• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.hardware;
18 
19 import android.annotation.SystemApi;
20 import android.annotation.SystemService;
21 import android.annotation.UnsupportedAppUsage;
22 import android.content.Context;
23 import android.os.Build;
24 import android.os.Handler;
25 import android.os.MemoryFile;
26 import android.util.Log;
27 import android.util.SparseArray;
28 
29 import java.util.ArrayList;
30 import java.util.Collections;
31 import java.util.List;
32 
33 /**
34  * <p>
35  * SensorManager lets you access the device's {@link android.hardware.Sensor
36  * sensors}.
37  * </p>
38  * <p>
39  * Always make sure to disable sensors you don't need, especially when your
40  * activity is paused. Failing to do so can drain the battery in just a few
41  * hours. Note that the system will <i>not</i> disable sensors automatically when
42  * the screen turns off.
43  * </p>
44  * <p class="note">
45  * Note: Don't use this mechanism with a Trigger Sensor, have a look
46  * at {@link TriggerEventListener}. {@link Sensor#TYPE_SIGNIFICANT_MOTION}
47  * is an example of a trigger sensor.
48  * </p>
49  * <pre class="prettyprint">
50  * public class SensorActivity extends Activity implements SensorEventListener {
51  *     private final SensorManager mSensorManager;
52  *     private final Sensor mAccelerometer;
53  *
54  *     public SensorActivity() {
55  *         mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
56  *         mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
57  *     }
58  *
59  *     protected void onResume() {
60  *         super.onResume();
61  *         mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL);
62  *     }
63  *
64  *     protected void onPause() {
65  *         super.onPause();
66  *         mSensorManager.unregisterListener(this);
67  *     }
68  *
69  *     public void onAccuracyChanged(Sensor sensor, int accuracy) {
70  *     }
71  *
72  *     public void onSensorChanged(SensorEvent event) {
73  *     }
74  * }
75  * </pre>
76  *
77  * @see SensorEventListener
78  * @see SensorEvent
79  * @see Sensor
80  *
81  */
82 @SystemService(Context.SENSOR_SERVICE)
83 public abstract class SensorManager {
84     /** @hide */
85     protected static final String TAG = "SensorManager";
86 
87     private static final float[] sTempMatrix = new float[16];
88 
89     // Cached lists of sensors by type.  Guarded by mSensorListByType.
90     private final SparseArray<List<Sensor>> mSensorListByType =
91             new SparseArray<List<Sensor>>();
92 
93     // Legacy sensor manager implementation.  Guarded by mSensorListByType during initialization.
94     private LegacySensorManager mLegacySensorManager;
95 
96     /* NOTE: sensor IDs must be a power of 2 */
97 
98     /**
99      * A constant describing an orientation sensor. See
100      * {@link android.hardware.SensorListener SensorListener} for more details.
101      *
102      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
103      */
104     @Deprecated
105     public static final int SENSOR_ORIENTATION = 1 << 0;
106 
107     /**
108      * A constant describing an accelerometer. See
109      * {@link android.hardware.SensorListener SensorListener} for more details.
110      *
111      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
112      */
113     @Deprecated
114     public static final int SENSOR_ACCELEROMETER = 1 << 1;
115 
116     /**
117      * A constant describing a temperature sensor See
118      * {@link android.hardware.SensorListener SensorListener} for more details.
119      *
120      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
121      */
122     @Deprecated
123     public static final int SENSOR_TEMPERATURE = 1 << 2;
124 
125     /**
126      * A constant describing a magnetic sensor See
127      * {@link android.hardware.SensorListener SensorListener} for more details.
128      *
129      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
130      */
131     @Deprecated
132     public static final int SENSOR_MAGNETIC_FIELD = 1 << 3;
133 
134     /**
135      * A constant describing an ambient light sensor See
136      * {@link android.hardware.SensorListener SensorListener} for more details.
137      *
138      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
139      */
140     @Deprecated
141     public static final int SENSOR_LIGHT = 1 << 4;
142 
143     /**
144      * A constant describing a proximity sensor See
145      * {@link android.hardware.SensorListener SensorListener} for more details.
146      *
147      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
148      */
149     @Deprecated
150     public static final int SENSOR_PROXIMITY = 1 << 5;
151 
152     /**
153      * A constant describing a Tricorder See
154      * {@link android.hardware.SensorListener SensorListener} for more details.
155      *
156      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
157      */
158     @Deprecated
159     public static final int SENSOR_TRICORDER = 1 << 6;
160 
161     /**
162      * A constant describing an orientation sensor. See
163      * {@link android.hardware.SensorListener SensorListener} for more details.
164      *
165      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
166      */
167     @Deprecated
168     public static final int SENSOR_ORIENTATION_RAW = 1 << 7;
169 
170     /**
171      * A constant that includes all sensors
172      *
173      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
174      */
175     @Deprecated
176     public static final int SENSOR_ALL = 0x7F;
177 
178     /**
179      * Smallest sensor ID
180      *
181      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
182      */
183     @Deprecated
184     public static final int SENSOR_MIN = SENSOR_ORIENTATION;
185 
186     /**
187      * Largest sensor ID
188      *
189      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
190      */
191     @Deprecated
192     public static final int SENSOR_MAX = ((SENSOR_ALL + 1) >> 1);
193 
194 
195     /**
196      * Index of the X value in the array returned by
197      * {@link android.hardware.SensorListener#onSensorChanged}
198      *
199      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
200      */
201     @Deprecated
202     public static final int DATA_X = 0;
203 
204     /**
205      * Index of the Y value in the array returned by
206      * {@link android.hardware.SensorListener#onSensorChanged}
207      *
208      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
209      */
210     @Deprecated
211     public static final int DATA_Y = 1;
212 
213     /**
214      * Index of the Z value in the array returned by
215      * {@link android.hardware.SensorListener#onSensorChanged}
216      *
217      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
218      */
219     @Deprecated
220     public static final int DATA_Z = 2;
221 
222     /**
223      * Offset to the untransformed values in the array returned by
224      * {@link android.hardware.SensorListener#onSensorChanged}
225      *
226      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
227      */
228     @Deprecated
229     public static final int RAW_DATA_INDEX = 3;
230 
231     /**
232      * Index of the untransformed X value in the array returned by
233      * {@link android.hardware.SensorListener#onSensorChanged}
234      *
235      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
236      */
237     @Deprecated
238     public static final int RAW_DATA_X = 3;
239 
240     /**
241      * Index of the untransformed Y value in the array returned by
242      * {@link android.hardware.SensorListener#onSensorChanged}
243      *
244      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
245      */
246     @Deprecated
247     public static final int RAW_DATA_Y = 4;
248 
249     /**
250      * Index of the untransformed Z value in the array returned by
251      * {@link android.hardware.SensorListener#onSensorChanged}
252      *
253      * @deprecated use {@link android.hardware.Sensor Sensor} instead.
254      */
255     @Deprecated
256     public static final int RAW_DATA_Z = 5;
257 
258     /** Standard gravity (g) on Earth. This value is equivalent to 1G */
259     public static final float STANDARD_GRAVITY = 9.80665f;
260 
261     /** Sun's gravity in SI units (m/s^2) */
262     public static final float GRAVITY_SUN             = 275.0f;
263     /** Mercury's gravity in SI units (m/s^2) */
264     public static final float GRAVITY_MERCURY         = 3.70f;
265     /** Venus' gravity in SI units (m/s^2) */
266     public static final float GRAVITY_VENUS           = 8.87f;
267     /** Earth's gravity in SI units (m/s^2) */
268     public static final float GRAVITY_EARTH           = 9.80665f;
269     /** The Moon's gravity in SI units (m/s^2) */
270     public static final float GRAVITY_MOON            = 1.6f;
271     /** Mars' gravity in SI units (m/s^2) */
272     public static final float GRAVITY_MARS            = 3.71f;
273     /** Jupiter's gravity in SI units (m/s^2) */
274     public static final float GRAVITY_JUPITER         = 23.12f;
275     /** Saturn's gravity in SI units (m/s^2) */
276     public static final float GRAVITY_SATURN          = 8.96f;
277     /** Uranus' gravity in SI units (m/s^2) */
278     public static final float GRAVITY_URANUS          = 8.69f;
279     /** Neptune's gravity in SI units (m/s^2) */
280     public static final float GRAVITY_NEPTUNE         = 11.0f;
281     /** Pluto's gravity in SI units (m/s^2) */
282     public static final float GRAVITY_PLUTO           = 0.6f;
283     /** Gravity (estimate) on the first Death Star in Empire units (m/s^2) */
284     public static final float GRAVITY_DEATH_STAR_I    = 0.000000353036145f;
285     /** Gravity on the island */
286     public static final float GRAVITY_THE_ISLAND      = 4.815162342f;
287 
288 
289     /** Maximum magnetic field on Earth's surface */
290     public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f;
291     /** Minimum magnetic field on Earth's surface */
292     public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f;
293 
294 
295     /** Standard atmosphere, or average sea-level pressure in hPa (millibar) */
296     public static final float PRESSURE_STANDARD_ATMOSPHERE = 1013.25f;
297 
298 
299     /** Maximum luminance of sunlight in lux */
300     public static final float LIGHT_SUNLIGHT_MAX = 120000.0f;
301     /** luminance of sunlight in lux */
302     public static final float LIGHT_SUNLIGHT     = 110000.0f;
303     /** luminance in shade in lux */
304     public static final float LIGHT_SHADE        = 20000.0f;
305     /** luminance under an overcast sky in lux */
306     public static final float LIGHT_OVERCAST     = 10000.0f;
307     /** luminance at sunrise in lux */
308     public static final float LIGHT_SUNRISE      = 400.0f;
309     /** luminance under a cloudy sky in lux */
310     public static final float LIGHT_CLOUDY       = 100.0f;
311     /** luminance at night with full moon in lux */
312     public static final float LIGHT_FULLMOON     = 0.25f;
313     /** luminance at night with no moon in lux*/
314     public static final float LIGHT_NO_MOON      = 0.001f;
315 
316 
317     /** get sensor data as fast as possible */
318     public static final int SENSOR_DELAY_FASTEST = 0;
319     /** rate suitable for games */
320     public static final int SENSOR_DELAY_GAME = 1;
321     /** rate suitable for the user interface  */
322     public static final int SENSOR_DELAY_UI = 2;
323     /** rate (default) suitable for screen orientation changes */
324     public static final int SENSOR_DELAY_NORMAL = 3;
325 
326 
327     /**
328       * The values returned by this sensor cannot be trusted because the sensor
329       * had no contact with what it was measuring (for example, the heart rate
330       * monitor is not in contact with the user).
