1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "reference_type_propagation.h"
18
19 #include "art_field-inl.h"
20 #include "art_method-inl.h"
21 #include "base/scoped_arena_allocator.h"
22 #include "base/scoped_arena_containers.h"
23 #include "base/enums.h"
24 #include "class_linker-inl.h"
25 #include "class_root.h"
26 #include "handle_scope-inl.h"
27 #include "mirror/class-inl.h"
28 #include "mirror/dex_cache.h"
29 #include "scoped_thread_state_change-inl.h"
30
31 namespace art {
32
FindDexCacheWithHint(Thread * self,const DexFile & dex_file,Handle<mirror::DexCache> hint_dex_cache)33 static inline ObjPtr<mirror::DexCache> FindDexCacheWithHint(
34 Thread* self, const DexFile& dex_file, Handle<mirror::DexCache> hint_dex_cache)
35 REQUIRES_SHARED(Locks::mutator_lock_) {
36 if (LIKELY(hint_dex_cache->GetDexFile() == &dex_file)) {
37 return hint_dex_cache.Get();
38 } else {
39 return Runtime::Current()->GetClassLinker()->FindDexCache(self, dex_file);
40 }
41 }
42
GetRootHandle(VariableSizedHandleScope * handles,ClassRoot class_root,ReferenceTypeInfo::TypeHandle * cache)43 static inline ReferenceTypeInfo::TypeHandle GetRootHandle(VariableSizedHandleScope* handles,
44 ClassRoot class_root,
45 ReferenceTypeInfo::TypeHandle* cache) {
46 if (!ReferenceTypeInfo::IsValidHandle(*cache)) {
47 // Mutator lock is required for NewHandle.
48 ScopedObjectAccess soa(Thread::Current());
49 *cache = handles->NewHandle(GetClassRoot(class_root));
50 }
51 return *cache;
52 }
53
GetObjectClassHandle()54 ReferenceTypeInfo::TypeHandle ReferenceTypePropagation::HandleCache::GetObjectClassHandle() {
55 return GetRootHandle(handles_, ClassRoot::kJavaLangObject, &object_class_handle_);
56 }
57
GetClassClassHandle()58 ReferenceTypeInfo::TypeHandle ReferenceTypePropagation::HandleCache::GetClassClassHandle() {
59 return GetRootHandle(handles_, ClassRoot::kJavaLangClass, &class_class_handle_);
60 }
61
GetMethodHandleClassHandle()62 ReferenceTypeInfo::TypeHandle ReferenceTypePropagation::HandleCache::GetMethodHandleClassHandle() {
63 return GetRootHandle(handles_,
64 ClassRoot::kJavaLangInvokeMethodHandleImpl,
65 &method_handle_class_handle_);
66 }
67
GetMethodTypeClassHandle()68 ReferenceTypeInfo::TypeHandle ReferenceTypePropagation::HandleCache::GetMethodTypeClassHandle() {
69 return GetRootHandle(handles_, ClassRoot::kJavaLangInvokeMethodType, &method_type_class_handle_);
70 }
71
GetStringClassHandle()72 ReferenceTypeInfo::TypeHandle ReferenceTypePropagation::HandleCache::GetStringClassHandle() {
73 return GetRootHandle(handles_, ClassRoot::kJavaLangString, &string_class_handle_);
74 }
75
GetThrowableClassHandle()76 ReferenceTypeInfo::TypeHandle ReferenceTypePropagation::HandleCache::GetThrowableClassHandle() {
77 return GetRootHandle(handles_, ClassRoot::kJavaLangThrowable, &throwable_class_handle_);
78 }
79
80 class ReferenceTypePropagation::RTPVisitor : public HGraphDelegateVisitor {
81 public:
RTPVisitor(HGraph * graph,Handle<mirror::ClassLoader> class_loader,Handle<mirror::DexCache> hint_dex_cache,HandleCache * handle_cache,bool is_first_run)82 RTPVisitor(HGraph* graph,
83 Handle<mirror::ClassLoader> class_loader,
84 Handle<mirror::DexCache> hint_dex_cache,
85 HandleCache* handle_cache,
86 bool is_first_run)
87 : HGraphDelegateVisitor(graph),
88 class_loader_(class_loader),
89 hint_dex_cache_(hint_dex_cache),
90 handle_cache_(handle_cache),
91 allocator_(graph->GetArenaStack()),
92 worklist_(allocator_.Adapter(kArenaAllocReferenceTypePropagation)),
93 is_first_run_(is_first_run) {
94 worklist_.reserve(kDefaultWorklistSize);
95 }
96
97 void VisitDeoptimize(HDeoptimize* deopt) override;
98 void VisitNewInstance(HNewInstance* new_instance) override;
99 void VisitLoadClass(HLoadClass* load_class) override;
100 void VisitInstanceOf(HInstanceOf* load_class) override;
101 void VisitClinitCheck(HClinitCheck* clinit_check) override;
102 void VisitLoadMethodHandle(HLoadMethodHandle* instr) override;
103 void VisitLoadMethodType(HLoadMethodType* instr) override;
104 void VisitLoadString(HLoadString* instr) override;
105 void VisitLoadException(HLoadException* instr) override;
106 void VisitNewArray(HNewArray* instr) override;
107 void VisitParameterValue(HParameterValue* instr) override;
108 void VisitInstanceFieldGet(HInstanceFieldGet* instr) override;
109 void VisitStaticFieldGet(HStaticFieldGet* instr) override;
110 void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instr) override;
111 void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instr) override;
112 void VisitInvoke(HInvoke* instr) override;
113 void VisitArrayGet(HArrayGet* instr) override;
114 void VisitCheckCast(HCheckCast* instr) override;
115 void VisitBoundType(HBoundType* instr) override;
116 void VisitNullCheck(HNullCheck* instr) override;
117 void VisitPhi(HPhi* phi) override;
118
119 void VisitBasicBlock(HBasicBlock* block) override;
120 void ProcessWorklist();
121
122 private:
123 void UpdateFieldAccessTypeInfo(HInstruction* instr, const FieldInfo& info);
124 void SetClassAsTypeInfo(HInstruction* instr, ObjPtr<mirror::Class> klass, bool is_exact)
125 REQUIRES_SHARED(Locks::mutator_lock_);
126 void BoundTypeForIfNotNull(HBasicBlock* block);
127 static void BoundTypeForIfInstanceOf(HBasicBlock* block);
128 static bool UpdateNullability(HInstruction* instr);
129 static void UpdateBoundType(HBoundType* bound_type) REQUIRES_SHARED(Locks::mutator_lock_);
130 void UpdateArrayGet(HArrayGet* instr) REQUIRES_SHARED(Locks::mutator_lock_);
131 void UpdatePhi(HPhi* phi) REQUIRES_SHARED(Locks::mutator_lock_);
132 bool UpdateReferenceTypeInfo(HInstruction* instr);
133 void UpdateReferenceTypeInfo(HInstruction* instr,
134 dex::TypeIndex type_idx,
135 const DexFile& dex_file,
136 bool is_exact);
137
138 void AddToWorklist(HInstruction* instruction);
139 void AddDependentInstructionsToWorklist(HInstruction* instruction);
140
141 static constexpr size_t kDefaultWorklistSize = 8;
142
143 Handle<mirror::ClassLoader> class_loader_;
144 Handle<mirror::DexCache> hint_dex_cache_;
145 HandleCache* const handle_cache_;
146
147 // Use local allocator for allocating memory.
