1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
18 #define ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
19
20 #include <map>
21 #include <unordered_set>
22 #include <vector>
23
24 #include "art_field-inl.h"
25 #include "debug/elf_compilation_unit.h"
26 #include "debug/elf_debug_loc_writer.h"
27 #include "debug/method_debug_info.h"
28 #include "dex/code_item_accessors-inl.h"
29 #include "dex/dex_file-inl.h"
30 #include "dex/dex_file.h"
31 #include "dwarf/debug_abbrev_writer.h"
32 #include "dwarf/debug_info_entry_writer.h"
33 #include "elf/elf_builder.h"
34 #include "heap_poisoning.h"
35 #include "linear_alloc.h"
36 #include "mirror/array.h"
37 #include "mirror/class-inl.h"
38 #include "mirror/class.h"
39 #include "oat_file.h"
40 #include "obj_ptr-inl.h"
41
42 namespace art {
43 namespace debug {
44
GetParamNames(const MethodDebugInfo * mi)45 static std::vector<const char*> GetParamNames(const MethodDebugInfo* mi) {
46 std::vector<const char*> names;
47 DCHECK(mi->dex_file != nullptr);
48 CodeItemDebugInfoAccessor accessor(*mi->dex_file, mi->code_item, mi->dex_method_index);
49 if (accessor.HasCodeItem()) {
50 accessor.VisitParameterNames([&](const dex::StringIndex& id) {
51 names.push_back(mi->dex_file->StringDataByIdx(id));
52 });
53 }
54 return names;
55 }
56
57 // Helper class to write .debug_info and its supporting sections.
58 template<typename ElfTypes>
59 class ElfDebugInfoWriter {
60 using Elf_Addr = typename ElfTypes::Addr;
61
62 public:
ElfDebugInfoWriter(ElfBuilder<ElfTypes> * builder)63 explicit ElfDebugInfoWriter(ElfBuilder<ElfTypes>* builder)
64 : builder_(builder),
65 debug_abbrev_(&debug_abbrev_buffer_) {
66 }
67
Start()68 void Start() {
69 builder_->GetDebugInfo()->Start();
70 }
71
End()72 void End() {
73 builder_->GetDebugInfo()->End();
74 builder_->WriteSection(".debug_abbrev", &debug_abbrev_buffer_);
75 if (!debug_loc_.empty()) {
76 builder_->WriteSection(".debug_loc", &debug_loc_);
77 }
78 if (!debug_ranges_.empty()) {
79 builder_->WriteSection(".debug_ranges", &debug_ranges_);
80 }
81 }
82
83 private:
84 ElfBuilder<ElfTypes>* builder_;
85 std::vector<uint8_t> debug_abbrev_buffer_;
86 dwarf::DebugAbbrevWriter<> debug_abbrev_;
87 std::vector<uint8_t> debug_loc_;
88 std::vector<uint8_t> debug_ranges_;
89
90 std::unordered_set<const char*> defined_dex_classes_; // For CHECKs only.
91
92 template<typename ElfTypes2>
93 friend class ElfCompilationUnitWriter;
94 };
95
96 // Helper class to write one compilation unit.
97 // It holds helper methods and temporary state.
98 template<typename ElfTypes>
99 class ElfCompilationUnitWriter {
100 using Elf_Addr = typename ElfTypes::Addr;
101
102 public:
ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes> * owner)103 explicit ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes>* owner)
104 : owner_(owner),
105 info_(Is64BitInstructionSet(owner_->builder_->GetIsa()), &owner->debug_abbrev_) {
106 }
107
Write(const ElfCompilationUnit & compilation_unit)108 void Write(const ElfCompilationUnit& compilation_unit) {
109 CHECK(!compilation_unit.methods.empty());
110 const Elf_Addr base_address = compilation_unit.is_code_address_text_relative
111 ? owner_->builder_->GetText()->GetAddress()
112 : 0;
113 const bool is64bit = Is64BitInstructionSet(owner_->builder_->GetIsa());
114 using namespace dwarf; // NOLINT. For easy access to DWARF constants.
