1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
11 //
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time. For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
19 //
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support. In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
24 //
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated. Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time. Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
33 //
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators. More complicated operations currently require
38 // target-specific code.
39 //
40 //===----------------------------------------------------------------------===//
41
42 #include "llvm/Function.h"
43 #include "llvm/GlobalVariable.h"
44 #include "llvm/Instructions.h"
45 #include "llvm/IntrinsicInst.h"
46 #include "llvm/Operator.h"
47 #include "llvm/CodeGen/Analysis.h"
48 #include "llvm/CodeGen/FastISel.h"
49 #include "llvm/CodeGen/FunctionLoweringInfo.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/Analysis/DebugInfo.h"
54 #include "llvm/Analysis/Loads.h"
55 #include "llvm/Target/TargetData.h"
56 #include "llvm/Target/TargetInstrInfo.h"
57 #include "llvm/Target/TargetLowering.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/Debug.h"
61 using namespace llvm;
62
63 /// startNewBlock - Set the current block to which generated machine
64 /// instructions will be appended, and clear the local CSE map.
65 ///
startNewBlock()66 void FastISel::startNewBlock() {
67 LocalValueMap.clear();
68
69 EmitStartPt = 0;
70
71 // Advance the emit start point past any EH_LABEL instructions.
72 MachineBasicBlock::iterator
73 I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end();
74 while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) {
75 EmitStartPt = I;
76 ++I;
77 }
78 LastLocalValue = EmitStartPt;
79 }
80
flushLocalValueMap()81 void FastISel::flushLocalValueMap() {
82 LocalValueMap.clear();
83 LastLocalValue = EmitStartPt;
84 recomputeInsertPt();
85 }
86
hasTrivialKill(const Value * V) const87 bool FastISel::hasTrivialKill(const Value *V) const {
88 // Don't consider constants or arguments to have trivial kills.
89 const Instruction *I = dyn_cast<Instruction>(V);
90 if (!I)
91 return false;
92
93 // No-op casts are trivially coalesced by fast-isel.
94 if (const CastInst *Cast = dyn_cast<CastInst>(I))
95 if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
96 !hasTrivialKill(Cast->getOperand(0)))
97 return false;
98
99 // Only instructions with a single use in the same basic block are considered
100 // to have trivial kills.
101 return I->hasOneUse() &&
102 !(I->getOpcode() == Instruction::BitCast ||
103 I->getOpcode() == Instruction::PtrToInt ||
104 I->getOpcode() == Instruction::IntToPtr) &&
105 cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
106 }
107
getRegForValue(const Value * V)108 unsigned FastISel::getRegForValue(const Value *V) {
109 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
110 // Don't handle non-simple values in FastISel.
111 if (!RealVT.isSimple())
112 return 0;
113
114 // Ignore illegal types. We must do this before looking up the value
115 // in ValueMap because Arguments are given virtual registers regardless
116 // of whether FastISel can handle them.
117 MVT VT = RealVT.getSimpleVT();
118 if (!TLI.isTypeLegal(VT)) {
119 // Handle integer promotions, though, because they're common and easy.
120 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
121 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
122 else
123 return 0;
124 }
125
126 // Look up the value to see if we already have a register for it. We
127 // cache values defined by Instructions across blocks, and other values
128 // only locally. This is because Instructions already have the SSA
129 // def-dominates-use requirement enforced.
130 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
131 if (I != FuncInfo.ValueMap.end())
132 return I->second;
133
134 unsigned Reg = LocalValueMap[V];
135 if (Reg != 0)
136 return Reg;
137
138 // In bottom-up mode, just create the virtual register which will be used
139 // to hold the value. It will be materialized later.
140 if (isa<Instruction>(V) &&
141 (!isa<AllocaInst>(V) ||
142 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
143 return FuncInfo.InitializeRegForValue(V);
144
145 SavePoint SaveInsertPt = enterLocalValueArea();
146
147 // Materialize the value in a register. Emit any instructions in the
148 // local value area.
149 Reg = materializeRegForValue(V, VT);
150
151 leaveLocalValueArea(SaveInsertPt);
152
153 return Reg;
154 }
155
156 /// materializeRegForValue - Helper for getRegForValue. This function is
157 /// called when the value isn't already available in a register and must
158 /// be materialized with new instructions.
materializeRegForValue(const Value * V,MVT VT)159 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
160 unsigned Reg = 0;
161
162 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
163 if (CI->getValue().getActiveBits() <= 64)
164 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
165 } else if (isa<AllocaInst>(V)) {
166 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
167 } else if (isa<ConstantPointerNull>(V)) {
168 // Translate this as an integer zero so that it can be
169 // local-CSE'd with actual integer zeros.
170 Reg =
171 getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
172 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
173 if (CF->isNullValue()) {
174 Reg = TargetMaterializeFloatZero(CF);
175 } else {
176 // Try to emit the constant directly.
177 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
178 }
179
180 if (!Reg) {
181 // Try to emit the constant by using an integer constant with a cast.
182 const APFloat &Flt = CF->getValueAPF();
183 EVT IntVT = TLI.getPointerTy();
184
185 uint64_t x[2];
186 uint32_t IntBitWidth = IntVT.getSizeInBits();
187 bool isExact;
188 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
189 APFloat::rmTowardZero, &isExact);
190 if (isExact) {
191 APInt IntVal(IntBitWidth, x);
192
193 unsigned IntegerReg =
194 getRegForValue(ConstantInt::get(V->getContext(), IntVal));
195 if (IntegerReg != 0)
196 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
197 IntegerReg, /*Kill=*/false);
198 }
199 }
200 } else if (const Operator *Op = dyn_cast<Operator>(V)) {
201 if (!SelectOperator(Op, Op->getOpcode()))
202 if (!isa<Instruction>(Op) ||
203 !TargetSelectInstruction(cast<Instruction>(Op)))
204 return 0;
205 Reg = lookUpRegForValue(Op);
206 } else if (isa<UndefValue>(V)) {
207 Reg = createResultReg(TLI.getRegClassFor(VT));
208 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
209 TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
210 }
211
212 // If target-independent code couldn't handle the value, give target-specific
213 // code a try.
