1 // Copyright 2017 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_OBJECTS_FIXED_ARRAY_INL_H_
6 #define V8_OBJECTS_FIXED_ARRAY_INL_H_
7
8 #include "src/objects/fixed-array.h"
9
10 #include "src/objects-inl.h" // Needed for write barriers
11 #include "src/objects/bigint.h"
12 #include "src/objects/maybe-object-inl.h"
13
14 // Has to be the last include (doesn't have include guards):
15 #include "src/objects/object-macros.h"
16
17 namespace v8 {
18 namespace internal {
19
20 CAST_ACCESSOR(ArrayList)
CAST_ACCESSOR(ByteArray)21 CAST_ACCESSOR(ByteArray)
22 CAST_ACCESSOR(FixedArray)
23 CAST_ACCESSOR(FixedArrayBase)
24 CAST_ACCESSOR(FixedDoubleArray)
25 CAST_ACCESSOR(FixedTypedArrayBase)
26 CAST_ACCESSOR(TemplateList)
27 CAST_ACCESSOR(WeakFixedArray)
28 CAST_ACCESSOR(WeakArrayList)
29
30 SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset)
31 SYNCHRONIZED_SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset)
32 SMI_ACCESSORS(WeakFixedArray, length, kLengthOffset)
33 SYNCHRONIZED_SMI_ACCESSORS(WeakFixedArray, length, kLengthOffset)
34
35 SMI_ACCESSORS(WeakArrayList, capacity, kCapacityOffset)
36 SYNCHRONIZED_SMI_ACCESSORS(WeakArrayList, capacity, kCapacityOffset)
37 SMI_ACCESSORS(WeakArrayList, length, kLengthOffset)
38
39 Object* FixedArrayBase::unchecked_synchronized_length() const {
40 return ACQUIRE_READ_FIELD(this, kLengthOffset);
41 }
42
ACCESSORS(FixedTypedArrayBase,base_pointer,Object,kBasePointerOffset)43 ACCESSORS(FixedTypedArrayBase, base_pointer, Object, kBasePointerOffset)
44
45 Object** FixedArray::GetFirstElementAddress() {
46 return reinterpret_cast<Object**>(FIELD_ADDR(this, OffsetOfElementAt(0)));
47 }
48
ContainsOnlySmisOrHoles()49 bool FixedArray::ContainsOnlySmisOrHoles() {
50 Object* the_hole = GetReadOnlyRoots().the_hole_value();
51 Object** current = GetFirstElementAddress();
52 for (int i = 0; i < length(); ++i) {
53 Object* candidate = *current++;
54 if (!candidate->IsSmi() && candidate != the_hole) return false;
55 }
56 return true;
57 }
58
get(int index)59 Object* FixedArray::get(int index) const {
60 DCHECK(index >= 0 && index < this->length());
61 return RELAXED_READ_FIELD(this, kHeaderSize + index * kPointerSize);
62 }
63
get(FixedArray * array,int index,Isolate * isolate)64 Handle<Object> FixedArray::get(FixedArray* array, int index, Isolate* isolate) {
65 return handle(array->get(index), isolate);
66 }
67
68 template <class T>
GetValue(Isolate * isolate,int index)69 MaybeHandle<T> FixedArray::GetValue(Isolate* isolate, int index) const {
70 Object* obj = get(index);
71 if (obj->IsUndefined(isolate)) return MaybeHandle<T>();
72 return Handle<T>(T::cast(obj), isolate);
73 }
74
75 template <class T>
GetValueChecked(Isolate * isolate,int index)76 Handle<T> FixedArray::GetValueChecked(Isolate* isolate, int index) const {
77 Object* obj = get(index);
78 CHECK(!obj->IsUndefined(isolate));
79 return Handle<T>(T::cast(obj), isolate);
80 }
81
is_the_hole(Isolate * isolate,int index)82 bool FixedArray::is_the_hole(Isolate* isolate, int index) {
83 return get(index)->IsTheHole(isolate);
84 }
85
set(int index,Smi * value)86 void FixedArray::set(int index, Smi* value) {
87 DCHECK_NE(map(), GetReadOnlyRoots().fixed_cow_array_map());
88 DCHECK_LT(index, this->length());
89 DCHECK(reinterpret_cast<Object*>(value)->IsSmi());
90 int offset = kHeaderSize + index * kPointerSize;
91 RELAXED_WRITE_FIELD(this, offset, value);
92 }
93
set(int index,Object * value)94 void FixedArray::set(int index, Object* value) {
95 DCHECK_NE(GetReadOnlyRoots().fixed_cow_array_map(), map());
96 DCHECK(IsFixedArray());
97 DCHECK_GE(index, 0);
98 DCHECK_LT(index, this->length());
99 int offset = kHeaderSize + index * kPointerSize;
100 RELAXED_WRITE_FIELD(this, offset, value);
101 WRITE_BARRIER(this, offset, value);