148 ScopedArenaAllocator allocator_;
149 ScopedArenaVector<HInstruction*> worklist_;
150 const bool is_first_run_;
151 };
152
ReferenceTypePropagation(HGraph * graph,Handle<mirror::ClassLoader> class_loader,Handle<mirror::DexCache> hint_dex_cache,VariableSizedHandleScope * handles,bool is_first_run,const char * name)153 ReferenceTypePropagation::ReferenceTypePropagation(HGraph* graph,
154 Handle<mirror::ClassLoader> class_loader,
155 Handle<mirror::DexCache> hint_dex_cache,
156 VariableSizedHandleScope* handles,
157 bool is_first_run,
158 const char* name)
159 : HOptimization(graph, name),
160 class_loader_(class_loader),
161 hint_dex_cache_(hint_dex_cache),
162 handle_cache_(handles),
163 is_first_run_(is_first_run) {
164 }
165
ValidateTypes()166 void ReferenceTypePropagation::ValidateTypes() {
167 // TODO: move this to the graph checker.
168 if (kIsDebugBuild) {
169 ScopedObjectAccess soa(Thread::Current());
170 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
171 for (HInstructionIterator iti(block->GetInstructions()); !iti.Done(); iti.Advance()) {
172 HInstruction* instr = iti.Current();
173 if (instr->GetType() == DataType::Type::kReference) {
174 DCHECK(instr->GetReferenceTypeInfo().IsValid())
175 << "Invalid RTI for instruction: " << instr->DebugName();
176 if (instr->IsBoundType()) {
177 DCHECK(instr->AsBoundType()->GetUpperBound().IsValid());
178 } else if (instr->IsLoadClass()) {
179 HLoadClass* cls = instr->AsLoadClass();
180 DCHECK(cls->GetReferenceTypeInfo().IsExact());
181 DCHECK(!cls->GetLoadedClassRTI().IsValid() || cls->GetLoadedClassRTI().IsExact());
182 } else if (instr->IsNullCheck()) {
183 DCHECK(instr->GetReferenceTypeInfo().IsEqual(instr->InputAt(0)->GetReferenceTypeInfo()))
184 << "NullCheck " << instr->GetReferenceTypeInfo()
185 << "Input(0) " << instr->InputAt(0)->GetReferenceTypeInfo();
186 }
187 } else if (instr->IsInstanceOf()) {
188 HInstanceOf* iof = instr->AsInstanceOf();
189 DCHECK(!iof->GetTargetClassRTI().IsValid() || iof->GetTargetClassRTI().IsExact());
190 } else if (instr->IsCheckCast()) {
191 HCheckCast* check = instr->AsCheckCast();
192 DCHECK(!check->GetTargetClassRTI().IsValid() || check->GetTargetClassRTI().IsExact());
193 }
194 }
195 }
196 }
197 }
198
Visit(HInstruction * instruction)199 void ReferenceTypePropagation::Visit(HInstruction* instruction) {
200 RTPVisitor visitor(graph_,
201 class_loader_,
202 hint_dex_cache_,
203 &handle_cache_,
204 is_first_run_);
205 instruction->Accept(&visitor);
206 }
207
208 // Check if we should create a bound type for the given object at the specified
209 // position. Because of inlining and the fact we run RTP more than once and we
210 // might have a HBoundType already. If we do, we should not create a new one.
211 // In this case we also assert that there are no other uses of the object (except
212 // the bound type) dominated by the specified dominator_instr or dominator_block.
ShouldCreateBoundType(HInstruction * position,HInstruction * obj,ReferenceTypeInfo upper_bound,HInstruction * dominator_instr,HBasicBlock * dominator_block)213 static bool ShouldCreateBoundType(HInstruction* position,
214 HInstruction* obj,
215 ReferenceTypeInfo upper_bound,
216 HInstruction* dominator_instr,
217 HBasicBlock* dominator_block)
218 REQUIRES_SHARED(Locks::mutator_lock_) {
219 // If the position where we should insert the bound type is not already a
220 // a bound type then we need to create one.
221 if (position == nullptr || !position->IsBoundType()) {
222 return true;
223 }
224
225 HBoundType* existing_bound_type = position->AsBoundType();
226 if (existing_bound_type->GetUpperBound().IsSupertypeOf(upper_bound)) {
227 if (kIsDebugBuild) {
228 // Check that the existing HBoundType dominates all the uses.
229 for (const HUseListNode<HInstruction*>& use : obj->GetUses()) {
230 HInstruction* user = use.GetUser();
231 if (dominator_instr != nullptr) {
232 DCHECK(!dominator_instr->StrictlyDominates(user)
233 || user == existing_bound_type
234 || existing_bound_type->StrictlyDominates(user));
235 } else if (dominator_block != nullptr) {
236 DCHECK(!dominator_block->Dominates(user->GetBlock())
237 || user == existing_bound_type
238 || existing_bound_type->StrictlyDominates(user));
239 }
240 }
241 }
242 } else {
243 // TODO: if the current bound type is a refinement we could update the
244 // existing_bound_type with the a new upper limit. However, we also need to
245 // update its users and have access to the work list.
246 }
247 return false;
248 }
249
250 // Helper method to bound the type of `receiver` for all instructions dominated
251 // by `start_block`, or `start_instruction` if `start_block` is null. The new
252 // bound type will have its upper bound be `class_rti`.