331       */
332     public static final int SENSOR_STATUS_NO_CONTACT = -1;
333 
334     /**
335      * The values returned by this sensor cannot be trusted, calibration is
336      * needed or the environment doesn't allow readings
337      */
338     public static final int SENSOR_STATUS_UNRELIABLE = 0;
339 
340     /**
341      * This sensor is reporting data with low accuracy, calibration with the
342      * environment is needed
343      */
344     public static final int SENSOR_STATUS_ACCURACY_LOW = 1;
345 
346     /**
347      * This sensor is reporting data with an average level of accuracy,
348      * calibration with the environment may improve the readings
349      */
350     public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2;
351 
352     /** This sensor is reporting data with maximum accuracy */
353     public static final int SENSOR_STATUS_ACCURACY_HIGH = 3;
354 
355     /** see {@link #remapCoordinateSystem} */
356     public static final int AXIS_X = 1;
357     /** see {@link #remapCoordinateSystem} */
358     public static final int AXIS_Y = 2;
359     /** see {@link #remapCoordinateSystem} */
360     public static final int AXIS_Z = 3;
361     /** see {@link #remapCoordinateSystem} */
362     public static final int AXIS_MINUS_X = AXIS_X | 0x80;
363     /** see {@link #remapCoordinateSystem} */
364     public static final int AXIS_MINUS_Y = AXIS_Y | 0x80;
365     /** see {@link #remapCoordinateSystem} */
366     public static final int AXIS_MINUS_Z = AXIS_Z | 0x80;
367 
368 
369     /**
370      * {@hide}
371      */
372     @UnsupportedAppUsage
SensorManager()373     public SensorManager() {
374     }
375 
376     /**
377      * Gets the full list of sensors that are available.
378      * @hide
379      */
getFullSensorList()380     protected abstract List<Sensor> getFullSensorList();
381 
382     /**
383      * Gets the full list of dynamic sensors that are available.
384      * @hide
385      */
getFullDynamicSensorList()386     protected abstract List<Sensor> getFullDynamicSensorList();
387 
388     /**
389      * @return available sensors.
390      * @deprecated This method is deprecated, use
391      *             {@link SensorManager#getSensorList(int)} instead
392      */
393     @Deprecated
getSensors()394     public int getSensors() {
395         return getLegacySensorManager().getSensors();
396     }
397 
398     /**
399      * Use this method to get the list of available sensors of a certain type.
400      * Make multiple calls to get sensors of different types or use
401      * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all the
402      * sensors.
403      *
404      * <p class="note">
405      * NOTE: Both wake-up and non wake-up sensors matching the given type are
406      * returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties
407      * of the returned {@link Sensor}.
408      * </p>
409      *
410      * @param type
411      *        of sensors requested
412      *
413      * @return a list of sensors matching the asked type.
414      *
415      * @see #getDefaultSensor(int)
416      * @see Sensor
417      */
getSensorList(int type)418     public List<Sensor> getSensorList(int type) {
419         // cache the returned lists the first time
420         List<Sensor> list;
421         final List<Sensor> fullList = getFullSensorList();
422         synchronized (mSensorListByType) {
423             list = mSensorListByType.get(type);
424             if (list == null) {
425                 if (type == Sensor.TYPE_ALL) {
426                     list = fullList;
427                 } else {
428                     list = new ArrayList<Sensor>();
429                     for (Sensor i : fullList) {
430                         if (i.getType() == type) {
431                             list.add(i);
432                         }
433                     }
434                 }
435                 list = Collections.unmodifiableList(list);
436                 mSensorListByType.append(type, list);
437             }
438         }
439         return list;
440     }
441 
442     /**
443      * Use this method to get a list of available dynamic sensors of a certain type.
444      * Make multiple calls to get sensors of different types or use
445      * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all dynamic sensors.
446      *
447      * <p class="note">
448      * NOTE: Both wake-up and non wake-up sensors matching the given type are
449      * returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties
450      * of the returned {@link Sensor}.
451      * </p>
452      *
453      * @param type of sensors requested
454      *
455      * @return a list of dynamic sensors matching the requested type.
456      *
457      * @see Sensor
458      */
getDynamicSensorList(int type)459     public List<Sensor> getDynamicSensorList(int type) {
460         // cache the returned lists the first time
461         final List<Sensor> fullList = getFullDynamicSensorList();
462         if (type == Sensor.TYPE_ALL) {
463             return Collections.unmodifiableList(fullList);
464         } else {
465             List<Sensor> list = new ArrayList();
466             for (Sensor i : fullList) {
467                 if (i.getType() == type) {
468                     list.add(i);
469                 }
470             }
471             return Collections.unmodifiableList(list);
472         }
473     }
474 
475     /**
476      * Use this method to get the default sensor for a given type. Note that the
477      * returned sensor could be a composite sensor, and its data could be
478      * averaged or filtered. If you need to access the raw sensors use
479      * {@link SensorManager#getSensorList(int) getSensorList}.
480      *
481      * @param type
482      *         of sensors requested
483      *
484      * @return the default sensor matching the requested type if one exists and the application
485      *         has the necessary permissions, or null otherwise.
486      *
487      * @see #getSensorList(int)
488      * @see Sensor
489      */
getDefaultSensor(int type)490     public Sensor getDefaultSensor(int type) {
491         // TODO: need to be smarter, for now, just return the 1st sensor
492         List<Sensor> l = getSensorList(type);
493         boolean wakeUpSensor = false;
494         // For the following sensor types, return a wake-up sensor. These types are by default
495         // defined as wake-up sensors. For the rest of the SDK defined sensor types return a
496         // non_wake-up version.
497         if (type == Sensor.TYPE_PROXIMITY || type == Sensor.TYPE_SIGNIFICANT_MOTION
498                 || type == Sensor.TYPE_TILT_DETECTOR || type == Sensor.TYPE_WAKE_GESTURE
499                 || type == Sensor.TYPE_GLANCE_GESTURE || type == Sensor.TYPE_PICK_UP_GESTURE
500                 || type == Sensor.TYPE_WRIST_TILT_GESTURE
501                 || type == Sensor.TYPE_DYNAMIC_SENSOR_META) {
502             wakeUpSensor = true;
503         }
504 
505         for (Sensor sensor : l) {
506             if (sensor.isWakeUpSensor() == wakeUpSensor) return sensor;
507         }
508         return null;
509     }
510 
511     /**
512      * Return a Sensor with the given type and wakeUp properties. If multiple sensors of this
513      * type exist, any one of them may be returned.
514      * <p>
515      * For example,
516      * <ul>
517      *     <li>getDefaultSensor({@link Sensor#TYPE_ACCELEROMETER}, true) returns a wake-up
518      *     accelerometer sensor if it exists. </li>
519      *     <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, false) returns a non wake-up
520      *     proximity sensor if it exists. </li>
521      *     <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, true) returns a wake-up proximity
522      *     sensor which is the same as the Sensor returned by {@link #getDefaultSensor(int)}. </li>
523      * </ul>
524      * </p>
525      * <p class="note">
526      * Note: Sensors like {@link Sensor#TYPE_PROXIMITY} and {@link Sensor#TYPE_SIGNIFICANT_MOTION}
527      * are declared as wake-up sensors by default.
528      * </p>
529      * @param type
530      *        type of sensor requested
531      * @param wakeUp
532      *        flag to indicate whether the Sensor is a wake-up or non wake-up sensor.
533      * @return the default sensor matching the requested type and wakeUp properties if one exists
534      *         and the application has the necessary permissions, or null otherwise.
535      * @see Sensor#isWakeUpSensor()
536      */
getDefaultSensor(int type, boolean wakeUp)537     public Sensor getDefaultSensor(int type, boolean wakeUp) {
538         List<Sensor> l = getSensorList(type);
539         for (Sensor sensor : l) {
540             if (sensor.isWakeUpSensor() == wakeUp) {
541                 return sensor;
542             }
543         }
544         return null;
545     }
546 
547     /**
548      * Registers a listener for given sensors.
549      *
550      * @deprecated This method is deprecated, use
551      *             {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
552      *             instead.
553      *
554      * @param listener
555      *        sensor listener object
556      *
557      * @param sensors
558      *        a bit masks of the sensors to register to
559      *
560      * @return <code>true</code> if the sensor is supported and successfully
561      *         enabled
562      */
563     @Deprecated
registerListener(SensorListener listener, int sensors)564     public boolean registerListener(SensorListener listener, int sensors) {
565         return registerListener(listener, sensors, SENSOR_DELAY_NORMAL);
566     }
567 
568     /**
569      * Registers a SensorListener for given sensors.
570      *
571      * @deprecated This method is deprecated, use
572      *             {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
573      *             instead.
574      *
575      * @param listener
576      *        sensor listener object
577      *
578      * @param sensors
579      *        a bit masks of the sensors to register to
580      *
581      * @param rate
582      *        rate of events. This is only a hint to the system. events may be
583      *        received faster or slower than the specified rate. Usually events
584      *        are received faster. The value must be one of
585      *        {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
586      *        {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
587      *
588      * @return <code>true</code> if the sensor is supported and successfully
589      *         enabled
590      */
591     @Deprecated
registerListener(SensorListener listener, int sensors, int rate)592     public boolean registerListener(SensorListener listener, int sensors, int rate) {
593         return getLegacySensorManager().registerListener(listener, sensors, rate);
594     }
595 
596     /**
597      * Unregisters a listener for all sensors.