214 if (!Reg && isa<Constant>(V))
215 Reg = TargetMaterializeConstant(cast<Constant>(V));
216
217 // Don't cache constant materializations in the general ValueMap.
218 // To do so would require tracking what uses they dominate.
219 if (Reg != 0) {
220 LocalValueMap[V] = Reg;
221 LastLocalValue = MRI.getVRegDef(Reg);
222 }
223 return Reg;
224 }
225
lookUpRegForValue(const Value * V)226 unsigned FastISel::lookUpRegForValue(const Value *V) {
227 // Look up the value to see if we already have a register for it. We
228 // cache values defined by Instructions across blocks, and other values
229 // only locally. This is because Instructions already have the SSA
230 // def-dominates-use requirement enforced.
231 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
232 if (I != FuncInfo.ValueMap.end())
233 return I->second;
234 return LocalValueMap[V];
235 }
236
237 /// UpdateValueMap - Update the value map to include the new mapping for this
238 /// instruction, or insert an extra copy to get the result in a previous
239 /// determined register.
240 /// NOTE: This is only necessary because we might select a block that uses
241 /// a value before we select the block that defines the value. It might be
242 /// possible to fix this by selecting blocks in reverse postorder.
UpdateValueMap(const Value * I,unsigned Reg,unsigned NumRegs)243 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
244 if (!isa<Instruction>(I)) {
245 LocalValueMap[I] = Reg;
246 return;
247 }
248
249 unsigned &AssignedReg = FuncInfo.ValueMap[I];
250 if (AssignedReg == 0)
251 // Use the new register.
252 AssignedReg = Reg;
253 else if (Reg != AssignedReg) {
254 // Arrange for uses of AssignedReg to be replaced by uses of Reg.
255 for (unsigned i = 0; i < NumRegs; i++)
256 FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
257
258 AssignedReg = Reg;
259 }
260 }
261
getRegForGEPIndex(const Value * Idx)262 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
263 unsigned IdxN = getRegForValue(Idx);
264 if (IdxN == 0)
265 // Unhandled operand. Halt "fast" selection and bail.
266 return std::pair<unsigned, bool>(0, false);
267
268 bool IdxNIsKill = hasTrivialKill(Idx);
269
270 // If the index is smaller or larger than intptr_t, truncate or extend it.
271 MVT PtrVT = TLI.getPointerTy();
272 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
273 if (IdxVT.bitsLT(PtrVT)) {
274 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
275 IdxN, IdxNIsKill);
276 IdxNIsKill = true;
277 }
278 else if (IdxVT.bitsGT(PtrVT)) {
279 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
280 IdxN, IdxNIsKill);
281 IdxNIsKill = true;
282 }
283 return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
284 }
285
recomputeInsertPt()286 void FastISel::recomputeInsertPt() {
287 if (getLastLocalValue()) {
288 FuncInfo.InsertPt = getLastLocalValue();
289 FuncInfo.MBB = FuncInfo.InsertPt->getParent();
290 ++FuncInfo.InsertPt;
291 } else
292 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
293
294 // Now skip past any EH_LABELs, which must remain at the beginning.
295 while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
296 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
297 ++FuncInfo.InsertPt;
298 }
299
enterLocalValueArea()300 FastISel::SavePoint FastISel::enterLocalValueArea() {
301 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
302 DebugLoc OldDL = DL;
303 recomputeInsertPt();
304 DL = DebugLoc();
305 SavePoint SP = { OldInsertPt, OldDL };
306 return SP;
307 }
308
leaveLocalValueArea(SavePoint OldInsertPt)309 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
310 if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
311 LastLocalValue = llvm::prior(FuncInfo.InsertPt);
312
313 // Restore the previous insert position.
314 FuncInfo.InsertPt = OldInsertPt.InsertPt;
315 DL = OldInsertPt.DL;
316 }
317
318 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
319 /// which has an opcode which directly corresponds to the given ISD opcode.
320 ///
SelectBinaryOp(const User * I,unsigned ISDOpcode)321 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
322 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
323 if (VT == MVT::Other || !VT.isSimple())
324 // Unhandled type. Halt "fast" selection and bail.
325 return false;
326
327 // We only handle legal types. For example, on x86-32 the instruction
328 // selector contains all of the 64-bit instructions from x86-64,
329 // under the assumption that i64 won't be used if the target doesn't
330 // support it.
331 if (!TLI.isTypeLegal(VT)) {
332 // MVT::i1 is special. Allow AND, OR, or XOR because they
333 // don't require additional zeroing, which makes them easy.
334 if (VT == MVT::i1 &&
335 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
336 ISDOpcode == ISD::XOR))
337 VT = TLI.getTypeToTransformTo(I->getContext(), VT);
338 else
339 return false;
340 }
341
342 // Check if the first operand is a constant, and handle it as "ri". At -O0,
343 // we don't have anything that canonicalizes operand order.
344 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
345 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
346 unsigned Op1 = getRegForValue(I->getOperand(1));
347 if (Op1 == 0) return false;
348
349 bool Op1IsKill = hasTrivialKill(I->getOperand(1));
350
351 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
352 Op1IsKill, CI->getZExtValue(),
353 VT.getSimpleVT());
354 if (ResultReg == 0) return false;
355
356 // We successfully emitted code for the given LLVM Instruction.
357 UpdateValueMap(I, ResultReg);
358 return true;
359 }
360
361
362 unsigned Op0 = getRegForValue(I->getOperand(0));
363 if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail.
364 return false;
365
366 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
367
368 // Check if the second operand is a constant and handle it appropriately.
369 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
370 uint64_t Imm = CI->getZExtValue();
371
372 // Transform "sdiv exact X, 8" -> "sra X, 3".
