1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/audio_coding/neteq/neteq_impl.h"
12
13 #include <assert.h>
14 #include <memory.h> // memset
15
16 #include <algorithm>
17
18 #include "webrtc/base/checks.h"
19 #include "webrtc/base/logging.h"
20 #include "webrtc/base/safe_conversions.h"
21 #include "webrtc/base/trace_event.h"
22 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
23 #include "webrtc/modules/audio_coding/codecs/audio_decoder.h"
24 #include "webrtc/modules/audio_coding/neteq/accelerate.h"
25 #include "webrtc/modules/audio_coding/neteq/background_noise.h"
26 #include "webrtc/modules/audio_coding/neteq/buffer_level_filter.h"
27 #include "webrtc/modules/audio_coding/neteq/comfort_noise.h"
28 #include "webrtc/modules/audio_coding/neteq/decision_logic.h"
29 #include "webrtc/modules/audio_coding/neteq/decoder_database.h"
30 #include "webrtc/modules/audio_coding/neteq/defines.h"
31 #include "webrtc/modules/audio_coding/neteq/delay_manager.h"
32 #include "webrtc/modules/audio_coding/neteq/delay_peak_detector.h"
33 #include "webrtc/modules/audio_coding/neteq/dtmf_buffer.h"
34 #include "webrtc/modules/audio_coding/neteq/dtmf_tone_generator.h"
35 #include "webrtc/modules/audio_coding/neteq/expand.h"
36 #include "webrtc/modules/audio_coding/neteq/merge.h"
37 #include "webrtc/modules/audio_coding/neteq/nack.h"
38 #include "webrtc/modules/audio_coding/neteq/normal.h"
39 #include "webrtc/modules/audio_coding/neteq/packet_buffer.h"
40 #include "webrtc/modules/audio_coding/neteq/packet.h"
41 #include "webrtc/modules/audio_coding/neteq/payload_splitter.h"
42 #include "webrtc/modules/audio_coding/neteq/post_decode_vad.h"
43 #include "webrtc/modules/audio_coding/neteq/preemptive_expand.h"
44 #include "webrtc/modules/audio_coding/neteq/sync_buffer.h"
45 #include "webrtc/modules/audio_coding/neteq/timestamp_scaler.h"
46 #include "webrtc/modules/include/module_common_types.h"
47 #include "webrtc/system_wrappers/include/critical_section_wrapper.h"
48
49 // Modify the code to obtain backwards bit-exactness. Once bit-exactness is no
50 // longer required, this #define should be removed (and the code that it
51 // enables).
52 #define LEGACY_BITEXACT
53
54 namespace webrtc {
55
NetEqImpl(const NetEq::Config & config,BufferLevelFilter * buffer_level_filter,DecoderDatabase * decoder_database,DelayManager * delay_manager,DelayPeakDetector * delay_peak_detector,DtmfBuffer * dtmf_buffer,DtmfToneGenerator * dtmf_tone_generator,PacketBuffer * packet_buffer,PayloadSplitter * payload_splitter,TimestampScaler * timestamp_scaler,AccelerateFactory * accelerate_factory,ExpandFactory * expand_factory,PreemptiveExpandFactory * preemptive_expand_factory,bool create_components)56 NetEqImpl::NetEqImpl(const NetEq::Config& config,
57 BufferLevelFilter* buffer_level_filter,
58 DecoderDatabase* decoder_database,
59 DelayManager* delay_manager,
60 DelayPeakDetector* delay_peak_detector,
61 DtmfBuffer* dtmf_buffer,
62 DtmfToneGenerator* dtmf_tone_generator,
63 PacketBuffer* packet_buffer,
64 PayloadSplitter* payload_splitter,
65 TimestampScaler* timestamp_scaler,
66 AccelerateFactory* accelerate_factory,
67 ExpandFactory* expand_factory,
68 PreemptiveExpandFactory* preemptive_expand_factory,
69 bool create_components)
70 : crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
71 buffer_level_filter_(buffer_level_filter),
72 decoder_database_(decoder_database),
73 delay_manager_(delay_manager),
74 delay_peak_detector_(delay_peak_detector),
75 dtmf_buffer_(dtmf_buffer),
76 dtmf_tone_generator_(dtmf_tone_generator),
77 packet_buffer_(packet_buffer),
78 payload_splitter_(payload_splitter),
79 timestamp_scaler_(timestamp_scaler),
80 vad_(new PostDecodeVad()),
81 expand_factory_(expand_factory),
82 accelerate_factory_(accelerate_factory),
83 preemptive_expand_factory_(preemptive_expand_factory),
84 last_mode_(kModeNormal),
85 decoded_buffer_length_(kMaxFrameSize),
86 decoded_buffer_(new int16_t[decoded_buffer_length_]),
87 playout_timestamp_(0),
88 new_codec_(false),
89 timestamp_(0),
90 reset_decoder_(false),
91 current_rtp_payload_type_(0xFF), // Invalid RTP payload type.
92 current_cng_rtp_payload_type_(0xFF), // Invalid RTP payload type.
93 ssrc_(0),
94 first_packet_(true),
95 error_code_(0),
96 decoder_error_code_(0),
97 background_noise_mode_(config.background_noise_mode),
98 playout_mode_(config.playout_mode),
99 enable_fast_accelerate_(config.enable_fast_accelerate),
100 nack_enabled_(false) {
101 LOG(LS_INFO) << "NetEq config: " << config.ToString();
102 int fs = config.sample_rate_hz;
103 if (fs != 8000 && fs != 16000 && fs != 32000 && fs != 48000) {
104 LOG(LS_ERROR) << "Sample rate " << fs << " Hz not supported. " <<
105 "Changing to 8000 Hz.";
106 fs = 8000;
107 }
108 fs_hz_ = fs;
109 fs_mult_ = fs / 8000;
110 last_output_sample_rate_hz_ = fs;
111 output_size_samples_ = static_cast<size_t>(kOutputSizeMs * 8 * fs_mult_);
112 decoder_frame_length_ = 3 * output_size_samples_;