598      *
599      * @deprecated This method is deprecated, use
600      *             {@link SensorManager#unregisterListener(SensorEventListener)}
601      *             instead.
602      *
603      * @param listener
604      *        a SensorListener object
605      */
606     @Deprecated
unregisterListener(SensorListener listener)607     public void unregisterListener(SensorListener listener) {
608         unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW);
609     }
610 
611     /**
612      * Unregisters a listener for the sensors with which it is registered.
613      *
614      * @deprecated This method is deprecated, use
615      *             {@link SensorManager#unregisterListener(SensorEventListener, Sensor)}
616      *             instead.
617      *
618      * @param listener
619      *        a SensorListener object
620      *
621      * @param sensors
622      *        a bit masks of the sensors to unregister from
623      */
624     @Deprecated
unregisterListener(SensorListener listener, int sensors)625     public void unregisterListener(SensorListener listener, int sensors) {
626         getLegacySensorManager().unregisterListener(listener, sensors);
627     }
628 
629     /**
630      * Unregisters a listener for the sensors with which it is registered.
631      *
632      * <p class="note"></p>
633      * Note: Don't use this method with a one shot trigger sensor such as
634      * {@link Sensor#TYPE_SIGNIFICANT_MOTION}.
635      * Use {@link #cancelTriggerSensor(TriggerEventListener, Sensor)} instead.
636      * </p>
637      *
638      * @param listener
639      *        a SensorEventListener object
640      *
641      * @param sensor
642      *        the sensor to unregister from
643      *
644      * @see #unregisterListener(SensorEventListener)
645      * @see #registerListener(SensorEventListener, Sensor, int)
646      */
unregisterListener(SensorEventListener listener, Sensor sensor)647     public void unregisterListener(SensorEventListener listener, Sensor sensor) {
648         if (listener == null || sensor == null) {
649             return;
650         }
651 
652         unregisterListenerImpl(listener, sensor);
653     }
654 
655     /**
656      * Unregisters a listener for all sensors.
657      *
658      * @param listener
659      *        a SensorListener object
660      *
661      * @see #unregisterListener(SensorEventListener, Sensor)
662      * @see #registerListener(SensorEventListener, Sensor, int)
663      *
664      */
unregisterListener(SensorEventListener listener)665     public void unregisterListener(SensorEventListener listener) {
666         if (listener == null) {
667             return;
668         }
669 
670         unregisterListenerImpl(listener, null);
671     }
672 
673     /** @hide */
unregisterListenerImpl(SensorEventListener listener, Sensor sensor)674     protected abstract void unregisterListenerImpl(SensorEventListener listener, Sensor sensor);
675 
676     /**
677      * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
678      * sensor at the given sampling frequency.
679      * <p>
680      * The events will be delivered to the provided {@code SensorEventListener} as soon as they are
681      * available. To reduce the power consumption, applications can use
682      * {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a
683      * positive non-zero maximum reporting latency.
684      * </p>
685      * <p>
686      * In the case of non-wake-up sensors, the events are only delivered while the Application
687      * Processor (AP) is not in suspend mode. See {@link Sensor#isWakeUpSensor()} for more details.
688      * To ensure delivery of events from non-wake-up sensors even when the screen is OFF, the
689      * application registering to the sensor must hold a partial wake-lock to keep the AP awake,
690      * otherwise some events might be lost while the AP is asleep. Note that although events might
691      * be lost while the AP is asleep, the sensor will still consume power if it is not explicitly
692      * deactivated by the application. Applications must unregister their {@code
693      * SensorEventListener}s in their activity's {@code onPause()} method to avoid consuming power
694      * while the device is inactive.  See {@link #registerListener(SensorEventListener, Sensor, int,
695      * int)} for more details on hardware FIFO (queueing) capabilities and when some sensor events
696      * might be lost.
697      * </p>
698      * <p>
699      * In the case of wake-up sensors, each event generated by the sensor will cause the AP to
700      * wake-up, ensuring that each event can be delivered. Because of this, registering to a wake-up
701      * sensor has very significant power implications. Call {@link Sensor#isWakeUpSensor()} to check
702      * whether a sensor is a wake-up sensor. See
703      * {@link #registerListener(SensorEventListener, Sensor, int, int)} for information on how to
704      * reduce the power impact of registering to wake-up sensors.
705      * </p>
706      * <p class="note">
707      * Note: Don't use this method with one-shot trigger sensors such as
708      * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
709      * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. Use
710      * {@link Sensor#getReportingMode()} to obtain the reporting mode of a given sensor.
711      * </p>
712      *
713      * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
714      * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
715      * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are
716      *            delivered at. This is only a hint to the system. Events may be received faster or
717      *            slower than the specified rate. Usually events are received faster. The value must
718      *            be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
719      *            {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired delay
720      *            between events in microseconds. Specifying the delay in microseconds only works
721      *            from Android 2.3 (API level 9) onwards. For earlier releases, you must use one of
722      *            the {@code SENSOR_DELAY_*} constants.
723      * @return <code>true</code> if the sensor is supported and successfully enabled.
724      * @see #registerListener(SensorEventListener, Sensor, int, Handler)
725      * @see #unregisterListener(SensorEventListener)
726      * @see #unregisterListener(SensorEventListener, Sensor)
727      */
registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs)728     public boolean registerListener(SensorEventListener listener, Sensor sensor,
729             int samplingPeriodUs) {
730         return registerListener(listener, sensor, samplingPeriodUs, null);
731     }
732 
733     /**
734      * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
735      * sensor at the given sampling frequency and the given maximum reporting latency.
736      * <p>
737      * This function is similar to {@link #registerListener(SensorEventListener, Sensor, int)} but
738      * it allows events to stay temporarily in the hardware FIFO (queue) before being delivered. The
739      * events can be stored in the hardware FIFO up to {@code maxReportLatencyUs} microseconds. Once
740      * one of the events in the FIFO needs to be reported, all of the events in the FIFO are
741      * reported sequentially. This means that some events will be reported before the maximum
742      * reporting latency has elapsed.
743      * </p><p>
744      * When {@code maxReportLatencyUs} is 0, the call is equivalent to a call to
745      * {@link #registerListener(SensorEventListener, Sensor, int)}, as it requires the events to be
746      * delivered as soon as possible.
747      * </p><p>
748      * When {@code sensor.maxFifoEventCount()} is 0, the sensor does not use a FIFO, so the call
749      * will also be equivalent to {@link #registerListener(SensorEventListener, Sensor, int)}.
750      * </p><p>
751      * Setting {@code maxReportLatencyUs} to a positive value allows to reduce the number of
752      * interrupts the AP (Application Processor) receives, hence reducing power consumption, as the
753      * AP can switch to a lower power state while the sensor is capturing the data. This is
754      * especially important when registering to wake-up sensors, for which each interrupt causes the
755      * AP to wake up if it was in suspend mode. See {@link Sensor#isWakeUpSensor()} for more
756      * information on wake-up sensors.
757      * </p>
758      * <p class="note">
759      * </p>
760      * Note: Don't use this method with one-shot trigger sensors such as
761      * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
762      * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p>
763      *
764      * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
765      *            that will receive the sensor events. If the application is interested in receiving
766      *            flush complete notifications, it should register with
767      *            {@link android.hardware.SensorEventListener SensorEventListener2} instead.
768      * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
769      * @param samplingPeriodUs The desired delay between two consecutive events in microseconds.
770      *            This is only a hint to the system. Events may be received faster or slower than
771      *            the specified rate. Usually events are received faster. Can be one of
772      *            {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
773      *            {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in
774      *            microseconds.
775      * @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before
776      *            being reported to the application. A large value allows reducing the power
777      *            consumption associated with the sensor. If maxReportLatencyUs is set to zero,
778      *            events are delivered as soon as they are available, which is equivalent to calling
779      *            {@link #registerListener(SensorEventListener, Sensor, int)}.
780      * @return <code>true</code> if the sensor is supported and successfully enabled.
781      * @see #registerListener(SensorEventListener, Sensor, int)
782      * @see #unregisterListener(SensorEventListener)
783      * @see #flush(SensorEventListener)
784      */
registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs, int maxReportLatencyUs)785     public boolean registerListener(SensorEventListener listener, Sensor sensor,
786             int samplingPeriodUs, int maxReportLatencyUs) {
787         int delay = getDelay(samplingPeriodUs);
788         return registerListenerImpl(listener, sensor, delay, null, maxReportLatencyUs, 0);
789     }
790 
791     /**
792      * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
793      * sensor. Events are delivered in continuous mode as soon as they are available. To reduce the
794      * power consumption, applications can use
795      * {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a
796      * positive non-zero maximum reporting latency.
797      * <p class="note">
798      * </p>
799      * Note: Don't use this method with a one shot trigger sensor such as
800      * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
801      * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p>
802      *
803      * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
804      * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
805      * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are
806      *            delivered at. This is only a hint to the system. Events may be received faster or
807      *            slower than the specified rate. Usually events are received faster. The value must
808      *            be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
809      *            {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired
810      *            delay between events in microseconds. Specifying the delay in microseconds only
811      *            works from Android 2.3 (API level 9) onwards. For earlier releases, you must use
812      *            one of the {@code SENSOR_DELAY_*} constants.
813      * @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent
814      *            sensor events} will be delivered to.
815      * @return <code>true</code> if the sensor is supported and successfully enabled.
816      * @see #registerListener(SensorEventListener, Sensor, int)
817      * @see #unregisterListener(SensorEventListener)
818      * @see #unregisterListener(SensorEventListener, Sensor)
819      */
registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs, Handler handler)820     public boolean registerListener(SensorEventListener listener, Sensor sensor,
821             int samplingPeriodUs, Handler handler) {
822         int delay = getDelay(samplingPeriodUs);
823         return registerListenerImpl(listener, sensor, delay, handler, 0, 0);
824     }
825 
826     /**
827      * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
828      * sensor at the given sampling frequency and the given maximum reporting latency.