BoundTypeIn(HInstruction * receiver,HBasicBlock * start_block,HInstruction * start_instruction,const ReferenceTypeInfo & class_rti)253 static void BoundTypeIn(HInstruction* receiver,
254 HBasicBlock* start_block,
255 HInstruction* start_instruction,
256 const ReferenceTypeInfo& class_rti) {
257 // We only need to bound the type if we have uses in the relevant block.
258 // So start with null and create the HBoundType lazily, only if it's needed.
259 HBoundType* bound_type = nullptr;
260 DCHECK(!receiver->IsLoadClass()) << "We should not replace HLoadClass instructions";
261 const HUseList<HInstruction*>& uses = receiver->GetUses();
262 for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
263 HInstruction* user = it->GetUser();
264 size_t index = it->GetIndex();
265 // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
266 ++it;
267 bool dominates = (start_instruction != nullptr)
268 ? start_instruction->StrictlyDominates(user)
269 : start_block->Dominates(user->GetBlock());
270 if (!dominates) {
271 continue;
272 }
273 if (bound_type == nullptr) {
274 ScopedObjectAccess soa(Thread::Current());
275 HInstruction* insert_point = (start_instruction != nullptr)
276 ? start_instruction->GetNext()
277 : start_block->GetFirstInstruction();
278 if (ShouldCreateBoundType(
279 insert_point, receiver, class_rti, start_instruction, start_block)) {
280 bound_type = new (receiver->GetBlock()->GetGraph()->GetAllocator()) HBoundType(receiver);
281 bound_type->SetUpperBound(class_rti, /* can_be_null= */ false);
282 start_block->InsertInstructionBefore(bound_type, insert_point);
283 // To comply with the RTP algorithm, don't type the bound type just yet, it will
284 // be handled in RTPVisitor::VisitBoundType.
285 } else {
286 // We already have a bound type on the position we would need to insert
287 // the new one. The existing bound type should dominate all the users
288 // (dchecked) so there's no need to continue.
289 break;
290 }
291 }
292 user->ReplaceInput(bound_type, index);
293 }
294 // If the receiver is a null check, also bound the type of the actual
295 // receiver.
296 if (receiver->IsNullCheck()) {
297 BoundTypeIn(receiver->InputAt(0), start_block, start_instruction, class_rti);
298 }
299 }
300
301 // Recognize the patterns:
302 // if (obj.shadow$_klass_ == Foo.class) ...
303 // deoptimize if (obj.shadow$_klass_ == Foo.class)
BoundTypeForClassCheck(HInstruction * check)304 static void BoundTypeForClassCheck(HInstruction* check) {
305 if (!check->IsIf() && !check->IsDeoptimize()) {
306 return;
307 }
308 HInstruction* compare = check->InputAt(0);
309 if (!compare->IsEqual() && !compare->IsNotEqual()) {
310 return;
311 }
312 HInstruction* input_one = compare->InputAt(0);
313 HInstruction* input_two = compare->InputAt(1);
314 HLoadClass* load_class = input_one->IsLoadClass()
315 ? input_one->AsLoadClass()
316 : input_two->AsLoadClass();
317 if (load_class == nullptr) {
318 return;
319 }
320
321 ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
322 if (!class_rti.IsValid()) {
323 // We have loaded an unresolved class. Don't bother bounding the type.
324 return;
325 }
326
327 HInstanceFieldGet* field_get = (load_class == input_one)
328 ? input_two->AsInstanceFieldGet()
329 : input_one->AsInstanceFieldGet();
330 if (field_get == nullptr) {
331 return;
332 }
333 HInstruction* receiver = field_get->InputAt(0);
334 ReferenceTypeInfo receiver_type = receiver->GetReferenceTypeInfo();
335 if (receiver_type.IsExact()) {
336 // If we already know the receiver type, don't bother updating its users.
337 return;
338 }
339
340 {
341 ScopedObjectAccess soa(Thread::Current());
342 ArtField* field = GetClassRoot<mirror::Object>()->GetInstanceField(0);
343 DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
344 if (field_get->GetFieldInfo().GetField() != field) {
345 return;
346 }
347 }
348
349 if (check->IsIf()) {
350 HBasicBlock* trueBlock = compare->IsEqual()
351 ? check->AsIf()->IfTrueSuccessor()
352 : check->AsIf()->IfFalseSuccessor();
353 BoundTypeIn(receiver, trueBlock, /* start_instruction= */ nullptr, class_rti);
354 } else {
355 DCHECK(check->IsDeoptimize());
356 if (compare->IsEqual() && check->AsDeoptimize()->GuardsAnInput()) {
357 check->SetReferenceTypeInfo(class_rti);
358 }
359 }
360 }
361
Run()362 bool ReferenceTypePropagation::Run() {
363 RTPVisitor visitor(graph_, class_loader_, hint_dex_cache_, &handle_cache_, is_first_run_);
364
365 // To properly propagate type info we need to visit in the dominator-based order.
366 // Reverse post order guarantees a node's dominators are visited first.
367 // We take advantage of this order in `VisitBasicBlock`.
368 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
369 visitor.VisitBasicBlock(block);
370 }
371
372 visitor.ProcessWorklist();
373 ValidateTypes();
374 return true;
375 }
376
VisitBasicBlock(HBasicBlock * block)377 void ReferenceTypePropagation::RTPVisitor::VisitBasicBlock(HBasicBlock* block) {
378 // Handle Phis first as there might be instructions in the same block who depend on them.
379 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
380 VisitPhi(it.Current()->AsPhi());
381 }
382
383 // Handle instructions. Since RTP may add HBoundType instructions just after the
384 // last visited instruction, use `HInstructionIteratorHandleChanges` iterator.
385 for (HInstructionIteratorHandleChanges it(block->GetInstructions()); !it.Done(); it.Advance()) {
386 HInstruction* instr = it.Current();
387 instr->Accept(this);
388 }
389
390 // Add extra nodes to bound types.
391 BoundTypeForIfNotNull(block);
392 BoundTypeForIfInstanceOf(block);
393 BoundTypeForClassCheck(block->GetLastInstruction());
394 }
395
BoundTypeForIfNotNull(HBasicBlock * block)396 void ReferenceTypePropagation::RTPVisitor::BoundTypeForIfNotNull(HBasicBlock* block) {
397 HIf* ifInstruction = block->GetLastInstruction()->AsIf();
398 if (ifInstruction == nullptr) {
399 return;
400 }
401 HInstruction* ifInput = ifInstruction->InputAt(0);
402 if (!ifInput->IsNotEqual() && !ifInput->IsEqual()) {
403 return;
404 }
405 HInstruction* input0 = ifInput->InputAt(0);
406 HInstruction* input1 = ifInput->InputAt(1);
407 HInstruction* obj = nullptr;
408
409 if (input1->IsNullConstant()) {
410 obj = input0;
411 } else if (input0->IsNullConstant()) {
412 obj = input1;
413 } else {
414 return;
415 }
416
417 if (!obj->CanBeNull() || obj->IsNullConstant()) {
418 // Null check is dead code and will be removed by DCE.