115
116 info_.StartTag(DW_TAG_compile_unit);
117 info_.WriteString(DW_AT_producer, "Android dex2oat");
118 info_.WriteData1(DW_AT_language, DW_LANG_Java);
119 info_.WriteString(DW_AT_comp_dir, "$JAVA_SRC_ROOT");
120 // The low_pc acts as base address for several other addresses/ranges.
121 info_.WriteAddr(DW_AT_low_pc, base_address + compilation_unit.code_address);
122 info_.WriteSecOffset(DW_AT_stmt_list, compilation_unit.debug_line_offset);
123
124 // Write .debug_ranges entries covering code ranges of the whole compilation unit.
125 dwarf::Writer<> debug_ranges(&owner_->debug_ranges_);
126 info_.WriteSecOffset(DW_AT_ranges, owner_->debug_ranges_.size());
127 for (auto mi : compilation_unit.methods) {
128 uint64_t low_pc = mi->code_address - compilation_unit.code_address;
129 uint64_t high_pc = low_pc + mi->code_size;
130 if (is64bit) {
131 debug_ranges.PushUint64(low_pc);
132 debug_ranges.PushUint64(high_pc);
133 } else {
134 debug_ranges.PushUint32(low_pc);
135 debug_ranges.PushUint32(high_pc);
136 }
137 }
138 if (is64bit) {
139 debug_ranges.PushUint64(0); // End of list.
140 debug_ranges.PushUint64(0);
141 } else {
142 debug_ranges.PushUint32(0); // End of list.
143 debug_ranges.PushUint32(0);
144 }
145
146 const char* last_dex_class_desc = nullptr;
147 for (auto mi : compilation_unit.methods) {
148 DCHECK(mi->dex_file != nullptr);
149 const DexFile* dex = mi->dex_file;
150 CodeItemDebugInfoAccessor accessor(*dex, mi->code_item, mi->dex_method_index);
151 const dex::MethodId& dex_method = dex->GetMethodId(mi->dex_method_index);
152 const dex::ProtoId& dex_proto = dex->GetMethodPrototype(dex_method);
153 const dex::TypeList* dex_params = dex->GetProtoParameters(dex_proto);
154 const char* dex_class_desc = dex->GetMethodDeclaringClassDescriptor(dex_method);
155 const bool is_static = (mi->access_flags & kAccStatic) != 0;
156
157 // Enclose the method in correct class definition.
158 if (last_dex_class_desc != dex_class_desc) {
159 if (last_dex_class_desc != nullptr) {
160 EndClassTag();
161 }
162 // Write reference tag for the class we are about to declare.
163 size_t reference_tag_offset = info_.StartTag(DW_TAG_reference_type);
164 type_cache_.emplace(std::string(dex_class_desc), reference_tag_offset);
165 size_t type_attrib_offset = info_.size();
166 info_.WriteRef4(DW_AT_type, 0);
167 info_.EndTag();
168 // Declare the class that owns this method.
169 size_t class_offset = StartClassTag(dex_class_desc);
170 info_.UpdateUint32(type_attrib_offset, class_offset);
171 info_.WriteFlagPresent(DW_AT_declaration);
172 // Check that each class is defined only once.
173 bool unique = owner_->defined_dex_classes_.insert(dex_class_desc).second;
174 CHECK(unique) << "Redefinition of " << dex_class_desc;
175 last_dex_class_desc = dex_class_desc;
176 }
177
178 int start_depth = info_.Depth();
179 info_.StartTag(DW_TAG_subprogram);
180 WriteName(dex->GetMethodName(dex_method));
181 info_.WriteAddr(DW_AT_low_pc, base_address + mi->code_address);
182 info_.WriteUdata(DW_AT_high_pc, mi->code_size);
183 std::vector<uint8_t> expr_buffer;
184 Expression expr(&expr_buffer);
185 expr.WriteOpCallFrameCfa();
186 info_.WriteExprLoc(DW_AT_frame_base, expr);
187 WriteLazyType(dex->GetReturnTypeDescriptor(dex_proto));
188
189 // Decode dex register locations for all stack maps.
190 // It might be expensive, so do it just once and reuse the result.