829      *
830      * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
831      *            that will receive the sensor events. If the application is interested in receiving
832      *            flush complete notifications, it should register with
833      *            {@link android.hardware.SensorEventListener SensorEventListener2} instead.
834      * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
835      * @param samplingPeriodUs The desired delay between two consecutive events in microseconds.
836      *            This is only a hint to the system. Events may be received faster or slower than
837      *            the specified rate. Usually events are received faster. Can be one of
838      *            {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
839      *            {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in
840      *            microseconds.
841      * @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before
842      *            being reported to the application. A large value allows reducing the power
843      *            consumption associated with the sensor. If maxReportLatencyUs is set to zero,
844      *            events are delivered as soon as they are available, which is equivalent to calling
845      *            {@link #registerListener(SensorEventListener, Sensor, int)}.
846      * @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent
847      *            sensor events} will be delivered to.
848      * @return <code>true</code> if the sensor is supported and successfully enabled.
849      * @see #registerListener(SensorEventListener, Sensor, int, int)
850      */
registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs, int maxReportLatencyUs, Handler handler)851     public boolean registerListener(SensorEventListener listener, Sensor sensor,
852             int samplingPeriodUs, int maxReportLatencyUs, Handler handler) {
853         int delayUs = getDelay(samplingPeriodUs);
854         return registerListenerImpl(listener, sensor, delayUs, handler, maxReportLatencyUs, 0);
855     }
856 
857     /** @hide */
registerListenerImpl(SensorEventListener listener, Sensor sensor, int delayUs, Handler handler, int maxReportLatencyUs, int reservedFlags)858     protected abstract boolean registerListenerImpl(SensorEventListener listener, Sensor sensor,
859             int delayUs, Handler handler, int maxReportLatencyUs, int reservedFlags);
860 
861 
862     /**
863      * Flushes the FIFO of all the sensors registered for this listener. If there are events
864      * in the FIFO of the sensor, they are returned as if the maxReportLantecy of the FIFO has
865      * expired. Events are returned in the usual way through the SensorEventListener.
866      * This call doesn't affect the maxReportLantecy for this sensor. This call is asynchronous and
867      * returns immediately.
868      * {@link android.hardware.SensorEventListener2#onFlushCompleted onFlushCompleted} is called
869      * after all the events in the batch at the time of calling this method have been delivered
870      * successfully. If the hardware doesn't support flush, it still returns true and a trivial
871      * flush complete event is sent after the current event for all the clients registered for this
872      * sensor.
873      *
874      * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
875      *        which was previously used in a registerListener call.
876      * @return <code>true</code> if the flush is initiated successfully on all the sensors
877      *         registered for this listener, false if no sensor is previously registered for this
878      *         listener or flush on one of the sensors fails.
879      * @see #registerListener(SensorEventListener, Sensor, int, int)
880      * @throws IllegalArgumentException when listener is null.
881      */
flush(SensorEventListener listener)882     public boolean flush(SensorEventListener listener) {
883         return flushImpl(listener);
884     }
885 
886     /** @hide */
flushImpl(SensorEventListener listener)887     protected abstract boolean flushImpl(SensorEventListener listener);
888 
889 
890     /**
891      * Create a sensor direct channel backed by shared memory wrapped in MemoryFile object.
892      *
893      * The resulting channel can be used for delivering sensor events to native code, other
894      * processes, GPU/DSP or other co-processors without CPU intervention. This is the recommanded
895      * for high performance sensor applications that use high sensor rates (e.g. greater than 200Hz)
896      * and cares about sensor event latency.
897      *
898      * Use the returned {@link android.hardware.SensorDirectChannel} object to configure direct
899      * report of sensor events. After use, call {@link android.hardware.SensorDirectChannel#close()}
900      * to free up resource in sensor system associated with the direct channel.
901      *
902      * @param mem A {@link android.os.MemoryFile} shared memory object.
903      * @return A {@link android.hardware.SensorDirectChannel} object.
904      * @throws NullPointerException when mem is null.
905      * @throws UncheckedIOException if not able to create channel.
906      * @see SensorDirectChannel#close()
907      */
createDirectChannel(MemoryFile mem)908     public SensorDirectChannel createDirectChannel(MemoryFile mem) {
909         return createDirectChannelImpl(mem, null);
910     }
911 
912     /**
913      * Create a sensor direct channel backed by shared memory wrapped in HardwareBuffer object.
914      *
915      * The resulting channel can be used for delivering sensor events to native code, other
916      * processes, GPU/DSP or other co-processors without CPU intervention. This is the recommanded
917      * for high performance sensor applications that use high sensor rates (e.g. greater than 200Hz)
918      * and cares about sensor event latency.
919      *
920      * Use the returned {@link android.hardware.SensorDirectChannel} object to configure direct
921      * report of sensor events. After use, call {@link android.hardware.SensorDirectChannel#close()}
922      * to free up resource in sensor system associated with the direct channel.
923      *
924      * @param mem A {@link android.hardware.HardwareBuffer} shared memory object.
925      * @return A {@link android.hardware.SensorDirectChannel} object.
926      * @throws NullPointerException when mem is null.
927      * @throws UncheckedIOException if not able to create channel.
928      * @see SensorDirectChannel#close()
929      */
createDirectChannel(HardwareBuffer mem)930     public SensorDirectChannel createDirectChannel(HardwareBuffer mem) {
931         return createDirectChannelImpl(null, mem);
932     }
933 
934     /** @hide */
createDirectChannelImpl( MemoryFile memoryFile, HardwareBuffer hardwareBuffer)935     protected abstract SensorDirectChannel createDirectChannelImpl(
936             MemoryFile memoryFile, HardwareBuffer hardwareBuffer);
937 
938     /** @hide */
destroyDirectChannel(SensorDirectChannel channel)939     void destroyDirectChannel(SensorDirectChannel channel) {
940         destroyDirectChannelImpl(channel);
941     }
942 
943     /** @hide */
destroyDirectChannelImpl(SensorDirectChannel channel)944     protected abstract void destroyDirectChannelImpl(SensorDirectChannel channel);
945 
946     /** @removed */
947     @Deprecated
configureDirectChannel(SensorDirectChannel channel, Sensor sensor, int rateLevel)948     public int configureDirectChannel(SensorDirectChannel channel, Sensor sensor, int rateLevel) {
949         return configureDirectChannelImpl(channel, sensor, rateLevel);
950     }
951 
952     /** @hide */
configureDirectChannelImpl( SensorDirectChannel channel, Sensor s, int rate)953     protected abstract int configureDirectChannelImpl(
954             SensorDirectChannel channel, Sensor s, int rate);
955 
956     /**
957      * Used for receiving notifications from the SensorManager when dynamic sensors are connected or
958      * disconnected.
959      */
960     public abstract static class DynamicSensorCallback {
961         /**
962          * Called when there is a dynamic sensor being connected to the system.
963          *
964          * @param sensor the newly connected sensor. See {@link android.hardware.Sensor Sensor}.
965          */
onDynamicSensorConnected(Sensor sensor)966         public void onDynamicSensorConnected(Sensor sensor) {}
967 
968         /**
969          * Called when there is a dynamic sensor being disconnected from the system.
970          *
971          * @param sensor the disconnected sensor. See {@link android.hardware.Sensor Sensor}.
972          */
onDynamicSensorDisconnected(Sensor sensor)973         public void onDynamicSensorDisconnected(Sensor sensor) {}
974     }
975 
976 
977     /**
978      * Add a {@link android.hardware.SensorManager.DynamicSensorCallback
979      * DynamicSensorCallback} to receive dynamic sensor connection callbacks. Repeat
980      * registration with the already registered callback object will have no additional effect.
981      *
982      * @param callback An object that implements the
983      *        {@link android.hardware.SensorManager.DynamicSensorCallback
984      *        DynamicSensorCallback}
985      *        interface for receiving callbacks.
986      * @see #registerDynamicSensorCallback(DynamicSensorCallback, Handler)
987      *
988      * @throws IllegalArgumentException when callback is null.
989      */
registerDynamicSensorCallback(DynamicSensorCallback callback)990     public void registerDynamicSensorCallback(DynamicSensorCallback callback) {
991         registerDynamicSensorCallback(callback, null);
992     }
993 
994     /**
995      * Add a {@link android.hardware.SensorManager.DynamicSensorCallback
996      * DynamicSensorCallback} to receive dynamic sensor connection callbacks. Repeat
997      * registration with the already registered callback object will have no additional effect.
998      *
999      * @param callback An object that implements the
1000      *        {@link android.hardware.SensorManager.DynamicSensorCallback
1001      *        DynamicSensorCallback} interface for receiving callbacks.
1002      * @param handler The {@link android.os.Handler Handler} the {@link
1003      *        android.hardware.SensorManager.DynamicSensorCallback
1004      *        sensor connection events} will be delivered to.
1005      *
1006      * @throws IllegalArgumentException when callback is null.
1007      */
registerDynamicSensorCallback( DynamicSensorCallback callback, Handler handler)1008     public void registerDynamicSensorCallback(
1009             DynamicSensorCallback callback, Handler handler) {
1010         registerDynamicSensorCallbackImpl(callback, handler);
1011     }
1012 
1013     /**
1014      * Remove a {@link android.hardware.SensorManager.DynamicSensorCallback
1015      * DynamicSensorCallback} to stop sending dynamic sensor connection events to that
1016      * callback.
1017      *
1018      * @param callback An object that implements the
1019      *        {@link android.hardware.SensorManager.DynamicSensorCallback
1020      *        DynamicSensorCallback}
1021      *        interface for receiving callbacks.
1022      */
unregisterDynamicSensorCallback(DynamicSensorCallback callback)1023     public void unregisterDynamicSensorCallback(DynamicSensorCallback callback) {
1024         unregisterDynamicSensorCallbackImpl(callback);
1025     }
1026 
1027     /**
1028      * Tell if dynamic sensor discovery feature is supported by system.
1029      *
1030      * @return <code>true</code> if dynamic sensor discovery is supported, <code>false</code>
1031      * otherwise.
