• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3 
4 © Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6 
7  1.    INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12 
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18 
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28 
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33 
34 2.    COPYRIGHT LICENSE
35 
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39 
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42 
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48 
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51 
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54 
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60 
61 3.    NO PATENT LICENSE
62 
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67 
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70 
71 4.    DISCLAIMER
72 
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83 
84 5.    CONTACT INFORMATION
85 
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90 
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94 
95 /**************************** SBR decoder library ******************************
96 
97    Author(s):   Oliver Moser, Manuel Jander, Matthias Hildenbrand
98 
99    Description: QMF frequency pre-whitening for SBR.
100                 In the documentation the terms "scale factor" and "exponent"
101                 mean the same. Variables containing such information have
102                 the suffix "_sf".
103 
104 *******************************************************************************/
105 
106 #include "HFgen_preFlat.h"
107 
108 #define POLY_ORDER 3
109 #define MAXLOWBANDS 32
110 #define LOG10FAC 0.752574989159953f     /* == 10/log2(10) * 2^-2 */
111 #define LOG10FAC_INV 0.664385618977472f /* == log2(10)/20 * 2^2  */
112 
113 #define FIXP_CHB FIXP_SGL /* STB sinus Tab used in transformation */
114 #define CHC(a) (FX_DBL2FXCONST_SGL(a))
115 #define FX_CHB2FX_DBL(a) FX_SGL2FX_DBL(a)
116 
117 typedef struct backsubst_data {
118   FIXP_CHB Lnorm1d[3]; /*!< Normalized L matrix */
119   SCHAR Lnorm1d_sf[3];
120   FIXP_CHB Lnormii
121       [3]; /*!< The diagonal data points [i][i] of the normalized L matrix */
122   SCHAR Lnormii_sf[3];
123   FIXP_CHB Bmul0
124       [4]; /*!< To normalize L*x=b, Bmul0 is what we need to multiply b with. */
125   SCHAR Bmul0_sf[4];
126   FIXP_CHB LnormInv1d[6]; /*!< Normalized inverted L matrix (L') */
127   SCHAR LnormInv1d_sf[6];
128   FIXP_CHB
129   Bmul1[4]; /*!< To normalize L'*x=b, Bmul1 is what we need to multiply b
130                with. */
131   SCHAR Bmul1_sf[4];
132 } backsubst_data;
133 
134 /* for each element n do, f(n) = trunc(log2(n))+1  */
135 const UCHAR getLog2[32] = {0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
136                            5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5};
137 
138 /** \def  BSD_IDX_OFFSET
139  *
140  *  bsd[] begins at index 0 with data for numBands=5. The correct bsd[] is
141  *  indexed like bsd[numBands-BSD_IDX_OFFSET].
142  */
143 #define BSD_IDX_OFFSET 5
144 
145 #define N_NUMBANDS               \
146   MAXLOWBANDS - BSD_IDX_OFFSET + \
147       1 /*!< Number of backsubst_data elements in bsd */
148 
149 const backsubst_data bsd[N_NUMBANDS] = {
150     {
151         /* numBands=5 */
152         {CHC(0x66c85a52), CHC(0x4278e587), CHC(0x697dcaff)},
153         {-1, 0, 0},
154         {CHC(0x66a61789), CHC(0x5253b8e3), CHC(0x5addad81)},
155         {3, 4, 1},
156         {CHC(0x7525ee90), CHC(0x6e2a1210), CHC(0x6523bb40), CHC(0x59822ead)},
157         {-6, -4, -2, 0},
158         {CHC(0x609e4cad), CHC(0x59c7e312), CHC(0x681eecac), CHC(0x440ea893),
159          CHC(0x4a214bb3), CHC(0x53c345a1)},
160         {1, 0, -1, -1, -3, -5},
161         {CHC(0x7525ee90), CHC(0x58587936), CHC(0x410d0b38), CHC(0x7f1519d6)},
162         {-6, -1, 2, 0},
163     },
164     {
165         /* numBands=6 */
166         {CHC(0x68943285), CHC(0x4841d2c3), CHC(0x6a6214c7)},
167         {-1, 0, 0},
168         {CHC(0x63c5923e), CHC(0x4e906e18), CHC(0x6285af8a)},
169         {3, 4, 1},
170         {CHC(0x7263940b), CHC(0x424a69a5), CHC(0x4ae8383a), CHC(0x517b7730)},
171         {-7, -4, -2, 0},
172         {CHC(0x518aee5f), CHC(0x4823a096), CHC(0x43764a39), CHC(0x6e6faf23),
173          CHC(0x61bba44f), CHC(0x59d8b132)},
174         {1, 0, -1, -2, -4, -6},
175         {CHC(0x7263940b), CHC(0x6757bff2), CHC(0x5bf40fe0), CHC(0x7d6f4292)},
176         {-7, -2, 1, 0},
177     },
178     {
179         /* numBands=7 */