419 return;
420 }
421 DCHECK(!obj->IsLoadClass()) << "We should not replace HLoadClass instructions";
422
423 // We only need to bound the type if we have uses in the relevant block.
424 // So start with null and create the HBoundType lazily, only if it's needed.
425 HBasicBlock* notNullBlock = ifInput->IsNotEqual()
426 ? ifInstruction->IfTrueSuccessor()
427 : ifInstruction->IfFalseSuccessor();
428
429 ReferenceTypeInfo object_rti = ReferenceTypeInfo::Create(
430 handle_cache_->GetObjectClassHandle(), /* is_exact= */ false);
431
432 BoundTypeIn(obj, notNullBlock, /* start_instruction= */ nullptr, object_rti);
433 }
434
435 // Returns true if one of the patterns below has been recognized. If so, the
436 // InstanceOf instruction together with the true branch of `ifInstruction` will
437 // be returned using the out parameters.
438 // Recognized patterns:
439 // (1) patterns equivalent to `if (obj instanceof X)`
440 // (a) InstanceOf -> Equal to 1 -> If
441 // (b) InstanceOf -> NotEqual to 0 -> If
442 // (c) InstanceOf -> If
443 // (2) patterns equivalent to `if (!(obj instanceof X))`
444 // (a) InstanceOf -> Equal to 0 -> If
445 // (b) InstanceOf -> NotEqual to 1 -> If
446 // (c) InstanceOf -> BooleanNot -> If
MatchIfInstanceOf(HIf * ifInstruction,HInstanceOf ** instanceOf,HBasicBlock ** trueBranch)447 static bool MatchIfInstanceOf(HIf* ifInstruction,
448 /* out */ HInstanceOf** instanceOf,
449 /* out */ HBasicBlock** trueBranch) {
450 HInstruction* input = ifInstruction->InputAt(0);
451
452 if (input->IsEqual()) {
453 HInstruction* rhs = input->AsEqual()->GetConstantRight();
454 if (rhs != nullptr) {
455 HInstruction* lhs = input->AsEqual()->GetLeastConstantLeft();
456 if (lhs->IsInstanceOf() && rhs->IsIntConstant()) {
457 if (rhs->AsIntConstant()->IsTrue()) {
458 // Case (1a)
459 *trueBranch = ifInstruction->IfTrueSuccessor();
460 } else {
461 // Case (2a)
462 DCHECK(rhs->AsIntConstant()->IsFalse()) << rhs->AsIntConstant()->GetValue();
463 *trueBranch = ifInstruction->IfFalseSuccessor();
464 }
465 *instanceOf = lhs->AsInstanceOf();
466 return true;
467 }
468 }
469 } else if (input->IsNotEqual()) {
470 HInstruction* rhs = input->AsNotEqual()->GetConstantRight();
471 if (rhs != nullptr) {
472 HInstruction* lhs = input->AsNotEqual()->GetLeastConstantLeft();
473 if (lhs->IsInstanceOf() && rhs->IsIntConstant()) {
474 if (rhs->AsIntConstant()->IsFalse()) {
475 // Case (1b)
476 *trueBranch = ifInstruction->IfTrueSuccessor();
477 } else {
478 // Case (2b)
479 DCHECK(rhs->AsIntConstant()->IsTrue()) << rhs->AsIntConstant()->GetValue();
480 *trueBranch = ifInstruction->IfFalseSuccessor();
481 }
482 *instanceOf = lhs->AsInstanceOf();
483 return true;
484 }
485 }
486 } else if (input->IsInstanceOf()) {
487 // Case (1c)
488 *instanceOf = input->AsInstanceOf();
489 *trueBranch = ifInstruction->IfTrueSuccessor();
490 return true;
491 } else if (input->IsBooleanNot()) {
492 HInstruction* not_input = input->InputAt(0);
493 if (not_input->IsInstanceOf()) {
494 // Case (2c)
495 *instanceOf = not_input->AsInstanceOf();
496 *trueBranch = ifInstruction->IfFalseSuccessor();
497 return true;
498 }
499 }
500
501 return false;
502 }
503
504 // Detects if `block` is the True block for the pattern
505 // `if (x instanceof ClassX) { }`
506 // If that's the case insert an HBoundType instruction to bound the type of `x`
507 // to `ClassX` in the scope of the dominated blocks.
BoundTypeForIfInstanceOf(HBasicBlock * block)508 void ReferenceTypePropagation::RTPVisitor::BoundTypeForIfInstanceOf(HBasicBlock* block) {
509 HIf* ifInstruction = block->GetLastInstruction()->AsIf();
510 if (ifInstruction == nullptr) {
511 return;
512 }
513
514 // Try to recognize common `if (instanceof)` and `if (!instanceof)` patterns.
515 HInstanceOf* instanceOf = nullptr;
516 HBasicBlock* instanceOfTrueBlock = nullptr;
517 if (!MatchIfInstanceOf(ifInstruction, &instanceOf, &instanceOfTrueBlock)) {
518 return;
519 }
520
521 ReferenceTypeInfo class_rti = instanceOf->GetTargetClassRTI();
522 if (!class_rti.IsValid()) {
523 // He have loaded an unresolved class. Don't bother bounding the type.
524 return;
525 }
526
527 HInstruction* obj = instanceOf->InputAt(0);
528 if (obj->GetReferenceTypeInfo().IsExact() && !obj->IsPhi()) {
529 // This method is being called while doing a fixed-point calculation
530 // over phis. Non-phis instruction whose type is already known do
531 // not need to be bound to another type.
532 // Not that this also prevents replacing `HLoadClass` with a `HBoundType`.
533 // `HCheckCast` and `HInstanceOf` expect a `HLoadClass` as a second
534 // input.