191 std::unique_ptr<const CodeInfo> code_info;
192 std::vector<DexRegisterMap> dex_reg_maps;
193 if (accessor.HasCodeItem() && mi->code_info != nullptr) {
194 code_info.reset(new CodeInfo(mi->code_info));
195 for (StackMap stack_map : code_info->GetStackMaps()) {
196 dex_reg_maps.push_back(code_info->GetDexRegisterMapOf(stack_map));
197 }
198 }
199
200 // Write parameters. DecodeDebugLocalInfo returns them as well, but it does not
201 // guarantee order or uniqueness so it is safer to iterate over them manually.
202 // DecodeDebugLocalInfo might not also be available if there is no debug info.
203 std::vector<const char*> param_names = GetParamNames(mi);
204 uint32_t arg_reg = 0;
205 if (!is_static) {
206 info_.StartTag(DW_TAG_formal_parameter);
207 WriteName("this");
208 info_.WriteFlagPresent(DW_AT_artificial);
209 WriteLazyType(dex_class_desc);
210 if (accessor.HasCodeItem()) {
211 // Write the stack location of the parameter.
212 const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg;
213 const bool is64bitValue = false;
214 WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
215 }
216 arg_reg++;
217 info_.EndTag();
218 }
219 if (dex_params != nullptr) {
220 for (uint32_t i = 0; i < dex_params->Size(); ++i) {
221 info_.StartTag(DW_TAG_formal_parameter);
222 // Parameter names may not be always available.
223 if (i < param_names.size()) {
224 WriteName(param_names[i]);
225 }
226 // Write the type.
227 const char* type_desc = dex->StringByTypeIdx(dex_params->GetTypeItem(i).type_idx_);
228 WriteLazyType(type_desc);
229 const bool is64bitValue = type_desc[0] == 'D' || type_desc[0] == 'J';
230 if (accessor.HasCodeItem()) {
231 // Write the stack location of the parameter.
232 const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg;
233 WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
234 }
235 arg_reg += is64bitValue ? 2 : 1;
236 info_.EndTag();
237 }
238 if (accessor.HasCodeItem()) {
239 DCHECK_EQ(arg_reg, accessor.InsSize());
240 }
241 }
242
243 // Write local variables.
244 std::vector<DexFile::LocalInfo> local_infos;
245 if (accessor.DecodeDebugLocalInfo(is_static,
246 mi->dex_method_index,
247 [&](const DexFile::LocalInfo& entry) {
248 local_infos.push_back(entry);
249 })) {
250 for (const DexFile::LocalInfo& var : local_infos) {
251 if (var.reg_ < accessor.RegistersSize() - accessor.InsSize()) {
252 info_.StartTag(DW_TAG_variable);
253 WriteName(var.name_);
254 WriteLazyType(var.descriptor_);
255 bool is64bitValue = var.descriptor_[0] == 'D' || var.descriptor_[0] == 'J';
256 WriteRegLocation(mi,
257 dex_reg_maps,
258 var.reg_,
259 is64bitValue,
260 compilation_unit.code_address,
261 var.start_address_,
262 var.end_address_);
263 info_.EndTag();
264 }
265 }
266 }
267
268 info_.EndTag();
269 CHECK_EQ(info_.Depth(), start_depth); // Balanced start/end.
270 }
271 if (last_dex_class_desc != nullptr) {
272 EndClassTag();
273 }
274 FinishLazyTypes();
275 CloseNamespacesAboveDepth(0);
276 info_.EndTag(); // DW_TAG_compile_unit
277 CHECK_EQ(info_.Depth(), 0);
278 std::vector<uint8_t> buffer;
279 buffer.reserve(info_.data()->size() + KB);
280 // All compilation units share single table which is at the start of .debug_abbrev.
281 const size_t debug_abbrev_offset = 0;
282 WriteDebugInfoCU(debug_abbrev_offset, info_, &buffer);
283 owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
284 }
285
Write(const ArrayRef<mirror::Class * > & types)286 void Write(const ArrayRef<mirror::Class*>& types) REQUIRES_SHARED(Locks::mutator_lock_) {
287 using namespace dwarf; // NOLINT. For easy access to DWARF constants.