180         {CHC(0x699b4c3c), CHC(0x4b8b702f), CHC(0x6ae51a4f)},
181         {-1, 0, 0},
182         {CHC(0x623a7f49), CHC(0x4ccc91fc), CHC(0x68f048dd)},
183         {3, 4, 1},
184         {CHC(0x7e6ebe18), CHC(0x5701daf2), CHC(0x74a8198b), CHC(0x4b399aa1)},
185         {-8, -5, -3, 0},
186         {CHC(0x464a64a6), CHC(0x78e42633), CHC(0x5ee174ba), CHC(0x5d0008c8),
187          CHC(0x455cff0f), CHC(0x6b9100e7)},
188         {1, -1, -2, -2, -4, -7},
189         {CHC(0x7e6ebe18), CHC(0x42c52efe), CHC(0x45fe401f), CHC(0x7b5808ef)},
190         {-8, -2, 1, 0},
191     },
192     {
193         /* numBands=8 */
194         {CHC(0x6a3fd9b4), CHC(0x4d99823f), CHC(0x6b372a94)},
195         {-1, 0, 0},
196         {CHC(0x614c6ef7), CHC(0x4bd06699), CHC(0x6e59cfca)},
197         {3, 4, 1},
198         {CHC(0x4c389cc5), CHC(0x79686681), CHC(0x5e2544c2), CHC(0x46305b43)},
199         {-8, -6, -3, 0},
200         {CHC(0x7b4ca7c6), CHC(0x68270ac5), CHC(0x467c644c), CHC(0x505c1b0f),
201          CHC(0x67a14778), CHC(0x45801767)},
202         {0, -1, -2, -2, -5, -7},
203         {CHC(0x4c389cc5), CHC(0x5c499ceb), CHC(0x6f863c9f), CHC(0x79059bfc)},
204         {-8, -3, 0, 0},
205     },
206     {
207         /* numBands=9 */
208         {CHC(0x6aad9988), CHC(0x4ef8ac18), CHC(0x6b6df116)},
209         {-1, 0, 0},
210         {CHC(0x60b159b0), CHC(0x4b33f772), CHC(0x72f5573d)},
211         {3, 4, 1},
212         {CHC(0x6206cb18), CHC(0x58a7d8dc), CHC(0x4e0b2d0b), CHC(0x4207ad84)},
213         {-9, -6, -3, 0},
214         {CHC(0x6dadadae), CHC(0x5b8b2cfc), CHC(0x6cf61db2), CHC(0x46c3c90b),
215          CHC(0x506314ea), CHC(0x5f034acd)},
216         {0, -1, -3, -2, -5, -8},
217         {CHC(0x6206cb18), CHC(0x42f8b8de), CHC(0x5bb4776f), CHC(0x769acc79)},
218         {-9, -3, 0, 0},
219     },
220     {
221         /* numBands=10 */
222         {CHC(0x6afa7252), CHC(0x4feed3ed), CHC(0x6b94504d)},
223         {-1, 0, 0},
224         {CHC(0x60467899), CHC(0x4acbafba), CHC(0x76eb327f)},
225         {3, 4, 1},
226         {CHC(0x42415b15), CHC(0x431080da), CHC(0x420f1c32), CHC(0x7d0c1aeb)},
227         {-9, -6, -3, -1},
228         {CHC(0x62b2c7a4), CHC(0x51b040a6), CHC(0x56caddb4), CHC(0x7e74a2c8),
229          CHC(0x4030adf5), CHC(0x43d1dc4f)},
230         {0, -1, -3, -3, -5, -8},
231         {CHC(0x42415b15), CHC(0x64e299b3), CHC(0x4d33b5e8), CHC(0x742cee5f)},
232         {-9, -4, 0, 0},
233     },
234     {
235         /* numBands=11 */
236         {CHC(0x6b3258bb), CHC(0x50a21233), CHC(0x6bb03c19)},
237         {-1, 0, 0},
238         {CHC(0x5ff997c6), CHC(0x4a82706e), CHC(0x7a5aae36)},
239         {3, 4, 1},
240         {CHC(0x5d2fb4fb), CHC(0x685bddd8), CHC(0x71b5e983), CHC(0x7708c90b)},
241         {-10, -7, -4, -1},
242         {CHC(0x59aceea2), CHC(0x49c428a0), CHC(0x46ca5527), CHC(0x724be884),
243          CHC(0x68e586da), CHC(0x643485b6)},
244         {0, -1, -3, -3, -6, -9},
245         {CHC(0x5d2fb4fb), CHC(0x4e3fad1a), CHC(0x42310ba2), CHC(0x71c8b3ce)},
246         {-10, -4, 0, 0},
247     },
248     {
249         /* numBands=12 */
250         {CHC(0x6b5c4726), CHC(0x5128a4a8), CHC(0x6bc52ee1)},
251         {-1, 0, 0},
252         {CHC(0x5fc06618), CHC(0x4a4ce559), CHC(0x7d5c16e9)},
253         {3, 4, 1},
254         {CHC(0x43af8342), CHC(0x531533d3), CHC(0x633660a6), CHC(0x71ce6052)},
255         {-10, -7, -4, -1},
256         {CHC(0x522373d7), CHC(0x434150cb), CHC(0x75b58afc), CHC(0x68474f2d),
257          CHC(0x575348a5), CHC(0x4c20973f)},
258         {0, -1, -4, -3, -6, -9},
259         {CHC(0x43af8342), CHC(0x7c4d3d11), CHC(0x732e13db), CHC(0x6f756ac4)},
260         {-10, -5, -1, 0},
261     },
262     {
263         /* numBands=13 */
264         {CHC(0x6b7c8953), CHC(0x51903fcd), CHC(0x6bd54d2e)},
265         {-1, 0, 0},
266         {CHC(0x5f94abf0), CHC(0x4a2480fa), CHC(0x40013553)},
267         {3, 4, 2},
268         {CHC(0x6501236e), CHC(0x436b9c4e), CHC(0x578d7881), CHC(0x6d34f92e)},
269         {-11, -7, -4, -1},
270         {CHC(0x4bc0e2b2), CHC(0x7b9d12ac), CHC(0x636c1c1b), CHC(0x5fe15c2b),
271          CHC(0x49d54879), CHC(0x7662cfa5)},
272         {0, -2, -4, -3, -6, -10},
273         {CHC(0x6501236e), CHC(0x64b059fe), CHC(0x656d8359), CHC(0x6d370900)},
274         {-11, -5, -1, 0},
275     },
276     {
277         /* numBands=14 */
278         {CHC(0x6b95e276), CHC(0x51e1b637), CHC(0x6be1f7ed)},
279         {-1, 0, 0},
280         {CHC(0x5f727a1c), CHC(0x4a053e9c), CHC(0x412e528c)},
281         {3, 4, 2},
282         {CHC(0x4d178bd4), CHC(0x6f33b4e8), CHC(0x4e028f7f), CHC(0x691ee104)},
