• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one or more
3  * contributor license agreements.  See the NOTICE file distributed with
4  * this work for additional information regarding copyright ownership.
5  * The ASF licenses this file to You under the Apache License, Version 2.0
6  * (the "License"); you may not use this file except in compliance with
7  * the License.  You may obtain a copy of the License at
8  *
9  *      http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 
18 package org.apache.commons.math.linear;
19 
20 
21 /**
22  * An interface to classes that implement an algorithm to calculate the
23  * eigen decomposition of a real matrix.
24  * <p>The eigen decomposition of matrix A is a set of two matrices:
25  * V and D such that A = V &times; D &times; V<sup>T</sup>.
26  * A, V and D are all m &times; m matrices.</p>
27  * <p>This interface is similar in spirit to the <code>EigenvalueDecomposition</code>
28  * class from the <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a>
29  * library, with the following changes:</p>
30  * <ul>
31  *   <li>a {@link #getVT() getVt} method has been added,</li>
32  *   <li>two {@link #getRealEigenvalue(int) getRealEigenvalue} and {@link #getImagEigenvalue(int)
33  *   getImagEigenvalue} methods to pick up a single eigenvalue have been added,</li>
34  *   <li>a {@link #getEigenvector(int) getEigenvector} method to pick up a single
35  *   eigenvector has been added,</li>
36  *   <li>a {@link #getDeterminant() getDeterminant} method has been added.</li>
37  *   <li>a {@link #getSolver() getSolver} method has been added.</li>
38  * </ul>
39  * @see <a href="http://mathworld.wolfram.com/EigenDecomposition.html">MathWorld</a>
40  * @see <a href="http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix">Wikipedia</a>
41  * @version $Revision: 997726 $ $Date: 2010-09-16 14:39:51 +0200 (jeu. 16 sept. 2010) $
42  * @since 2.0
43  */
44 public interface EigenDecomposition {
45 
46     /**
47      * Returns the matrix V of the decomposition.
48      * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
49      * <p>The columns of V are the eigenvectors of the original matrix.</p>
50      * <p>No assumption is made about the orientation of the system axes formed
51      * by the columns of V (e.g. in a 3-dimension space, V can form a left-
52      * or right-handed system).</p>
53      * @return the V matrix
54      */
getV()55     RealMatrix getV();
56 
57     /**
58      * Returns the block diagonal matrix D of the decomposition.
59      * <p>D is a block diagonal matrix.</p>
60      * <p>Real eigenvalues are on the diagonal while complex values are on
61      * 2x2 blocks { {real +imaginary}, {-imaginary, real} }.</p>
62      * @return the D matrix
63      * @see #getRealEigenvalues()
64      * @see #getImagEigenvalues()
65      */
getD()66     RealMatrix getD();
67 
68     /**
69      * Returns the transpose of the matrix V of the decomposition.
70      * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
71      * <p>The columns of V are the eigenvectors of the original matrix.</p>
72      * <p>No assumption is made about the orientation of the system axes formed
73      * by the columns of V (e.g. in a 3-dimension space, V can form a left-
74      * or right-handed system).</p>
75      * @return the transpose of the V matrix
76      */
getVT()77     RealMatrix getVT();
78 
79     /**
80      * Returns a copy of the real parts of the eigenvalues of the original matrix.
81      * @return a copy of the real parts of the eigenvalues of the original matrix
82      * @see #getD()
83      * @see #getRealEigenvalue(int)
84      * @see #getImagEigenvalues()
85      */
getRealEigenvalues()86     double[] getRealEigenvalues();
87 
88     /**
89      * Returns the real part of the i<sup>th</sup> eigenvalue of the original matrix.
90      * @param i index of the eigenvalue (counting from 0)
91      * @return real part of the i<sup>th</sup> eigenvalue of the original matrix
92      * @see #getD()
93      * @see #getRealEigenvalues()
94      * @see #getImagEigenvalue(int)
95      */
getRealEigenvalue(int i)96     double getRealEigenvalue(int i);
97 
98     /**
99      * Returns a copy of the imaginary parts of the eigenvalues of the original matrix.
100      * @return a copy of the imaginary parts of the eigenvalues of the original matrix
101      * @see #getD()
102      * @see #getImagEigenvalue(int)
103      * @see #getRealEigenvalues()
104      */
getImagEigenvalues()105     double[] getImagEigenvalues();
106 
107     /**
108      * Returns the imaginary part of the i<sup>th</sup> eigenvalue of the original matrix.
109      * @param i index of the eigenvalue (counting from 0)
110      * @return imaginary part of the i<sup>th</sup> eigenvalue of the original matrix
111      * @see #getD()
112      * @see #getImagEigenvalues()
113      * @see #getRealEigenvalue(int)
114      */
getImagEigenvalue(int i)115     double getImagEigenvalue(int i);
116 
117     /**
118      * Returns a copy of the i<sup>th</sup> eigenvector of the original matrix.
119      * @param i index of the eigenvector (counting from 0)
120      * @return copy of the i<sup>th</sup> eigenvector of the original matrix
121      * @see #getD()
122      */
getEigenvector(int i)123     RealVector getEigenvector(int i);
124 
125     /**
126      * Return the determinant of the matrix
127      * @return determinant of the matrix
128      */
getDeterminant()129     double getDeterminant();
130 
131     /**
132      * Get a solver for finding the A &times; X = B solution in exact linear sense.
133      * @return a solver
134      */
getSolver()135     DecompositionSolver getSolver();
136 
137 }
138