373 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
374 cast<BinaryOperator>(I)->isExact() &&
375 isPowerOf2_64(Imm)) {
376 Imm = Log2_64(Imm);
377 ISDOpcode = ISD::SRA;
378 }
379
380 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
381 Op0IsKill, Imm, VT.getSimpleVT());
382 if (ResultReg == 0) return false;
383
384 // We successfully emitted code for the given LLVM Instruction.
385 UpdateValueMap(I, ResultReg);
386 return true;
387 }
388
389 // Check if the second operand is a constant float.
390 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
391 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
392 ISDOpcode, Op0, Op0IsKill, CF);
393 if (ResultReg != 0) {
394 // We successfully emitted code for the given LLVM Instruction.
395 UpdateValueMap(I, ResultReg);
396 return true;
397 }
398 }
399
400 unsigned Op1 = getRegForValue(I->getOperand(1));
401 if (Op1 == 0)
402 // Unhandled operand. Halt "fast" selection and bail.
403 return false;
404
405 bool Op1IsKill = hasTrivialKill(I->getOperand(1));
406
407 // Now we have both operands in registers. Emit the instruction.
408 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
409 ISDOpcode,
410 Op0, Op0IsKill,
411 Op1, Op1IsKill);
412 if (ResultReg == 0)
413 // Target-specific code wasn't able to find a machine opcode for
414 // the given ISD opcode and type. Halt "fast" selection and bail.
415 return false;
416
417 // We successfully emitted code for the given LLVM Instruction.
418 UpdateValueMap(I, ResultReg);
419 return true;
420 }
421
SelectGetElementPtr(const User * I)422 bool FastISel::SelectGetElementPtr(const User *I) {
423 unsigned N = getRegForValue(I->getOperand(0));
424 if (N == 0)
425 // Unhandled operand. Halt "fast" selection and bail.
426 return false;
427
428 bool NIsKill = hasTrivialKill(I->getOperand(0));
429
430 Type *Ty = I->getOperand(0)->getType();
431 MVT VT = TLI.getPointerTy();
432 for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
433 E = I->op_end(); OI != E; ++OI) {
434 const Value *Idx = *OI;
435 if (StructType *StTy = dyn_cast<StructType>(Ty)) {
436 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
437 if (Field) {
438 // N = N + Offset
439 uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
440 // FIXME: This can be optimized by combining the add with a
441 // subsequent one.
442 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
443 if (N == 0)
444 // Unhandled operand. Halt "fast" selection and bail.
445 return false;
446 NIsKill = true;
447 }
448 Ty = StTy->getElementType(Field);
449 } else {
450 Ty = cast<SequentialType>(Ty)->getElementType();
451
452 // If this is a constant subscript, handle it quickly.
453 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
454 if (CI->isZero()) continue;
455 uint64_t Offs =
456 TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
457 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
458 if (N == 0)
459 // Unhandled operand. Halt "fast" selection and bail.
460 return false;
461 NIsKill = true;
462 continue;
463 }
464
465 // N = N + Idx * ElementSize;
466 uint64_t ElementSize = TD.getTypeAllocSize(Ty);
467 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
468 unsigned IdxN = Pair.first;
469 bool IdxNIsKill = Pair.second;
470 if (IdxN == 0)
471 // Unhandled operand. Halt "fast" selection and bail.
472 return false;
473
474 if (ElementSize != 1) {
475 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
476 if (IdxN == 0)
477 // Unhandled operand. Halt "fast" selection and bail.
478 return false;
479 IdxNIsKill = true;
480 }
481 N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
482 if (N == 0)
483 // Unhandled operand. Halt "fast" selection and bail.
484 return false;
485 }
486 }
487
488 // We successfully emitted code for the given LLVM Instruction.
489 UpdateValueMap(I, N);
490 return true;
491 }
492
SelectCall(const User * I)493 bool FastISel::SelectCall(const User *I) {
494 const CallInst *Call = cast<CallInst>(I);
495
496 // Handle simple inline asms.
497 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
498 // Don't attempt to handle constraints.
499 if (!IA->getConstraintString().empty())
500 return false;
501
502 unsigned ExtraInfo = 0;
503 if (IA->hasSideEffects())
504 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
505 if (IA->isAlignStack())
506 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
507
508 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
509 TII.get(TargetOpcode::INLINEASM))
510 .addExternalSymbol(IA->getAsmString().c_str())
511 .addImm(ExtraInfo);
512 return true;
513 }
514
515 const Function *F = Call->getCalledFunction();
516 if (!F) return false;
517
518 // Handle selected intrinsic function calls.
519 switch (F->getIntrinsicID()) {
520 default: break;
521 case Intrinsic::dbg_declare: {
522 const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
523 if (!DIVariable(DI->getVariable()).Verify() ||
524 !FuncInfo.MF->getMMI().hasDebugInfo())
525 return true;
526
527 const Value *Address = DI->getAddress();
528 if (!Address || isa<UndefValue>(Address) || isa<AllocaInst>(Address))
529 return true;
530
531 unsigned Reg = 0;
532 unsigned Offset = 0;
533 if (const Argument *Arg = dyn_cast<Argument>(Address)) {
534 // Some arguments' frame index is recorded during argument lowering.
535 Offset = FuncInfo.getArgumentFrameIndex(Arg);
536 if (Offset)
537 Reg = TRI.getFrameRegister(*FuncInfo.MF);
538 }
539 if (!Reg)
540 Reg = getRegForValue(Address);
541
542 if (Reg)
543 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
544 TII.get(TargetOpcode::DBG_VALUE))
545 .addReg(Reg, RegState::Debug).addImm(Offset)
546 .addMetadata(DI->getVariable());
547 return true;
548 }
549 case Intrinsic::dbg_value: {
550 // This form of DBG_VALUE is target-independent.
551 const DbgValueInst *DI = cast<DbgValueInst>(Call);
552 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
553 const Value *V = DI->getValue();
554 if (!V) {
555 // Currently the optimizer can produce this; insert an undef to
556 // help debugging. Probably the optimizer should not do this.