113 WebRtcSpl_Init();
114 if (create_components) {
115 SetSampleRateAndChannels(fs, 1); // Default is 1 channel.
116 }
117 RTC_DCHECK(!vad_->enabled());
118 if (config.enable_post_decode_vad) {
119 vad_->Enable();
120 }
121 }
122
123 NetEqImpl::~NetEqImpl() = default;
124
InsertPacket(const WebRtcRTPHeader & rtp_header,rtc::ArrayView<const uint8_t> payload,uint32_t receive_timestamp)125 int NetEqImpl::InsertPacket(const WebRtcRTPHeader& rtp_header,
126 rtc::ArrayView<const uint8_t> payload,
127 uint32_t receive_timestamp) {
128 TRACE_EVENT0("webrtc", "NetEqImpl::InsertPacket");
129 CriticalSectionScoped lock(crit_sect_.get());
130 int error =
131 InsertPacketInternal(rtp_header, payload, receive_timestamp, false);
132 if (error != 0) {
133 error_code_ = error;
134 return kFail;
135 }
136 return kOK;
137 }
138
InsertSyncPacket(const WebRtcRTPHeader & rtp_header,uint32_t receive_timestamp)139 int NetEqImpl::InsertSyncPacket(const WebRtcRTPHeader& rtp_header,
140 uint32_t receive_timestamp) {
141 CriticalSectionScoped lock(crit_sect_.get());
142 const uint8_t kSyncPayload[] = { 's', 'y', 'n', 'c' };
143 int error =
144 InsertPacketInternal(rtp_header, kSyncPayload, receive_timestamp, true);
145
146 if (error != 0) {
147 error_code_ = error;
148 return kFail;
149 }
150 return kOK;
151 }
152
GetAudio(size_t max_length,int16_t * output_audio,size_t * samples_per_channel,size_t * num_channels,NetEqOutputType * type)153 int NetEqImpl::GetAudio(size_t max_length, int16_t* output_audio,
154 size_t* samples_per_channel, size_t* num_channels,
155 NetEqOutputType* type) {
156 TRACE_EVENT0("webrtc", "NetEqImpl::GetAudio");
157 CriticalSectionScoped lock(crit_sect_.get());
158 int error = GetAudioInternal(max_length, output_audio, samples_per_channel,
159 num_channels);
160 if (error != 0) {
161 error_code_ = error;
162 return kFail;
163 }
164 if (type) {
165 *type = LastOutputType();
166 }
167 last_output_sample_rate_hz_ =
168 rtc::checked_cast<int>(*samples_per_channel * 100);
169 RTC_DCHECK(last_output_sample_rate_hz_ == 8000 ||
170 last_output_sample_rate_hz_ == 16000 ||
171 last_output_sample_rate_hz_ == 32000 ||
172 last_output_sample_rate_hz_ == 48000)
173 << "Unexpected sample rate " << last_output_sample_rate_hz_;
174 return kOK;
175 }
176
RegisterPayloadType(NetEqDecoder codec,const std::string & name,uint8_t rtp_payload_type)177 int NetEqImpl::RegisterPayloadType(NetEqDecoder codec,
178 const std::string& name,
179 uint8_t rtp_payload_type) {
180 CriticalSectionScoped lock(crit_sect_.get());
181 LOG(LS_VERBOSE) << "RegisterPayloadType "
182 << static_cast<int>(rtp_payload_type) << " "
183 << static_cast<int>(codec);
184 int ret = decoder_database_->RegisterPayload(rtp_payload_type, codec, name);
185 if (ret != DecoderDatabase::kOK) {
186 switch (ret) {
187 case DecoderDatabase::kInvalidRtpPayloadType:
188 error_code_ = kInvalidRtpPayloadType;
189 break;
190 case DecoderDatabase::kCodecNotSupported:
191 error_code_ = kCodecNotSupported;
192 break;
193 case DecoderDatabase::kDecoderExists:
194 error_code_ = kDecoderExists;
195 break;
196 default:
197 error_code_ = kOtherError;
198 }
199 return kFail;
200 }
201 return kOK;
202 }
203
RegisterExternalDecoder(AudioDecoder * decoder,NetEqDecoder codec,const std::string & codec_name,uint8_t rtp_payload_type,int sample_rate_hz)204 int NetEqImpl::RegisterExternalDecoder(AudioDecoder* decoder,
205 NetEqDecoder codec,
206 const std::string& codec_name,
207 uint8_t rtp_payload_type,
208 int sample_rate_hz) {
209 CriticalSectionScoped lock(crit_sect_.get());
210 LOG(LS_VERBOSE) << "RegisterExternalDecoder "
211 << static_cast<int>(rtp_payload_type) << " "
212 << static_cast<int>(codec);
213 if (!decoder) {
214 LOG(LS_ERROR) << "Cannot register external decoder with NULL pointer";
215 assert(false);
216 return kFail;
217 }
218 int ret = decoder_database_->InsertExternal(
219 rtp_payload_type, codec, codec_name, sample_rate_hz, decoder);
220 if (ret != DecoderDatabase::kOK) {
221 switch (ret) {
222 case DecoderDatabase::kInvalidRtpPayloadType:
223 error_code_ = kInvalidRtpPayloadType;
224 break;
225 case DecoderDatabase::kCodecNotSupported:
226 error_code_ = kCodecNotSupported;
227 break;
228 case DecoderDatabase::kDecoderExists:
229 error_code_ = kDecoderExists;
230 break;
231 case DecoderDatabase::kInvalidSampleRate:
232 error_code_ = kInvalidSampleRate;
233 break;
234 case DecoderDatabase::kInvalidPointer:
235 error_code_ = kInvalidPointer;
236 break;
237 default:
238 error_code_ = kOtherError;
239 }
240 return kFail;
241 }
242 return kOK;
243 }
244
RemovePayloadType(uint8_t rtp_payload_type)245 int NetEqImpl::RemovePayloadType(uint8_t rtp_payload_type) {
246 CriticalSectionScoped lock(crit_sect_.get());
247 int ret = decoder_database_->Remove(rtp_payload_type);
248 if (ret == DecoderDatabase::kOK) {
249 return kOK;
250 } else if (ret == DecoderDatabase::kDecoderNotFound) {
251 error_code_ = kDecoderNotFound;
252 } else {
253 error_code_ = kOtherError;
254 }
255 return kFail;
256 }
257
SetMinimumDelay(int delay_ms)258 bool NetEqImpl::SetMinimumDelay(int delay_ms) {
259 CriticalSectionScoped lock(crit_sect_.get());
260 if (delay_ms >= 0 && delay_ms < 10000) {
261 assert(delay_manager_.get());
262 return delay_manager_->SetMinimumDelay(delay_ms);
263 }
264 return false;
265 }
266
SetMaximumDelay(int delay_ms)267 bool NetEqImpl::SetMaximumDelay(int delay_ms) {
268 CriticalSectionScoped lock(crit_sect_.get());
269 if (delay_ms >= 0 && delay_ms < 10000) {
270 assert(delay_manager_.get());
271 return delay_manager_->SetMaximumDelay(delay_ms);
272 }
273 return false;
274 }
275
LeastRequiredDelayMs() const276 int NetEqImpl::LeastRequiredDelayMs() const {
277 CriticalSectionScoped lock(crit_sect_.get());
278 assert(delay_manager_.get());
279 return delay_manager_->least_required_delay_ms();
280 }
281
SetTargetDelay()282 int NetEqImpl::SetTargetDelay() {
283 return kNotImplemented;
284 }
285
TargetDelay()286 int NetEqImpl::TargetDelay() {
287 return kNotImplemented;
288 }
289
CurrentDelayMs() const290 int NetEqImpl::CurrentDelayMs() const {
291 CriticalSectionScoped lock(crit_sect_.get());
292 if (fs_hz_ == 0)
293 return 0;
294 // Sum up the samples in the packet buffer with the future length of the sync
295 // buffer, and divide the sum by the sample rate.
296 const size_t delay_samples =
297 packet_buffer_->NumSamplesInBuffer(decoder_database_.get(),
298 decoder_frame_length_) +
299 sync_buffer_->FutureLength();
300 // The division below will truncate.
301 const int delay_ms =
302 static_cast<int>(delay_samples) / rtc::CheckedDivExact(fs_hz_, 1000);
303 return delay_ms;
304 }
305
306 // Deprecated.
307 // TODO(henrik.lundin) Delete.
SetPlayoutMode(NetEqPlayoutMode mode)308 void NetEqImpl::SetPlayoutMode(NetEqPlayoutMode mode) {
309 CriticalSectionScoped lock(crit_sect_.get());
310 if (mode != playout_mode_) {
311 playout_mode_ = mode;
312 CreateDecisionLogic();
313 }
314 }
315
316 // Deprecated.