283         {-11, -8, -4, -1},
284         {CHC(0x46473d3f), CHC(0x725bd0a6), CHC(0x55199885), CHC(0x58bcc56b),
285          CHC(0x7e7e6288), CHC(0x5ddef6eb)},
286         {0, -2, -4, -3, -7, -10},
287         {CHC(0x4d178bd4), CHC(0x52ebd467), CHC(0x5a395a6e), CHC(0x6b0f724f)},
288         {-11, -5, -1, 0},
289     },
290     {
291         /* numBands=15 */
292         {CHC(0x6baa2a22), CHC(0x5222eb91), CHC(0x6bec1a86)},
293         {-1, 0, 0},
294         {CHC(0x5f57393b), CHC(0x49ec8934), CHC(0x423b5b58)},
295         {3, 4, 2},
296         {CHC(0x77fd2486), CHC(0x5cfbdf2c), CHC(0x46153bd1), CHC(0x65757ed9)},
297         {-12, -8, -4, -1},
298         {CHC(0x41888ee6), CHC(0x6a661db3), CHC(0x49abc8c8), CHC(0x52965848),
299          CHC(0x6d9301b7), CHC(0x4bb04721)},
300         {0, -2, -4, -3, -7, -10},
301         {CHC(0x77fd2486), CHC(0x45424c68), CHC(0x50f33cc6), CHC(0x68ff43f0)},
302         {-12, -5, -1, 0},
303     },
304     {
305         /* numBands=16 */
306         {CHC(0x6bbaa499), CHC(0x5257ed94), CHC(0x6bf456e4)},
307         {-1, 0, 0},
308         {CHC(0x5f412594), CHC(0x49d8a766), CHC(0x432d1dbd)},
309         {3, 4, 2},
310         {CHC(0x5ef5cfde), CHC(0x4eafcd2d), CHC(0x7ed36893), CHC(0x62274b45)},
311         {-12, -8, -5, -1},
312         {CHC(0x7ac438f5), CHC(0x637aab21), CHC(0x4067617a), CHC(0x4d3c6ec7),
313          CHC(0x5fd6e0dd), CHC(0x7bd5f024)},
314         {-1, -2, -4, -3, -7, -11},
315         {CHC(0x5ef5cfde), CHC(0x751d0d4f), CHC(0x492b3c41), CHC(0x67065409)},
316         {-12, -6, -1, 0},
317     },
318     {
319         /* numBands=17 */
320         {CHC(0x6bc836c9), CHC(0x5283997e), CHC(0x6bfb1f5e)},
321         {-1, 0, 0},
322         {CHC(0x5f2f02b6), CHC(0x49c868e9), CHC(0x44078151)},
323         {3, 4, 2},
324         {CHC(0x4c43b65a), CHC(0x4349dcf6), CHC(0x73799e2d), CHC(0x5f267274)},
325         {-12, -8, -5, -1},
326         {CHC(0x73726394), CHC(0x5d68511a), CHC(0x7191bbcc), CHC(0x48898c70),
327          CHC(0x548956e1), CHC(0x66981ce8)},
328         {-1, -2, -5, -3, -7, -11},
329         {CHC(0x4c43b65a), CHC(0x64131116), CHC(0x429028e2), CHC(0x65240211)},
330         {-12, -6, -1, 0},
331     },
332     {
333         /* numBands=18 */
334         {CHC(0x6bd3860d), CHC(0x52a80156), CHC(0x6c00c68d)},
335         {-1, 0, 0},
336         {CHC(0x5f1fed86), CHC(0x49baf636), CHC(0x44cdb9dc)},
337         {3, 4, 2},
338         {CHC(0x7c189389), CHC(0x742666d8), CHC(0x69b8c776), CHC(0x5c67e27d)},
339         {-13, -9, -5, -1},
340         {CHC(0x6cf1ea76), CHC(0x58095703), CHC(0x64e351a9), CHC(0x4460da90),
341          CHC(0x4b1f8083), CHC(0x55f2d3e1)},
342         {-1, -2, -5, -3, -7, -11},
343         {CHC(0x7c189389), CHC(0x5651792a), CHC(0x79cb9b3d), CHC(0x635769c0)},
344         {-13, -6, -2, 0},
345     },
346     {
347         /* numBands=19 */
348         {CHC(0x6bdd0c40), CHC(0x52c6abf6), CHC(0x6c058950)},
349         {-1, 0, 0},
350         {CHC(0x5f133f88), CHC(0x49afb305), CHC(0x45826d73)},
351         {3, 4, 2},
352         {CHC(0x6621a164), CHC(0x6512528e), CHC(0x61449fc8), CHC(0x59e2a0c0)},
353         {-13, -9, -5, -1},
354         {CHC(0x6721cadb), CHC(0x53404cd4), CHC(0x5a389e91), CHC(0x40abcbd2),
355          CHC(0x43332f01), CHC(0x48b82e46)},
356         {-1, -2, -5, -3, -7, -11},
357         {CHC(0x6621a164), CHC(0x4b12cc28), CHC(0x6ffd4df8), CHC(0x619f835e)},
358         {-13, -6, -2, 0},
359     },
360     {
361         /* numBands=20 */
362         {CHC(0x6be524c5), CHC(0x52e0beb3), CHC(0x6c099552)},
363         {-1, 0, 0},
364         {CHC(0x5f087c68), CHC(0x49a62bb5), CHC(0x4627d175)},
365         {3, 4, 2},
366         {CHC(0x54ec6afe), CHC(0x58991a42), CHC(0x59e23e8c), CHC(0x578f4ef4)},
367         {-13, -9, -5, -1},
368         {CHC(0x61e78f6f), CHC(0x4ef5e1e9), CHC(0x5129c3b8), CHC(0x7ab0f7b2),
369          CHC(0x78efb076), CHC(0x7c2567ea)},
370         {-1, -2, -5, -4, -8, -12},
371         {CHC(0x54ec6afe), CHC(0x41c7812c), CHC(0x676f6f8d), CHC(0x5ffb383f)},
372         {-13, -6, -2, 0},
373     },
374     {
375         /* numBands=21 */
376         {CHC(0x6bec1542), CHC(0x52f71929), CHC(0x6c0d0d5e)},
377         {-1, 0, 0},
378         {CHC(0x5eff45c5), CHC(0x499e092d), CHC(0x46bfc0c9)},
379         {3, 4, 2},
380         {CHC(0x47457a78), CHC(0x4e2d99b3), CHC(0x53637ea5), CHC(0x5567d0e9)},
381         {-13, -9, -5, -1},
382         {CHC(0x5d2dc61b), CHC(0x4b1760c8), CHC(0x4967cf39), CHC(0x74b113d8),
383          CHC(0x6d6676b6), CHC(0x6ad114e9)},
384         {-1, -2, -5, -4, -8, -12},