102 }
103
set(int index,Object * value,WriteBarrierMode mode)104 void FixedArray::set(int index, Object* value, WriteBarrierMode mode) {
105 DCHECK_NE(map(), GetReadOnlyRoots().fixed_cow_array_map());
106 DCHECK_GE(index, 0);
107 DCHECK_LT(index, this->length());
108 int offset = kHeaderSize + index * kPointerSize;
109 RELAXED_WRITE_FIELD(this, offset, value);
110 CONDITIONAL_WRITE_BARRIER(this, offset, value, mode);
111 }
112
NoWriteBarrierSet(FixedArray * array,int index,Object * value)113 void FixedArray::NoWriteBarrierSet(FixedArray* array, int index,
114 Object* value) {
115 DCHECK_NE(array->map(), array->GetReadOnlyRoots().fixed_cow_array_map());
116 DCHECK_GE(index, 0);
117 DCHECK_LT(index, array->length());
118 DCHECK(!Heap::InNewSpace(value));
119 RELAXED_WRITE_FIELD(array, kHeaderSize + index * kPointerSize, value);
120 }
121
set_undefined(int index)122 void FixedArray::set_undefined(int index) {
123 set_undefined(GetReadOnlyRoots(), index);
124 }
125
set_undefined(Isolate * isolate,int index)126 void FixedArray::set_undefined(Isolate* isolate, int index) {
127 set_undefined(ReadOnlyRoots(isolate), index);
128 }
129
set_undefined(ReadOnlyRoots ro_roots,int index)130 void FixedArray::set_undefined(ReadOnlyRoots ro_roots, int index) {
131 FixedArray::NoWriteBarrierSet(this, index, ro_roots.undefined_value());
132 }
133
set_null(int index)134 void FixedArray::set_null(int index) { set_null(GetReadOnlyRoots(), index); }
135
set_null(Isolate * isolate,int index)136 void FixedArray::set_null(Isolate* isolate, int index) {
137 set_null(ReadOnlyRoots(isolate), index);
138 }
139
set_null(ReadOnlyRoots ro_roots,int index)140 void FixedArray::set_null(ReadOnlyRoots ro_roots, int index) {
141 FixedArray::NoWriteBarrierSet(this, index, ro_roots.null_value());
142 }
143
set_the_hole(int index)144 void FixedArray::set_the_hole(int index) {
145 set_the_hole(GetReadOnlyRoots(), index);
146 }
147
set_the_hole(Isolate * isolate,int index)148 void FixedArray::set_the_hole(Isolate* isolate, int index) {
149 set_the_hole(ReadOnlyRoots(isolate), index);
150 }
151
set_the_hole(ReadOnlyRoots ro_roots,int index)152 void FixedArray::set_the_hole(ReadOnlyRoots ro_roots, int index) {
153 FixedArray::NoWriteBarrierSet(this, index, ro_roots.the_hole_value());
154 }
155
FillWithHoles(int from,int to)156 void FixedArray::FillWithHoles(int from, int to) {
157 for (int i = from; i < to; i++) {
158 set_the_hole(i);
159 }
160 }
161
data_start()162 Object** FixedArray::data_start() {
163 return HeapObject::RawField(this, OffsetOfElementAt(0));
164 }
165
RawFieldOfElementAt(int index)166 Object** FixedArray::RawFieldOfElementAt(int index) {
167 return HeapObject::RawField(this, OffsetOfElementAt(index));
168 }
169
get_scalar(int index)170 double FixedDoubleArray::get_scalar(int index) {
171 DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() &&
172 map() != GetReadOnlyRoots().fixed_array_map());
173 DCHECK(index >= 0 && index < this->length());
174 DCHECK(!is_the_hole(index));
175 return READ_DOUBLE_FIELD(this, kHeaderSize + index * kDoubleSize);
176 }
177
get_representation(int index)178 uint64_t FixedDoubleArray::get_representation(int index) {
179 DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() &&
180 map() != GetReadOnlyRoots().fixed_array_map());
181 DCHECK(index >= 0 && index < this->length());
182 int offset = kHeaderSize + index * kDoubleSize;
183 return READ_UINT64_FIELD(this, offset);
184 }
185
get(FixedDoubleArray * array,int index,Isolate * isolate)186 Handle<Object> FixedDoubleArray::get(FixedDoubleArray* array, int index,
187 Isolate* isolate) {
188 if (array->is_the_hole(index)) {
189 return isolate->factory()->the_hole_value();
190 } else {
191 return isolate->factory()->NewNumber(array->get_scalar(index));