317 // TODO(henrik.lundin) Delete.
PlayoutMode() const318 NetEqPlayoutMode NetEqImpl::PlayoutMode() const {
319 CriticalSectionScoped lock(crit_sect_.get());
320 return playout_mode_;
321 }
322
NetworkStatistics(NetEqNetworkStatistics * stats)323 int NetEqImpl::NetworkStatistics(NetEqNetworkStatistics* stats) {
324 CriticalSectionScoped lock(crit_sect_.get());
325 assert(decoder_database_.get());
326 const size_t total_samples_in_buffers =
327 packet_buffer_->NumSamplesInBuffer(decoder_database_.get(),
328 decoder_frame_length_) +
329 sync_buffer_->FutureLength();
330 assert(delay_manager_.get());
331 assert(decision_logic_.get());
332 stats_.GetNetworkStatistics(fs_hz_, total_samples_in_buffers,
333 decoder_frame_length_, *delay_manager_.get(),
334 *decision_logic_.get(), stats);
335 return 0;
336 }
337
GetRtcpStatistics(RtcpStatistics * stats)338 void NetEqImpl::GetRtcpStatistics(RtcpStatistics* stats) {
339 CriticalSectionScoped lock(crit_sect_.get());
340 if (stats) {
341 rtcp_.GetStatistics(false, stats);
342 }
343 }
344
GetRtcpStatisticsNoReset(RtcpStatistics * stats)345 void NetEqImpl::GetRtcpStatisticsNoReset(RtcpStatistics* stats) {
346 CriticalSectionScoped lock(crit_sect_.get());
347 if (stats) {
348 rtcp_.GetStatistics(true, stats);
349 }
350 }
351
EnableVad()352 void NetEqImpl::EnableVad() {
353 CriticalSectionScoped lock(crit_sect_.get());
354 assert(vad_.get());
355 vad_->Enable();
356 }
357
DisableVad()358 void NetEqImpl::DisableVad() {
359 CriticalSectionScoped lock(crit_sect_.get());
360 assert(vad_.get());
361 vad_->Disable();
362 }
363
GetPlayoutTimestamp(uint32_t * timestamp)364 bool NetEqImpl::GetPlayoutTimestamp(uint32_t* timestamp) {
365 CriticalSectionScoped lock(crit_sect_.get());
366 if (first_packet_) {
367 // We don't have a valid RTP timestamp until we have decoded our first
368 // RTP packet.
369 return false;
370 }
371 *timestamp = timestamp_scaler_->ToExternal(playout_timestamp_);
372 return true;
373 }
374
last_output_sample_rate_hz() const375 int NetEqImpl::last_output_sample_rate_hz() const {
376 CriticalSectionScoped lock(crit_sect_.get());
377 return last_output_sample_rate_hz_;
378 }
379
SetTargetNumberOfChannels()380 int NetEqImpl::SetTargetNumberOfChannels() {
381 return kNotImplemented;
382 }
383
SetTargetSampleRate()384 int NetEqImpl::SetTargetSampleRate() {
385 return kNotImplemented;
386 }
387
LastError() const388 int NetEqImpl::LastError() const {
389 CriticalSectionScoped lock(crit_sect_.get());
390 return error_code_;
391 }
392
LastDecoderError()393 int NetEqImpl::LastDecoderError() {
394 CriticalSectionScoped lock(crit_sect_.get());
395 return decoder_error_code_;
396 }
397
FlushBuffers()398 void NetEqImpl::FlushBuffers() {
399 CriticalSectionScoped lock(crit_sect_.get());
400 LOG(LS_VERBOSE) << "FlushBuffers";
401 packet_buffer_->Flush();
402 assert(sync_buffer_.get());
403 assert(expand_.get());
404 sync_buffer_->Flush();
405 sync_buffer_->set_next_index(sync_buffer_->next_index() -
406 expand_->overlap_length());
407 // Set to wait for new codec.
408 first_packet_ = true;
409 }
410
PacketBufferStatistics(int * current_num_packets,int * max_num_packets) const411 void NetEqImpl::PacketBufferStatistics(int* current_num_packets,
412 int* max_num_packets) const {
413 CriticalSectionScoped lock(crit_sect_.get());
414 packet_buffer_->BufferStat(current_num_packets, max_num_packets);
415 }
416
EnableNack(size_t max_nack_list_size)417 void NetEqImpl::EnableNack(size_t max_nack_list_size) {
418 CriticalSectionScoped lock(crit_sect_.get());
419 if (!nack_enabled_) {
420 const int kNackThresholdPackets = 2;
421 nack_.reset(Nack::Create(kNackThresholdPackets));
422 nack_enabled_ = true;
423 nack_->UpdateSampleRate(fs_hz_);
424 }
425 nack_->SetMaxNackListSize(max_nack_list_size);
426 }
427
DisableNack()428 void NetEqImpl::DisableNack() {
429 CriticalSectionScoped lock(crit_sect_.get());
430 nack_.reset();
431 nack_enabled_ = false;
432 }
433
GetNackList(int64_t round_trip_time_ms) const434 std::vector<uint16_t> NetEqImpl::GetNackList(int64_t round_trip_time_ms) const {
435 CriticalSectionScoped lock(crit_sect_.get());
436 if (!nack_enabled_) {
437 return std::vector<uint16_t>();
438 }
439 RTC_DCHECK(nack_.get());
440 return nack_->GetNackList(round_trip_time_ms);
441 }
442
sync_buffer_for_test() const443 const SyncBuffer* NetEqImpl::sync_buffer_for_test() const {
444 CriticalSectionScoped lock(crit_sect_.get());
445 return sync_buffer_.get();
446 }
447
448 // Methods below this line are private.
449
InsertPacketInternal(const WebRtcRTPHeader & rtp_header,rtc::ArrayView<const uint8_t> payload,uint32_t receive_timestamp,bool is_sync_packet)450 int NetEqImpl::InsertPacketInternal(const WebRtcRTPHeader& rtp_header,
451 rtc::ArrayView<const uint8_t> payload,
452 uint32_t receive_timestamp,
453 bool is_sync_packet) {
454 if (payload.empty()) {
455 LOG_F(LS_ERROR) << "payload is empty";
456 return kInvalidPointer;
457 }
458 // Sanity checks for sync-packets.
459 if (is_sync_packet) {
460 if (decoder_database_->IsDtmf(rtp_header.header.payloadType) ||
461 decoder_database_->IsRed(rtp_header.header.payloadType) ||
462 decoder_database_->IsComfortNoise(rtp_header.header.payloadType)) {
463 LOG_F(LS_ERROR) << "Sync-packet with an unacceptable payload type "
464 << static_cast<int>(rtp_header.header.payloadType);
465 return kSyncPacketNotAccepted;
466 }
467 if (first_packet_ ||
468 rtp_header.header.payloadType != current_rtp_payload_type_ ||
469 rtp_header.header.ssrc != ssrc_) {
470 // Even if |current_rtp_payload_type_| is 0xFF, sync-packet isn't
471 // accepted.
472 LOG_F(LS_ERROR)
473 << "Changing codec, SSRC or first packet with sync-packet.";
474 return kSyncPacketNotAccepted;
475 }
476 }
477 PacketList packet_list;
478 RTPHeader main_header;
479 {
480 // Convert to Packet.
481 // Create |packet| within this separate scope, since it should not be used
482 // directly once it's been inserted in the packet list. This way, |packet|
483 // is not defined outside of this block.