288
289 info_.StartTag(DW_TAG_compile_unit);
290 info_.WriteString(DW_AT_producer, "Android dex2oat");
291 info_.WriteData1(DW_AT_language, DW_LANG_Java);
292
293 // Base class references to be patched at the end.
294 std::map<size_t, mirror::Class*> base_class_references;
295
296 // Already written declarations or definitions.
297 std::map<mirror::Class*, size_t> class_declarations;
298
299 std::vector<uint8_t> expr_buffer;
300 for (mirror::Class* type : types) {
301 if (type->IsPrimitive()) {
302 // For primitive types the definition and the declaration is the same.
303 if (type->GetPrimitiveType() != Primitive::kPrimVoid) {
304 WriteTypeDeclaration(type->GetDescriptor(nullptr));
305 }
306 } else if (type->IsArrayClass()) {
307 ObjPtr<mirror::Class> element_type = type->GetComponentType();
308 uint32_t component_size = type->GetComponentSize();
309 uint32_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value();
310 uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
311
312 CloseNamespacesAboveDepth(0); // Declare in root namespace.
313 info_.StartTag(DW_TAG_array_type);
314 std::string descriptor_string;
315 WriteLazyType(element_type->GetDescriptor(&descriptor_string));
316 WriteLinkageName(type);
317 info_.WriteUdata(DW_AT_data_member_location, data_offset);
318 info_.StartTag(DW_TAG_subrange_type);
319 Expression count_expr(&expr_buffer);
320 count_expr.WriteOpPushObjectAddress();
321 count_expr.WriteOpPlusUconst(length_offset);
322 count_expr.WriteOpDerefSize(4); // Array length is always 32-bit wide.
323 info_.WriteExprLoc(DW_AT_count, count_expr);
324 info_.EndTag(); // DW_TAG_subrange_type.
325 info_.EndTag(); // DW_TAG_array_type.
326 } else if (type->IsInterface()) {
327 // Skip. Variables cannot have an interface as a dynamic type.
328 // We do not expose the interface information to the debugger in any way.
329 } else {
330 std::string descriptor_string;
331 const char* desc = type->GetDescriptor(&descriptor_string);
332 size_t class_offset = StartClassTag(desc);
333 class_declarations.emplace(type, class_offset);
334
335 if (!type->IsVariableSize()) {
336 info_.WriteUdata(DW_AT_byte_size, type->GetObjectSize());
337 }
338
339 WriteLinkageName(type);
340
341 if (type->IsObjectClass()) {
342 // Generate artificial member which is used to get the dynamic type of variable.
343 // The run-time value of this field will correspond to linkage name of some type.
344 // We need to do it only once in j.l.Object since all other types inherit it.
345 info_.StartTag(DW_TAG_member);
346 WriteName(".dynamic_type");
347 WriteLazyType(sizeof(uintptr_t) == 8 ? "J" : "I");
348 info_.WriteFlagPresent(DW_AT_artificial);
349 // Create DWARF expression to get the value of the methods_ field.
350 Expression expr(&expr_buffer);
351 // The address of the object has been implicitly pushed on the stack.
352 // Dereference the klass_ field of Object (32-bit; possibly poisoned).
353 DCHECK_EQ(type->ClassOffset().Uint32Value(), 0u);
354 DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Class>), 4u);
355 expr.WriteOpDerefSize(4);
356 if (kPoisonHeapReferences) {
357 expr.WriteOpNeg();
358 // DWARF stack is pointer sized. Ensure that the high bits are clear.
359 expr.WriteOpConstu(0xFFFFFFFF);
360 expr.WriteOpAnd();
361 }
362 // Add offset to the methods_ field.
363 expr.WriteOpPlusUconst(mirror::Class::MethodsOffset().Uint32Value());
364 // Top of stack holds the location of the field now.
365 info_.WriteExprLoc(DW_AT_data_member_location, expr);
366 info_.EndTag(); // DW_TAG_member.
367 }
368
369 // Base class.
370 ObjPtr<mirror::Class> base_class = type->GetSuperClass();
371 if (base_class != nullptr) {
372 info_.StartTag(DW_TAG_inheritance);
373 base_class_references.emplace(info_.size(), base_class.Ptr());
374 info_.WriteRef4(DW_AT_type, 0);
375 info_.WriteUdata(DW_AT_data_member_location, 0);
376 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
377 info_.EndTag(); // DW_TAG_inheritance.