1032      */
isDynamicSensorDiscoverySupported()1033     public boolean isDynamicSensorDiscoverySupported() {
1034         List<Sensor> sensors = getSensorList(Sensor.TYPE_DYNAMIC_SENSOR_META);
1035         return sensors.size() > 0;
1036     }
1037 
1038     /** @hide */
registerDynamicSensorCallbackImpl( DynamicSensorCallback callback, Handler handler)1039     protected abstract void registerDynamicSensorCallbackImpl(
1040             DynamicSensorCallback callback, Handler handler);
1041 
1042     /** @hide */
unregisterDynamicSensorCallbackImpl( DynamicSensorCallback callback)1043     protected abstract void unregisterDynamicSensorCallbackImpl(
1044             DynamicSensorCallback callback);
1045 
1046     /**
1047      * <p>
1048      * Computes the inclination matrix <b>I</b> as well as the rotation matrix
1049      * <b>R</b> transforming a vector from the device coordinate system to the
1050      * world's coordinate system which is defined as a direct orthonormal basis,
1051      * where:
1052      * </p>
1053      *
1054      * <ul>
1055      * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
1056      * the ground at the device's current location and roughly points East).</li>
1057      * <li>Y is tangential to the ground at the device's current location and
1058      * points towards the magnetic North Pole.</li>
1059      * <li>Z points towards the sky and is perpendicular to the ground.</li>
1060      * </ul>
1061      *
1062      * <p>
1063      * <center><img src="../../../images/axis_globe.png"
1064      * alt="World coordinate-system diagram." border="0" /></center>
1065      * </p>
1066      *
1067      * <p>
1068      * <hr>
1069      * <p>
1070      * By definition:
1071      * <p>
1072      * [0 0 g] = <b>R</b> * <b>gravity</b> (g = magnitude of gravity)
1073      * <p>
1074      * [0 m 0] = <b>I</b> * <b>R</b> * <b>geomagnetic</b> (m = magnitude of
1075      * geomagnetic field)
1076      * <p>
1077      * <b>R</b> is the identity matrix when the device is aligned with the
1078      * world's coordinate system, that is, when the device's X axis points
1079      * toward East, the Y axis points to the North Pole and the device is facing
1080      * the sky.
1081      *
1082      * <p>
1083      * <b>I</b> is a rotation matrix transforming the geomagnetic vector into
1084      * the same coordinate space as gravity (the world's coordinate space).
1085      * <b>I</b> is a simple rotation around the X axis. The inclination angle in
1086      * radians can be computed with {@link #getInclination}.
1087      * <hr>
1088      *
1089      * <p>
1090      * Each matrix is returned either as a 3x3 or 4x4 row-major matrix depending
1091      * on the length of the passed array:
1092      * <p>
1093      * <u>If the array length is 16:</u>
1094      *
1095      * <pre>
1096      *   /  M[ 0]   M[ 1]   M[ 2]   M[ 3]  \
1097      *   |  M[ 4]   M[ 5]   M[ 6]   M[ 7]  |
1098      *   |  M[ 8]   M[ 9]   M[10]   M[11]  |
1099      *   \  M[12]   M[13]   M[14]   M[15]  /
1100      *</pre>
1101      *
1102      * This matrix is ready to be used by OpenGL ES's
1103      * {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int)
1104      * glLoadMatrixf(float[], int)}.
1105      * <p>
1106      * Note that because OpenGL matrices are column-major matrices you must
1107      * transpose the matrix before using it. However, since the matrix is a
1108      * rotation matrix, its transpose is also its inverse, conveniently, it is
1109      * often the inverse of the rotation that is needed for rendering; it can
1110      * therefore be used with OpenGL ES directly.
1111      * <p>
1112      * Also note that the returned matrices always have this form:
1113      *
1114      * <pre>
1115      *   /  M[ 0]   M[ 1]   M[ 2]   0  \
1116      *   |  M[ 4]   M[ 5]   M[ 6]   0  |
1117      *   |  M[ 8]   M[ 9]   M[10]   0  |
1118      *   \      0       0       0   1  /
1119      *</pre>
1120      *
1121      * <p>
1122      * <u>If the array length is 9:</u>
1123      *
1124      * <pre>
1125      *   /  M[ 0]   M[ 1]   M[ 2]  \
1126      *   |  M[ 3]   M[ 4]   M[ 5]  |
1127      *   \  M[ 6]   M[ 7]   M[ 8]  /
1128      *</pre>
1129      *
1130      * <hr>
1131      * <p>
1132      * The inverse of each matrix can be computed easily by taking its
1133      * transpose.
1134      *
1135      * <p>
1136      * The matrices returned by this function are meaningful only when the
1137      * device is not free-falling and it is not close to the magnetic north. If
1138      * the device is accelerating, or placed into a strong magnetic field, the
1139      * returned matrices may be inaccurate.
1140      *
1141      * @param R
1142      *        is an array of 9 floats holding the rotation matrix <b>R</b> when
1143      *        this function returns. R can be null.
1144      *        <p>
1145      *
1146      * @param I
1147      *        is an array of 9 floats holding the rotation matrix <b>I</b> when
1148      *        this function returns. I can be null.
1149      *        <p>
1150      *
1151      * @param gravity
1152      *        is an array of 3 floats containing the gravity vector expressed in
1153      *        the device's coordinate. You can simply use the
1154      *        {@link android.hardware.SensorEvent#values values} returned by a
1155      *        {@link android.hardware.SensorEvent SensorEvent} of a
1156      *        {@link android.hardware.Sensor Sensor} of type
1157      *        {@link android.hardware.Sensor#TYPE_ACCELEROMETER
1158      *        TYPE_ACCELEROMETER}.
1159      *        <p>
1160      *
1161      * @param geomagnetic
1162      *        is an array of 3 floats containing the geomagnetic vector
1163      *        expressed in the device's coordinate. You can simply use the
1164      *        {@link android.hardware.SensorEvent#values values} returned by a
1165      *        {@link android.hardware.SensorEvent SensorEvent} of a
1166      *        {@link android.hardware.Sensor Sensor} of type
1167      *        {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
1168      *        TYPE_MAGNETIC_FIELD}.
1169      *
1170      * @return <code>true</code> on success, <code>false</code> on failure (for
1171      *         instance, if the device is in free fall). Free fall is defined as
1172      *         condition when the magnitude of the gravity is less than 1/10 of
1173      *         the nominal value. On failure the output matrices are not modified.
1174      *
1175      * @see #getInclination(float[])
1176      * @see #getOrientation(float[], float[])
1177      * @see #remapCoordinateSystem(float[], int, int, float[])
1178      */
1179 
getRotationMatrix(float[] R, float[] I, float[] gravity, float[] geomagnetic)1180     public static boolean getRotationMatrix(float[] R, float[] I,
1181             float[] gravity, float[] geomagnetic) {
1182         // TODO: move this to native code for efficiency
1183         float Ax = gravity[0];
1184         float Ay = gravity[1];
1185         float Az = gravity[2];
1186 
1187         final float normsqA = (Ax * Ax + Ay * Ay + Az * Az);
1188         final float g = 9.81f;
1189         final float freeFallGravitySquared = 0.01f * g * g;
1190         if (normsqA < freeFallGravitySquared) {
1191             // gravity less than 10% of normal value
1192             return false;
1193         }
1194 
1195         final float Ex = geomagnetic[0];
1196         final float Ey = geomagnetic[1];
1197         final float Ez = geomagnetic[2];
1198         float Hx = Ey * Az - Ez * Ay;
1199         float Hy = Ez * Ax - Ex * Az;
1200         float Hz = Ex * Ay - Ey * Ax;
1201         final float normH = (float) Math.sqrt(Hx * Hx + Hy * Hy + Hz * Hz);
1202 
1203         if (normH < 0.1f) {
1204             // device is close to free fall (or in space?), or close to
1205             // magnetic north pole. Typical values are  > 100.
1206             return false;
1207         }
1208         final float invH = 1.0f / normH;
1209         Hx *= invH;
1210         Hy *= invH;
1211         Hz *= invH;
1212         final float invA = 1.0f / (float) Math.sqrt(Ax * Ax + Ay * Ay + Az * Az);
1213         Ax *= invA;
1214         Ay *= invA;
1215         Az *= invA;
1216         final float Mx = Ay * Hz - Az * Hy;
1217         final float My = Az * Hx - Ax * Hz;
1218         final float Mz = Ax * Hy - Ay * Hx;
1219         if (R != null) {
1220             if (R.length == 9) {
1221                 R[0] = Hx;     R[1] = Hy;     R[2] = Hz;
1222                 R[3] = Mx;     R[4] = My;     R[5] = Mz;
1223                 R[6] = Ax;     R[7] = Ay;     R[8] = Az;
1224             } else if (R.length == 16) {
1225                 R[0]  = Hx;    R[1]  = Hy;    R[2]  = Hz;   R[3]  = 0;
1226                 R[4]  = Mx;    R[5]  = My;    R[6]  = Mz;   R[7]  = 0;
1227                 R[8]  = Ax;    R[9]  = Ay;    R[10] = Az;   R[11] = 0;
1228                 R[12] = 0;     R[13] = 0;     R[14] = 0;    R[15] = 1;
1229             }
1230         }
1231         if (I != null) {
1232             // compute the inclination matrix by projecting the geomagnetic
1233             // vector onto the Z (gravity) and X (horizontal component
1234             // of geomagnetic vector) axes.
1235             final float invE = 1.0f / (float) Math.sqrt(Ex * Ex + Ey * Ey + Ez * Ez);
1236             final float c = (Ex * Mx + Ey * My + Ez * Mz) * invE;
1237             final float s = (Ex * Ax + Ey * Ay + Ez * Az) * invE;
1238             if (I.length == 9) {
1239                 I[0] = 1;     I[1] = 0;     I[2] = 0;
1240                 I[3] = 0;     I[4] = c;     I[5] = s;
1241                 I[6] = 0;     I[7] = -s;     I[8] = c;
1242             } else if (I.length == 16) {
1243                 I[0] = 1;     I[1] = 0;     I[2] = 0;
1244                 I[4] = 0;     I[5] = c;     I[6] = s;
1245                 I[8] = 0;     I[9] = -s;     I[10] = c;
1246                 I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0;
1247                 I[15] = 1;
1248             }
1249         }
1250         return true;
1251     }
1252 
1253     /**
1254      * Computes the geomagnetic inclination angle in radians from the
1255      * inclination matrix <b>I</b> returned by {@link #getRotationMatrix}.