192 }
193 }
194
set(int index,double value)195 void FixedDoubleArray::set(int index, double value) {
196 DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() &&
197 map() != GetReadOnlyRoots().fixed_array_map());
198 int offset = kHeaderSize + index * kDoubleSize;
199 if (std::isnan(value)) {
200 WRITE_DOUBLE_FIELD(this, offset, std::numeric_limits<double>::quiet_NaN());
201 } else {
202 WRITE_DOUBLE_FIELD(this, offset, value);
203 }
204 DCHECK(!is_the_hole(index));
205 }
206
set_the_hole(Isolate * isolate,int index)207 void FixedDoubleArray::set_the_hole(Isolate* isolate, int index) {
208 set_the_hole(index);
209 }
210
set_the_hole(int index)211 void FixedDoubleArray::set_the_hole(int index) {
212 DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() &&
213 map() != GetReadOnlyRoots().fixed_array_map());
214 int offset = kHeaderSize + index * kDoubleSize;
215 WRITE_UINT64_FIELD(this, offset, kHoleNanInt64);
216 }
217
is_the_hole(Isolate * isolate,int index)218 bool FixedDoubleArray::is_the_hole(Isolate* isolate, int index) {
219 return is_the_hole(index);
220 }
221
is_the_hole(int index)222 bool FixedDoubleArray::is_the_hole(int index) {
223 return get_representation(index) == kHoleNanInt64;
224 }
225
data_start()226 double* FixedDoubleArray::data_start() {
227 return reinterpret_cast<double*>(FIELD_ADDR(this, kHeaderSize));
228 }
229
FillWithHoles(int from,int to)230 void FixedDoubleArray::FillWithHoles(int from, int to) {
231 for (int i = from; i < to; i++) {
232 set_the_hole(i);
233 }
234 }
235
Get(int index)236 MaybeObject* WeakFixedArray::Get(int index) const {
237 DCHECK(index >= 0 && index < this->length());
238 return RELAXED_READ_WEAK_FIELD(this, OffsetOfElementAt(index));
239 }
240
Set(int index,MaybeObject * value)241 void WeakFixedArray::Set(int index, MaybeObject* value) {
242 DCHECK_GE(index, 0);
243 DCHECK_LT(index, length());
244 int offset = OffsetOfElementAt(index);
245 RELAXED_WRITE_FIELD(this, offset, value);
246 WEAK_WRITE_BARRIER(this, offset, value);
247 }
248
Set(int index,MaybeObject * value,WriteBarrierMode mode)249 void WeakFixedArray::Set(int index, MaybeObject* value, WriteBarrierMode mode) {
250 DCHECK_GE(index, 0);
251 DCHECK_LT(index, length());
252 int offset = OffsetOfElementAt(index);
253 RELAXED_WRITE_FIELD(this, offset, value);
254 CONDITIONAL_WEAK_WRITE_BARRIER(this, offset, value, mode);
255 }
256
data_start()257 MaybeObject** WeakFixedArray::data_start() {
258 return HeapObject::RawMaybeWeakField(this, kHeaderSize);
259 }
260
RawFieldOfElementAt(int index)261 MaybeObject** WeakFixedArray::RawFieldOfElementAt(int index) {
262 return HeapObject::RawMaybeWeakField(this, OffsetOfElementAt(index));
263 }
264
GetFirstElementAddress()265 MaybeObject** WeakFixedArray::GetFirstElementAddress() {
266 return reinterpret_cast<MaybeObject**>(
267 FIELD_ADDR(this, OffsetOfElementAt(0)));
268 }
269
Get(int index)270 MaybeObject* WeakArrayList::Get(int index) const {
271 DCHECK(index >= 0 && index < this->capacity());
272 return RELAXED_READ_WEAK_FIELD(this, OffsetOfElementAt(index));
273 }
274
Set(int index,MaybeObject * value,WriteBarrierMode mode)275 void WeakArrayList::Set(int index, MaybeObject* value, WriteBarrierMode mode) {
276 DCHECK_GE(index, 0);
277 DCHECK_LT(index, this->capacity());
278 int offset = OffsetOfElementAt(index);
279 RELAXED_WRITE_FIELD(this, offset, value);
280 CONDITIONAL_WEAK_WRITE_BARRIER(this, offset, value, mode);
281 }
282
data_start()283 MaybeObject** WeakArrayList::data_start() {
284 return HeapObject::RawMaybeWeakField(this, kHeaderSize);
285 }
286
Next()287 HeapObject* WeakArrayList::Iterator::Next() {
288 if (array_ != nullptr) {
289 while (index_ < array_->length()) {
290 MaybeObject* item = array_->Get(index_++);