385         {CHC(0x47457a78), CHC(0x740accaa), CHC(0x5feb6609), CHC(0x5e696f95)},
386         {-13, -7, -2, 0},
387     },
388     {
389         /* numBands=22 */
390         {CHC(0x6bf21387), CHC(0x530a683c), CHC(0x6c100c59)},
391         {-1, 0, 0},
392         {CHC(0x5ef752ea), CHC(0x499708c6), CHC(0x474bcd1b)},
393         {3, 4, 2},
394         {CHC(0x78a21ab7), CHC(0x45658aec), CHC(0x4da3c4fe), CHC(0x5367094b)},
395         {-14, -9, -5, -1},
396         {CHC(0x58e2df6a), CHC(0x4795990e), CHC(0x42b5e0f7), CHC(0x6f408c64),
397          CHC(0x6370bebf), CHC(0x5c91ca85)},
398         {-1, -2, -5, -4, -8, -12},
399         {CHC(0x78a21ab7), CHC(0x66f951d6), CHC(0x594605bb), CHC(0x5ce91657)},
400         {-14, -7, -2, 0},
401     },
402     {
403         /* numBands=23 */
404         {CHC(0x6bf749b2), CHC(0x531b3348), CHC(0x6c12a750)},
405         {-1, 0, 0},
406         {CHC(0x5ef06b17), CHC(0x4990f6c9), CHC(0x47cd4c5b)},
407         {3, 4, 2},
408         {CHC(0x66dede36), CHC(0x7bdf90a9), CHC(0x4885b2b9), CHC(0x5188a6b7)},
409         {-14, -10, -5, -1},
410         {CHC(0x54f85812), CHC(0x446414ae), CHC(0x79c8d519), CHC(0x6a4c2f31),
411          CHC(0x5ac8325f), CHC(0x50bf9200)},
412         {-1, -2, -6, -4, -8, -12},
413         {CHC(0x66dede36), CHC(0x5be0d90e), CHC(0x535cc453), CHC(0x5b7923f0)},
414         {-14, -7, -2, 0},
415     },
416     {
417         /* numBands=24 */
418         {CHC(0x6bfbd91d), CHC(0x5329e580), CHC(0x6c14eeed)},
419         {-1, 0, 0},
420         {CHC(0x5eea6179), CHC(0x498baa90), CHC(0x4845635d)},
421         {3, 4, 2},
422         {CHC(0x58559b7e), CHC(0x6f1b231f), CHC(0x43f1789b), CHC(0x4fc8fcb8)},
423         {-14, -10, -5, -1},
424         {CHC(0x51621775), CHC(0x417881a3), CHC(0x6f9ba9b6), CHC(0x65c412b2),
425          CHC(0x53352c61), CHC(0x46db9caf)},
426         {-1, -2, -6, -4, -8, -12},
427         {CHC(0x58559b7e), CHC(0x52636003), CHC(0x4e13b316), CHC(0x5a189cdf)},
428         {-14, -7, -2, 0},
429     },
430     {
431         /* numBands=25 */
432         {CHC(0x6bffdc73), CHC(0x5336d4af), CHC(0x6c16f084)},
433         {-1, 0, 0},
434         {CHC(0x5ee51249), CHC(0x498703cc), CHC(0x48b50e4f)},
435         {3, 4, 2},
436         {CHC(0x4c5616cf), CHC(0x641b9fad), CHC(0x7fa735e0), CHC(0x4e24e57a)},
437         {-14, -10, -6, -1},
438         {CHC(0x4e15f47a), CHC(0x7d9481d6), CHC(0x66a82f8a), CHC(0x619ae971),
439          CHC(0x4c8b2f5f), CHC(0x7d09ec11)},
440         {-1, -3, -6, -4, -8, -13},
441         {CHC(0x4c5616cf), CHC(0x4a3770fb), CHC(0x495402de), CHC(0x58c693fa)},
442         {-14, -7, -2, 0},
443     },
444     {
445         /* numBands=26 */
446         {CHC(0x6c036943), CHC(0x53424625), CHC(0x6c18b6dc)},
447         {-1, 0, 0},
448         {CHC(0x5ee060aa), CHC(0x4982e88a), CHC(0x491d277f)},
449         {3, 4, 2},
450         {CHC(0x425ada5b), CHC(0x5a9368ac), CHC(0x78380a42), CHC(0x4c99aa05)},
451         {-14, -10, -6, -1},
452         {CHC(0x4b0b569c), CHC(0x78a420da), CHC(0x5ebdf203), CHC(0x5dc57e63),
453          CHC(0x46a650ff), CHC(0x6ee13fb8)},
454         {-1, -3, -6, -4, -8, -13},
455         {CHC(0x425ada5b), CHC(0x4323073c), CHC(0x450ae92b), CHC(0x57822ad5)},
456         {-14, -7, -2, 0},
457     },
458     {
459         /* numBands=27 */
460         {CHC(0x6c06911a), CHC(0x534c7261), CHC(0x6c1a4aba)},
461         {-1, 0, 0},
462         {CHC(0x5edc3524), CHC(0x497f43c0), CHC(0x497e6cd8)},
463         {3, 4, 2},
464         {CHC(0x73fb550e), CHC(0x5244894f), CHC(0x717aad78), CHC(0x4b24ef6c)},
465         {-15, -10, -6, -1},
466         {CHC(0x483aebe4), CHC(0x74139116), CHC(0x57b58037), CHC(0x5a3a4f3c),
467          CHC(0x416950fe), CHC(0x62c7f4f2)},
468         {-1, -3, -6, -4, -8, -13},
469         {CHC(0x73fb550e), CHC(0x79efb994), CHC(0x4128cab7), CHC(0x564a919a)},
470         {-15, -8, -2, 0},
471     },
472     {
473         /* numBands=28 */
474         {CHC(0x6c096264), CHC(0x535587cd), CHC(0x6c1bb355)},
475         {-1, 0, 0},
476         {CHC(0x5ed87c76), CHC(0x497c0439), CHC(0x49d98452)},
477         {3, 4, 2},
478         {CHC(0x65dec5bf), CHC(0x4afd1ba3), CHC(0x6b58b4b3), CHC(0x49c4a7b0)},
479         {-15, -10, -6, -1},
480         {CHC(0x459e6eb1), CHC(0x6fd850b7), CHC(0x516e7be9), CHC(0x56f13d05),
481          CHC(0x79785594), CHC(0x58617de7)},
482         {-1, -3, -6, -4, -9, -13},
483         {CHC(0x65dec5bf), CHC(0x6f2168aa), CHC(0x7b41310f), CHC(0x551f0692)},
484         {-15, -8, -3, 0},
485     },
486     {
487         /* numBands=29 */
488         {CHC(0x6c0be913), CHC(0x535dacd5), CHC(0x6c1cf6a3)},
489         {-1, 0, 0},