378 }
379
380 // Member variables.
381 for (uint32_t i = 0, count = type->NumInstanceFields(); i < count; ++i) {
382 ArtField* field = type->GetInstanceField(i);
383 info_.StartTag(DW_TAG_member);
384 WriteName(field->GetName());
385 WriteLazyType(field->GetTypeDescriptor());
386 info_.WriteUdata(DW_AT_data_member_location, field->GetOffset().Uint32Value());
387 uint32_t access_flags = field->GetAccessFlags();
388 if (access_flags & kAccPublic) {
389 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
390 } else if (access_flags & kAccProtected) {
391 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_protected);
392 } else if (access_flags & kAccPrivate) {
393 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
394 }
395 info_.EndTag(); // DW_TAG_member.
396 }
397
398 if (type->IsStringClass()) {
399 // Emit debug info about an artifical class member for java.lang.String which represents
400 // the first element of the data stored in a string instance. Consumers of the debug
401 // info will be able to read the content of java.lang.String based on the count (real
402 // field) and based on the location of this data member.
403 info_.StartTag(DW_TAG_member);
404 WriteName("value");
405 // We don't support fields with C like array types so we just say its type is java char.
406 WriteLazyType("C"); // char.
407 info_.WriteUdata(DW_AT_data_member_location,
408 mirror::String::ValueOffset().Uint32Value());
409 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
410 info_.EndTag(); // DW_TAG_member.
411 }
412
413 EndClassTag();
414 }
415 }
416
417 // Write base class declarations.
418 for (const auto& base_class_reference : base_class_references) {
419 size_t reference_offset = base_class_reference.first;
420 mirror::Class* base_class = base_class_reference.second;
421 const auto it = class_declarations.find(base_class);
422 if (it != class_declarations.end()) {
423 info_.UpdateUint32(reference_offset, it->second);
424 } else {
425 // Declare base class. We can not use the standard WriteLazyType
426 // since we want to avoid the DW_TAG_reference_tag wrapping.
427 std::string tmp_storage;
428 const char* base_class_desc = base_class->GetDescriptor(&tmp_storage);
429 size_t base_class_declaration_offset = StartClassTag(base_class_desc);
430 info_.WriteFlagPresent(DW_AT_declaration);
431 WriteLinkageName(base_class);
432 EndClassTag();
433 class_declarations.emplace(base_class, base_class_declaration_offset);
434 info_.UpdateUint32(reference_offset, base_class_declaration_offset);
435 }
436 }
437
438 FinishLazyTypes();
439 CloseNamespacesAboveDepth(0);
440 info_.EndTag(); // DW_TAG_compile_unit.
441 CHECK_EQ(info_.Depth(), 0);
442 std::vector<uint8_t> buffer;
443 buffer.reserve(info_.data()->size() + KB);
444 // All compilation units share single table which is at the start of .debug_abbrev.
445 const size_t debug_abbrev_offset = 0;
446 WriteDebugInfoCU(debug_abbrev_offset, info_, &buffer);
447 owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
448 }
449
450 // Write table into .debug_loc which describes location of dex register.
451 // The dex register might be valid only at some points and it might
452 // move between machine registers and stack.
453 void WriteRegLocation(const MethodDebugInfo* method_info,
454 const std::vector<DexRegisterMap>& dex_register_maps,
455 uint16_t vreg,
456 bool is64bitValue,
457 uint64_t compilation_unit_code_address,
458 uint32_t dex_pc_low = 0,
459 uint32_t dex_pc_high = 0xFFFFFFFF) {
460 WriteDebugLocEntry(method_info,
461 dex_register_maps,
462 vreg,
463 is64bitValue,
464 compilation_unit_code_address,
465 dex_pc_low,
466 dex_pc_high,
467 owner_->builder_->GetIsa(),
468 &info_,
469 &owner_->debug_loc_,
470 &owner_->debug_ranges_);
471 }
472
473 // Linkage name uniquely identifies type.
474 // It is used to determine the dynamic type of objects.