291 DCHECK(item->IsWeakHeapObject() || item->IsClearedWeakHeapObject());
292 if (!item->IsClearedWeakHeapObject()) return item->ToWeakHeapObject();
293 }
294 array_ = nullptr;
295 }
296 return nullptr;
297 }
298
Length()299 int ArrayList::Length() const {
300 if (FixedArray::cast(this)->length() == 0) return 0;
301 return Smi::ToInt(FixedArray::cast(this)->get(kLengthIndex));
302 }
303
SetLength(int length)304 void ArrayList::SetLength(int length) {
305 return FixedArray::cast(this)->set(kLengthIndex, Smi::FromInt(length));
306 }
307
Get(int index)308 Object* ArrayList::Get(int index) const {
309 return FixedArray::cast(this)->get(kFirstIndex + index);
310 }
311
Slot(int index)312 Object** ArrayList::Slot(int index) {
313 return data_start() + kFirstIndex + index;
314 }
315
Set(int index,Object * obj,WriteBarrierMode mode)316 void ArrayList::Set(int index, Object* obj, WriteBarrierMode mode) {
317 FixedArray::cast(this)->set(kFirstIndex + index, obj, mode);
318 }
319
Clear(int index,Object * undefined)320 void ArrayList::Clear(int index, Object* undefined) {
321 DCHECK(undefined->IsUndefined());
322 FixedArray::cast(this)->set(kFirstIndex + index, undefined,
323 SKIP_WRITE_BARRIER);
324 }
325
Size()326 int ByteArray::Size() { return RoundUp(length() + kHeaderSize, kPointerSize); }
327
get(int index)328 byte ByteArray::get(int index) const {
329 DCHECK(index >= 0 && index < this->length());
330 return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
331 }
332
set(int index,byte value)333 void ByteArray::set(int index, byte value) {
334 DCHECK(index >= 0 && index < this->length());
335 WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value);
336 }
337
copy_in(int index,const byte * buffer,int length)338 void ByteArray::copy_in(int index, const byte* buffer, int length) {
339 DCHECK(index >= 0 && length >= 0 && length <= kMaxInt - index &&
340 index + length <= this->length());
341 Address dst_addr = FIELD_ADDR(this, kHeaderSize + index * kCharSize);
342 memcpy(reinterpret_cast<void*>(dst_addr), buffer, length);
343 }
344
copy_out(int index,byte * buffer,int length)345 void ByteArray::copy_out(int index, byte* buffer, int length) {
346 DCHECK(index >= 0 && length >= 0 && length <= kMaxInt - index &&
347 index + length <= this->length());
348 Address src_addr = FIELD_ADDR(this, kHeaderSize + index * kCharSize);
349 memcpy(buffer, reinterpret_cast<void*>(src_addr), length);
350 }
351
get_int(int index)352 int ByteArray::get_int(int index) const {
353 DCHECK(index >= 0 && index < this->length() / kIntSize);
354 return READ_INT_FIELD(this, kHeaderSize + index * kIntSize);
355 }
356
set_int(int index,int value)357 void ByteArray::set_int(int index, int value) {
358 DCHECK(index >= 0 && index < this->length() / kIntSize);
359 WRITE_INT_FIELD(this, kHeaderSize + index * kIntSize, value);
360 }
361
get_uint32(int index)362 uint32_t ByteArray::get_uint32(int index) const {
363 DCHECK(index >= 0 && index < this->length() / kUInt32Size);
364 return READ_UINT32_FIELD(this, kHeaderSize + index * kUInt32Size);
365 }
366
set_uint32(int index,uint32_t value)367 void ByteArray::set_uint32(int index, uint32_t value) {
368 DCHECK(index >= 0 && index < this->length() / kUInt32Size);
369 WRITE_UINT32_FIELD(this, kHeaderSize + index * kUInt32Size, value);
370 }
371
clear_padding()372 void ByteArray::clear_padding() {
373 int data_size = length() + kHeaderSize;
374 memset(reinterpret_cast<void*>(address() + data_size), 0, Size() - data_size);
375 }
376
FromDataStartAddress(Address address)377 ByteArray* ByteArray::FromDataStartAddress(Address address) {
378 DCHECK_TAG_ALIGNED(address);
379 return reinterpret_cast<ByteArray*>(address - kHeaderSize + kHeapObjectTag);
380 }
381