557 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
558 .addReg(0U).addImm(DI->getOffset())
559 .addMetadata(DI->getVariable());
560 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
561 if (CI->getBitWidth() > 64)
562 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
563 .addCImm(CI).addImm(DI->getOffset())
564 .addMetadata(DI->getVariable());
565 else
566 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
567 .addImm(CI->getZExtValue()).addImm(DI->getOffset())
568 .addMetadata(DI->getVariable());
569 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
570 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
571 .addFPImm(CF).addImm(DI->getOffset())
572 .addMetadata(DI->getVariable());
573 } else if (unsigned Reg = lookUpRegForValue(V)) {
574 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
575 .addReg(Reg, RegState::Debug).addImm(DI->getOffset())
576 .addMetadata(DI->getVariable());
577 } else {
578 // We can't yet handle anything else here because it would require
579 // generating code, thus altering codegen because of debug info.
580 DEBUG(dbgs() << "Dropping debug info for " << DI);
581 }
582 return true;
583 }
584 case Intrinsic::eh_exception: {
585 EVT VT = TLI.getValueType(Call->getType());
586 if (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)!=TargetLowering::Expand)
587 break;
588
589 assert(FuncInfo.MBB->isLandingPad() &&
590 "Call to eh.exception not in landing pad!");
591 unsigned Reg = TLI.getExceptionAddressRegister();
592 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
593 unsigned ResultReg = createResultReg(RC);
594 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
595 ResultReg).addReg(Reg);
596 UpdateValueMap(Call, ResultReg);
597 return true;
598 }
599 case Intrinsic::eh_selector: {
600 EVT VT = TLI.getValueType(Call->getType());
601 if (TLI.getOperationAction(ISD::EHSELECTION, VT) != TargetLowering::Expand)
602 break;
603 if (FuncInfo.MBB->isLandingPad())
604 AddCatchInfo(*Call, &FuncInfo.MF->getMMI(), FuncInfo.MBB);
605 else {
606 #ifndef NDEBUG
607 FuncInfo.CatchInfoLost.insert(Call);
608 #endif
609 // FIXME: Mark exception selector register as live in. Hack for PR1508.
610 unsigned Reg = TLI.getExceptionSelectorRegister();
611 if (Reg) FuncInfo.MBB->addLiveIn(Reg);
612 }
613
614 unsigned Reg = TLI.getExceptionSelectorRegister();
615 EVT SrcVT = TLI.getPointerTy();
616 const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
617 unsigned ResultReg = createResultReg(RC);
618 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
619 ResultReg).addReg(Reg);
620
621 bool ResultRegIsKill = hasTrivialKill(Call);
622
623 // Cast the register to the type of the selector.
624 if (SrcVT.bitsGT(MVT::i32))
625 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
626 ResultReg, ResultRegIsKill);
627 else if (SrcVT.bitsLT(MVT::i32))
628 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
629 ISD::SIGN_EXTEND, ResultReg, ResultRegIsKill);
630 if (ResultReg == 0)
631 // Unhandled operand. Halt "fast" selection and bail.
632 return false;
633
634 UpdateValueMap(Call, ResultReg);
635
636 return true;
637 }
638 case Intrinsic::objectsize: {
639 ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
640 unsigned long long Res = CI->isZero() ? -1ULL : 0;
641 Constant *ResCI = ConstantInt::get(Call->getType(), Res);
642 unsigned ResultReg = getRegForValue(ResCI);
643 if (ResultReg == 0)
644 return false;
645 UpdateValueMap(Call, ResultReg);
646 return true;
647 }
648 }
649
650 // Usually, it does not make sense to initialize a value,
651 // make an unrelated function call and use the value, because
652 // it tends to be spilled on the stack. So, we move the pointer
653 // to the last local value to the beginning of the block, so that
654 // all the values which have already been materialized,
655 // appear after the call. It also makes sense to skip intrinsics
656 // since they tend to be inlined.
657 if (!isa<IntrinsicInst>(F))
658 flushLocalValueMap();
659
660 // An arbitrary call. Bail.
661 return false;
662 }
663
SelectCast(const User * I,unsigned Opcode)664 bool FastISel::SelectCast(const User *I, unsigned Opcode) {
665 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
666 EVT DstVT = TLI.getValueType(I->getType());
667
668 if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
669 DstVT == MVT::Other || !DstVT.isSimple())
670 // Unhandled type. Halt "fast" selection and bail.
671 return false;
672
673 // Check if the destination type is legal.
674 if (!TLI.isTypeLegal(DstVT))
675 return false;
676
677 // Check if the source operand is legal.
678 if (!TLI.isTypeLegal(SrcVT))
679 return false;
680
681 unsigned InputReg = getRegForValue(I->getOperand(0));
682 if (!InputReg)
683 // Unhandled operand. Halt "fast" selection and bail.
684 return false;
685
686 bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
687
688 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
689 DstVT.getSimpleVT(),
690 Opcode,
691 InputReg, InputRegIsKill);
692 if (!ResultReg)
693 return false;
694
695 UpdateValueMap(I, ResultReg);
696 return true;
697 }
698
SelectBitCast(const User * I)699 bool FastISel::SelectBitCast(const User *I) {
700 // If the bitcast doesn't change the type, just use the operand value.
701 if (I->getType() == I->getOperand(0)->getType()) {
702 unsigned Reg = getRegForValue(I->getOperand(0));
703 if (Reg == 0)
704 return false;
705 UpdateValueMap(I, Reg);
706 return true;
707 }
708
709 // Bitcasts of other values become reg-reg copies or BITCAST operators.
710 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
711 EVT DstVT = TLI.getValueType(I->getType());
712
713 if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
714 DstVT == MVT::Other || !DstVT.isSimple() ||
715 !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
716 // Unhandled type. Halt "fast" selection and bail.
717 return false;
718
719 unsigned Op0 = getRegForValue(I->getOperand(0));
720 if (Op0 == 0)
721 // Unhandled operand. Halt "fast" selection and bail.