475 // We use the methods_ field of class since it is unique and it is not moved by the GC.
WriteLinkageName(mirror::Class * type)476 void WriteLinkageName(mirror::Class* type) REQUIRES_SHARED(Locks::mutator_lock_) {
477 auto* methods_ptr = type->GetMethodsPtr();
478 if (methods_ptr == nullptr) {
479 // Some types might have no methods. Allocate empty array instead.
480 LinearAlloc* allocator = Runtime::Current()->GetLinearAlloc();
481 void* storage = allocator->Alloc(Thread::Current(), sizeof(LengthPrefixedArray<ArtMethod>));
482 methods_ptr = new (storage) LengthPrefixedArray<ArtMethod>(0);
483 type->SetMethodsPtr(methods_ptr, 0, 0);
484 DCHECK(type->GetMethodsPtr() != nullptr);
485 }
486 char name[32];
487 snprintf(name, sizeof(name), "0x%" PRIXPTR, reinterpret_cast<uintptr_t>(methods_ptr));
488 info_.WriteString(dwarf::DW_AT_linkage_name, name);
489 }
490
491 // Some types are difficult to define as we go since they need
492 // to be enclosed in the right set of namespaces. Therefore we
493 // just define all types lazily at the end of compilation unit.
WriteLazyType(const char * type_descriptor)494 void WriteLazyType(const char* type_descriptor) {
495 if (type_descriptor != nullptr && type_descriptor[0] != 'V') {
496 lazy_types_.emplace(std::string(type_descriptor), info_.size());
497 info_.WriteRef4(dwarf::DW_AT_type, 0);
498 }
499 }
500
FinishLazyTypes()501 void FinishLazyTypes() {
502 for (const auto& lazy_type : lazy_types_) {
503 info_.UpdateUint32(lazy_type.second, WriteTypeDeclaration(lazy_type.first));
504 }
505 lazy_types_.clear();
506 }
507
508 private:
WriteName(const char * name)509 void WriteName(const char* name) {
510 if (name != nullptr) {
511 info_.WriteString(dwarf::DW_AT_name, name);
512 }
513 }
514
515 // Convert dex type descriptor to DWARF.
516 // Returns offset in the compilation unit.
WriteTypeDeclaration(const std::string & desc)517 size_t WriteTypeDeclaration(const std::string& desc) {
518 using namespace dwarf; // NOLINT. For easy access to DWARF constants.
519
520 DCHECK(!desc.empty());
521 const auto it = type_cache_.find(desc);
522 if (it != type_cache_.end()) {
523 return it->second;
524 }
525
526 size_t offset;
527 if (desc[0] == 'L') {
528 // Class type. For example: Lpackage/name;
529 size_t class_offset = StartClassTag(desc.c_str());
530 info_.WriteFlagPresent(DW_AT_declaration);
531 EndClassTag();
532 // Reference to the class type.
533 offset = info_.StartTag(DW_TAG_reference_type);
534 info_.WriteRef(DW_AT_type, class_offset);
535 info_.EndTag();
536 } else if (desc[0] == '[') {
537 // Array type.
538 size_t element_type = WriteTypeDeclaration(desc.substr(1));
539 CloseNamespacesAboveDepth(0); // Declare in root namespace.
540 size_t array_type = info_.StartTag(DW_TAG_array_type);
541 info_.WriteFlagPresent(DW_AT_declaration);
542 info_.WriteRef(DW_AT_type, element_type);
543 info_.EndTag();
544 offset = info_.StartTag(DW_TAG_reference_type);
545 info_.WriteRef4(DW_AT_type, array_type);
546 info_.EndTag();
547 } else {
548 // Primitive types.