484 Packet* packet = new Packet;
485 packet->header.markerBit = false;
486 packet->header.payloadType = rtp_header.header.payloadType;
487 packet->header.sequenceNumber = rtp_header.header.sequenceNumber;
488 packet->header.timestamp = rtp_header.header.timestamp;
489 packet->header.ssrc = rtp_header.header.ssrc;
490 packet->header.numCSRCs = 0;
491 packet->payload_length = payload.size();
492 packet->primary = true;
493 packet->waiting_time = 0;
494 packet->payload = new uint8_t[packet->payload_length];
495 packet->sync_packet = is_sync_packet;
496 if (!packet->payload) {
497 LOG_F(LS_ERROR) << "Payload pointer is NULL.";
498 }
499 assert(!payload.empty()); // Already checked above.
500 memcpy(packet->payload, payload.data(), packet->payload_length);
501 // Insert packet in a packet list.
502 packet_list.push_back(packet);
503 // Save main payloads header for later.
504 memcpy(&main_header, &packet->header, sizeof(main_header));
505 }
506
507 bool update_sample_rate_and_channels = false;
508 // Reinitialize NetEq if it's needed (changed SSRC or first call).
509 if ((main_header.ssrc != ssrc_) || first_packet_) {
510 // Note: |first_packet_| will be cleared further down in this method, once
511 // the packet has been successfully inserted into the packet buffer.
512
513 rtcp_.Init(main_header.sequenceNumber);
514
515 // Flush the packet buffer and DTMF buffer.
516 packet_buffer_->Flush();
517 dtmf_buffer_->Flush();
518
519 // Store new SSRC.
520 ssrc_ = main_header.ssrc;
521
522 // Update audio buffer timestamp.
523 sync_buffer_->IncreaseEndTimestamp(main_header.timestamp - timestamp_);
524
525 // Update codecs.
526 timestamp_ = main_header.timestamp;
527 current_rtp_payload_type_ = main_header.payloadType;
528
529 // Reset timestamp scaling.
530 timestamp_scaler_->Reset();
531
532 // Trigger an update of sampling rate and the number of channels.
533 update_sample_rate_and_channels = true;
534 }
535
536 // Update RTCP statistics, only for regular packets.
537 if (!is_sync_packet)
538 rtcp_.Update(main_header, receive_timestamp);
539
540 // Check for RED payload type, and separate payloads into several packets.
541 if (decoder_database_->IsRed(main_header.payloadType)) {
542 assert(!is_sync_packet); // We had a sanity check for this.
543 if (payload_splitter_->SplitRed(&packet_list) != PayloadSplitter::kOK) {
544 PacketBuffer::DeleteAllPackets(&packet_list);
545 return kRedundancySplitError;
546 }
547 // Only accept a few RED payloads of the same type as the main data,
548 // DTMF events and CNG.
549 payload_splitter_->CheckRedPayloads(&packet_list, *decoder_database_);
550 // Update the stored main payload header since the main payload has now
551 // changed.
552 memcpy(&main_header, &packet_list.front()->header, sizeof(main_header));
553 }
554
555 // Check payload types.
556 if (decoder_database_->CheckPayloadTypes(packet_list) ==
557 DecoderDatabase::kDecoderNotFound) {
558 PacketBuffer::DeleteAllPackets(&packet_list);
559 return kUnknownRtpPayloadType;
560 }
561
562 // Scale timestamp to internal domain (only for some codecs).
563 timestamp_scaler_->ToInternal(&packet_list);
564
565 // Process DTMF payloads. Cycle through the list of packets, and pick out any
566 // DTMF payloads found.
567 PacketList::iterator it = packet_list.begin();
568 while (it != packet_list.end()) {
569 Packet* current_packet = (*it);
570 assert(current_packet);
571 assert(current_packet->payload);
572 if (decoder_database_->IsDtmf(current_packet->header.payloadType)) {
573 assert(!current_packet->sync_packet); // We had a sanity check for this.
574 DtmfEvent event;
575 int ret = DtmfBuffer::ParseEvent(
576 current_packet->header.timestamp,
577 current_packet->payload,
578 current_packet->payload_length,
579 &event);
580 if (ret != DtmfBuffer::kOK) {
581 PacketBuffer::DeleteAllPackets(&packet_list);
582 return kDtmfParsingError;
583 }
584 if (dtmf_buffer_->InsertEvent(event) != DtmfBuffer::kOK) {
585 PacketBuffer::DeleteAllPackets(&packet_list);
586 return kDtmfInsertError;
587 }
588 // TODO(hlundin): Let the destructor of Packet handle the payload.
589 delete [] current_packet->payload;
590 delete current_packet;
591 it = packet_list.erase(it);
592 } else {
593 ++it;
594 }
595 }
596
597 // Check for FEC in packets, and separate payloads into several packets.
598 int ret = payload_splitter_->SplitFec(&packet_list, decoder_database_.get());
599 if (ret != PayloadSplitter::kOK) {
600 PacketBuffer::DeleteAllPackets(&packet_list);
601 switch (ret) {
602 case PayloadSplitter::kUnknownPayloadType:
603 return kUnknownRtpPayloadType;
604 default:
605 return kOtherError;
606 }
607 }
608
609 // Split payloads into smaller chunks. This also verifies that all payloads
610 // are of a known payload type. SplitAudio() method is protected against
611 // sync-packets.
612 ret = payload_splitter_->SplitAudio(&packet_list, *decoder_database_);
613 if (ret != PayloadSplitter::kOK) {
614 PacketBuffer::DeleteAllPackets(&packet_list);
615 switch (ret) {
616 case PayloadSplitter::kUnknownPayloadType:
617 return kUnknownRtpPayloadType;
618 case PayloadSplitter::kFrameSplitError:
619 return kFrameSplitError;
620 default:
621 return kOtherError;
622 }
623 }
624
625 // Update bandwidth estimate, if the packet is not sync-packet.
626 if (!packet_list.empty() && !packet_list.front()->sync_packet) {
627 // The list can be empty here if we got nothing but DTMF payloads.
628 AudioDecoder* decoder =
629 decoder_database_->GetDecoder(main_header.payloadType);
630 assert(decoder); // Should always get a valid object, since we have
631 // already checked that the payload types are known.
632 decoder->IncomingPacket(packet_list.front()->payload,
633 packet_list.front()->payload_length,
634 packet_list.front()->header.sequenceNumber,
635 packet_list.front()->header.timestamp,
636 receive_timestamp);
637 }
638
639 if (nack_enabled_) {
640 RTC_DCHECK(nack_);
641 if (update_sample_rate_and_channels) {
642 nack_->Reset();
643 }
644 nack_->UpdateLastReceivedPacket(packet_list.front()->header.sequenceNumber,
645 packet_list.front()->header.timestamp);
646 }
647
648 // Insert packets in buffer.
649 const size_t buffer_length_before_insert =
650 packet_buffer_->NumPacketsInBuffer();
651 ret = packet_buffer_->InsertPacketList(
652 &packet_list,
653 *decoder_database_,
654 ¤t_rtp_payload_type_,
655 ¤t_cng_rtp_payload_type_);
656 if (ret == PacketBuffer::kFlushed) {
657 // Reset DSP timestamp etc. if packet buffer flushed.