535 return;
536 }
537
538 {
539 ScopedObjectAccess soa(Thread::Current());
540 if (!class_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes()) {
541 class_rti = ReferenceTypeInfo::Create(class_rti.GetTypeHandle(), /* is_exact= */ false);
542 }
543 }
544 BoundTypeIn(obj, instanceOfTrueBlock, /* start_instruction= */ nullptr, class_rti);
545 }
546
SetClassAsTypeInfo(HInstruction * instr,ObjPtr<mirror::Class> klass,bool is_exact)547 void ReferenceTypePropagation::RTPVisitor::SetClassAsTypeInfo(HInstruction* instr,
548 ObjPtr<mirror::Class> klass,
549 bool is_exact) {
550 if (instr->IsInvokeStaticOrDirect() && instr->AsInvokeStaticOrDirect()->IsStringInit()) {
551 // Calls to String.<init> are replaced with a StringFactory.
552 if (kIsDebugBuild) {
553 HInvokeStaticOrDirect* invoke = instr->AsInvokeStaticOrDirect();
554 ClassLinker* cl = Runtime::Current()->GetClassLinker();
555 Thread* self = Thread::Current();
556 StackHandleScope<2> hs(self);
557 const DexFile& dex_file = *invoke->GetTargetMethod().dex_file;
558 uint32_t dex_method_index = invoke->GetTargetMethod().index;
559 Handle<mirror::DexCache> dex_cache(
560 hs.NewHandle(FindDexCacheWithHint(self, dex_file, hint_dex_cache_)));
561 // Use a null loader, the target method is in a boot classpath dex file.
562 Handle<mirror::ClassLoader> loader(hs.NewHandle<mirror::ClassLoader>(nullptr));
563 ArtMethod* method = cl->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
564 dex_method_index, dex_cache, loader, /* referrer= */ nullptr, kDirect);
565 DCHECK(method != nullptr);
566 ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass();
567 DCHECK(declaring_class != nullptr);
568 DCHECK(declaring_class->IsStringClass())
569 << "Expected String class: " << declaring_class->PrettyDescriptor();
570 DCHECK(method->IsConstructor())
571 << "Expected String.<init>: " << method->PrettyMethod();
572 }
573 instr->SetReferenceTypeInfo(
574 ReferenceTypeInfo::Create(handle_cache_->GetStringClassHandle(), /* is_exact= */ true));
575 } else if (IsAdmissible(klass)) {
576 ReferenceTypeInfo::TypeHandle handle = handle_cache_->NewHandle(klass);
577 is_exact = is_exact || handle->CannotBeAssignedFromOtherTypes();
578 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(handle, is_exact));
579 } else {
580 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
581 }
582 }
583
VisitDeoptimize(HDeoptimize * instr)584 void ReferenceTypePropagation::RTPVisitor::VisitDeoptimize(HDeoptimize* instr) {
585 BoundTypeForClassCheck(instr);
586 }
587
UpdateReferenceTypeInfo(HInstruction * instr,dex::TypeIndex type_idx,const DexFile & dex_file,bool is_exact)588 void ReferenceTypePropagation::RTPVisitor::UpdateReferenceTypeInfo(HInstruction* instr,
589 dex::TypeIndex type_idx,
590 const DexFile& dex_file,
591 bool is_exact) {
592 DCHECK_EQ(instr->GetType(), DataType::Type::kReference);
593
594 ScopedObjectAccess soa(Thread::Current());
595 ObjPtr<mirror::DexCache> dex_cache = FindDexCacheWithHint(soa.Self(), dex_file, hint_dex_cache_);
596 ObjPtr<mirror::Class> klass = Runtime::Current()->GetClassLinker()->LookupResolvedType(
597 type_idx, dex_cache, class_loader_.Get());
598 SetClassAsTypeInfo(instr, klass, is_exact);
599 }
600
VisitNewInstance(HNewInstance * instr)601 void ReferenceTypePropagation::RTPVisitor::VisitNewInstance(HNewInstance* instr) {
602 ScopedObjectAccess soa(Thread::Current());
603 SetClassAsTypeInfo(instr, instr->GetLoadClass()->GetClass().Get(), /* is_exact= */ true);
604 }
605
VisitNewArray(HNewArray * instr)606 void ReferenceTypePropagation::RTPVisitor::VisitNewArray(HNewArray* instr) {
607 ScopedObjectAccess soa(Thread::Current());
608 SetClassAsTypeInfo(instr, instr->GetLoadClass()->GetClass().Get(), /* is_exact= */ true);
609 }
610
VisitParameterValue(HParameterValue * instr)611 void ReferenceTypePropagation::RTPVisitor::VisitParameterValue(HParameterValue* instr) {
612 // We check if the existing type is valid: the inliner may have set it.
613 if (instr->GetType() == DataType::Type::kReference && !instr->GetReferenceTypeInfo().IsValid()) {
614 UpdateReferenceTypeInfo(instr,
615 instr->GetTypeIndex(),
616 instr->GetDexFile(),
617 /* is_exact= */ false);
618 }
619 }
620
UpdateFieldAccessTypeInfo(HInstruction * instr,const FieldInfo & info)621 void ReferenceTypePropagation::RTPVisitor::UpdateFieldAccessTypeInfo(HInstruction* instr,
622 const FieldInfo& info) {
623 if (instr->GetType() != DataType::Type::kReference) {
624 return;
625 }
626
627 ScopedObjectAccess soa(Thread::Current());
628 ObjPtr<mirror::Class> klass;
629
630 // The field is unknown only during tests.
631 if (info.GetField() != nullptr) {
632 klass = info.GetField()->LookupResolvedType();
633 }
634
635 SetClassAsTypeInfo(instr, klass, /* is_exact= */ false);
636 }
637
VisitInstanceFieldGet(HInstanceFieldGet * instr)638 void ReferenceTypePropagation::RTPVisitor::VisitInstanceFieldGet(HInstanceFieldGet* instr) {
639 UpdateFieldAccessTypeInfo(instr, instr->GetFieldInfo());
640 }
641
VisitStaticFieldGet(HStaticFieldGet * instr)642 void ReferenceTypePropagation::RTPVisitor::VisitStaticFieldGet(HStaticFieldGet* instr) {
643 UpdateFieldAccessTypeInfo(instr, instr->GetFieldInfo());
644 }
645
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instr)646 void ReferenceTypePropagation::RTPVisitor::VisitUnresolvedInstanceFieldGet(
647 HUnresolvedInstanceFieldGet* instr) {
648 // TODO: Use descriptor to get the actual type.
649 if (instr->GetFieldType() == DataType::Type::kReference) {
650 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
651 }
652 }
653
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instr)654 void ReferenceTypePropagation::RTPVisitor::VisitUnresolvedStaticFieldGet(
655 HUnresolvedStaticFieldGet* instr) {
656 // TODO: Use descriptor to get the actual type.