490         {CHC(0x5ed526b4), CHC(0x49791bc5), CHC(0x4a2eff99)},
491         {3, 4, 2},
492         {CHC(0x59e44afe), CHC(0x44949ada), CHC(0x65bf36f5), CHC(0x487705a0)},
493         {-15, -10, -6, -1},
494         {CHC(0x43307779), CHC(0x6be959c4), CHC(0x4bce2122), CHC(0x53e34d89),
495          CHC(0x7115ff82), CHC(0x4f6421a1)},
496         {-1, -3, -6, -4, -9, -13},
497         {CHC(0x59e44afe), CHC(0x659eab7d), CHC(0x74cea459), CHC(0x53fed574)},
498         {-15, -8, -3, 0},
499     },
500     {
501         /* numBands=30 */
502         {CHC(0x6c0e2f17), CHC(0x53650181), CHC(0x6c1e199d)},
503         {-1, 0, 0},
504         {CHC(0x5ed2269f), CHC(0x49767e9e), CHC(0x4a7f5f0b)},
505         {3, 4, 2},
506         {CHC(0x4faa4ae6), CHC(0x7dd3bf11), CHC(0x609e2732), CHC(0x473a72e9)},
507         {-15, -11, -6, -1},
508         {CHC(0x40ec57c6), CHC(0x683ee147), CHC(0x46be261d), CHC(0x510a7983),
509          CHC(0x698a84cb), CHC(0x4794a927)},
510         {-1, -3, -6, -4, -9, -13},
511         {CHC(0x4faa4ae6), CHC(0x5d3615ad), CHC(0x6ee74773), CHC(0x52e956a1)},
512         {-15, -8, -3, 0},
513     },
514     {
515         /* numBands=31 */
516         {CHC(0x6c103cc9), CHC(0x536ba0ac), CHC(0x6c1f2070)},
517         {-1, 0, 0},
518         {CHC(0x5ecf711e), CHC(0x497422ea), CHC(0x4acb1438)},
519         {3, 4, 2},
520         {CHC(0x46e322ad), CHC(0x73c32f3c), CHC(0x5be7d172), CHC(0x460d8800)},
521         {-15, -11, -6, -1},
522         {CHC(0x7d9bf8ad), CHC(0x64d22351), CHC(0x422bdc81), CHC(0x4e6184aa),
523          CHC(0x62ba2375), CHC(0x40c325de)},
524         {-2, -3, -6, -4, -9, -13},
525         {CHC(0x46e322ad), CHC(0x55bef2a3), CHC(0x697b3135), CHC(0x51ddee4d)},
526         {-15, -8, -3, 0},
527     },
528     {
529         // numBands=32
530         {CHC(0x6c121933), CHC(0x5371a104), CHC(0x6c200ea0)},
531         {-1, 0, 0},
532         {CHC(0x5eccfcd3), CHC(0x49720060), CHC(0x4b1283f0)},
533         {3, 4, 2},
534         {CHC(0x7ea12a52), CHC(0x6aca3303), CHC(0x579072bf), CHC(0x44ef056e)},
535         {-16, -11, -6, -1},
536         {CHC(0x79a3a9ab), CHC(0x619d38fc), CHC(0x7c0f0734), CHC(0x4be3dd5d),
537          CHC(0x5c8d7163), CHC(0x7591065f)},
538         {-2, -3, -7, -4, -9, -14},
539         {CHC(0x7ea12a52), CHC(0x4f1782a6), CHC(0x647cbcb2), CHC(0x50dc0bb1)},
540         {-16, -8, -3, 0},
541     },
542 };
543 
544 /** \def  SUM_SAFETY
545  *
546  *  SUM_SAFTEY defines the bits needed to right-shift every summand in
547  *  order to be overflow-safe. In the two backsubst functions we sum up 4
548  *  values. Since one of which is definitely not MAXVAL_DBL (the L[x][y]),
549  *  we spare just 2 safety bits instead of 3.
550  */
551 #define SUM_SAFETY 2
552 
553 /**
554  * \brief  Solves L*x=b via backsubstitution according to the following
555  * structure:
556  *
557  *  x[0] =  b[0];
558  *  x[1] = (b[1]                               - x[0]) / L[1][1];
559  *  x[2] = (b[2] - x[1]*L[2][1]                - x[0]) / L[2][2];
560  *  x[3] = (b[3] - x[2]*L[3][2] - x[1]*L[3][1] - x[0]) / L[3][3];
561  *
562  * \param[in]  numBands  SBR crossover band index
563  * \param[in]  b         the b in L*x=b (one-dimensional)
564  * \param[out] x         output polynomial coefficients (mantissa)
565  * \param[out] x_sf      exponents of x[]
566  */
backsubst_fw(const int numBands,const FIXP_DBL * const b,FIXP_DBL * RESTRICT x,int * RESTRICT x_sf)567 static void backsubst_fw(const int numBands, const FIXP_DBL *const b,
568                          FIXP_DBL *RESTRICT x, int *RESTRICT x_sf) {
569   int i, k;
570   int m; /* the trip counter that indexes incrementally through Lnorm1d[] */
571 
572   const FIXP_CHB *RESTRICT pLnorm1d = bsd[numBands - BSD_IDX_OFFSET].Lnorm1d;
573   const SCHAR *RESTRICT pLnorm1d_sf = bsd[numBands - BSD_IDX_OFFSET].Lnorm1d_sf;
574   const FIXP_CHB *RESTRICT pLnormii = bsd[numBands - BSD_IDX_OFFSET].Lnormii;
575   const SCHAR *RESTRICT pLnormii_sf = bsd[numBands - BSD_IDX_OFFSET].Lnormii_sf;
576 
577   x[0] = b[0];
578 
579   for (i = 1, m = 0; i <= POLY_ORDER; ++i) {
580     FIXP_DBL sum = b[i] >> SUM_SAFETY;
581     int sum_sf = x_sf[i];
582     for (k = i - 1; k > 0; --k, ++m) {
583       int e;
584       FIXP_DBL mult = fMultNorm(FX_CHB2FX_DBL(pLnorm1d[m]), x[k], &e);
585       int mult_sf = pLnorm1d_sf[m] + x_sf[k] + e;
586 
587       /* check if the new summand mult has a different sf than the sum currently
588        * has */
589       int diff = mult_sf - sum_sf;
590 
591       if (diff > 0) {
592         /* yes, and it requires the sum to be adjusted (scaled down) */