DataSize()382 int ByteArray::DataSize() const { return RoundUp(length(), kPointerSize); }
383
ByteArraySize()384 int ByteArray::ByteArraySize() { return SizeFor(this->length()); }
385
GetDataStartAddress()386 byte* ByteArray::GetDataStartAddress() {
387 return reinterpret_cast<byte*>(address() + kHeaderSize);
388 }
389
390 template <class T>
cast(Object * object)391 PodArray<T>* PodArray<T>::cast(Object* object) {
392 DCHECK(object->IsByteArray());
393 return reinterpret_cast<PodArray<T>*>(object);
394 }
395 template <class T>
cast(const Object * object)396 const PodArray<T>* PodArray<T>::cast(const Object* object) {
397 DCHECK(object->IsByteArray());
398 return reinterpret_cast<const PodArray<T>*>(object);
399 }
400
401 // static
402 template <class T>
New(Isolate * isolate,int length,PretenureFlag pretenure)403 Handle<PodArray<T>> PodArray<T>::New(Isolate* isolate, int length,
404 PretenureFlag pretenure) {
405 return Handle<PodArray<T>>::cast(
406 isolate->factory()->NewByteArray(length * sizeof(T), pretenure));
407 }
408
409 template <class T>
length()410 int PodArray<T>::length() {
411 return ByteArray::length() / sizeof(T);
412 }
413
external_pointer()414 void* FixedTypedArrayBase::external_pointer() const {
415 intptr_t ptr = READ_INTPTR_FIELD(this, kExternalPointerOffset);
416 return reinterpret_cast<void*>(ptr);
417 }
418
set_external_pointer(void * value,WriteBarrierMode mode)419 void FixedTypedArrayBase::set_external_pointer(void* value,
420 WriteBarrierMode mode) {
421 intptr_t ptr = reinterpret_cast<intptr_t>(value);
422 WRITE_INTPTR_FIELD(this, kExternalPointerOffset, ptr);
423 }
424
DataPtr()425 void* FixedTypedArrayBase::DataPtr() {
426 return reinterpret_cast<void*>(
427 reinterpret_cast<intptr_t>(base_pointer()) +
428 reinterpret_cast<intptr_t>(external_pointer()));
429 }
430
ElementSize(InstanceType type)431 int FixedTypedArrayBase::ElementSize(InstanceType type) {
432 int element_size;
433 switch (type) {
434 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
435 case FIXED_##TYPE##_ARRAY_TYPE: \
436 element_size = sizeof(ctype); \
437 break;
438
439 TYPED_ARRAYS(TYPED_ARRAY_CASE)
440 #undef TYPED_ARRAY_CASE
441 default:
442 UNREACHABLE();
443 }
444 return element_size;
445 }
446
DataSize(InstanceType type)447 int FixedTypedArrayBase::DataSize(InstanceType type) const {
448 if (base_pointer() == Smi::kZero) return 0;
449 return length() * ElementSize(type);
450 }
451
DataSize()452 int FixedTypedArrayBase::DataSize() const {
453 return DataSize(map()->instance_type());
454 }
455
ByteLength()456 size_t FixedTypedArrayBase::ByteLength() const {
457 return static_cast<size_t>(length()) *
458 static_cast<size_t>(ElementSize(map()->instance_type()));
459 }
460
size()461 int FixedTypedArrayBase::size() const {
462 return OBJECT_POINTER_ALIGN(kDataOffset + DataSize());
463 }
464
TypedArraySize(InstanceType type)465 int FixedTypedArrayBase::TypedArraySize(InstanceType type) const {
466 return OBJECT_POINTER_ALIGN(kDataOffset + DataSize(type));
467 }
468
469 // static
TypedArraySize(InstanceType type,int length)470 int FixedTypedArrayBase::TypedArraySize(InstanceType type, int length) {
471 return OBJECT_POINTER_ALIGN(kDataOffset + length * ElementSize(type));
472 }
473
defaultValue()474 uint8_t Uint8ArrayTraits::defaultValue() { return 0; }
475
defaultValue()476 uint8_t Uint8ClampedArrayTraits::defaultValue() { return 0; }
477
defaultValue()478 int8_t Int8ArrayTraits::defaultValue() { return 0; }
479
defaultValue()480 uint16_t Uint16ArrayTraits::defaultValue() { return 0; }
481
defaultValue()482 int16_t Int16ArrayTraits::defaultValue() { return 0; }
483
defaultValue()484 uint32_t Uint32ArrayTraits::defaultValue() { return 0; }
485
defaultValue()486 int32_t Int32ArrayTraits::defaultValue() { return 0; }
487