657 if (instr->GetFieldType() == DataType::Type::kReference) {
658 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
659 }
660 }
661
VisitLoadClass(HLoadClass * instr)662 void ReferenceTypePropagation::RTPVisitor::VisitLoadClass(HLoadClass* instr) {
663 ScopedObjectAccess soa(Thread::Current());
664 if (IsAdmissible(instr->GetClass().Get())) {
665 instr->SetValidLoadedClassRTI();
666 }
667 instr->SetReferenceTypeInfo(
668 ReferenceTypeInfo::Create(handle_cache_->GetClassClassHandle(), /* is_exact= */ true));
669 }
670
VisitInstanceOf(HInstanceOf * instr)671 void ReferenceTypePropagation::RTPVisitor::VisitInstanceOf(HInstanceOf* instr) {
672 ScopedObjectAccess soa(Thread::Current());
673 if (IsAdmissible(instr->GetClass().Get())) {
674 instr->SetValidTargetClassRTI();
675 }
676 }
677
VisitClinitCheck(HClinitCheck * instr)678 void ReferenceTypePropagation::RTPVisitor::VisitClinitCheck(HClinitCheck* instr) {
679 instr->SetReferenceTypeInfo(instr->InputAt(0)->GetReferenceTypeInfo());
680 }
681
VisitLoadMethodHandle(HLoadMethodHandle * instr)682 void ReferenceTypePropagation::RTPVisitor::VisitLoadMethodHandle(HLoadMethodHandle* instr) {
683 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(
684 handle_cache_->GetMethodHandleClassHandle(),
685 /* is_exact= */ true));
686 }
687
VisitLoadMethodType(HLoadMethodType * instr)688 void ReferenceTypePropagation::RTPVisitor::VisitLoadMethodType(HLoadMethodType* instr) {
689 instr->SetReferenceTypeInfo(
690 ReferenceTypeInfo::Create(handle_cache_->GetMethodTypeClassHandle(), /* is_exact= */ true));
691 }
692
VisitLoadString(HLoadString * instr)693 void ReferenceTypePropagation::RTPVisitor::VisitLoadString(HLoadString* instr) {
694 instr->SetReferenceTypeInfo(
695 ReferenceTypeInfo::Create(handle_cache_->GetStringClassHandle(), /* is_exact= */ true));
696 }
697
VisitLoadException(HLoadException * instr)698 void ReferenceTypePropagation::RTPVisitor::VisitLoadException(HLoadException* instr) {
699 DCHECK(instr->GetBlock()->IsCatchBlock());
700 TryCatchInformation* catch_info = instr->GetBlock()->GetTryCatchInformation();
701
702 if (catch_info->IsValidTypeIndex()) {
703 UpdateReferenceTypeInfo(instr,
704 catch_info->GetCatchTypeIndex(),
705 catch_info->GetCatchDexFile(),
706 /* is_exact= */ false);
707 } else {
708 instr->SetReferenceTypeInfo(
709 ReferenceTypeInfo::Create(handle_cache_->GetThrowableClassHandle(), /* is_exact= */ false));
710 }
711 }
712
VisitNullCheck(HNullCheck * instr)713 void ReferenceTypePropagation::RTPVisitor::VisitNullCheck(HNullCheck* instr) {
714 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
715 if (parent_rti.IsValid()) {
716 instr->SetReferenceTypeInfo(parent_rti);
717 }
718 }
719
VisitBoundType(HBoundType * instr)720 void ReferenceTypePropagation::RTPVisitor::VisitBoundType(HBoundType* instr) {
721 ReferenceTypeInfo class_rti = instr->GetUpperBound();
722 if (class_rti.IsValid()) {
723 ScopedObjectAccess soa(Thread::Current());
724 // Narrow the type as much as possible.
725 HInstruction* obj = instr->InputAt(0);
726 ReferenceTypeInfo obj_rti = obj->GetReferenceTypeInfo();
727 if (class_rti.IsExact()) {
728 instr->SetReferenceTypeInfo(class_rti);
729 } else if (obj_rti.IsValid()) {
730 if (class_rti.IsSupertypeOf(obj_rti)) {
731 // Object type is more specific.
732 instr->SetReferenceTypeInfo(obj_rti);
733 } else {
734 // Upper bound is more specific, or unrelated to the object's type.
735 // Note that the object might then be exact, and we know the code dominated by this
736 // bound type is dead. To not confuse potential other optimizations, we mark
737 // the bound as non-exact.
738 instr->SetReferenceTypeInfo(
739 ReferenceTypeInfo::Create(class_rti.GetTypeHandle(), /* is_exact= */ false));
740 }
741 } else {
742 // Object not typed yet. Leave BoundType untyped for now rather than
743 // assign the type conservatively.
744 }
745 instr->SetCanBeNull(obj->CanBeNull() && instr->GetUpperCanBeNull());
746 } else {
747 // The owner of the BoundType was already visited. If the class is unresolved,
748 // the BoundType should have been removed from the data flow and this method
749 // should remove it from the graph.
750 DCHECK(!instr->HasUses());
751 instr->GetBlock()->RemoveInstruction(instr);
752 }
753 }
754
VisitCheckCast(HCheckCast * check_cast)755 void ReferenceTypePropagation::RTPVisitor::VisitCheckCast(HCheckCast* check_cast) {
756 HBoundType* bound_type = check_cast->GetNext()->AsBoundType();
757 if (bound_type == nullptr || bound_type->GetUpperBound().IsValid()) {
758 // The next instruction is not an uninitialized BoundType. This must be
759 // an RTP pass after SsaBuilder and we do not need to do anything.
760 return;
761 }
762 DCHECK_EQ(bound_type->InputAt(0), check_cast->InputAt(0));
763
764 ScopedObjectAccess soa(Thread::Current());
765 Handle<mirror::Class> klass = check_cast->GetClass();
766 if (IsAdmissible(klass.Get())) {
767 DCHECK(is_first_run_);
768 check_cast->SetValidTargetClassRTI();
769 // This is the first run of RTP and class is resolved.
770 bool is_exact = klass->CannotBeAssignedFromOtherTypes();
771 bound_type->SetUpperBound(ReferenceTypeInfo::Create(klass, is_exact),
772 /* CheckCast succeeds for nulls. */ true);
773 } else {
774 // This is the first run of RTP and class is unresolved. Remove the binding.
775 // The instruction itself is removed in VisitBoundType so as to not
776 // invalidate HInstructionIterator.