658 new_codec_ = true;
659 update_sample_rate_and_channels = true;
660 } else if (ret != PacketBuffer::kOK) {
661 PacketBuffer::DeleteAllPackets(&packet_list);
662 return kOtherError;
663 }
664
665 if (first_packet_) {
666 first_packet_ = false;
667 // Update the codec on the next GetAudio call.
668 new_codec_ = true;
669 }
670
671 if (current_rtp_payload_type_ != 0xFF) {
672 const DecoderDatabase::DecoderInfo* dec_info =
673 decoder_database_->GetDecoderInfo(current_rtp_payload_type_);
674 if (!dec_info) {
675 assert(false); // Already checked that the payload type is known.
676 }
677 }
678
679 if (update_sample_rate_and_channels && !packet_buffer_->Empty()) {
680 // We do not use |current_rtp_payload_type_| to |set payload_type|, but
681 // get the next RTP header from |packet_buffer_| to obtain the payload type.
682 // The reason for it is the following corner case. If NetEq receives a
683 // CNG packet with a sample rate different than the current CNG then it
684 // flushes its buffer, assuming send codec must have been changed. However,
685 // payload type of the hypothetically new send codec is not known.
686 const RTPHeader* rtp_header = packet_buffer_->NextRtpHeader();
687 assert(rtp_header);
688 int payload_type = rtp_header->payloadType;
689 AudioDecoder* decoder = decoder_database_->GetDecoder(payload_type);
690 assert(decoder); // Payloads are already checked to be valid.
691 const DecoderDatabase::DecoderInfo* decoder_info =
692 decoder_database_->GetDecoderInfo(payload_type);
693 assert(decoder_info);
694 if (decoder_info->fs_hz != fs_hz_ ||
695 decoder->Channels() != algorithm_buffer_->Channels()) {
696 SetSampleRateAndChannels(decoder_info->fs_hz, decoder->Channels());
697 }
698 if (nack_enabled_) {
699 RTC_DCHECK(nack_);
700 // Update the sample rate even if the rate is not new, because of Reset().
701 nack_->UpdateSampleRate(fs_hz_);
702 }
703 }
704
705 // TODO(hlundin): Move this code to DelayManager class.
706 const DecoderDatabase::DecoderInfo* dec_info =
707 decoder_database_->GetDecoderInfo(main_header.payloadType);
708 assert(dec_info); // Already checked that the payload type is known.
709 delay_manager_->LastDecoderType(dec_info->codec_type);
710 if (delay_manager_->last_pack_cng_or_dtmf() == 0) {
711 // Calculate the total speech length carried in each packet.
712 const size_t buffer_length_after_insert =
713 packet_buffer_->NumPacketsInBuffer();
714
715 if (buffer_length_after_insert > buffer_length_before_insert) {
716 const size_t packet_length_samples =
717 (buffer_length_after_insert - buffer_length_before_insert) *
718 decoder_frame_length_;
719 if (packet_length_samples != decision_logic_->packet_length_samples()) {
720 decision_logic_->set_packet_length_samples(packet_length_samples);
721 delay_manager_->SetPacketAudioLength(
722 rtc::checked_cast<int>((1000 * packet_length_samples) / fs_hz_));
723 }
724 }
725
726 // Update statistics.
727 if ((int32_t) (main_header.timestamp - timestamp_) >= 0 &&
728 !new_codec_) {
729 // Only update statistics if incoming packet is not older than last played
730 // out packet, and if new codec flag is not set.
731 delay_manager_->Update(main_header.sequenceNumber, main_header.timestamp,
732 fs_hz_);
733 }
734 } else if (delay_manager_->last_pack_cng_or_dtmf() == -1) {
735 // This is first "normal" packet after CNG or DTMF.
736 // Reset packet time counter and measure time until next packet,
737 // but don't update statistics.
738 delay_manager_->set_last_pack_cng_or_dtmf(0);
739 delay_manager_->ResetPacketIatCount();
740 }
741 return 0;
742 }
743
GetAudioInternal(size_t max_length,int16_t * output,size_t * samples_per_channel,size_t * num_channels)744 int NetEqImpl::GetAudioInternal(size_t max_length,
745 int16_t* output,
746 size_t* samples_per_channel,
747 size_t* num_channels) {
748 PacketList packet_list;
749 DtmfEvent dtmf_event;
750 Operations operation;
751 bool play_dtmf;
752 int return_value = GetDecision(&operation, &packet_list, &dtmf_event,
753 &play_dtmf);
754 if (return_value != 0) {
755 last_mode_ = kModeError;
756 return return_value;
757 }
758
759 AudioDecoder::SpeechType speech_type;
760 int length = 0;
761 int decode_return_value = Decode(&packet_list, &operation,
762 &length, &speech_type);
763
764 assert(vad_.get());
765 bool sid_frame_available =
766 (operation == kRfc3389Cng && !packet_list.empty());
767 vad_->Update(decoded_buffer_.get(), static_cast<size_t>(length), speech_type,
768 sid_frame_available, fs_hz_);
769
770 algorithm_buffer_->Clear();
771 switch (operation) {
772 case kNormal: {
773 DoNormal(decoded_buffer_.get(), length, speech_type, play_dtmf);
774 break;
775 }
776 case kMerge: {
777 DoMerge(decoded_buffer_.get(), length, speech_type, play_dtmf);
778 break;
779 }
780 case kExpand: {
781 return_value = DoExpand(play_dtmf);
782 break;
783 }
784 case kAccelerate:
785 case kFastAccelerate: {
786 const bool fast_accelerate =
787 enable_fast_accelerate_ && (operation == kFastAccelerate);
788 return_value = DoAccelerate(decoded_buffer_.get(), length, speech_type,
789 play_dtmf, fast_accelerate);
790 break;
791 }
792 case kPreemptiveExpand: {
793 return_value = DoPreemptiveExpand(decoded_buffer_.get(), length,
794 speech_type, play_dtmf);
795 break;
796 }
797 case kRfc3389Cng:
798 case kRfc3389CngNoPacket: {
799 return_value = DoRfc3389Cng(&packet_list, play_dtmf);
800 break;
801 }
802 case kCodecInternalCng: {
803 // This handles the case when there is no transmission and the decoder
804 // should produce internal comfort noise.
805 // TODO(hlundin): Write test for codec-internal CNG.
806 DoCodecInternalCng(decoded_buffer_.get(), length);
807 break;
808 }
809 case kDtmf: {
810 // TODO(hlundin): Write test for this.
811 return_value = DoDtmf(dtmf_event, &play_dtmf);
812 break;
813 }
814 case kAlternativePlc: {
815 // TODO(hlundin): Write test for this.
816 DoAlternativePlc(false);
817 break;
818 }
819 case kAlternativePlcIncreaseTimestamp: {
820 // TODO(hlundin): Write test for this.
821 DoAlternativePlc(true);
822 break;
823 }
824 case kAudioRepetitionIncreaseTimestamp: {
825 // TODO(hlundin): Write test for this.
826 sync_buffer_->IncreaseEndTimestamp(
827 static_cast<uint32_t>(output_size_samples_));
828 // Skipping break on purpose. Execution should move on into the
829 // next case.
830 FALLTHROUGH();
831 }
832 case kAudioRepetition: {
833 // TODO(hlundin): Write test for this.
834 // Copy last |output_size_samples_| from |sync_buffer_| to
835 // |algorithm_buffer|.
836 algorithm_buffer_->PushBackFromIndex(
837 *sync_buffer_, sync_buffer_->Size() - output_size_samples_);
838 expand_->Reset();
839 break;
840 }
841 case kUndefined: {
842 LOG(LS_ERROR) << "Invalid operation kUndefined.";
843 assert(false); // This should not happen.