defaultValue()488 float Float32ArrayTraits::defaultValue() {
489 return std::numeric_limits<float>::quiet_NaN();
490 }
491
defaultValue()492 double Float64ArrayTraits::defaultValue() {
493 return std::numeric_limits<double>::quiet_NaN();
494 }
495
496 template <class Traits>
get_scalar(int index)497 typename Traits::ElementType FixedTypedArray<Traits>::get_scalar(int index) {
498 DCHECK((index >= 0) && (index < this->length()));
499 return FixedTypedArray<Traits>::get_scalar_from_data_ptr(DataPtr(), index);
500 }
501
502 // static
503 template <class Traits>
get_scalar_from_data_ptr(void * data_ptr,int index)504 typename Traits::ElementType FixedTypedArray<Traits>::get_scalar_from_data_ptr(
505 void* data_ptr, int index) {
506 typename Traits::ElementType* ptr = reinterpret_cast<ElementType*>(data_ptr);
507 // The JavaScript memory model allows for racy reads and writes to a
508 // SharedArrayBuffer's backing store, which will always be a FixedTypedArray.
509 // ThreadSanitizer will catch these racy accesses and warn about them, so we
510 // disable TSAN for these reads and writes using annotations.
511 //
512 // We don't use relaxed atomics here, as it is not a requirement of the
513 // JavaScript memory model to have tear-free reads of overlapping accesses,
514 // and using relaxed atomics may introduce overhead.
515 TSAN_ANNOTATE_IGNORE_READS_BEGIN;
516 auto result = ptr[index];
517 TSAN_ANNOTATE_IGNORE_READS_END;
518 return result;
519 }
520
521 template <class Traits>
set(int index,ElementType value)522 void FixedTypedArray<Traits>::set(int index, ElementType value) {
523 CHECK((index >= 0) && (index < this->length()));
524 // See the comment in FixedTypedArray<Traits>::get_scalar.
525 auto* ptr = reinterpret_cast<ElementType*>(DataPtr());
526 TSAN_ANNOTATE_IGNORE_WRITES_BEGIN;
527 ptr[index] = value;
528 TSAN_ANNOTATE_IGNORE_WRITES_END;
529 }
530
531 template <class Traits>
from(int value)532 typename Traits::ElementType FixedTypedArray<Traits>::from(int value) {
533 return static_cast<ElementType>(value);
534 }
535
536 template <>
from(int value)537 inline uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from(int value) {
538 if (value < 0) return 0;
539 if (value > 0xFF) return 0xFF;
540 return static_cast<uint8_t>(value);
541 }
542
543 template <>
from(int value)544 inline int64_t FixedTypedArray<BigInt64ArrayTraits>::from(int value) {
545 UNREACHABLE();
546 }
547
548 template <>
from(int value)549 inline uint64_t FixedTypedArray<BigUint64ArrayTraits>::from(int value) {
550 UNREACHABLE();
551 }
552
553 template <class Traits>
from(uint32_t value)554 typename Traits::ElementType FixedTypedArray<Traits>::from(uint32_t value) {
555 return static_cast<ElementType>(value);
556 }
557
558 template <>
from(uint32_t value)559 inline uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from(uint32_t value) {
560 // We need this special case for Uint32 -> Uint8Clamped, because the highest
561 // Uint32 values will be negative as an int, clamping to 0, rather than 255.
562 if (value > 0xFF) return 0xFF;
563 return static_cast<uint8_t>(value);
564 }
565
566 template <>
from(uint32_t value)567 inline int64_t FixedTypedArray<BigInt64ArrayTraits>::from(uint32_t value) {
568 UNREACHABLE();
569 }
570
571 template <>
from(uint32_t value)572 inline uint64_t FixedTypedArray<BigUint64ArrayTraits>::from(uint32_t value) {
573 UNREACHABLE();
574 }
575
576 template <class Traits>
from(double value)577 typename Traits::ElementType FixedTypedArray<Traits>::from(double value) {
578 return static_cast<ElementType>(DoubleToInt32(value));
579 }
580
581 template <>
from(double value)582 inline uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from(double value) {
583 // Handle NaNs and less than zero values which clamp to zero.