777 bound_type->ReplaceWith(bound_type->InputAt(0));
778 }
779 }
780
VisitPhi(HPhi * phi)781 void ReferenceTypePropagation::RTPVisitor::VisitPhi(HPhi* phi) {
782 if (phi->IsDead() || phi->GetType() != DataType::Type::kReference) {
783 return;
784 }
785
786 if (phi->GetBlock()->IsLoopHeader()) {
787 // Set the initial type for the phi. Use the non back edge input for reaching
788 // a fixed point faster.
789 HInstruction* first_input = phi->InputAt(0);
790 ReferenceTypeInfo first_input_rti = first_input->GetReferenceTypeInfo();
791 if (first_input_rti.IsValid() && !first_input->IsNullConstant()) {
792 phi->SetCanBeNull(first_input->CanBeNull());
793 phi->SetReferenceTypeInfo(first_input_rti);
794 }
795 AddToWorklist(phi);
796 } else {
797 // Eagerly compute the type of the phi, for quicker convergence. Note
798 // that we don't need to add users to the worklist because we are
799 // doing a reverse post-order visit, therefore either the phi users are
800 // non-loop phi and will be visited later in the visit, or are loop-phis,
801 // and they are already in the work list.
802 UpdateNullability(phi);
803 UpdateReferenceTypeInfo(phi);
804 }
805 }
806
FixUpInstructionType(HInstruction * instruction,VariableSizedHandleScope * handle_scope)807 void ReferenceTypePropagation::FixUpInstructionType(HInstruction* instruction,
808 VariableSizedHandleScope* handle_scope) {
809 if (instruction->IsSelect()) {
810 ScopedObjectAccess soa(Thread::Current());
811 HandleCache handle_cache(handle_scope);
812 HSelect* select = instruction->AsSelect();
813 ReferenceTypeInfo false_rti = select->GetFalseValue()->GetReferenceTypeInfo();
814 ReferenceTypeInfo true_rti = select->GetTrueValue()->GetReferenceTypeInfo();
815 select->SetReferenceTypeInfo(MergeTypes(false_rti, true_rti, &handle_cache));
816 } else {
817 LOG(FATAL) << "Invalid instruction in FixUpInstructionType";
818 }
819 }
820
MergeTypes(const ReferenceTypeInfo & a,const ReferenceTypeInfo & b,HandleCache * handle_cache)821 ReferenceTypeInfo ReferenceTypePropagation::MergeTypes(const ReferenceTypeInfo& a,
822 const ReferenceTypeInfo& b,
823 HandleCache* handle_cache) {
824 if (!b.IsValid()) {
825 return a;
826 }
827 if (!a.IsValid()) {
828 return b;
829 }
830
831 bool is_exact = a.IsExact() && b.IsExact();
832 ReferenceTypeInfo::TypeHandle result_type_handle;
833 ReferenceTypeInfo::TypeHandle a_type_handle = a.GetTypeHandle();
834 ReferenceTypeInfo::TypeHandle b_type_handle = b.GetTypeHandle();
835 bool a_is_interface = a_type_handle->IsInterface();
836 bool b_is_interface = b_type_handle->IsInterface();
837
838 if (a.GetTypeHandle().Get() == b.GetTypeHandle().Get()) {
839 result_type_handle = a_type_handle;
840 } else if (a.IsSupertypeOf(b)) {
841 result_type_handle = a_type_handle;
842 is_exact = false;
843 } else if (b.IsSupertypeOf(a)) {
844 result_type_handle = b_type_handle;
845 is_exact = false;
846 } else if (!a_is_interface && !b_is_interface) {
847 result_type_handle =
848 handle_cache->NewHandle(a_type_handle->GetCommonSuperClass(b_type_handle));
849 is_exact = false;
850 } else {
851 // This can happen if:
852 // - both types are interfaces. TODO(calin): implement
853 // - one is an interface, the other a class, and the type does not implement the interface
854 // e.g:
855 // void foo(Interface i, boolean cond) {
856 // Object o = cond ? i : new Object();
857 // }
858 result_type_handle = handle_cache->GetObjectClassHandle();
859 is_exact = false;
860 }
861
862 return ReferenceTypeInfo::Create(result_type_handle, is_exact);
863 }
864
UpdateArrayGet(HArrayGet * instr)865 void ReferenceTypePropagation::RTPVisitor::UpdateArrayGet(HArrayGet* instr) {
866 DCHECK_EQ(DataType::Type::kReference, instr->GetType());
867
868 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
869 if (!parent_rti.IsValid()) {
870 return;
871 }
872
873 Handle<mirror::Class> handle = parent_rti.GetTypeHandle();
874 if (handle->IsObjectArrayClass() && IsAdmissible(handle->GetComponentType())) {
875 ReferenceTypeInfo::TypeHandle component_handle =
876 handle_cache_->NewHandle(handle->GetComponentType());
877 bool is_exact = component_handle->CannotBeAssignedFromOtherTypes();
878 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(component_handle, is_exact));
879 } else {
880 // We don't know what the parent actually is, so we fallback to object.
881 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
882 }
883 }
884
UpdateReferenceTypeInfo(HInstruction * instr)885 bool ReferenceTypePropagation::RTPVisitor::UpdateReferenceTypeInfo(HInstruction* instr) {
886 ScopedObjectAccess soa(Thread::Current());
887
888 ReferenceTypeInfo previous_rti = instr->GetReferenceTypeInfo();
889 if (instr->IsBoundType()) {
890 UpdateBoundType(instr->AsBoundType());
891 } else if (instr->IsPhi()) {
892 UpdatePhi(instr->AsPhi());
893 } else if (instr->IsNullCheck()) {
894 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
895 if (parent_rti.IsValid()) {
896 instr->SetReferenceTypeInfo(parent_rti);
897 }
898 } else if (instr->IsArrayGet()) {
899 // TODO: consider if it's worth "looking back" and binding the input object
900 // to an array type.