549 DCHECK_EQ(desc.size(), 1u);
550
551 const char* name;
552 uint32_t encoding;
553 uint32_t byte_size;
554 switch (desc[0]) {
555 case 'B':
556 name = "byte";
557 encoding = DW_ATE_signed;
558 byte_size = 1;
559 break;
560 case 'C':
561 name = "char";
562 encoding = DW_ATE_UTF;
563 byte_size = 2;
564 break;
565 case 'D':
566 name = "double";
567 encoding = DW_ATE_float;
568 byte_size = 8;
569 break;
570 case 'F':
571 name = "float";
572 encoding = DW_ATE_float;
573 byte_size = 4;
574 break;
575 case 'I':
576 name = "int";
577 encoding = DW_ATE_signed;
578 byte_size = 4;
579 break;
580 case 'J':
581 name = "long";
582 encoding = DW_ATE_signed;
583 byte_size = 8;
584 break;
585 case 'S':
586 name = "short";
587 encoding = DW_ATE_signed;
588 byte_size = 2;
589 break;
590 case 'Z':
591 name = "boolean";
592 encoding = DW_ATE_boolean;
593 byte_size = 1;
594 break;
595 case 'V':
596 LOG(FATAL) << "Void type should not be encoded";
597 UNREACHABLE();
598 default:
599 LOG(FATAL) << "Unknown dex type descriptor: \"" << desc << "\"";
600 UNREACHABLE();
601 }
602 CloseNamespacesAboveDepth(0); // Declare in root namespace.
603 offset = info_.StartTag(DW_TAG_base_type);
604 WriteName(name);
605 info_.WriteData1(DW_AT_encoding, encoding);
606 info_.WriteData1(DW_AT_byte_size, byte_size);
607 info_.EndTag();
608 }
609
610 type_cache_.emplace(desc, offset);
611 return offset;
612 }
613
614 // Start DW_TAG_class_type tag nested in DW_TAG_namespace tags.
615 // Returns offset of the class tag in the compilation unit.
StartClassTag(const char * desc)616 size_t StartClassTag(const char* desc) {
617 std::string name = SetNamespaceForClass(desc);
618 size_t offset = info_.StartTag(dwarf::DW_TAG_class_type);
619 WriteName(name.c_str());
620 return offset;
621 }
622
EndClassTag()623 void EndClassTag() {
624 info_.EndTag();
625 }
626
627 // Set the current namespace nesting to one required by the given class.
628 // Returns the class name with namespaces, 'L', and ';' stripped.
SetNamespaceForClass(const char * desc)629 std::string SetNamespaceForClass(const char* desc) {
630 DCHECK(desc != nullptr && desc[0] == 'L');
631 desc++; // Skip the initial 'L'.
632 size_t depth = 0;
633 for (const char* end; (end = strchr(desc, '/')) != nullptr; desc = end + 1, ++depth) {
634 // Check whether the name at this depth is already what we need.
635 if (depth < current_namespace_.size()) {
636 const std::string& name = current_namespace_[depth];
637 if (name.compare(0, name.size(), desc, end - desc) == 0) {
638 continue;
639 }
640 }
641 // Otherwise we need to open a new namespace tag at this depth.
642 CloseNamespacesAboveDepth(depth);
643 info_.StartTag(dwarf::DW_TAG_namespace);
644 std::string name(desc, end - desc);
645 WriteName(name.c_str());
646 current_namespace_.push_back(std::move(name));
647 }
648 CloseNamespacesAboveDepth(depth);
649 return std::string(desc, strchr(desc, ';') - desc);
650 }
651
652 // Close namespace tags to reach the given nesting depth.
CloseNamespacesAboveDepth(size_t depth)653 void CloseNamespacesAboveDepth(size_t depth) {
654 DCHECK_LE(depth, current_namespace_.size());
655 while (current_namespace_.size() > depth) {
656 info_.EndTag();
657 current_namespace_.pop_back();
658 }
659 }
660
661 // For access to the ELF sections.
662 ElfDebugInfoWriter<ElfTypes>* owner_;
663 // Temporary buffer to create and store the entries.
664 dwarf::DebugInfoEntryWriter<> info_;
665 // Cache of already translated type descriptors.
666 std::map<std::string, size_t> type_cache_; // type_desc -> definition_offset.
667 // 32-bit references which need to be resolved to a type later.
668 // Given type may be used multiple times. Therefore we need a multimap.
669 std::multimap<std::string, size_t> lazy_types_; // type_desc -> patch_offset.
670 // The current set of open namespace tags which are active and not closed yet.
671 std::vector<std::string> current_namespace_;
672 };
673
674 } // namespace debug
675 } // namespace art
676
677 #endif // ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
678
679