584 if (!(value > 0)) return 0;
585 if (value > 0xFF) return 0xFF;
586 return static_cast<uint8_t>(lrint(value));
587 }
588
589 template <>
from(double value)590 inline int64_t FixedTypedArray<BigInt64ArrayTraits>::from(double value) {
591 UNREACHABLE();
592 }
593
594 template <>
from(double value)595 inline uint64_t FixedTypedArray<BigUint64ArrayTraits>::from(double value) {
596 UNREACHABLE();
597 }
598
599 template <>
from(double value)600 inline float FixedTypedArray<Float32ArrayTraits>::from(double value) {
601 return static_cast<float>(value);
602 }
603
604 template <>
from(double value)605 inline double FixedTypedArray<Float64ArrayTraits>::from(double value) {
606 return value;
607 }
608
609 template <class Traits>
from(int64_t value)610 typename Traits::ElementType FixedTypedArray<Traits>::from(int64_t value) {
611 UNREACHABLE();
612 }
613
614 template <class Traits>
from(uint64_t value)615 typename Traits::ElementType FixedTypedArray<Traits>::from(uint64_t value) {
616 UNREACHABLE();
617 }
618
619 template <>
from(int64_t value)620 inline int64_t FixedTypedArray<BigInt64ArrayTraits>::from(int64_t value) {
621 return value;
622 }
623
624 template <>
from(uint64_t value)625 inline uint64_t FixedTypedArray<BigUint64ArrayTraits>::from(uint64_t value) {
626 return value;
627 }
628
629 template <>
from(int64_t value)630 inline uint64_t FixedTypedArray<BigUint64ArrayTraits>::from(int64_t value) {
631 return static_cast<uint64_t>(value);
632 }
633
634 template <>
from(uint64_t value)635 inline int64_t FixedTypedArray<BigInt64ArrayTraits>::from(uint64_t value) {
636 return static_cast<int64_t>(value);
637 }
638
639 template <class Traits>
FromHandle(Handle<Object> value,bool * lossless)640 typename Traits::ElementType FixedTypedArray<Traits>::FromHandle(
641 Handle<Object> value, bool* lossless) {
642 if (value->IsSmi()) {
643 return from(Smi::ToInt(*value));
644 }
645 DCHECK(value->IsHeapNumber());
646 return from(HeapNumber::cast(*value)->value());
647 }
648
649 template <>
FromHandle(Handle<Object> value,bool * lossless)650 inline int64_t FixedTypedArray<BigInt64ArrayTraits>::FromHandle(
651 Handle<Object> value, bool* lossless) {
652 DCHECK(value->IsBigInt());
653 return BigInt::cast(*value)->AsInt64(lossless);
654 }
655
656 template <>
FromHandle(Handle<Object> value,bool * lossless)657 inline uint64_t FixedTypedArray<BigUint64ArrayTraits>::FromHandle(
658 Handle<Object> value, bool* lossless) {
659 DCHECK(value->IsBigInt());
660 return BigInt::cast(*value)->AsUint64(lossless);
661 }
662
663 template <class Traits>
get(Isolate * isolate,FixedTypedArray<Traits> * array,int index)664 Handle<Object> FixedTypedArray<Traits>::get(Isolate* isolate,
665 FixedTypedArray<Traits>* array,
666 int index) {
667 return Traits::ToHandle(isolate, array->get_scalar(index));
668 }
669
670 template <class Traits>
SetValue(uint32_t index,Object * value)671 void FixedTypedArray<Traits>::SetValue(uint32_t index, Object* value) {
672 ElementType cast_value = Traits::defaultValue();
673 if (value->IsSmi()) {
674 int int_value = Smi::ToInt(value);
675 cast_value = from(int_value);
676 } else if (value->IsHeapNumber()) {
677 double double_value = HeapNumber::cast(value)->value();
678 cast_value = from(double_value);
679 } else {
680 // Clamp undefined to the default value. All other types have been
681 // converted to a number type further up in the call chain.