844 last_mode_ = kModeError;
845 return kInvalidOperation;
846 }
847 } // End of switch.
848 if (return_value < 0) {
849 return return_value;
850 }
851
852 if (last_mode_ != kModeRfc3389Cng) {
853 comfort_noise_->Reset();
854 }
855
856 // Copy from |algorithm_buffer| to |sync_buffer_|.
857 sync_buffer_->PushBack(*algorithm_buffer_);
858
859 // Extract data from |sync_buffer_| to |output|.
860 size_t num_output_samples_per_channel = output_size_samples_;
861 size_t num_output_samples = output_size_samples_ * sync_buffer_->Channels();
862 if (num_output_samples > max_length) {
863 LOG(LS_WARNING) << "Output array is too short. " << max_length << " < " <<
864 output_size_samples_ << " * " << sync_buffer_->Channels();
865 num_output_samples = max_length;
866 num_output_samples_per_channel = max_length / sync_buffer_->Channels();
867 }
868 const size_t samples_from_sync =
869 sync_buffer_->GetNextAudioInterleaved(num_output_samples_per_channel,
870 output);
871 *num_channels = sync_buffer_->Channels();
872 if (sync_buffer_->FutureLength() < expand_->overlap_length()) {
873 // The sync buffer should always contain |overlap_length| samples, but now
874 // too many samples have been extracted. Reinstall the |overlap_length|
875 // lookahead by moving the index.
876 const size_t missing_lookahead_samples =
877 expand_->overlap_length() - sync_buffer_->FutureLength();
878 RTC_DCHECK_GE(sync_buffer_->next_index(), missing_lookahead_samples);
879 sync_buffer_->set_next_index(sync_buffer_->next_index() -
880 missing_lookahead_samples);
881 }
882 if (samples_from_sync != output_size_samples_) {
883 LOG(LS_ERROR) << "samples_from_sync (" << samples_from_sync
884 << ") != output_size_samples_ (" << output_size_samples_
885 << ")";
886 // TODO(minyue): treatment of under-run, filling zeros
887 memset(output, 0, num_output_samples * sizeof(int16_t));
888 *samples_per_channel = output_size_samples_;
889 return kSampleUnderrun;
890 }
891 *samples_per_channel = output_size_samples_;
892
893 // Should always have overlap samples left in the |sync_buffer_|.
894 RTC_DCHECK_GE(sync_buffer_->FutureLength(), expand_->overlap_length());
895
896 if (play_dtmf) {
897 return_value = DtmfOverdub(dtmf_event, sync_buffer_->Channels(), output);
898 }
899
900 // Update the background noise parameters if last operation wrote data
901 // straight from the decoder to the |sync_buffer_|. That is, none of the
902 // operations that modify the signal can be followed by a parameter update.
903 if ((last_mode_ == kModeNormal) ||
904 (last_mode_ == kModeAccelerateFail) ||
905 (last_mode_ == kModePreemptiveExpandFail) ||
906 (last_mode_ == kModeRfc3389Cng) ||
907 (last_mode_ == kModeCodecInternalCng)) {
908 background_noise_->Update(*sync_buffer_, *vad_.get());
909 }
910
911 if (operation == kDtmf) {
912 // DTMF data was written the end of |sync_buffer_|.
913 // Update index to end of DTMF data in |sync_buffer_|.
914 sync_buffer_->set_dtmf_index(sync_buffer_->Size());
915 }
916
917 if (last_mode_ != kModeExpand) {
918 // If last operation was not expand, calculate the |playout_timestamp_| from
919 // the |sync_buffer_|. However, do not update the |playout_timestamp_| if it
920 // would be moved "backwards".
921 uint32_t temp_timestamp = sync_buffer_->end_timestamp() -
922 static_cast<uint32_t>(sync_buffer_->FutureLength());
923 if (static_cast<int32_t>(temp_timestamp - playout_timestamp_) > 0) {
924 playout_timestamp_ = temp_timestamp;
925 }
926 } else {
927 // Use dead reckoning to estimate the |playout_timestamp_|.
928 playout_timestamp_ += static_cast<uint32_t>(output_size_samples_);
929 }
930
931 if (decode_return_value) return decode_return_value;
932 return return_value;
933 }
934
GetDecision(Operations * operation,PacketList * packet_list,DtmfEvent * dtmf_event,bool * play_dtmf)935 int NetEqImpl::GetDecision(Operations* operation,
936 PacketList* packet_list,
937 DtmfEvent* dtmf_event,
938 bool* play_dtmf) {
939 // Initialize output variables.
940 *play_dtmf = false;
941 *operation = kUndefined;
942
943 // Increment time counters.
944 packet_buffer_->IncrementWaitingTimes();
945 stats_.IncreaseCounter(output_size_samples_, fs_hz_);
946
947 assert(sync_buffer_.get());
948 uint32_t end_timestamp = sync_buffer_->end_timestamp();
949 if (!new_codec_) {
950 const uint32_t five_seconds_samples = 5 * fs_hz_;
951 packet_buffer_->DiscardOldPackets(end_timestamp, five_seconds_samples);
952 }
953 const RTPHeader* header = packet_buffer_->NextRtpHeader();
954
955 if (decision_logic_->CngRfc3389On() || last_mode_ == kModeRfc3389Cng) {
956 // Because of timestamp peculiarities, we have to "manually" disallow using
957 // a CNG packet with the same timestamp as the one that was last played.
958 // This can happen when using redundancy and will cause the timing to shift.
959 while (header && decoder_database_->IsComfortNoise(header->payloadType) &&
960 (end_timestamp >= header->timestamp ||
961 end_timestamp + decision_logic_->generated_noise_samples() >
962 header->timestamp)) {
963 // Don't use this packet, discard it.
964 if (packet_buffer_->DiscardNextPacket() != PacketBuffer::kOK) {
965 assert(false); // Must be ok by design.
966 }
967 // Check buffer again.
968 if (!new_codec_) {
969 packet_buffer_->DiscardOldPackets(end_timestamp, 5 * fs_hz_);
970 }
971 header = packet_buffer_->NextRtpHeader();
972 }
973 }
974
975 assert(expand_.get());
976 const int samples_left = static_cast<int>(sync_buffer_->FutureLength() -
977 expand_->overlap_length());
978 if (last_mode_ == kModeAccelerateSuccess ||
979 last_mode_ == kModeAccelerateLowEnergy ||
980 last_mode_ == kModePreemptiveExpandSuccess ||
981 last_mode_ == kModePreemptiveExpandLowEnergy) {
982 // Subtract (samples_left + output_size_samples_) from sampleMemory.
983 decision_logic_->AddSampleMemory(
984 -(samples_left + rtc::checked_cast<int>(output_size_samples_)));
985 }
986
987 // Check if it is time to play a DTMF event.
988 if (dtmf_buffer_->GetEvent(
989 static_cast<uint32_t>(
990 end_timestamp + decision_logic_->generated_noise_samples()),
991 dtmf_event)) {
992 *play_dtmf = true;
993 }
994
995 // Get instruction.