1256      *
1257      * @param I
1258      *        inclination matrix see {@link #getRotationMatrix}.
1259      *
1260      * @return The geomagnetic inclination angle in radians.
1261      *
1262      * @see #getRotationMatrix(float[], float[], float[], float[])
1263      * @see #getOrientation(float[], float[])
1264      * @see GeomagneticField
1265      *
1266      */
getInclination(float[] I)1267     public static float getInclination(float[] I) {
1268         if (I.length == 9) {
1269             return (float) Math.atan2(I[5], I[4]);
1270         } else {
1271             return (float) Math.atan2(I[6], I[5]);
1272         }
1273     }
1274 
1275     /**
1276      * <p>
1277      * Rotates the supplied rotation matrix so it is expressed in a different
1278      * coordinate system. This is typically used when an application needs to
1279      * compute the three orientation angles of the device (see
1280      * {@link #getOrientation}) in a different coordinate system.
1281      * </p>
1282      *
1283      * <p>
1284      * When the rotation matrix is used for drawing (for instance with OpenGL
1285      * ES), it usually <b>doesn't need</b> to be transformed by this function,
1286      * unless the screen is physically rotated, in which case you can use
1287      * {@link android.view.Display#getRotation() Display.getRotation()} to
1288      * retrieve the current rotation of the screen. Note that because the user
1289      * is generally free to rotate their screen, you often should consider the
1290      * rotation in deciding the parameters to use here.
1291      * </p>
1292      *
1293      * <p>
1294      * <u>Examples:</u>
1295      * <p>
1296      *
1297      * <ul>
1298      * <li>Using the camera (Y axis along the camera's axis) for an augmented
1299      * reality application where the rotation angles are needed:</li>
1300      *
1301      * <p>
1302      * <ul>
1303      * <code>remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR);</code>
1304      * </ul>
1305      * </p>
1306      *
1307      * <li>Using the device as a mechanical compass when rotation is
1308      * {@link android.view.Surface#ROTATION_90 Surface.ROTATION_90}:</li>
1309      *
1310      * <p>
1311      * <ul>
1312      * <code>remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR);</code>
1313      * </ul>
1314      * </p>
1315      *
1316      * Beware of the above example. This call is needed only to account for a
1317      * rotation from its natural orientation when calculating the rotation
1318      * angles (see {@link #getOrientation}). If the rotation matrix is also used
1319      * for rendering, it may not need to be transformed, for instance if your
1320      * {@link android.app.Activity Activity} is running in landscape mode.
1321      * </ul>
1322      *
1323      * <p>
1324      * Since the resulting coordinate system is orthonormal, only two axes need
1325      * to be specified.
1326      *
1327      * @param inR
1328      *        the rotation matrix to be transformed. Usually it is the matrix
1329      *        returned by {@link #getRotationMatrix}.
1330      *
1331      * @param X
1332      *        defines the axis of the new cooridinate system that coincide with the X axis of the
1333      *        original coordinate system.
1334      *
1335      * @param Y
1336      *        defines the axis of the new cooridinate system that coincide with the Y axis of the
1337      *        original coordinate system.
1338      *
1339      * @param outR
1340      *        the transformed rotation matrix. inR and outR should not be the same
1341      *        array.
1342      *
1343      * @return <code>true</code> on success. <code>false</code> if the input
1344      *         parameters are incorrect, for instance if X and Y define the same
1345      *         axis. Or if inR and outR don't have the same length.
1346      *
1347      * @see #getRotationMatrix(float[], float[], float[], float[])
1348      */
1349 
remapCoordinateSystem(float[] inR, int X, int Y, float[] outR)1350     public static boolean remapCoordinateSystem(float[] inR, int X, int Y, float[] outR) {
1351         if (inR == outR) {
1352             final float[] temp = sTempMatrix;
1353             synchronized (temp) {
1354                 // we don't expect to have a lot of contention
1355                 if (remapCoordinateSystemImpl(inR, X, Y, temp)) {
1356                     final int size = outR.length;
1357                     for (int i = 0; i < size; i++) {
1358                         outR[i] = temp[i];
1359                     }
1360                     return true;
1361                 }
1362             }
1363         }
1364         return remapCoordinateSystemImpl(inR, X, Y, outR);
1365     }
1366 
remapCoordinateSystemImpl(float[] inR, int X, int Y, float[] outR)1367     private static boolean remapCoordinateSystemImpl(float[] inR, int X, int Y, float[] outR) {
1368         /*
1369          * X and Y define a rotation matrix 'r':
1370          *
1371          *  (X==1)?((X&0x80)?-1:1):0    (X==2)?((X&0x80)?-1:1):0    (X==3)?((X&0x80)?-1:1):0
1372          *  (Y==1)?((Y&0x80)?-1:1):0    (Y==2)?((Y&0x80)?-1:1):0    (Y==3)?((X&0x80)?-1:1):0
1373          *                              r[0] ^ r[1]
1374          *
1375          * where the 3rd line is the vector product of the first 2 lines
1376          *
1377          */
1378 
1379         final int length = outR.length;
1380         if (inR.length != length) {
1381             return false;   // invalid parameter
1382         }
1383         if ((X & 0x7C) != 0 || (Y & 0x7C) != 0) {
1384             return false;   // invalid parameter
1385         }
1386         if (((X & 0x3) == 0) || ((Y & 0x3) == 0)) {
1387             return false;   // no axis specified
1388         }
1389         if ((X & 0x3) == (Y & 0x3)) {
1390             return false;   // same axis specified
1391         }
1392 
1393         // Z is "the other" axis, its sign is either +/- sign(X)*sign(Y)
1394         // this can be calculated by exclusive-or'ing X and Y; except for
1395         // the sign inversion (+/-) which is calculated below.
1396         int Z = X ^ Y;
1397 
1398         // extract the axis (remove the sign), offset in the range 0 to 2.
1399         final int x = (X & 0x3) - 1;
1400         final int y = (Y & 0x3) - 1;
1401         final int z = (Z & 0x3) - 1;
1402 
1403         // compute the sign of Z (whether it needs to be inverted)
1404         final int axis_y = (z + 1) % 3;
1405         final int axis_z = (z + 2) % 3;
1406         if (((x ^ axis_y) | (y ^ axis_z)) != 0) {
1407             Z ^= 0x80;
1408         }
1409 
1410         final boolean sx = (X >= 0x80);
1411         final boolean sy = (Y >= 0x80);
1412         final boolean sz = (Z >= 0x80);
1413 
1414         // Perform R * r, in avoiding actual muls and adds.
1415         final int rowLength = ((length == 16) ? 4 : 3);
1416         for (int j = 0; j < 3; j++) {
1417             final int offset = j * rowLength;
1418             for (int i = 0; i < 3; i++) {
1419                 if (x == i)   outR[offset + i] = sx ? -inR[offset + 0] : inR[offset + 0];
1420                 if (y == i)   outR[offset + i] = sy ? -inR[offset + 1] : inR[offset + 1];
1421                 if (z == i)   outR[offset + i] = sz ? -inR[offset + 2] : inR[offset + 2];
1422             }
1423         }
1424         if (length == 16) {
1425             outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0;
1426             outR[15] = 1;
1427         }
1428         return true;
1429     }
1430 
1431     /**
1432      * Computes the device's orientation based on the rotation matrix.
1433      * <p>
1434      * When it returns, the array values are as follows:
1435      * <ul>
1436      * <li>values[0]: <i>Azimuth</i>, angle of rotation about the -z axis.
1437      *                This value represents the angle between the device's y
1438      *                axis and the magnetic north pole. When facing north, this
1439      *                angle is 0, when facing south, this angle is &pi;.
1440      *                Likewise, when facing east, this angle is &pi;/2, and
1441      *                when facing west, this angle is -&pi;/2. The range of
1442      *                values is -&pi; to &pi;.</li>
1443      * <li>values[1]: <i>Pitch</i>, angle of rotation about the x axis.
1444      *                This value represents the angle between a plane parallel
1445      *                to the device's screen and a plane parallel to the ground.
1446      *                Assuming that the bottom edge of the device faces the
1447      *                user and that the screen is face-up, tilting the top edge
1448      *                of the device toward the ground creates a positive pitch
1449      *                angle. The range of values is -&pi; to &pi;.</li>
1450      * <li>values[2]: <i>Roll</i>, angle of rotation about the y axis. This
1451      *                value represents the angle between a plane perpendicular
1452      *                to the device's screen and a plane perpendicular to the
1453      *                ground. Assuming that the bottom edge of the device faces
1454      *                the user and that the screen is face-up, tilting the left
1455      *                edge of the device toward the ground creates a positive
1456      *                roll angle. The range of values is -&pi;/2 to &pi;/2.</li>
1457      * </ul>
1458      * <p>
1459      * Applying these three rotations in the azimuth, pitch, roll order
1460      * transforms an identity matrix to the rotation matrix passed into this
1461      * method. Also, note that all three orientation angles are expressed in
1462      * <b>radians</b>.
1463      *
1464      * @param R
1465      *        rotation matrix see {@link #getRotationMatrix}.
1466      *
1467      * @param values
1468      *        an array of 3 floats to hold the result.
1469      *
1470      * @return The array values passed as argument.