722 return false;
723
724 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
725
726 // First, try to perform the bitcast by inserting a reg-reg copy.
727 unsigned ResultReg = 0;
728 if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
729 TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
730 TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
731 // Don't attempt a cross-class copy. It will likely fail.
732 if (SrcClass == DstClass) {
733 ResultReg = createResultReg(DstClass);
734 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
735 ResultReg).addReg(Op0);
736 }
737 }
738
739 // If the reg-reg copy failed, select a BITCAST opcode.
740 if (!ResultReg)
741 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
742 ISD::BITCAST, Op0, Op0IsKill);
743
744 if (!ResultReg)
745 return false;
746
747 UpdateValueMap(I, ResultReg);
748 return true;
749 }
750
751 bool
SelectInstruction(const Instruction * I)752 FastISel::SelectInstruction(const Instruction *I) {
753 // Just before the terminator instruction, insert instructions to
754 // feed PHI nodes in successor blocks.
755 if (isa<TerminatorInst>(I))
756 if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
757 return false;
758
759 DL = I->getDebugLoc();
760
761 // First, try doing target-independent selection.
762 if (SelectOperator(I, I->getOpcode())) {
763 DL = DebugLoc();
764 return true;
765 }
766
767 // Next, try calling the target to attempt to handle the instruction.
768 if (TargetSelectInstruction(I)) {
769 DL = DebugLoc();
770 return true;
771 }
772
773 DL = DebugLoc();
774 return false;
775 }
776
777 /// FastEmitBranch - Emit an unconditional branch to the given block,
778 /// unless it is the immediate (fall-through) successor, and update
779 /// the CFG.
780 void
FastEmitBranch(MachineBasicBlock * MSucc,DebugLoc DL)781 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
782 if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
783 // The unconditional fall-through case, which needs no instructions.
784 } else {
785 // The unconditional branch case.
786 TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
787 SmallVector<MachineOperand, 0>(), DL);
788 }
789 FuncInfo.MBB->addSuccessor(MSucc);
790 }
791
792 /// SelectFNeg - Emit an FNeg operation.
793 ///
794 bool
SelectFNeg(const User * I)795 FastISel::SelectFNeg(const User *I) {
796 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
797 if (OpReg == 0) return false;
798
799 bool OpRegIsKill = hasTrivialKill(I);
800
801 // If the target has ISD::FNEG, use it.
802 EVT VT = TLI.getValueType(I->getType());
803 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
804 ISD::FNEG, OpReg, OpRegIsKill);
805 if (ResultReg != 0) {
806 UpdateValueMap(I, ResultReg);
807 return true;
808 }
809
810 // Bitcast the value to integer, twiddle the sign bit with xor,
811 // and then bitcast it back to floating-point.
812 if (VT.getSizeInBits() > 64) return false;
813 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
814 if (!TLI.isTypeLegal(IntVT))
815 return false;
816
817 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
818 ISD::BITCAST, OpReg, OpRegIsKill);
819 if (IntReg == 0)
820 return false;
821
822 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
823 IntReg, /*Kill=*/true,
824 UINT64_C(1) << (VT.getSizeInBits()-1),
825 IntVT.getSimpleVT());
826 if (IntResultReg == 0)
827 return false;
828
829 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
830 ISD::BITCAST, IntResultReg, /*Kill=*/true);
831 if (ResultReg == 0)
832 return false;
833
834 UpdateValueMap(I, ResultReg);
835 return true;
836 }
837
838 bool
SelectExtractValue(const User * U)839 FastISel::SelectExtractValue(const User *U) {
840 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
841 if (!EVI)
842 return false;
843
844 // Make sure we only try to handle extracts with a legal result. But also
845 // allow i1 because it's easy.
846 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
847 if (!RealVT.isSimple())
848 return false;
849 MVT VT = RealVT.getSimpleVT();
850 if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
851 return false;
852
853 const Value *Op0 = EVI->getOperand(0);
854 Type *AggTy = Op0->getType();
855
856 // Get the base result register.
857 unsigned ResultReg;
858 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
859 if (I != FuncInfo.ValueMap.end())
860 ResultReg = I->second;
861 else if (isa<Instruction>(Op0))
862 ResultReg = FuncInfo.InitializeRegForValue(Op0);
863 else
864 return false; // fast-isel can't handle aggregate constants at the moment
865
866 // Get the actual result register, which is an offset from the base register.
867 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
868
869 SmallVector<EVT, 4> AggValueVTs;
870 ComputeValueVTs(TLI, AggTy, AggValueVTs);
871
872 for (unsigned i = 0; i < VTIndex; i++)
873 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
874
875 UpdateValueMap(EVI, ResultReg);
876 return true;
877 }
878
879 bool
SelectOperator(const User * I,unsigned Opcode)880 FastISel::SelectOperator(const User *I, unsigned Opcode) {
881 switch (Opcode) {
882 case Instruction::Add:
883 return SelectBinaryOp(I, ISD::ADD);
884 case Instruction::FAdd:
885 return SelectBinaryOp(I, ISD::FADD);
886 case Instruction::Sub:
887 return SelectBinaryOp(I, ISD::SUB);
888 case Instruction::FSub:
889 // FNeg is currently represented in LLVM IR as a special case of FSub.