996 assert(sync_buffer_.get());
997 assert(expand_.get());
998 *operation = decision_logic_->GetDecision(*sync_buffer_,
999 *expand_,
1000 decoder_frame_length_,
1001 header,
1002 last_mode_,
1003 *play_dtmf,
1004 &reset_decoder_);
1005
1006 // Check if we already have enough samples in the |sync_buffer_|. If so,
1007 // change decision to normal, unless the decision was merge, accelerate, or
1008 // preemptive expand.
1009 if (samples_left >= rtc::checked_cast<int>(output_size_samples_) &&
1010 *operation != kMerge &&
1011 *operation != kAccelerate &&
1012 *operation != kFastAccelerate &&
1013 *operation != kPreemptiveExpand) {
1014 *operation = kNormal;
1015 return 0;
1016 }
1017
1018 decision_logic_->ExpandDecision(*operation);
1019
1020 // Check conditions for reset.
1021 if (new_codec_ || *operation == kUndefined) {
1022 // The only valid reason to get kUndefined is that new_codec_ is set.
1023 assert(new_codec_);
1024 if (*play_dtmf && !header) {
1025 timestamp_ = dtmf_event->timestamp;
1026 } else {
1027 if (!header) {
1028 LOG(LS_ERROR) << "Packet missing where it shouldn't.";
1029 return -1;
1030 }
1031 timestamp_ = header->timestamp;
1032 if (*operation == kRfc3389CngNoPacket
1033 #ifndef LEGACY_BITEXACT
1034 // Without this check, it can happen that a non-CNG packet is sent to
1035 // the CNG decoder as if it was a SID frame. This is clearly a bug,
1036 // but is kept for now to maintain bit-exactness with the test
1037 // vectors.
1038 && decoder_database_->IsComfortNoise(header->payloadType)
1039 #endif
1040 ) {
1041 // Change decision to CNG packet, since we do have a CNG packet, but it
1042 // was considered too early to use. Now, use it anyway.
1043 *operation = kRfc3389Cng;
1044 } else if (*operation != kRfc3389Cng) {
1045 *operation = kNormal;
1046 }
1047 }
1048 // Adjust |sync_buffer_| timestamp before setting |end_timestamp| to the
1049 // new value.
1050 sync_buffer_->IncreaseEndTimestamp(timestamp_ - end_timestamp);
1051 end_timestamp = timestamp_;
1052 new_codec_ = false;
1053 decision_logic_->SoftReset();
1054 buffer_level_filter_->Reset();
1055 delay_manager_->Reset();
1056 stats_.ResetMcu();
1057 }
1058
1059 size_t required_samples = output_size_samples_;
1060 const size_t samples_10_ms = static_cast<size_t>(80 * fs_mult_);
1061 const size_t samples_20_ms = 2 * samples_10_ms;
1062 const size_t samples_30_ms = 3 * samples_10_ms;
1063
1064 switch (*operation) {
1065 case kExpand: {
1066 timestamp_ = end_timestamp;
1067 return 0;
1068 }
1069 case kRfc3389CngNoPacket:
1070 case kCodecInternalCng: {
1071 return 0;
1072 }
1073 case kDtmf: {
1074 // TODO(hlundin): Write test for this.
1075 // Update timestamp.
1076 timestamp_ = end_timestamp;
1077 if (decision_logic_->generated_noise_samples() > 0 &&
1078 last_mode_ != kModeDtmf) {
1079 // Make a jump in timestamp due to the recently played comfort noise.
1080 uint32_t timestamp_jump =
1081 static_cast<uint32_t>(decision_logic_->generated_noise_samples());
1082 sync_buffer_->IncreaseEndTimestamp(timestamp_jump);
1083 timestamp_ += timestamp_jump;
1084 }
1085 decision_logic_->set_generated_noise_samples(0);
1086 return 0;
1087 }
1088 case kAccelerate:
1089 case kFastAccelerate: {
1090 // In order to do an accelerate we need at least 30 ms of audio data.
1091 if (samples_left >= static_cast<int>(samples_30_ms)) {
1092 // Already have enough data, so we do not need to extract any more.
1093 decision_logic_->set_sample_memory(samples_left);
1094 decision_logic_->set_prev_time_scale(true);
1095 return 0;
1096 } else if (samples_left >= static_cast<int>(samples_10_ms) &&
1097 decoder_frame_length_ >= samples_30_ms) {
1098 // Avoid decoding more data as it might overflow the playout buffer.
1099 *operation = kNormal;
1100 return 0;
1101 } else if (samples_left < static_cast<int>(samples_20_ms) &&
1102 decoder_frame_length_ < samples_30_ms) {
1103 // Build up decoded data by decoding at least 20 ms of audio data. Do
1104 // not perform accelerate yet, but wait until we only need to do one
1105 // decoding.
1106 required_samples = 2 * output_size_samples_;
1107 *operation = kNormal;
1108 }
1109 // If none of the above is true, we have one of two possible situations:
1110 // (1) 20 ms <= samples_left < 30 ms and decoder_frame_length_ < 30 ms; or
1111 // (2) samples_left < 10 ms and decoder_frame_length_ >= 30 ms.
1112 // In either case, we move on with the accelerate decision, and decode one
1113 // frame now.
1114 break;
1115 }
1116 case kPreemptiveExpand: {
1117 // In order to do a preemptive expand we need at least 30 ms of decoded
1118 // audio data.
1119 if ((samples_left >= static_cast<int>(samples_30_ms)) ||
1120 (samples_left >= static_cast<int>(samples_10_ms) &&
1121 decoder_frame_length_ >= samples_30_ms)) {
1122 // Already have enough data, so we do not need to extract any more.
1123 // Or, avoid decoding more data as it might overflow the playout buffer.
1124 // Still try preemptive expand, though.
1125 decision_logic_->set_sample_memory(samples_left);
1126 decision_logic_->set_prev_time_scale(true);
1127 return 0;
1128 }
1129 if (samples_left < static_cast<int>(samples_20_ms) &&
1130 decoder_frame_length_ < samples_30_ms) {
1131 // Build up decoded data by decoding at least 20 ms of audio data.
1132 // Still try to perform preemptive expand.
1133 required_samples = 2 * output_size_samples_;
1134 }
1135 // Move on with the preemptive expand decision.
1136 break;
1137 }
1138 case kMerge: {
1139 required_samples =
1140 std::max(merge_->RequiredFutureSamples(), required_samples);
1141 break;
1142 }
1143 default: {
1144 // Do nothing.
1145 }
1146 }
1147
1148 // Get packets from buffer.
1149 int extracted_samples = 0;
1150 if (header &&
1151 *operation != kAlternativePlc &&
1152 *operation != kAlternativePlcIncreaseTimestamp &&
1153 *operation != kAudioRepetition &&
1154 *operation != kAudioRepetitionIncreaseTimestamp) {
1155 sync_buffer_->IncreaseEndTimestamp(header->timestamp - end_timestamp);
1156 if (decision_logic_->CngOff()) {
1157 // Adjustment of timestamp only corresponds to an actual packet loss
1158 // if comfort noise is not played. If comfort noise was just played,
1159 // this adjustment of timestamp is only done to get back in sync with the
1160 // stream timestamp; no loss to report.
1161 stats_.LostSamples(header->timestamp - end_timestamp);
1162 }
1163
1164 if (*operation != kRfc3389Cng) {
1165 // We are about to decode and use a non-CNG packet.
1166 decision_logic_->SetCngOff();
1167 }
1168 // Reset CNG timestamp as a new packet will be delivered.
1169 // (Also if this is a CNG packet, since playedOutTS is updated.)