593         sum >>= diff;
594         sum_sf = mult_sf;
595       } else if (diff < 0) {
596         /* yes, but here mult needs to be scaled down */
597         mult >>= -diff;
598       }
599       sum -= (mult >> SUM_SAFETY);
600     }
601 
602     /* - x[0] */
603     if (x_sf[0] > sum_sf) {
604       sum >>= (x_sf[0] - sum_sf);
605       sum_sf = x_sf[0];
606     }
607     sum -= (x[0] >> (sum_sf - x_sf[0] + SUM_SAFETY));
608 
609     /* instead of the division /L[i][i], we multiply by the inverse */
610     int e;
611     x[i] = fMultNorm(sum, FX_CHB2FX_DBL(pLnormii[i - 1]), &e);
612     x_sf[i] = sum_sf + pLnormii_sf[i - 1] + e + SUM_SAFETY;
613   }
614 }
615 
616 /**
617  * \brief Solves L*x=b via backsubstitution according to the following
618  * structure:
619  *
620  *  x[3] = b[3];
621  *  x[2] = b[2] - L[2][3]*x[3];
622  *  x[1] = b[1] - L[1][2]*x[2] - L[1][3]*x[3];
623  *  x[0] = b[0] - L[0][1]*x[1] - L[0][2]*x[2] - L[0][3]*x[3];
624  *
625  * \param[in]  numBands  SBR crossover band index
626  * \param[in]  b         the b in L*x=b (one-dimensional)
627  * \param[out] x         solution vector
628  * \param[out] x_sf      exponents of x[]
629  */
backsubst_bw(const int numBands,const FIXP_DBL * const b,FIXP_DBL * RESTRICT x,int * RESTRICT x_sf)630 static void backsubst_bw(const int numBands, const FIXP_DBL *const b,
631                          FIXP_DBL *RESTRICT x, int *RESTRICT x_sf) {
632   int i, k;
633   int m; /* the trip counter that indexes incrementally through LnormInv1d[] */
634 
635   const FIXP_CHB *RESTRICT pLnormInv1d =
636       bsd[numBands - BSD_IDX_OFFSET].LnormInv1d;
637   const SCHAR *RESTRICT pLnormInv1d_sf =
638       bsd[numBands - BSD_IDX_OFFSET].LnormInv1d_sf;
639 
640   x[POLY_ORDER] = b[POLY_ORDER];
641 
642   for (i = POLY_ORDER - 1, m = 0; i >= 0; i--) {
643     FIXP_DBL sum = b[i] >> SUM_SAFETY;
644     int sum_sf = x_sf[i]; /* sum's sf but disregarding SUM_SAFETY (added at the
645                              iteration's end) */
646 
647     for (k = i + 1; k <= POLY_ORDER; ++k, ++m) {
648       int e;
649       FIXP_DBL mult = fMultNorm(FX_CHB2FX_DBL(pLnormInv1d[m]), x[k], &e);
650       int mult_sf = pLnormInv1d_sf[m] + x_sf[k] + e;
651 
652       /* check if the new summand mult has a different sf than sum currently has
653        */
654       int diff = mult_sf - sum_sf;
655 
656       if (diff > 0) {
657         /* yes, and it requires the sum v to be adjusted (scaled down) */
658         sum >>= diff;
659         sum_sf = mult_sf;
660       } else if (diff < 0) {
661         /* yes, but here mult needs to be scaled down */
662         mult >>= -diff;
663       }
664 
665       /* mult has now the same sf than what it is about to be added to. */
666       /* scale mult down additionally so that building the sum is overflow-safe.
667        */
668       sum -= (mult >> SUM_SAFETY);
669     }
670 
671     x_sf[i] = sum_sf + SUM_SAFETY;
672     x[i] = sum;
673   }
674 }
675 
676 /**
677  * \brief  Solves a system of linear equations (L*x=b) with the Cholesky
678  * algorithm.
679  *
680  * \param[in]     numBands  SBR crossover band index
681  * \param[in,out] b         input: vector b, output: solution vector p.
682  * \param[in,out] b_sf      input: exponent of b; output: exponent of solution
683  * p.
684  */
choleskySolve(const int numBands,FIXP_DBL * RESTRICT b,int * RESTRICT b_sf)685 static void choleskySolve(const int numBands, FIXP_DBL *RESTRICT b,
686                           int *RESTRICT b_sf) {
687   int i, e;
688 
689   const FIXP_CHB *RESTRICT pBmul0 = bsd[numBands - BSD_IDX_OFFSET].Bmul0;
690   const SCHAR *RESTRICT pBmul0_sf = bsd[numBands - BSD_IDX_OFFSET].Bmul0_sf;
691   const FIXP_CHB *RESTRICT pBmul1 = bsd[numBands - BSD_IDX_OFFSET].Bmul1;
692   const SCHAR *RESTRICT pBmul1_sf = bsd[numBands - BSD_IDX_OFFSET].Bmul1_sf;
693 
694   /* normalize b */
695   FIXP_DBL bnormed[POLY_ORDER + 1];
696   for (i = 0; i <= POLY_ORDER; ++i) {
697     bnormed[i] = fMultNorm(b[i], FX_CHB2FX_DBL(pBmul0[i]), &e);
698     b_sf[i] += pBmul0_sf[i] + e;
699   }
700 
701   backsubst_fw(numBands, bnormed, b, b_sf);
702 
703   /* normalize b again */
704   for (i = 0; i <= POLY_ORDER; ++i) {
705     bnormed[i] = fMultNorm(b[i], FX_CHB2FX_DBL(pBmul1[i]), &e);
706     b_sf[i] += pBmul1_sf[i] + e;
707   }
708 
709   backsubst_bw(numBands, bnormed, b, b_sf);
710 }
711 
712 /**
713  * \brief  Find polynomial approximation of vector y with implicit abscisas
714  * x=0,1,2,3..n-1
715  *
716  *  The problem (V^T * V * p = V^T * y) is solved with Cholesky.