890 if (BinaryOperator::isFNeg(I))
891 return SelectFNeg(I);
892 return SelectBinaryOp(I, ISD::FSUB);
893 case Instruction::Mul:
894 return SelectBinaryOp(I, ISD::MUL);
895 case Instruction::FMul:
896 return SelectBinaryOp(I, ISD::FMUL);
897 case Instruction::SDiv:
898 return SelectBinaryOp(I, ISD::SDIV);
899 case Instruction::UDiv:
900 return SelectBinaryOp(I, ISD::UDIV);
901 case Instruction::FDiv:
902 return SelectBinaryOp(I, ISD::FDIV);
903 case Instruction::SRem:
904 return SelectBinaryOp(I, ISD::SREM);
905 case Instruction::URem:
906 return SelectBinaryOp(I, ISD::UREM);
907 case Instruction::FRem:
908 return SelectBinaryOp(I, ISD::FREM);
909 case Instruction::Shl:
910 return SelectBinaryOp(I, ISD::SHL);
911 case Instruction::LShr:
912 return SelectBinaryOp(I, ISD::SRL);
913 case Instruction::AShr:
914 return SelectBinaryOp(I, ISD::SRA);
915 case Instruction::And:
916 return SelectBinaryOp(I, ISD::AND);
917 case Instruction::Or:
918 return SelectBinaryOp(I, ISD::OR);
919 case Instruction::Xor:
920 return SelectBinaryOp(I, ISD::XOR);
921
922 case Instruction::GetElementPtr:
923 return SelectGetElementPtr(I);
924
925 case Instruction::Br: {
926 const BranchInst *BI = cast<BranchInst>(I);
927
928 if (BI->isUnconditional()) {
929 const BasicBlock *LLVMSucc = BI->getSuccessor(0);
930 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
931 FastEmitBranch(MSucc, BI->getDebugLoc());
932 return true;
933 }
934
935 // Conditional branches are not handed yet.
936 // Halt "fast" selection and bail.
937 return false;
938 }
939
940 case Instruction::Unreachable:
941 // Nothing to emit.
942 return true;
943
944 case Instruction::Alloca:
945 // FunctionLowering has the static-sized case covered.
946 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
947 return true;
948
949 // Dynamic-sized alloca is not handled yet.
950 return false;
951
952 case Instruction::Call:
953 return SelectCall(I);
954
955 case Instruction::BitCast:
956 return SelectBitCast(I);
957
958 case Instruction::FPToSI:
959 return SelectCast(I, ISD::FP_TO_SINT);
960 case Instruction::ZExt:
961 return SelectCast(I, ISD::ZERO_EXTEND);
962 case Instruction::SExt:
963 return SelectCast(I, ISD::SIGN_EXTEND);
964 case Instruction::Trunc:
965 return SelectCast(I, ISD::TRUNCATE);
966 case Instruction::SIToFP:
967 return SelectCast(I, ISD::SINT_TO_FP);
968
969 case Instruction::IntToPtr: // Deliberate fall-through.
970 case Instruction::PtrToInt: {
971 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
972 EVT DstVT = TLI.getValueType(I->getType());
973 if (DstVT.bitsGT(SrcVT))
974 return SelectCast(I, ISD::ZERO_EXTEND);
975 if (DstVT.bitsLT(SrcVT))
976 return SelectCast(I, ISD::TRUNCATE);
977 unsigned Reg = getRegForValue(I->getOperand(0));
978 if (Reg == 0) return false;
979 UpdateValueMap(I, Reg);
980 return true;
981 }
982
983 case Instruction::ExtractValue:
984 return SelectExtractValue(I);
985
986 case Instruction::PHI:
987 llvm_unreachable("FastISel shouldn't visit PHI nodes!");
988
989 default:
990 // Unhandled instruction. Halt "fast" selection and bail.
991 return false;
992 }
993 }
994
FastISel(FunctionLoweringInfo & funcInfo)995 FastISel::FastISel(FunctionLoweringInfo &funcInfo)
996 : FuncInfo(funcInfo),
997 MRI(FuncInfo.MF->getRegInfo()),
998 MFI(*FuncInfo.MF->getFrameInfo()),
999 MCP(*FuncInfo.MF->getConstantPool()),
1000 TM(FuncInfo.MF->getTarget()),
1001 TD(*TM.getTargetData()),
1002 TII(*TM.getInstrInfo()),
1003 TLI(*TM.getTargetLowering()),
1004 TRI(*TM.getRegisterInfo()) {
1005 }
1006
~FastISel()1007 FastISel::~FastISel() {}
1008
FastEmit_(MVT,MVT,unsigned)1009 unsigned FastISel::FastEmit_(MVT, MVT,
1010 unsigned) {
1011 return 0;
1012 }
1013
FastEmit_r(MVT,MVT,unsigned,unsigned,bool)1014 unsigned FastISel::FastEmit_r(MVT, MVT,
1015 unsigned,
1016 unsigned /*Op0*/, bool /*Op0IsKill*/) {
1017 return 0;
1018 }
1019
FastEmit_rr(MVT,MVT,unsigned,unsigned,bool,unsigned,bool)1020 unsigned FastISel::FastEmit_rr(MVT, MVT,
1021 unsigned,
1022 unsigned /*Op0*/, bool /*Op0IsKill*/,
1023 unsigned /*Op1*/, bool /*Op1IsKill*/) {
1024 return 0;
1025 }
1026
FastEmit_i(MVT,MVT,unsigned,uint64_t)1027 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1028 return 0;
1029 }
1030
FastEmit_f(MVT,MVT,unsigned,const ConstantFP *)1031 unsigned FastISel::FastEmit_f(MVT, MVT,
1032 unsigned, const ConstantFP * /*FPImm*/) {
1033 return 0;
1034 }
1035
FastEmit_ri(MVT,MVT,unsigned,unsigned,bool,uint64_t)1036 unsigned FastISel::FastEmit_ri(MVT, MVT,
1037 unsigned,
1038 unsigned /*Op0*/, bool /*Op0IsKill*/,
1039 uint64_t /*Imm*/) {
1040 return 0;
1041 }
1042
FastEmit_rf(MVT,MVT,unsigned,unsigned,bool,const ConstantFP *)1043 unsigned FastISel::FastEmit_rf(MVT, MVT,
1044 unsigned,
1045 unsigned /*Op0*/, bool /*Op0IsKill*/,
1046 const ConstantFP * /*FPImm*/) {
1047 return 0;
1048 }
1049
FastEmit_rri(MVT,MVT,unsigned,unsigned,bool,unsigned,bool,uint64_t)1050 unsigned FastISel::FastEmit_rri(MVT, MVT,
1051 unsigned,
1052 unsigned /*Op0*/, bool /*Op0IsKill*/,
1053 unsigned /*Op1*/, bool /*Op1IsKill*/,
1054 uint64_t /*Imm*/) {
1055 return 0;
1056 }
1057
1058 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
1059 /// to emit an instruction with an immediate operand using FastEmit_ri.