1471      *
1472      * @see #getRotationMatrix(float[], float[], float[], float[])
1473      * @see GeomagneticField
1474      */
getOrientation(float[] R, float[] values)1475     public static float[] getOrientation(float[] R, float[] values) {
1476         /*
1477          * 4x4 (length=16) case:
1478          *   /  R[ 0]   R[ 1]   R[ 2]   0  \
1479          *   |  R[ 4]   R[ 5]   R[ 6]   0  |
1480          *   |  R[ 8]   R[ 9]   R[10]   0  |
1481          *   \      0       0       0   1  /
1482          *
1483          * 3x3 (length=9) case:
1484          *   /  R[ 0]   R[ 1]   R[ 2]  \
1485          *   |  R[ 3]   R[ 4]   R[ 5]  |
1486          *   \  R[ 6]   R[ 7]   R[ 8]  /
1487          *
1488          */
1489         if (R.length == 9) {
1490             values[0] = (float) Math.atan2(R[1], R[4]);
1491             values[1] = (float) Math.asin(-R[7]);
1492             values[2] = (float) Math.atan2(-R[6], R[8]);
1493         } else {
1494             values[0] = (float) Math.atan2(R[1], R[5]);
1495             values[1] = (float) Math.asin(-R[9]);
1496             values[2] = (float) Math.atan2(-R[8], R[10]);
1497         }
1498 
1499         return values;
1500     }
1501 
1502     /**
1503      * Computes the Altitude in meters from the atmospheric pressure and the
1504      * pressure at sea level.
1505      * <p>
1506      * Typically the atmospheric pressure is read from a
1507      * {@link Sensor#TYPE_PRESSURE} sensor. The pressure at sea level must be
1508      * known, usually it can be retrieved from airport databases in the
1509      * vicinity. If unknown, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE}
1510      * as an approximation, but absolute altitudes won't be accurate.
1511      * </p>
1512      * <p>
1513      * To calculate altitude differences, you must calculate the difference
1514      * between the altitudes at both points. If you don't know the altitude
1515      * as sea level, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} instead,
1516      * which will give good results considering the range of pressure typically
1517      * involved.
1518      * </p>
1519      * <p>
1520      * <code><ul>
1521      *  float altitude_difference =
1522      *      getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point2)
1523      *      - getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point1);
1524      * </ul></code>
1525      * </p>
1526      *
1527      * @param p0 pressure at sea level
1528      * @param p atmospheric pressure
1529      * @return Altitude in meters
1530      */
getAltitude(float p0, float p)1531     public static float getAltitude(float p0, float p) {
1532         final float coef = 1.0f / 5.255f;
1533         return 44330.0f * (1.0f - (float) Math.pow(p / p0, coef));
1534     }
1535 
1536     /** Helper function to compute the angle change between two rotation matrices.
1537      *  Given a current rotation matrix (R) and a previous rotation matrix
1538      *  (prevR) computes the intrinsic rotation around the z, x, and y axes which
1539      *  transforms prevR to R.
1540      *  outputs a 3 element vector containing the z, x, and y angle
1541      *  change at indexes 0, 1, and 2 respectively.
1542      * <p> Each input matrix is either as a 3x3 or 4x4 row-major matrix
1543      * depending on the length of the passed array:
1544      * <p>If the array length is 9, then the array elements represent this matrix
1545      * <pre>
1546      *   /  R[ 0]   R[ 1]   R[ 2]   \
1547      *   |  R[ 3]   R[ 4]   R[ 5]   |
1548      *   \  R[ 6]   R[ 7]   R[ 8]   /
1549      *</pre>
1550      * <p>If the array length is 16, then the array elements represent this matrix
1551      * <pre>
1552      *   /  R[ 0]   R[ 1]   R[ 2]   R[ 3]  \
1553      *   |  R[ 4]   R[ 5]   R[ 6]   R[ 7]  |
1554      *   |  R[ 8]   R[ 9]   R[10]   R[11]  |
1555      *   \  R[12]   R[13]   R[14]   R[15]  /
1556      *</pre>
1557      *
1558      * See {@link #getOrientation} for more detailed definition of the output.
1559      *
1560      * @param R current rotation matrix
1561      * @param prevR previous rotation matrix
1562      * @param angleChange an an array of floats (z, x, and y) in which the angle change
1563      *        (in radians) is stored
1564      */
1565 
getAngleChange(float[] angleChange, float[] R, float[] prevR)1566     public static void getAngleChange(float[] angleChange, float[] R, float[] prevR) {
1567         float rd1 = 0, rd4 = 0, rd6 = 0, rd7 = 0, rd8 = 0;
1568         float ri0 = 0, ri1 = 0, ri2 = 0, ri3 = 0, ri4 = 0, ri5 = 0, ri6 = 0, ri7 = 0, ri8 = 0;
1569         float pri0 = 0, pri1 = 0, pri2 = 0, pri3 = 0, pri4 = 0;
1570         float pri5 = 0, pri6 = 0, pri7 = 0, pri8 = 0;
1571 
1572         if (R.length == 9) {
1573             ri0 = R[0];
1574             ri1 = R[1];
1575             ri2 = R[2];
1576             ri3 = R[3];
1577             ri4 = R[4];
1578             ri5 = R[5];
1579             ri6 = R[6];
1580             ri7 = R[7];
1581             ri8 = R[8];
1582         } else if (R.length == 16) {
1583             ri0 = R[0];
1584             ri1 = R[1];
1585             ri2 = R[2];
1586             ri3 = R[4];
1587             ri4 = R[5];
1588             ri5 = R[6];
1589             ri6 = R[8];
1590             ri7 = R[9];
1591             ri8 = R[10];
1592         }
1593 
1594         if (prevR.length == 9) {
1595             pri0 = prevR[0];
1596             pri1 = prevR[1];
1597             pri2 = prevR[2];
1598             pri3 = prevR[3];
1599             pri4 = prevR[4];
1600             pri5 = prevR[5];
1601             pri6 = prevR[6];
1602             pri7 = prevR[7];
1603             pri8 = prevR[8];
1604         } else if (prevR.length == 16) {
1605             pri0 = prevR[0];
1606             pri1 = prevR[1];
1607             pri2 = prevR[2];
1608             pri3 = prevR[4];
1609             pri4 = prevR[5];
1610             pri5 = prevR[6];
1611             pri6 = prevR[8];
1612             pri7 = prevR[9];
1613             pri8 = prevR[10];
1614         }
1615 
1616         // calculate the parts of the rotation difference matrix we need
1617         // rd[i][j] = pri[0][i] * ri[0][j] + pri[1][i] * ri[1][j] + pri[2][i] * ri[2][j];
1618 
1619         rd1 = pri0 * ri1 + pri3 * ri4 + pri6 * ri7; //rd[0][1]
1620         rd4 = pri1 * ri1 + pri4 * ri4 + pri7 * ri7; //rd[1][1]
1621         rd6 = pri2 * ri0 + pri5 * ri3 + pri8 * ri6; //rd[2][0]
1622         rd7 = pri2 * ri1 + pri5 * ri4 + pri8 * ri7; //rd[2][1]
1623         rd8 = pri2 * ri2 + pri5 * ri5 + pri8 * ri8; //rd[2][2]
1624 
1625         angleChange[0] = (float) Math.atan2(rd1, rd4);
1626         angleChange[1] = (float) Math.asin(-rd7);
1627         angleChange[2] = (float) Math.atan2(-rd6, rd8);
1628 
1629     }
1630 
1631     /** Helper function to convert a rotation vector to a rotation matrix.
1632      *  Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a
1633      *  9  or 16 element rotation matrix in the array R.  R must have length 9 or 16.
1634      *  If R.length == 9, the following matrix is returned:
1635      * <pre>
1636      *   /  R[ 0]   R[ 1]   R[ 2]   \
1637      *   |  R[ 3]   R[ 4]   R[ 5]   |
1638      *   \  R[ 6]   R[ 7]   R[ 8]   /
1639      *</pre>
1640      * If R.length == 16, the following matrix is returned:
1641      * <pre>
1642      *   /  R[ 0]   R[ 1]   R[ 2]   0  \
1643      *   |  R[ 4]   R[ 5]   R[ 6]   0  |
1644      *   |  R[ 8]   R[ 9]   R[10]   0  |
1645      *   \  0       0       0       1  /
1646      *</pre>
1647      *  @param rotationVector the rotation vector to convert
1648      *  @param R an array of floats in which to store the rotation matrix
1649      */
getRotationMatrixFromVector(float[] R, float[] rotationVector)1650     public static void getRotationMatrixFromVector(float[] R, float[] rotationVector) {
1651 
1652         float q0;
1653         float q1 = rotationVector[0];
1654         float q2 = rotationVector[1];
1655         float q3 = rotationVector[2];
1656 
1657         if (rotationVector.length >= 4) {
1658             q0 = rotationVector[3];
1659         } else {
1660             q0 = 1 - q1 * q1 - q2 * q2 - q3 * q3;
1661             q0 = (q0 > 0) ? (float) Math.sqrt(q0) : 0;
1662         }
1663 
1664         float sq_q1 = 2 * q1 * q1;
1665         float sq_q2 = 2 * q2 * q2;
1666         float sq_q3 = 2 * q3 * q3;
1667         float q1_q2 = 2 * q1 * q2;
1668         float q3_q0 = 2 * q3 * q0;
1669         float q1_q3 = 2 * q1 * q3;
1670         float q2_q0 = 2 * q2 * q0;
1671         float q2_q3 = 2 * q2 * q3;
1672         float q1_q0 = 2 * q1 * q0;
1673 
1674         if (R.length == 9) {
1675             R[0] = 1 - sq_q2 - sq_q3;
1676             R[1] = q1_q2 - q3_q0;
1677             R[2] = q1_q3 + q2_q0;
1678 
1679             R[3] = q1_q2 + q3_q0;
1680             R[4] = 1 - sq_q1 - sq_q3;
1681             R[5] = q2_q3 - q1_q0;
1682 
1683             R[6] = q1_q3 - q2_q0;
1684             R[7] = q2_q3 + q1_q0;
1685             R[8] = 1 - sq_q1 - sq_q2;
1686         } else if (R.length == 16) {
1687             R[0] = 1 - sq_q2 - sq_q3;
1688             R[1] = q1_q2 - q3_q0;
1689             R[2] = q1_q3 + q2_q0;
1690             R[3] = 0.0f;
1691 
1692             R[4] = q1_q2 + q3_q0;
1693             R[5] = 1 - sq_q1 - sq_q3;
1694             R[6] = q2_q3 - q1_q0;
1695             R[7] = 0.0f;
1696 
1697             R[8] = q1_q3 - q2_q0;
1698             R[9] = q2_q3 + q1_q0;
1699             R[10] = 1 - sq_q1 - sq_q2;
1700             R[11] = 0.0f;
1701 
1702             R[12] = R[13] = R[14] = 0.0f;
1703             R[15] = 1.0f;
1704         }
1705     }
1706 
1707     /** Helper function to convert a rotation vector to a normalized quaternion.
