1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4 © Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6
7 1. INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33
34 2. COPYRIGHT LICENSE
35
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60
61 3. NO PATENT LICENSE
62
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70
71 4. DISCLAIMER
72
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83
84 5. CONTACT INFORMATION
85
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94
95 /*********************** MPEG surround encoder library *************************
96
97 Author(s): Josef Hoepfl
98
99 Description: Encoder Library Interface
100 vector functions
101
102 *******************************************************************************/
103
104 /*****************************************************************************
105 \file
106 This file contains vector functions
107 ******************************************************************************/
108
109 /* Includes ******************************************************************/
110 #include "sacenc_vectorfunctions.h"
111
112 /* Defines *******************************************************************/
113
114 /* Data Types ****************************************************************/
115
116 /* Constants *****************************************************************/
117
118 /* Function / Class Declarations *********************************************/
119
120 /* Function / Class Definition ***********************************************/
121
sumUpCplxPow2(const FIXP_DPK * const x,const INT scaleMode,const INT inScaleFactor,INT * const outScaleFactor,const INT n)122 FIXP_DBL sumUpCplxPow2(const FIXP_DPK *const x, const INT scaleMode,
123 const INT inScaleFactor, INT *const outScaleFactor,
124 const INT n) {
125 int i, cs;
126
127 if (scaleMode == SUM_UP_DYNAMIC_SCALE) {
128 /* calculate headroom */
129 FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f);
130 for (i = 0; i < n; i++) {
131 maxVal |= fAbs(x[i].v.re);
132 maxVal |= fAbs(x[i].v.im);
133 }
134 cs = inScaleFactor - fixMax(0, CntLeadingZeros(maxVal) - 1);
135 } else {
136 cs = inScaleFactor;
137 }
138
139 /* consider scaling of energy and scaling in fPow2Div2 and addition */
140 *outScaleFactor = 2 * cs + 2;
141
142 /* make sure that the scalefactor is in the range of -(DFRACT_BITS-1), ... ,
143 * (DFRACT_BITS-1) */
144 cs = fixMax(fixMin(cs, DFRACT_BITS - 1), -(DFRACT_BITS - 1));
145
146 /* sum up complex energy samples */
147 FIXP_DBL re, im, sum;
148
149 re = im = sum = FL2FXCONST_DBL(0.0);
150 if (cs < 0) {
151 cs = -cs;
152 for (i = 0; i < n; i++) {
153 re += fPow2Div2(x[i].v.re << cs);
154 im += fPow2Div2(x[i].v.im << cs);
155 }
156 } else {
157 cs = 2 * cs;
158 for (i = 0; i < n; i++) {
159 re += fPow2Div2(x[i].v.re) >> cs;
160 im += fPow2Div2(x[i].v.im) >> cs;
161 }
162 }
163
164 sum = (re >> 1) + (im >> 1);
165
166 return (sum);
167 }
168
sumUpCplxPow2Dim2(const FIXP_DPK * const * const x,const INT scaleMode,const INT inScaleFactor,INT * const outScaleFactor,const INT sDim1,const INT nDim1,const INT sDim2,const INT nDim2)169 FIXP_DBL sumUpCplxPow2Dim2(const FIXP_DPK *const *const x, const INT scaleMode,