682 DCHECK(value->IsUndefined());
683 }
684 set(index, cast_value);
685 }
686
687 template <>
SetValue(uint32_t index,Object * value)688 inline void FixedTypedArray<BigInt64ArrayTraits>::SetValue(uint32_t index,
689 Object* value) {
690 DCHECK(value->IsBigInt());
691 set(index, BigInt::cast(value)->AsInt64());
692 }
693
694 template <>
SetValue(uint32_t index,Object * value)695 inline void FixedTypedArray<BigUint64ArrayTraits>::SetValue(uint32_t index,
696 Object* value) {
697 DCHECK(value->IsBigInt());
698 set(index, BigInt::cast(value)->AsUint64());
699 }
700
ToHandle(Isolate * isolate,uint8_t scalar)701 Handle<Object> Uint8ArrayTraits::ToHandle(Isolate* isolate, uint8_t scalar) {
702 return handle(Smi::FromInt(scalar), isolate);
703 }
704
ToHandle(Isolate * isolate,uint8_t scalar)705 Handle<Object> Uint8ClampedArrayTraits::ToHandle(Isolate* isolate,
706 uint8_t scalar) {
707 return handle(Smi::FromInt(scalar), isolate);
708 }
709
ToHandle(Isolate * isolate,int8_t scalar)710 Handle<Object> Int8ArrayTraits::ToHandle(Isolate* isolate, int8_t scalar) {
711 return handle(Smi::FromInt(scalar), isolate);
712 }
713
ToHandle(Isolate * isolate,uint16_t scalar)714 Handle<Object> Uint16ArrayTraits::ToHandle(Isolate* isolate, uint16_t scalar) {
715 return handle(Smi::FromInt(scalar), isolate);
716 }
717
ToHandle(Isolate * isolate,int16_t scalar)718 Handle<Object> Int16ArrayTraits::ToHandle(Isolate* isolate, int16_t scalar) {
719 return handle(Smi::FromInt(scalar), isolate);
720 }
721
ToHandle(Isolate * isolate,uint32_t scalar)722 Handle<Object> Uint32ArrayTraits::ToHandle(Isolate* isolate, uint32_t scalar) {
723 return isolate->factory()->NewNumberFromUint(scalar);
724 }
725
ToHandle(Isolate * isolate,int32_t scalar)726 Handle<Object> Int32ArrayTraits::ToHandle(Isolate* isolate, int32_t scalar) {
727 return isolate->factory()->NewNumberFromInt(scalar);
728 }
729
ToHandle(Isolate * isolate,float scalar)730 Handle<Object> Float32ArrayTraits::ToHandle(Isolate* isolate, float scalar) {
731 return isolate->factory()->NewNumber(scalar);
732 }
733
ToHandle(Isolate * isolate,double scalar)734 Handle<Object> Float64ArrayTraits::ToHandle(Isolate* isolate, double scalar) {
735 return isolate->factory()->NewNumber(scalar);
736 }
737
ToHandle(Isolate * isolate,int64_t scalar)738 Handle<Object> BigInt64ArrayTraits::ToHandle(Isolate* isolate, int64_t scalar) {
739 return BigInt::FromInt64(isolate, scalar);
740 }
741
ToHandle(Isolate * isolate,uint64_t scalar)742 Handle<Object> BigUint64ArrayTraits::ToHandle(Isolate* isolate,
743 uint64_t scalar) {
744 return BigInt::FromUint64(isolate, scalar);
745 }
746
747 // static
748 template <class Traits>
749 STATIC_CONST_MEMBER_DEFINITION const InstanceType
750 FixedTypedArray<Traits>::kInstanceType;
751
752 template <class Traits>
cast(Object * object)753 FixedTypedArray<Traits>* FixedTypedArray<Traits>::cast(Object* object) {
754 DCHECK(object->IsHeapObject() &&
755 HeapObject::cast(object)->map()->instance_type() ==
756 Traits::kInstanceType);
757 return reinterpret_cast<FixedTypedArray<Traits>*>(object);
758 }
759
760 template <class Traits>
cast(const Object * object)761 const FixedTypedArray<Traits>* FixedTypedArray<Traits>::cast(
762 const Object* object) {
763 DCHECK(object->IsHeapObject() &&
764 HeapObject::cast(object)->map()->instance_type() ==
765 Traits::kInstanceType);
766 return reinterpret_cast<FixedTypedArray<Traits>*>(object);
767 }
768
length()769 int TemplateList::length() const {
770 return Smi::ToInt(FixedArray::cast(this)->get(kLengthIndex));
771 }
772
get(int index)773 Object* TemplateList::get(int index) const {
774 return FixedArray::cast(this)->get(kFirstElementIndex + index);
775 }
776
set(int index,Object * value)777 void TemplateList::set(int index, Object* value) {
778 FixedArray::cast(this)->set(kFirstElementIndex + index, value);
779 }
780
781 } // namespace internal
782 } // namespace v8
783
784 #include "src/objects/object-macros-undef.h"
785
786 #endif // V8_OBJECTS_FIXED_ARRAY_INL_H_
787