717  *  V is the Vandermode Matrix constructed with x = 0...n-1;
718  *  A = V^T * V; b = V^T * y;
719  *
720  * \param[in]  numBands  SBR crossover band index (BSD_IDX_OFFSET <= numBands <=
721  * MAXLOWBANDS)
722  * \param[in]  y         input vector (mantissa)
723  * \param[in]  y_sf      exponents of y[]
724  * \param[out] p         output polynomial coefficients (mantissa)
725  * \param[out] p_sf      exponents of p[]
726  */
polyfit(const int numBands,const FIXP_DBL * const y,const int y_sf,FIXP_DBL * RESTRICT p,int * RESTRICT p_sf)727 static void polyfit(const int numBands, const FIXP_DBL *const y, const int y_sf,
728                     FIXP_DBL *RESTRICT p, int *RESTRICT p_sf) {
729   int i, k;
730   LONG v[POLY_ORDER + 1];
731   int sum_saftey = getLog2[numBands - 1];
732 
733   FDK_ASSERT((numBands >= BSD_IDX_OFFSET) && (numBands <= MAXLOWBANDS));
734 
735   /* construct vector b[] temporarily stored in array p[] */
736   FDKmemclear(p, (POLY_ORDER + 1) * sizeof(FIXP_DBL));
737 
738   /* p[] are the sums over n values and each p[i] has its own sf */
739   for (i = 0; i <= POLY_ORDER; ++i) p_sf[i] = 1 - DFRACT_BITS;
740 
741   for (k = 0; k < numBands; k++) {
742     v[0] = (LONG)1;
743     for (i = 1; i <= POLY_ORDER; i++) {
744       v[i] = k * v[i - 1];
745     }
746 
747     for (i = 0; i <= POLY_ORDER; i++) {
748       if (v[POLY_ORDER - i] != 0 && y[k] != FIXP_DBL(0)) {
749         int e;
750         FIXP_DBL mult = fMultNorm((FIXP_DBL)v[POLY_ORDER - i], y[k], &e);
751         int sf = DFRACT_BITS - 1 + y_sf + e;
752 
753         /* check if the new summand has a different sf than the sum p[i]
754          * currently has */
755         int diff = sf - p_sf[i];
756 
757         if (diff > 0) {
758           /* yes, and it requires the sum p[i] to be adjusted (scaled down) */
759           p[i] >>= fMin(DFRACT_BITS - 1, diff);
760           p_sf[i] = sf;
761         } else if (diff < 0) {
762           /* yes, but here mult needs to be scaled down */
763           mult >>= -diff;
764         }
765 
766         /* mult has now the same sf than what it is about to be added to.
767            scale mult down additionally so that building the sum is
768            overflow-safe. */
769         p[i] += mult >> sum_saftey;
770       }
771     }
772   }
773 
774   p_sf[0] += sum_saftey;
775   p_sf[1] += sum_saftey;
776   p_sf[2] += sum_saftey;
777   p_sf[3] += sum_saftey;
778 
779   choleskySolve(numBands, p, p_sf);
780 }
781 
782 /**
783  * \brief  Calculates the output of a POLY_ORDER-degree polynomial function
784  *         with Horner scheme:
785  *
786  *         y(x) = p3 + p2*x + p1*x^2 + p0*x^3
787  *              = p3 + x*(p2 + x*(p1 + x*p0))
788  *
789  *         The for loop iterates through the mult/add parts in y(x) as above,
790  *         during which regular upscaling ensures a stable exponent of the
791  *         result.
792  *
793  * \param[in]  p       coefficients as in y(x)
794  * \param[in]  p_sf    exponents of p[]
795  * \param[in]  x_int   non-fractional integer representation of x as in y(x)
796  * \param[out] out_sf  exponent of return value
797  *
798  * \return             result y(x)
799  */
polyval(const FIXP_DBL * const p,const int * const p_sf,const int x_int,int * out_sf)800 static FIXP_DBL polyval(const FIXP_DBL *const p, const int *const p_sf,
801                         const int x_int, int *out_sf) {
802   FDK_ASSERT(x_int <= 31); /* otherwise getLog2[] needs more elements */
803 
804   int k, x_sf;
805   int result_sf;   /* working space to compute return value *out_sf */
806   FIXP_DBL x;      /* fractional value of x_int */
807   FIXP_DBL result; /* return value */
808 
809   /* if x == 0, then y(x) is just p3 */
810   if (x_int != 0) {
811     x_sf = getLog2[x_int];
812     x = (FIXP_DBL)x_int << (DFRACT_BITS - 1 - x_sf);
813   } else {
814     *out_sf = p_sf[3];
815     return p[3];
816   }
817 
818   result = p[0];
819   result_sf = p_sf[0];
820 
821   for (k = 1; k <= POLY_ORDER; ++k) {
822     FIXP_DBL mult = fMult(x, result);
823     int mult_sf = x_sf + result_sf;
824 
825     int room = CountLeadingBits(mult);
826     mult <<= room;
827     mult_sf -= room;
828 
829     FIXP_DBL pp = p[k];
830     int pp_sf = p_sf[k];
831 
832     /* equalize the shift factors of pp and mult so that we can sum them up */
833     int diff = pp_sf - mult_sf;
834 
835     if (diff > 0) {
836       diff = fMin(diff, DFRACT_BITS - 1);
837       mult >>= diff;
838     } else if (diff < 0) {
839       diff = fMax(diff, 1 - DFRACT_BITS);
840       pp >>= -diff;
841     }
842 
843     /* downshift by 1 to ensure safe summation */
844     mult >>= 1;
845     mult_sf++;
846     pp >>= 1;
847     pp_sf++;
848 
849     result_sf = fMax(pp_sf, mult_sf);
850 
851     result = mult + pp;
852     /* rarely, mult and pp happen to be almost equal except their sign,
853     and then upon summation, result becomes so small, that it is within
854     the inaccuracy range of a few bits, and then the relative error
855     produced by this function may become HUGE */
856   }
857 
858   *out_sf = result_sf;
859   return result;
860 }
861 
sbrDecoder_calculateGainVec(FIXP_DBL ** sourceBufferReal,FIXP_DBL ** sourceBufferImag,int sourceBuf_e_overlap,int sourceBuf_e_current,int overlap,FIXP_DBL * RESTRICT GainVec,int * GainVec_exp,int numBands,const int startSample,const int stopSample)862 void sbrDecoder_calculateGainVec(FIXP_DBL **sourceBufferReal,