170 const INT inScaleFactor, INT *const outScaleFactor,
171 const INT sDim1, const INT nDim1, const INT sDim2,
172 const INT nDim2) {
173 int i, j, cs;
174
175 if (scaleMode == SUM_UP_DYNAMIC_SCALE) {
176 /* calculate headroom */
177 FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f);
178 for (i = sDim1; i < nDim1; i++) {
179 for (j = sDim2; j < nDim2; j++) {
180 maxVal |= fAbs(x[i][j].v.re);
181 maxVal |= fAbs(x[i][j].v.im);
182 }
183 }
184 cs = inScaleFactor - fixMax(0, CntLeadingZeros(maxVal) - 1);
185 } else {
186 cs = inScaleFactor;
187 }
188
189 /* consider scaling of energy and scaling in fPow2Div2 and addition */
190 *outScaleFactor = 2 * cs + 2;
191
192 /* make sure that the scalefactor is in the range of -(DFRACT_BITS-1), ... ,
193 * (DFRACT_BITS-1) */
194 cs = fixMax(fixMin(cs, DFRACT_BITS - 1), -(DFRACT_BITS - 1));
195
196 /* sum up complex energy samples */
197 FIXP_DBL re, im, sum;
198
199 re = im = sum = FL2FXCONST_DBL(0.0);
200 if (cs < 0) {
201 cs = -cs;
202 for (i = sDim1; i < nDim1; i++) {
203 for (j = sDim2; j < nDim2; j++) {
204 re += fPow2Div2(x[i][j].v.re << cs);
205 im += fPow2Div2(x[i][j].v.im << cs);
206 }
207 }
208 } else {
209 cs = 2 * cs;
210 for (i = sDim1; i < nDim1; i++) {
211 for (j = sDim2; j < nDim2; j++) {
212 re += fPow2Div2(x[i][j].v.re) >> cs;
213 im += fPow2Div2(x[i][j].v.im) >> cs;
214 }
215 }
216 }
217
218 sum = (re >> 1) + (im >> 1);
219
220 return (sum);
221 }
222
copyCplxVec(FIXP_DPK * const Z,const FIXP_DPK * const X,const INT n)223 void copyCplxVec(FIXP_DPK *const Z, const FIXP_DPK *const X, const INT n) {
224 FDKmemmove(Z, X, sizeof(FIXP_DPK) * n);
225 }
226
setCplxVec(FIXP_DPK * const Z,const FIXP_DBL a,const INT n)227 void setCplxVec(FIXP_DPK *const Z, const FIXP_DBL a, const INT n) {
228 int i;
229
230 for (i = 0; i < n; i++) {
231 Z[i].v.re = a;
232 Z[i].v.im = a;
233 }
234 }
235
cplx_cplxScalarProduct(FIXP_DPK * const Z,const FIXP_DPK * const * const X,const FIXP_DPK * const * const Y,const INT scaleX,const INT scaleY,INT * const scaleZ,const INT sDim1,const INT nDim1,const INT sDim2,const INT nDim2)236 void cplx_cplxScalarProduct(FIXP_DPK *const Z, const FIXP_DPK *const *const X,
237 const FIXP_DPK *const *const Y, const INT scaleX,
238 const INT scaleY, INT *const scaleZ,
239 const INT sDim1, const INT nDim1, const INT sDim2,
240 const INT nDim2) {
241 int i, j, sx, sy;
242 FIXP_DBL xre, yre, xim, yim, re, im;
243
244 /* make sure that the scalefactor is in the range of -(DFRACT_BITS-1), ... ,
245 * (DFRACT_BITS-1) */
246 sx = fixMax(fixMin(scaleX, DFRACT_BITS - 1), -(DFRACT_BITS - 1));
247 sy = fixMax(fixMin(scaleY, DFRACT_BITS - 1), -(DFRACT_BITS - 1));
248
249 /* consider scaling of energy and scaling in fMultDiv2 and shift of result
250 * values */
251 *scaleZ = sx + sy + 2;
252
253 re = (FIXP_DBL)0;
254 im = (FIXP_DBL)0;
255 if ((sx < 0) && (sy < 0)) {
256 sx = -sx;
257 sy = -sy;
258 for (i = sDim1; i < nDim1; i++) {
259 for (j = sDim2; j < nDim2; j++) {
260 xre = X[i][j].v.re << sx;
261 xim = X[i][j].v.im << sx;
262 yre = Y[i][j].v.re << sy;
263 yim = Y[i][j].v.im << sy;
264 re += fMultDiv2(xre, yre) + fMultDiv2(xim, yim);
265 im += fMultDiv2(xim, yre) - fMultDiv2(xre, yim);
266 }
267 }