1708      *  Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a normalized
1709      *  quaternion in the array Q.  The quaternion is stored as [w, x, y, z]
1710      *  @param rv the rotation vector to convert
1711      *  @param Q an array of floats in which to store the computed quaternion
1712      */
getQuaternionFromVector(float[] Q, float[] rv)1713     public static void getQuaternionFromVector(float[] Q, float[] rv) {
1714         if (rv.length >= 4) {
1715             Q[0] = rv[3];
1716         } else {
1717             Q[0] = 1 - rv[0] * rv[0] - rv[1] * rv[1] - rv[2] * rv[2];
1718             Q[0] = (Q[0] > 0) ? (float) Math.sqrt(Q[0]) : 0;
1719         }
1720         Q[1] = rv[0];
1721         Q[2] = rv[1];
1722         Q[3] = rv[2];
1723     }
1724 
1725     /**
1726      * Requests receiving trigger events for a trigger sensor.
1727      *
1728      * <p>
1729      * When the sensor detects a trigger event condition, such as significant motion in
1730      * the case of the {@link Sensor#TYPE_SIGNIFICANT_MOTION}, the provided trigger listener
1731      * will be invoked once and then its request to receive trigger events will be canceled.
1732      * To continue receiving trigger events, the application must request to receive trigger
1733      * events again.
1734      * </p>
1735      *
1736      * @param listener The listener on which the
1737      *        {@link TriggerEventListener#onTrigger(TriggerEvent)} will be delivered.
1738      * @param sensor The sensor to be enabled.
1739      *
1740      * @return true if the sensor was successfully enabled.
1741      *
1742      * @throws IllegalArgumentException when sensor is null or not a trigger sensor.
1743      */
requestTriggerSensor(TriggerEventListener listener, Sensor sensor)1744     public boolean requestTriggerSensor(TriggerEventListener listener, Sensor sensor) {
1745         return requestTriggerSensorImpl(listener, sensor);
1746     }
1747 
1748     /**
1749      * @hide
1750      */
requestTriggerSensorImpl(TriggerEventListener listener, Sensor sensor)1751     protected abstract boolean requestTriggerSensorImpl(TriggerEventListener listener,
1752             Sensor sensor);
1753 
1754     /**
1755      * Cancels receiving trigger events for a trigger sensor.
1756      *
1757      * <p>
1758      * Note that a Trigger sensor will be auto disabled if
1759      * {@link TriggerEventListener#onTrigger(TriggerEvent)} has triggered.
1760      * This method is provided in case the user wants to explicitly cancel the request
1761      * to receive trigger events.
1762      * </p>
1763      *
1764      * @param listener The listener on which the
1765      *        {@link TriggerEventListener#onTrigger(TriggerEvent)}
1766      *        is delivered.It should be the same as the one used
1767      *        in {@link #requestTriggerSensor(TriggerEventListener, Sensor)}
1768      * @param sensor The sensor for which the trigger request should be canceled.
1769      *        If null, it cancels receiving trigger for all sensors associated
1770      *        with the listener.
1771      *
1772      * @return true if successfully canceled.
1773      *
1774      * @throws IllegalArgumentException when sensor is a trigger sensor.
1775      */
cancelTriggerSensor(TriggerEventListener listener, Sensor sensor)1776     public boolean cancelTriggerSensor(TriggerEventListener listener, Sensor sensor) {
1777         return cancelTriggerSensorImpl(listener, sensor, true);
1778     }
1779 
1780     /**
1781      * @hide
1782      */
cancelTriggerSensorImpl(TriggerEventListener listener, Sensor sensor, boolean disable)1783     protected abstract boolean cancelTriggerSensorImpl(TriggerEventListener listener,
1784             Sensor sensor, boolean disable);
1785 
1786 
1787     /**
1788      * For testing purposes only. Not for third party applications.
1789      *
1790      * Initialize data injection mode and create a client for data injection. SensorService should
1791      * already be operating in DATA_INJECTION mode for this call succeed. To set SensorService into
1792      * DATA_INJECTION mode "adb shell dumpsys sensorservice data_injection" needs to be called
1793      * through adb. Typically this is done using a host side test.  This mode is expected to be used
1794      * only for testing purposes. If the HAL is set to data injection mode, it will ignore the input
1795      * from physical sensors and read sensor data that is injected from the test application. This
1796      * mode is used for testing vendor implementations for various algorithms like Rotation Vector,
1797      * Significant Motion, Step Counter etc. Not all HALs support DATA_INJECTION. This method will
1798      * fail in those cases. Once this method succeeds, the test can call
1799      * {@link injectSensorData(Sensor, float[], int, long)} to inject sensor data into the HAL.
1800      *
1801      * @param enable True to initialize a client in DATA_INJECTION mode.
1802      *               False to clean up the native resources.
1803      *
1804      * @return true if the HAL supports data injection and false
1805      *         otherwise.
1806      * @hide
1807      */
1808     @SystemApi
initDataInjection(boolean enable)1809     public boolean initDataInjection(boolean enable) {
1810         return initDataInjectionImpl(enable);
1811     }
1812 
1813     /**
1814      * @hide
1815      */
initDataInjectionImpl(boolean enable)1816     protected abstract boolean initDataInjectionImpl(boolean enable);
1817 
1818     /**
1819      * For testing purposes only. Not for third party applications.
1820      *
1821      * This method is used to inject raw sensor data into the HAL.  Call {@link
1822      * initDataInjection(boolean)} before this method to set the HAL in data injection mode. This
1823      * method should be called only if a previous call to initDataInjection has been successful and
1824      * the HAL and SensorService are already opreating in data injection mode.
1825      *
1826      * @param sensor The sensor to inject.
1827      * @param values Sensor values to inject. The length of this
1828      *               array must be exactly equal to the number of
1829      *               values reported by the sensor type.
1830      * @param accuracy Accuracy of the sensor.
1831      * @param timestamp Sensor timestamp associated with the event.
1832      *
1833      * @return boolean True if the data injection succeeds, false
1834      *         otherwise.
1835      * @throws IllegalArgumentException when the sensor is null,
1836      *         data injection is not supported by the sensor, values
1837      *         are null, incorrect number of values for the sensor,
1838      *         sensor accuracy is incorrect or timestamps are
1839      *         invalid.
1840      * @hide
1841      */
1842     @SystemApi
injectSensorData(Sensor sensor, float[] values, int accuracy, long timestamp)1843     public boolean injectSensorData(Sensor sensor, float[] values, int accuracy,
1844                 long timestamp) {
1845         if (sensor == null) {
1846             throw new IllegalArgumentException("sensor cannot be null");
1847         }
1848         if (!sensor.isDataInjectionSupported()) {
1849             throw new IllegalArgumentException("sensor does not support data injection");
1850         }
1851         if (values == null) {
1852             throw new IllegalArgumentException("sensor data cannot be null");
1853         }
1854         int expectedNumValues = Sensor.getMaxLengthValuesArray(sensor, Build.VERSION_CODES.M);
1855         if (values.length != expectedNumValues) {
1856             throw new  IllegalArgumentException("Wrong number of values for sensor "
1857                     + sensor.getName() + " actual=" + values.length + " expected="
1858                     + expectedNumValues);
1859         }
1860         if (accuracy < SENSOR_STATUS_NO_CONTACT || accuracy > SENSOR_STATUS_ACCURACY_HIGH) {
1861             throw new IllegalArgumentException("Invalid sensor accuracy");
1862         }
1863         if (timestamp <= 0) {
1864             throw new IllegalArgumentException("Negative or zero sensor timestamp");
1865         }
1866         return injectSensorDataImpl(sensor, values, accuracy, timestamp);
1867     }
1868 
1869     /**
1870      * @hide
1871      */
injectSensorDataImpl(Sensor sensor, float[] values, int accuracy, long timestamp)1872     protected abstract boolean injectSensorDataImpl(Sensor sensor, float[] values, int accuracy,
1873                 long timestamp);
1874 
getLegacySensorManager()1875     private LegacySensorManager getLegacySensorManager() {
1876         synchronized (mSensorListByType) {
1877             if (mLegacySensorManager == null) {
1878                 Log.i(TAG, "This application is using deprecated SensorManager API which will "
1879                         + "be removed someday.  Please consider switching to the new API.");
1880                 mLegacySensorManager = new LegacySensorManager(this);
1881             }
1882             return mLegacySensorManager;
1883         }
1884     }
1885 
getDelay(int rate)1886     private static int getDelay(int rate) {
1887         int delay = -1;
1888         switch (rate) {
1889             case SENSOR_DELAY_FASTEST:
1890                 delay = 0;
1891                 break;
1892             case SENSOR_DELAY_GAME:
1893                 delay = 20000;
1894                 break;
1895             case SENSOR_DELAY_UI:
1896                 delay = 66667;
1897                 break;
1898             case SENSOR_DELAY_NORMAL:
1899                 delay = 200000;
1900                 break;
1901             default:
1902                 delay = rate;
1903                 break;
1904         }
1905         return delay;
1906     }
1907 
1908     /** @hide */
setOperationParameter(SensorAdditionalInfo parameter)1909     public boolean setOperationParameter(SensorAdditionalInfo parameter) {
1910         return setOperationParameterImpl(parameter);
1911     }
1912 
1913     /** @hide */
setOperationParameterImpl(SensorAdditionalInfo parameter)1914     protected abstract boolean setOperationParameterImpl(SensorAdditionalInfo parameter);
1915 }
1916