1060 /// If that fails, it materializes the immediate into a register and try
1061 /// FastEmit_rr instead.
FastEmit_ri_(MVT VT,unsigned Opcode,unsigned Op0,bool Op0IsKill,uint64_t Imm,MVT ImmType)1062 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
1063 unsigned Op0, bool Op0IsKill,
1064 uint64_t Imm, MVT ImmType) {
1065 // If this is a multiply by a power of two, emit this as a shift left.
1066 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1067 Opcode = ISD::SHL;
1068 Imm = Log2_64(Imm);
1069 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1070 // div x, 8 -> srl x, 3
1071 Opcode = ISD::SRL;
1072 Imm = Log2_64(Imm);
1073 }
1074
1075 // Horrible hack (to be removed), check to make sure shift amounts are
1076 // in-range.
1077 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1078 Imm >= VT.getSizeInBits())
1079 return 0;
1080
1081 // First check if immediate type is legal. If not, we can't use the ri form.
1082 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1083 if (ResultReg != 0)
1084 return ResultReg;
1085 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1086 if (MaterialReg == 0) {
1087 // This is a bit ugly/slow, but failing here means falling out of
1088 // fast-isel, which would be very slow.
1089 IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
1090 VT.getSizeInBits());
1091 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1092 }
1093 return FastEmit_rr(VT, VT, Opcode,
1094 Op0, Op0IsKill,
1095 MaterialReg, /*Kill=*/true);
1096 }
1097
createResultReg(const TargetRegisterClass * RC)1098 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
1099 return MRI.createVirtualRegister(RC);
1100 }
1101
FastEmitInst_(unsigned MachineInstOpcode,const TargetRegisterClass * RC)1102 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
1103 const TargetRegisterClass* RC) {
1104 unsigned ResultReg = createResultReg(RC);
1105 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1106
1107 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
1108 return ResultReg;
1109 }
1110
FastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill)1111 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1112 const TargetRegisterClass *RC,
1113 unsigned Op0, bool Op0IsKill) {
1114 unsigned ResultReg = createResultReg(RC);
1115 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1116
1117 if (II.getNumDefs() >= 1)
1118 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1119 .addReg(Op0, Op0IsKill * RegState::Kill);
1120 else {
1121 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1122 .addReg(Op0, Op0IsKill * RegState::Kill);
1123 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1124 ResultReg).addReg(II.ImplicitDefs[0]);
1125 }
1126
1127 return ResultReg;
1128 }
1129
FastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)1130 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1131 const TargetRegisterClass *RC,
1132 unsigned Op0, bool Op0IsKill,
1133 unsigned Op1, bool Op1IsKill) {
1134 unsigned ResultReg = createResultReg(RC);
1135 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1136
1137 if (II.getNumDefs() >= 1)
1138 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1139 .addReg(Op0, Op0IsKill * RegState::Kill)
1140 .addReg(Op1, Op1IsKill * RegState::Kill);
1141 else {
1142 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1143 .addReg(Op0, Op0IsKill * RegState::Kill)
1144 .addReg(Op1, Op1IsKill * RegState::Kill);
1145 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1146 ResultReg).addReg(II.ImplicitDefs[0]);
1147 }
1148 return ResultReg;
1149 }
1150
FastEmitInst_rrr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,unsigned Op2,bool Op2IsKill)1151 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
1152 const TargetRegisterClass *RC,
1153 unsigned Op0, bool Op0IsKill,
1154 unsigned Op1, bool Op1IsKill,
1155 unsigned Op2, bool Op2IsKill) {
1156 unsigned ResultReg = createResultReg(RC);
1157 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1158
1159 if (II.getNumDefs() >= 1)
1160 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1161 .addReg(Op0, Op0IsKill * RegState::Kill)
1162 .addReg(Op1, Op1IsKill * RegState::Kill)
1163 .addReg(Op2, Op2IsKill * RegState::Kill);
1164 else {
1165 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1166 .addReg(Op0, Op0IsKill * RegState::Kill)
1167 .addReg(Op1, Op1IsKill * RegState::Kill)
1168 .addReg(Op2, Op2IsKill * RegState::Kill);
1169 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1170 ResultReg).addReg(II.ImplicitDefs[0]);
1171 }
1172 return ResultReg;
1173 }
1174
FastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm)1175 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1176 const TargetRegisterClass *RC,
1177 unsigned Op0, bool Op0IsKill,
1178 uint64_t Imm) {
1179 unsigned ResultReg = createResultReg(RC);
1180 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1181
1182 if (II.getNumDefs() >= 1)
1183 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1184 .addReg(Op0, Op0IsKill * RegState::Kill)
1185 .addImm(Imm);
1186 else {
1187 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1188 .addReg(Op0, Op0IsKill * RegState::Kill)
1189 .addImm(Imm);
1190 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1191 ResultReg).addReg(II.ImplicitDefs[0]);
1192 }
1193 return ResultReg;
1194 }
1195
FastEmitInst_rii(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm1,uint64_t Imm2)1196 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
1197 const TargetRegisterClass *RC,
1198 unsigned Op0, bool Op0IsKill,
1199 uint64_t Imm1, uint64_t Imm2) {
1200 unsigned ResultReg = createResultReg(RC);
1201 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1202
1203 if (II.getNumDefs() >= 1)
1204 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1205 .addReg(Op0, Op0IsKill * RegState::Kill)
1206 .addImm(Imm1)
1207 .addImm(Imm2);
1208 else {
1209 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1210 .addReg(Op0, Op0IsKill * RegState::Kill)
1211 .addImm(Imm1)
1212 .addImm(Imm2);
1213 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1214 ResultReg).addReg(II.ImplicitDefs[0]);
1215 }
1216 return ResultReg;
1217 }
1218
FastEmitInst_rf(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,const ConstantFP * FPImm)1219 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1220 const TargetRegisterClass *RC,
1221 unsigned Op0, bool Op0IsKill,
1222 const ConstantFP *FPImm) {
1223 unsigned ResultReg = createResultReg(RC);
1224 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1225