268 } else if ((sx >= 0) && (sy >= 0)) {
269 for (i = sDim1; i < nDim1; i++) {
270 for (j = sDim2; j < nDim2; j++) {
271 xre = X[i][j].v.re;
272 xim = X[i][j].v.im;
273 yre = Y[i][j].v.re;
274 yim = Y[i][j].v.im;
275 re += (fMultDiv2(xre, yre) + fMultDiv2(xim, yim)) >> (sx + sy);
276 im += (fMultDiv2(xim, yre) - fMultDiv2(xre, yim)) >> (sx + sy);
277 }
278 }
279 } else if ((sx < 0) && (sy >= 0)) {
280 sx = -sx;
281 for (i = sDim1; i < nDim1; i++) {
282 for (j = sDim2; j < nDim2; j++) {
283 xre = X[i][j].v.re << sx;
284 xim = X[i][j].v.im << sx;
285 yre = Y[i][j].v.re;
286 yim = Y[i][j].v.im;
287 re += (fMultDiv2(xre, yre) + fMultDiv2(xim, yim)) >> sy;
288 im += (fMultDiv2(xim, yre) - fMultDiv2(xre, yim)) >> sy;
289 }
290 }
291 } else {
292 sy = -sy;
293 for (i = sDim1; i < nDim1; i++) {
294 for (j = sDim2; j < nDim2; j++) {
295 xre = X[i][j].v.re;
296 xim = X[i][j].v.im;
297 yre = Y[i][j].v.re << sy;
298 yim = Y[i][j].v.im << sy;
299 re += (fMultDiv2(xre, yre) + fMultDiv2(xim, yim)) >> sx;
300 im += (fMultDiv2(xim, yre) - fMultDiv2(xre, yim)) >> sx;
301 }
302 }
303 }
304
305 Z->v.re = re >> 1;
306 Z->v.im = im >> 1;
307 }
308
FDKcalcCorrelationVec(FIXP_DBL * const z,const FIXP_DBL * const pr12,const FIXP_DBL * const p1,const FIXP_DBL * const p2,const INT n)309 void FDKcalcCorrelationVec(FIXP_DBL *const z, const FIXP_DBL *const pr12,
310 const FIXP_DBL *const p1, const FIXP_DBL *const p2,
311 const INT n) {
312 int i, s;
313 FIXP_DBL p12, cor;
314
315 /* correlation */
316 for (i = 0; i < n; i++) {
317 p12 = fMult(p1[i], p2[i]);
318 if (p12 > FL2FXCONST_DBL(0.0f)) {
319 p12 = invSqrtNorm2(p12, &s);
320 cor = fMult(pr12[i], p12);
321 z[i] = SATURATE_LEFT_SHIFT(cor, s, DFRACT_BITS);
322 } else {
323 z[i] = (FIXP_DBL)MAXVAL_DBL;
324 }
325 }
326 }
327
calcCoherenceVec(FIXP_DBL * const z,const FIXP_DBL * const p12r,const FIXP_DBL * const p12i,const FIXP_DBL * const p1,const FIXP_DBL * const p2,const INT scaleP12,const INT scaleP,const INT n)328 void calcCoherenceVec(FIXP_DBL *const z, const FIXP_DBL *const p12r,
329 const FIXP_DBL *const p12i, const FIXP_DBL *const p1,
330 const FIXP_DBL *const p2, const INT scaleP12,
331 const INT scaleP, const INT n) {
332 int i, s, s1, s2;
333 FIXP_DBL coh, p12, p12ri;
334
335 for (i = 0; i < n; i++) {
336 s2 = fixMin(fixMax(0, CountLeadingBits(p12r[i]) - 1),
337 fixMax(0, CountLeadingBits(p12i[i]) - 1));
338 p12ri = sqrtFixp(fPow2Div2(p12r[i] << s2) + fPow2Div2(p12i[i] << s2));
339 s1 = fixMin(fixMax(0, CountLeadingBits(p1[i]) - 1),
340 fixMax(0, CountLeadingBits(p2[i]) - 1));
341 p12 = fMultDiv2(p1[i] << s1, p2[i] << s1);
342
343 if (p12 > FL2FXCONST_DBL(0.0f)) {
344 p12 = invSqrtNorm2(p12, &s);
345 coh = fMult(p12ri, p12);
346 s = fixMax(fixMin((scaleP12 - scaleP + s + s1 - s2), DFRACT_BITS - 1),
347 -(DFRACT_BITS - 1));
348 if (s < 0) {
349 z[i] = coh >> (-s);
350 } else {
351 z[i] = SATURATE_LEFT_SHIFT(coh, s, DFRACT_BITS);
352 }
353 } else {
354 z[i] = (FIXP_DBL)MAXVAL_DBL;
355 }
356 }
357 }
358
addWeightedCplxVec(FIXP_DPK * const * const Z,const FIXP_DBL * const a,const FIXP_DPK * const * const X,const FIXP_DBL * const b,const FIXP_DPK * const * const Y,const INT scale,INT * const scaleCh1,const INT scaleCh2,const UCHAR * const pParameterBand2HybridBandOffset,const INT nParameterBands,const INT nTimeSlots,const INT startTimeSlot)359 void addWeightedCplxVec(FIXP_DPK *const *const Z, const FIXP_DBL *const a,