901 UpdateArrayGet(instr->AsArrayGet());
902 } else {
903 LOG(FATAL) << "Invalid instruction (should not get here)";
904 }
905
906 return !previous_rti.IsEqual(instr->GetReferenceTypeInfo());
907 }
908
VisitInvoke(HInvoke * instr)909 void ReferenceTypePropagation::RTPVisitor::VisitInvoke(HInvoke* instr) {
910 if (instr->GetType() != DataType::Type::kReference) {
911 return;
912 }
913
914 ScopedObjectAccess soa(Thread::Current());
915 ArtMethod* method = instr->GetResolvedMethod();
916 ObjPtr<mirror::Class> klass = (method == nullptr) ? nullptr : method->LookupResolvedReturnType();
917 SetClassAsTypeInfo(instr, klass, /* is_exact= */ false);
918 }
919
VisitArrayGet(HArrayGet * instr)920 void ReferenceTypePropagation::RTPVisitor::VisitArrayGet(HArrayGet* instr) {
921 if (instr->GetType() != DataType::Type::kReference) {
922 return;
923 }
924
925 ScopedObjectAccess soa(Thread::Current());
926 UpdateArrayGet(instr);
927 if (!instr->GetReferenceTypeInfo().IsValid()) {
928 worklist_.push_back(instr);
929 }
930 }
931
UpdateBoundType(HBoundType * instr)932 void ReferenceTypePropagation::RTPVisitor::UpdateBoundType(HBoundType* instr) {
933 ReferenceTypeInfo input_rti = instr->InputAt(0)->GetReferenceTypeInfo();
934 if (!input_rti.IsValid()) {
935 return; // No new info yet.
936 }
937
938 ReferenceTypeInfo upper_bound_rti = instr->GetUpperBound();
939 if (upper_bound_rti.IsExact()) {
940 instr->SetReferenceTypeInfo(upper_bound_rti);
941 } else if (upper_bound_rti.IsSupertypeOf(input_rti)) {
942 // input is more specific.
943 instr->SetReferenceTypeInfo(input_rti);
944 } else {
945 // upper_bound is more specific or unrelated.
946 // Note that the object might then be exact, and we know the code dominated by this
947 // bound type is dead. To not confuse potential other optimizations, we mark
948 // the bound as non-exact.
949 instr->SetReferenceTypeInfo(
950 ReferenceTypeInfo::Create(upper_bound_rti.GetTypeHandle(), /* is_exact= */ false));
951 }
952 }
953
954 // NullConstant inputs are ignored during merging as they do not provide any useful information.
955 // If all the inputs are NullConstants then the type of the phi will be set to Object.
UpdatePhi(HPhi * instr)956 void ReferenceTypePropagation::RTPVisitor::UpdatePhi(HPhi* instr) {
957 DCHECK(instr->IsLive());
958
959 HInputsRef inputs = instr->GetInputs();
960 size_t first_input_index_not_null = 0;
961 while (first_input_index_not_null < inputs.size() &&
962 inputs[first_input_index_not_null]->IsNullConstant()) {
963 first_input_index_not_null++;
964 }
965 if (first_input_index_not_null == inputs.size()) {
966 // All inputs are NullConstants, set the type to object.
967 // This may happen in the presence of inlining.
968 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
969 return;
970 }
971
972 ReferenceTypeInfo new_rti = instr->InputAt(first_input_index_not_null)->GetReferenceTypeInfo();
973
974 if (new_rti.IsValid() && new_rti.IsObjectClass() && !new_rti.IsExact()) {
975 // Early return if we are Object and inexact.
976 instr->SetReferenceTypeInfo(new_rti);
977 return;
978 }
979
980 for (size_t i = first_input_index_not_null + 1; i < inputs.size(); i++) {
981 if (inputs[i]->IsNullConstant()) {
982 continue;
983 }
984 new_rti = MergeTypes(new_rti, inputs[i]->GetReferenceTypeInfo(), handle_cache_);
985 if (new_rti.IsValid() && new_rti.IsObjectClass()) {
986 if (!new_rti.IsExact()) {
987 break;
988 } else {
989 continue;
990 }
991 }
992 }
993
994 if (new_rti.IsValid()) {
995 instr->SetReferenceTypeInfo(new_rti);
996 }
997 }
998
999 // Re-computes and updates the nullability of the instruction. Returns whether or
1000 // not the nullability was changed.
UpdateNullability(HInstruction * instr)1001 bool ReferenceTypePropagation::RTPVisitor::UpdateNullability(HInstruction* instr) {
1002 DCHECK((instr->IsPhi() && instr->AsPhi()->IsLive())
1003 || instr->IsBoundType()
1004 || instr->IsNullCheck()
1005 || instr->IsArrayGet());
1006
1007 if (!instr->IsPhi() && !instr->IsBoundType()) {
1008 return false;
1009 }
1010
1011 bool existing_can_be_null = instr->CanBeNull();
1012 if (instr->IsPhi()) {
1013 HPhi* phi = instr->AsPhi();
1014 bool new_can_be_null = false;
1015 for (HInstruction* input : phi->GetInputs()) {
1016 if (input->CanBeNull()) {
1017 new_can_be_null = true;
1018 break;
1019 }
1020 }
1021 phi->SetCanBeNull(new_can_be_null);
1022 } else if (instr->IsBoundType()) {
1023 HBoundType* bound_type = instr->AsBoundType();
1024 bound_type->SetCanBeNull(instr->InputAt(0)->CanBeNull() && bound_type->GetUpperCanBeNull());
1025 }
1026 return existing_can_be_null != instr->CanBeNull();
1027 }
1028
ProcessWorklist()1029 void ReferenceTypePropagation::RTPVisitor::ProcessWorklist() {
1030 while (!worklist_.empty()) {
1031 HInstruction* instruction = worklist_.back();
1032 worklist_.pop_back();
1033 bool updated_nullability = UpdateNullability(instruction);
1034 bool updated_reference_type = UpdateReferenceTypeInfo(instruction);
1035 if (updated_nullability || updated_reference_type) {
1036 AddDependentInstructionsToWorklist(instruction);
1037 }
1038 }
1039 }
1040
AddToWorklist(HInstruction * instruction)1041 void ReferenceTypePropagation::RTPVisitor::AddToWorklist(HInstruction* instruction) {
1042 DCHECK_EQ(instruction->GetType(), DataType::Type::kReference)
1043 << instruction->DebugName() << ":" << instruction->GetType();
1044 worklist_.push_back(instruction);
1045 }
1046
AddDependentInstructionsToWorklist(HInstruction * instruction)1047 void ReferenceTypePropagation::RTPVisitor::AddDependentInstructionsToWorklist(
1048 HInstruction* instruction) {
1049 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
1050 HInstruction* user = use.GetUser();
1051 if ((user->IsPhi() && user->AsPhi()->IsLive())
1052 || user->IsBoundType()
1053 || user->IsNullCheck()
1054 || (user->IsArrayGet() && (user->GetType() == DataType::Type::kReference))) {
1055 AddToWorklist(user);
1056 }
1057 }
1058 }
1059
1060 } // namespace art
1061