1226 if (II.getNumDefs() >= 1)
1227 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1228 .addReg(Op0, Op0IsKill * RegState::Kill)
1229 .addFPImm(FPImm);
1230 else {
1231 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1232 .addReg(Op0, Op0IsKill * RegState::Kill)
1233 .addFPImm(FPImm);
1234 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1235 ResultReg).addReg(II.ImplicitDefs[0]);
1236 }
1237 return ResultReg;
1238 }
1239
FastEmitInst_rri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,uint64_t Imm)1240 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1241 const TargetRegisterClass *RC,
1242 unsigned Op0, bool Op0IsKill,
1243 unsigned Op1, bool Op1IsKill,
1244 uint64_t Imm) {
1245 unsigned ResultReg = createResultReg(RC);
1246 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1247
1248 if (II.getNumDefs() >= 1)
1249 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1250 .addReg(Op0, Op0IsKill * RegState::Kill)
1251 .addReg(Op1, Op1IsKill * RegState::Kill)
1252 .addImm(Imm);
1253 else {
1254 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1255 .addReg(Op0, Op0IsKill * RegState::Kill)
1256 .addReg(Op1, Op1IsKill * RegState::Kill)
1257 .addImm(Imm);
1258 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1259 ResultReg).addReg(II.ImplicitDefs[0]);
1260 }
1261 return ResultReg;
1262 }
1263
FastEmitInst_i(unsigned MachineInstOpcode,const TargetRegisterClass * RC,uint64_t Imm)1264 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1265 const TargetRegisterClass *RC,
1266 uint64_t Imm) {
1267 unsigned ResultReg = createResultReg(RC);
1268 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1269
1270 if (II.getNumDefs() >= 1)
1271 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
1272 else {
1273 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
1274 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1275 ResultReg).addReg(II.ImplicitDefs[0]);
1276 }
1277 return ResultReg;
1278 }
1279
FastEmitInst_ii(unsigned MachineInstOpcode,const TargetRegisterClass * RC,uint64_t Imm1,uint64_t Imm2)1280 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
1281 const TargetRegisterClass *RC,
1282 uint64_t Imm1, uint64_t Imm2) {
1283 unsigned ResultReg = createResultReg(RC);
1284 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1285
1286 if (II.getNumDefs() >= 1)
1287 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1288 .addImm(Imm1).addImm(Imm2);
1289 else {
1290 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2);
1291 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1292 ResultReg).addReg(II.ImplicitDefs[0]);
1293 }
1294 return ResultReg;
1295 }
1296
FastEmitInst_extractsubreg(MVT RetVT,unsigned Op0,bool Op0IsKill,uint32_t Idx)1297 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1298 unsigned Op0, bool Op0IsKill,
1299 uint32_t Idx) {
1300 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1301 assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1302 "Cannot yet extract from physregs");
1303 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1304 DL, TII.get(TargetOpcode::COPY), ResultReg)
1305 .addReg(Op0, getKillRegState(Op0IsKill), Idx);
1306 return ResultReg;
1307 }
1308
1309 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1310 /// with all but the least significant bit set to zero.
FastEmitZExtFromI1(MVT VT,unsigned Op0,bool Op0IsKill)1311 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1312 return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1313 }
1314
1315 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1316 /// Emit code to ensure constants are copied into registers when needed.
1317 /// Remember the virtual registers that need to be added to the Machine PHI
1318 /// nodes as input. We cannot just directly add them, because expansion
1319 /// might result in multiple MBB's for one BB. As such, the start of the
1320 /// BB might correspond to a different MBB than the end.
HandlePHINodesInSuccessorBlocks(const BasicBlock * LLVMBB)1321 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1322 const TerminatorInst *TI = LLVMBB->getTerminator();
1323
1324 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1325 unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1326
1327 // Check successor nodes' PHI nodes that expect a constant to be available
1328 // from this block.
1329 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1330 const BasicBlock *SuccBB = TI->getSuccessor(succ);
1331 if (!isa<PHINode>(SuccBB->begin())) continue;
1332 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1333
1334 // If this terminator has multiple identical successors (common for
1335 // switches), only handle each succ once.
1336 if (!SuccsHandled.insert(SuccMBB)) continue;
1337
1338 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1339
1340 // At this point we know that there is a 1-1 correspondence between LLVM PHI
1341 // nodes and Machine PHI nodes, but the incoming operands have not been
1342 // emitted yet.
1343 for (BasicBlock::const_iterator I = SuccBB->begin();
1344 const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1345
1346 // Ignore dead phi's.
1347 if (PN->use_empty()) continue;
1348
1349 // Only handle legal types. Two interesting things to note here. First,
1350 // by bailing out early, we may leave behind some dead instructions,
1351 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1352 // own moves. Second, this check is necessary because FastISel doesn't
1353 // use CreateRegs to create registers, so it always creates
1354 // exactly one register for each non-void instruction.
1355 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1356 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1357 // Promote MVT::i1.
1358 if (VT == MVT::i1)
1359 VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1360 else {
1361 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1362 return false;
1363 }
1364 }
1365
1366 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1367
1368 // Set the DebugLoc for the copy. Prefer the location of the operand
1369 // if there is one; use the location of the PHI otherwise.
1370 DL = PN->getDebugLoc();
1371 if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1372 DL = Inst->getDebugLoc();
1373
1374 unsigned Reg = getRegForValue(PHIOp);
1375 if (Reg == 0) {
1376 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1377 return false;
1378 }
1379 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1380 DL = DebugLoc();
1381 }
1382 }
1383
1384 return true;
1385 }
1386