863                                  FIXP_DBL **sourceBufferImag,
864                                  int sourceBuf_e_overlap,
865                                  int sourceBuf_e_current, int overlap,
866                                  FIXP_DBL *RESTRICT GainVec, int *GainVec_exp,
867                                  int numBands, const int startSample,
868                                  const int stopSample) {
869   FIXP_DBL p[POLY_ORDER + 1];
870   FIXP_DBL meanNrg;
871   FIXP_DBL LowEnv[MAXLOWBANDS];
872   FIXP_DBL invNumBands = GetInvInt(numBands);
873   FIXP_DBL invNumSlots = GetInvInt(stopSample - startSample);
874   int i, loBand, exp, scale_nrg, scale_nrg_ov;
875   int sum_scale = 5, sum_scale_ov = 3;
876 
877   if (overlap > 8) {
878     FDK_ASSERT(overlap <= 16);
879     sum_scale_ov += 1;
880     sum_scale += 1;
881   }
882 
883   /* exponents of energy values */
884   sourceBuf_e_overlap = sourceBuf_e_overlap * 2 + sum_scale_ov;
885   sourceBuf_e_current = sourceBuf_e_current * 2 + sum_scale;
886   exp = fMax(sourceBuf_e_overlap, sourceBuf_e_current);
887   scale_nrg = sourceBuf_e_current - exp;
888   scale_nrg_ov = sourceBuf_e_overlap - exp;
889 
890   meanNrg = (FIXP_DBL)0;
891   /* Calculate the spectral envelope in dB over the current copy-up frame. */
892   for (loBand = 0; loBand < numBands; loBand++) {
893     FIXP_DBL nrg_ov, nrg;
894     INT reserve = 0, exp_new;
895     FIXP_DBL maxVal = FL2FX_DBL(0.0f);
896 
897     for (i = startSample; i < stopSample; i++) {
898       maxVal |=
899           (FIXP_DBL)((LONG)(sourceBufferReal[i][loBand]) ^
900                      ((LONG)sourceBufferReal[i][loBand] >> (SAMPLE_BITS - 1)));
901       maxVal |=
902           (FIXP_DBL)((LONG)(sourceBufferImag[i][loBand]) ^
903                      ((LONG)sourceBufferImag[i][loBand] >> (SAMPLE_BITS - 1)));
904     }
905 
906     if (maxVal != FL2FX_DBL(0.0f)) {
907       reserve = fixMax(0, CntLeadingZeros(maxVal) - 2);
908     }
909 
910     nrg_ov = nrg = (FIXP_DBL)0;
911     if (scale_nrg_ov > -31) {
912       for (i = startSample; i < overlap; i++) {
913         nrg_ov += (fPow2Div2(sourceBufferReal[i][loBand] << reserve) +
914                    fPow2Div2(sourceBufferImag[i][loBand] << reserve)) >>
915                   sum_scale_ov;
916       }
917     } else {
918       scale_nrg_ov = 0;
919     }
920     if (scale_nrg > -31) {
921       for (i = overlap; i < stopSample; i++) {
922         nrg += (fPow2Div2(sourceBufferReal[i][loBand] << reserve) +
923                 fPow2Div2(sourceBufferImag[i][loBand] << reserve)) >>
924                sum_scale;
925       }
926     } else {
927       scale_nrg = 0;
928     }
929 
930     nrg = (scaleValue(nrg_ov, scale_nrg_ov) >> 1) +
931           (scaleValue(nrg, scale_nrg) >> 1);
932     nrg = fMult(nrg, invNumSlots);
933 
934     exp_new =
935         exp - (2 * reserve) +
936         2; /* +1 for addition directly above, +1 for fPow2Div2 in loops above */
937 
938     /* LowEnv = 10*log10(nrg) = log2(nrg) * 10/log2(10) */
939     /* exponent of logarithmic energy is 8 */
940     if (nrg > (FIXP_DBL)0) {
941       int exp_log2;
942       nrg = CalcLog2(nrg, exp_new, &exp_log2);
943       nrg = scaleValue(nrg, exp_log2 - 6);
944       nrg = fMult(FL2FXCONST_SGL(LOG10FAC), nrg);
945     } else {
946       nrg = (FIXP_DBL)0;
947     }
948     LowEnv[loBand] = nrg;
949     meanNrg += fMult(nrg, invNumBands);
950   }
951   exp = 6 + 2; /* exponent of LowEnv: +2 is exponent of LOG10FAC */
952 
953   /* subtract mean before polynomial approximation to reduce dynamic of p[] */
954   for (loBand = 0; loBand < numBands; loBand++) {
955     LowEnv[loBand] = meanNrg - LowEnv[loBand];
956   }
957 
958   /* For numBands < BSD_IDX_OFFSET (== POLY_ORDER+2) we dont get an
959      overdetermined equation system. The calculated polynomial will exactly fit
960      the input data and evaluating the polynomial will lead to the same vector
961      than the original input vector: lowEnvSlope[] == lowEnv[]
962   */
963   if (numBands > POLY_ORDER + 1) {
964     /* Find polynomial approximation of LowEnv */
965     int p_sf[POLY_ORDER + 1];
966 
967     polyfit(numBands, LowEnv, exp, p, p_sf);
968 
969     for (i = 0; i < numBands; i++) {
970       int sf;
971 
972       /* lowBandEnvSlope[i] = tmp; */
973       FIXP_DBL tmp = polyval(p, p_sf, i, &sf);
974 
975       /* GainVec = 10^((mean(y)-y)/20) = 2^( (mean(y)-y) * log2(10)/20 ) */
976       tmp = fMult(tmp, FL2FXCONST_SGL(LOG10FAC_INV));
977       GainVec[i] = f2Pow(tmp, sf - 2,
978                          &GainVec_exp[i]); /* -2 is exponent of LOG10FAC_INV */
979     }
980   } else { /* numBands <= POLY_ORDER+1 */
981     for (i = 0; i < numBands; i++) {
982       int sf = exp; /* exponent of LowEnv[] */
983 
984       /* lowBandEnvSlope[i] = LowEnv[i]; */
985       FIXP_DBL tmp = LowEnv[i];
986 
987       /* GainVec = 10^((mean(y)-y)/20) = 2^( (mean(y)-y) * log2(10)/20 ) */
988       tmp = fMult(tmp, FL2FXCONST_SGL(LOG10FAC_INV));
989       GainVec[i] = f2Pow(tmp, sf - 2,
990                          &GainVec_exp[i]); /* -2 is exponent of LOG10FAC_INV */
991     }
992   }
993 }
994