360 const FIXP_DPK *const *const X, const FIXP_DBL *const b,
361 const FIXP_DPK *const *const Y, const INT scale,
362 INT *const scaleCh1, const INT scaleCh2,
363 const UCHAR *const pParameterBand2HybridBandOffset,
364 const INT nParameterBands, const INT nTimeSlots,
365 const INT startTimeSlot) {
366 int pb, j, i;
367 int cs, s1, s2;
368
369 /* determine maximum scale of both channels */
370 cs = fixMax(*scaleCh1, scaleCh2);
371 s1 = cs - (*scaleCh1);
372 s2 = cs - scaleCh2;
373
374 /* scalefactor 1 is updated with common scale of channel 1 and channel2 */
375 *scaleCh1 = cs;
376
377 /* scale of a and b; additional scale for fMultDiv2() */
378 for (j = 0, pb = 0; pb < nParameterBands; pb++) {
379 FIXP_DBL aPb, bPb;
380 aPb = a[pb], bPb = b[pb];
381 for (; j < pParameterBand2HybridBandOffset[pb]; j++) {
382 for (i = startTimeSlot; i < nTimeSlots; i++) {
383 Z[j][i].v.re = ((fMultDiv2(aPb, X[j][i].v.re) >> s1) +
384 (fMultDiv2(bPb, Y[j][i].v.re) >> s2))
385 << (scale + 1);
386 Z[j][i].v.im = ((fMultDiv2(aPb, X[j][i].v.im) >> s1) +
387 (fMultDiv2(bPb, Y[j][i].v.im) >> s2))
388 << (scale + 1);
389 }
390 }
391 }
392 }
393
FDKcalcPbScaleFactor(const FIXP_DPK * const * const x,const UCHAR * const pParameterBand2HybridBandOffset,INT * const outScaleFactor,const INT startTimeSlot,const INT nTimeSlots,const INT nParamBands)394 void FDKcalcPbScaleFactor(const FIXP_DPK *const *const x,
395 const UCHAR *const pParameterBand2HybridBandOffset,
396 INT *const outScaleFactor, const INT startTimeSlot,
397 const INT nTimeSlots, const INT nParamBands) {
398 int i, j, pb;
399
400 /* calculate headroom */
401 for (j = 0, pb = 0; pb < nParamBands; pb++) {
402 FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f);
403 for (; j < pParameterBand2HybridBandOffset[pb]; j++) {
404 for (i = startTimeSlot; i < nTimeSlots; i++) {
405 maxVal |= fAbs(x[i][j].v.re);
406 maxVal |= fAbs(x[i][j].v.im);
407 }
408 }
409 outScaleFactor[pb] = -fixMax(0, CntLeadingZeros(maxVal) - 1);
410 }
411 }
412
FDKcalcScaleFactor(const FIXP_DBL * const x,const FIXP_DBL * const y,const INT n)413 INT FDKcalcScaleFactor(const FIXP_DBL *const x, const FIXP_DBL *const y,
414 const INT n) {
415 int i;
416
417 /* calculate headroom */
418 FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f);
419 if (x != NULL) {
420 for (i = 0; i < n; i++) {
421 maxVal |= fAbs(x[i]);
422 }
423 }
424
425 if (y != NULL) {
426 for (i = 0; i < n; i++) {
427 maxVal |= fAbs(y[i]);
428 }
429 }
430
431 if (maxVal == (FIXP_DBL)0)
432 return (-(DFRACT_BITS - 1));
433 else
434 return (-CountLeadingBits(maxVal));
435 }
436
FDKcalcScaleFactorDPK(const FIXP_DPK * RESTRICT x,const INT startBand,const INT bands)437 INT FDKcalcScaleFactorDPK(const FIXP_DPK *RESTRICT x, const INT startBand,
438 const INT bands) {
439 INT qs, clz;
440 FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f);
441
442 for (qs = startBand; qs < bands; qs++) {
443 maxVal |= fAbs(x[qs].v.re);
444 maxVal |= fAbs(x[qs].v.im);
445 }
446
447 clz = -fixMax(0, CntLeadingZeros(maxVal) - 1);
448
449 return (clz);
450 }
451