERO* instruction resets the state.
191 if (MI.getOpcode() == X86::VZEROALL || MI.getOpcode() == X86::VZEROUPPER) {
192 CurState = EXITS_CLEAN;
193 continue;
194 }
195
196 // Shortcut: don't need to check regular instructions in dirty state.
197 if ((!IsControlFlow || IsReturnFromX86INTR) && CurState == EXITS_DIRTY)
198 continue;
199
200 if (hasYmmReg(MI)) {
201 // We found a ymm-using instruction; this could be an AVX instruction,
202 // or it could be control flow.
203 CurState = EXITS_DIRTY;
204 continue;
205 }
206
207 // Check for control-flow out of the current function (which might
208 // indirectly execute SSE instructions).
209 if (!IsControlFlow || IsReturnFromX86INTR)
210 continue;
211
212 // If the call won't clobber any YMM register, skip it as well. It usually
213 // happens on helper function calls (such as '_chkstk', '_ftol2') where
214 // standard calling convention is not used (RegMask is not used to mark
215 // register clobbered and register usage (def/imp-def/use) is well-defined
216 // and explicitly specified.
217 if (MI.isCall() && !callClobbersAnyYmmReg(MI))
218 continue;
219
220 // The VZEROUPPER instruction resets the upper 128 bits of all AVX
221 // registers. In addition, the processor changes back to Clean state, after
222 // which execution of SSE instructions or AVX instructions has no transition
223 // penalty. Add the VZEROUPPER instruction before any function call/return
224 // that might execute SSE code.
225 // FIXME: In some cases, we may want to move the VZEROUPPER into a
226 // predecessor block.
227 if (CurState == EXITS_DIRTY) {
228 // After the inserted VZEROUPPER the state becomes clean again, but
229 // other YMM may appear before other subsequent calls or even before
230 // the end of the BB.
231 insertVZeroUpper(MI, MBB);
232 CurState = EXITS_CLEAN;
233 } else if (CurState == PASS_THROUGH) {
234 // If this block is currently in pass-through state and we encounter a
235 // call then whether we need a vzeroupper or not depends on whether this
236 // block has successors that exit dirty. Record the location of the call,
237 // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
238 // It will be inserted later if necessary.
239 BlockStates[MBB.getNumber()].FirstUnguardedCall = MI;
240 CurState = EXITS_CLEAN;
241 }
242 }
243
244 DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: "
245 << getBlockExitStateName(CurState) << '\n');
246
247 if (CurState == EXITS_DIRTY)
248 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
249 SE = MBB.succ_end();
250 SI != SE; ++SI)
251 addDirtySuccessor(**SI);
252
253 BlockStates[MBB.getNumber()].ExitState = CurState;
254 }
255
256 /// Loop over all of the basic blocks, inserting vzeroupper instructions before
257 /// function calls.
runOnMachineFunction(MachineFunction & MF)258 bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
259 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
260 if (!ST.hasAVX() || ST.hasAVX512() || ST.hasFastPartialYMMWrite())
261 return false;
262 TII = ST.getInstrInfo();
263 MachineRegisterInfo &MRI = MF.getRegInfo();
264 EverMadeChange = false;
265 IsX86INTR = MF.getFunction()->getCallingConv() == CallingConv::X86_INTR;
266
267 bool FnHasLiveInYmm = checkFnHasLiveInYmm(MRI);
268
269 // Fast check: if the function doesn't use any ymm registers, we don't need
270 // to insert any VZEROUPPER instructions. This is constant-time, so it is
271 // cheap in the common case of no ymm use.
272 bool YMMUsed = FnHasLiveInYmm;
273 if (!YMMUsed) {
274 const TargetRegisterClass *RC = &X86::VR256RegClass;
275 for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); i != e;
276 i++) {
277 if (!MRI.reg_nodbg_empty(*i)) {
278 YMMUsed = true;
279 break;
280 }
281 }
282 }
283 if (!YMMUsed) {
284 return false;
285 }
286
287 assert(BlockStates.empty() && DirtySuccessors.empty() &&
288 "X86VZeroUpper state should be clear");
289 BlockStates.resize(MF.getNumBlockIDs());
290
291 // Process all blocks. This will compute block exit states, record the first
292 // unguarded call in each block, and add successors of dirty blocks to the
293 // DirtySuccessors list.
294 for (MachineBasicBlock &MBB : MF)
295 processBasicBlock(MBB);
296
297 // If any YMM regs are live-in to this function, add the entry block to the
298 // DirtySuccessors list
299 if (FnHasLiveInYmm)
300 addDirtySuccessor(MF.front());
301
302 // Re-visit all blocks that are successors of EXITS_DIRTY blocks. Add
303 // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
304 // through PASS_THROUGH blocks.
305 while (!DirtySuccessors.empty()) {
306 MachineBasicBlock &MBB = *DirtySuccessors.back();
307 DirtySuccessors.pop_back();
308 BlockState &BBState = BlockStates[MBB.getNumber()];
309
310 // MBB is a successor of a dirty block, so its first call needs to be
311 // guarded.
312 if (BBState.FirstUnguardedCall != MBB.end())
313 insertVZeroUpper(BBState.FirstUnguardedCall, MBB);
314
315 // If this successor was a pass-through block, then it is now dirty. Its
316 // successors need to be added to the worklist (if they haven't been
317 // already).
318 if (BBState.ExitState == PASS_THROUGH) {
319 DEBUG(dbgs() << "MBB #" << MBB.getNumber()
320 << " was Pass-through, is now Dirty-out.\n");
321 for (MachineBasicBlock *Succ : MBB.successors())
322 addDirtySuccessor(*Succ);
323 }
324 }
325
326 BlockStates.clear();
327 return EverMadeChange;
328 }
329