1170 decision_logic_->set_generated_noise_samples(0);
1171
1172 extracted_samples = ExtractPackets(required_samples, packet_list);
1173 if (extracted_samples < 0) {
1174 return kPacketBufferCorruption;
1175 }
1176 }
1177
1178 if (*operation == kAccelerate || *operation == kFastAccelerate ||
1179 *operation == kPreemptiveExpand) {
1180 decision_logic_->set_sample_memory(samples_left + extracted_samples);
1181 decision_logic_->set_prev_time_scale(true);
1182 }
1183
1184 if (*operation == kAccelerate || *operation == kFastAccelerate) {
1185 // Check that we have enough data (30ms) to do accelerate.
1186 if (extracted_samples + samples_left < static_cast<int>(samples_30_ms)) {
1187 // TODO(hlundin): Write test for this.
1188 // Not enough, do normal operation instead.
1189 *operation = kNormal;
1190 }
1191 }
1192
1193 timestamp_ = end_timestamp;
1194 return 0;
1195 }
1196
Decode(PacketList * packet_list,Operations * operation,int * decoded_length,AudioDecoder::SpeechType * speech_type)1197 int NetEqImpl::Decode(PacketList* packet_list, Operations* operation,
1198 int* decoded_length,
1199 AudioDecoder::SpeechType* speech_type) {
1200 *speech_type = AudioDecoder::kSpeech;
1201
1202 // When packet_list is empty, we may be in kCodecInternalCng mode, and for
1203 // that we use current active decoder.
1204 AudioDecoder* decoder = decoder_database_->GetActiveDecoder();
1205
1206 if (!packet_list->empty()) {
1207 const Packet* packet = packet_list->front();
1208 uint8_t payload_type = packet->header.payloadType;
1209 if (!decoder_database_->IsComfortNoise(payload_type)) {
1210 decoder = decoder_database_->GetDecoder(payload_type);
1211 assert(decoder);
1212 if (!decoder) {
1213 LOG(LS_WARNING) << "Unknown payload type "
1214 << static_cast<int>(payload_type);
1215 PacketBuffer::DeleteAllPackets(packet_list);
1216 return kDecoderNotFound;
1217 }
1218 bool decoder_changed;
1219 decoder_database_->SetActiveDecoder(payload_type, &decoder_changed);
1220 if (decoder_changed) {
1221 // We have a new decoder. Re-init some values.
1222 const DecoderDatabase::DecoderInfo* decoder_info = decoder_database_
1223 ->GetDecoderInfo(payload_type);
1224 assert(decoder_info);
1225 if (!decoder_info) {
1226 LOG(LS_WARNING) << "Unknown payload type "
1227 << static_cast<int>(payload_type);
1228 PacketBuffer::DeleteAllPackets(packet_list);
1229 return kDecoderNotFound;
1230 }
1231 // If sampling rate or number of channels has changed, we need to make
1232 // a reset.
1233 if (decoder_info->fs_hz != fs_hz_ ||
1234 decoder->Channels() != algorithm_buffer_->Channels()) {
1235 // TODO(tlegrand): Add unittest to cover this event.
1236 SetSampleRateAndChannels(decoder_info->fs_hz, decoder->Channels());
1237 }
1238 sync_buffer_->set_end_timestamp(timestamp_);
1239 playout_timestamp_ = timestamp_;
1240 }
1241 }
1242 }
1243
1244 if (reset_decoder_) {
1245 // TODO(hlundin): Write test for this.
1246 if (decoder)
1247 decoder->Reset();
1248
1249 // Reset comfort noise decoder.
1250 AudioDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder();
1251 if (cng_decoder)
1252 cng_decoder->Reset();
1253
1254 reset_decoder_ = false;
1255 }
1256
1257 #ifdef LEGACY_BITEXACT
1258 // Due to a bug in old SignalMCU, it could happen that CNG operation was
1259 // decided, but a speech packet was provided. The speech packet will be used
1260 // to update the comfort noise decoder, as if it was a SID frame, which is
1261 // clearly wrong.
1262 if (*operation == kRfc3389Cng) {
1263 return 0;
1264 }
1265 #endif
1266
1267 *decoded_length = 0;
1268 // Update codec-internal PLC state.
1269 if ((*operation == kMerge) && decoder && decoder->HasDecodePlc()) {
1270 decoder->DecodePlc(1, &decoded_buffer_[*decoded_length]);
1271 }
1272
1273 int return_value;
1274 if (*operation == kCodecInternalCng) {
1275 RTC_DCHECK(packet_list->empty());
1276 return_value = DecodeCng(decoder, decoded_length, speech_type);
1277 } else {
1278 return_value = DecodeLoop(packet_list, *operation, decoder,
1279 decoded_length, speech_type);
1280 }
1281
1282 if (*decoded_length < 0) {
1283 // Error returned from the decoder.
1284 *decoded_length = 0;
1285 sync_buffer_->IncreaseEndTimestamp(
1286 static_cast<uint32_t>(decoder_frame_length_));
1287 int error_code = 0;
1288 if (decoder)
1289 error_code = decoder->ErrorCode();
1290 if (error_code != 0) {
1291 // Got some error code from the decoder.
1292 decoder_error_code_ = error_code;
1293 return_value = kDecoderErrorCode;
1294 LOG(LS_WARNING) << "Decoder returned error code: " << error_code;
1295 } else {
1296 // Decoder does not implement error codes. Return generic error.
1297 return_value = kOtherDecoderError;
1298 LOG(LS_WARNING) << "Decoder error (no error code)";
1299 }
1300 *operation = kExpand; // Do expansion to get data instead.
1301 }
1302 if (*speech_type != AudioDecoder::kComfortNoise) {
1303 // Don't increment timestamp if codec returned CNG speech type
1304 // since in this case, the we will increment the CNGplayedTS counter.
1305 // Increase with number of samples per channel.
1306 assert(*decoded_length == 0 ||
1307 (decoder && decoder->Channels() == sync_buffer_->Channels()));
1308 sync_buffer_->IncreaseEndTimestamp(
1309 *decoded_length / static_cast<int>(sync_buffer_->Channels()));
1310 }
1311 return return_value;
1312 }
1313
DecodeCng(AudioDecoder * decoder,int * decoded_length,AudioDecoder::SpeechType * speech_type)1314 int NetEqImpl::DecodeCng(AudioDecoder* decoder, int* decoded_length,
1315 AudioDecoder::SpeechType* speech_type) {
1316 if (!decoder) {
1317 // This happens when active decoder is not defined.
1318 *decoded_length = -1;
1319 return 0;
1320 }
1321
1322 while (*decoded_length < rtc::checked_cast<int>(output_size_samples_)) {
1323 const int length = decoder->Decode(
1324 nullptr, 0, fs_hz_,
1325 (decoded_buffer_length_ - *decoded_length) * sizeof(int16_t),
1326 &decoded_buffer_[*decoded_length], speech_type);
1327 if (length > 0) {
1328 *decoded_length += length;
1329 } else {
1330 // Error.
1331 LOG(LS_WARNING) << "Failed to decode CNG";
1332 *decoded_length = -1;
1333 break;
1334 }
1335 if (*decoded_length > static_cast<int>(decoded_buffer_length_)) {
1336 // Guard against overflow.
1337 LOG(LS_WARNING) << "Decoded too much CNG.";
1338 return kDecodedTooMuch;
1339 }
1340 }
1341 return 0;
1342 }
1343
DecodeLoop(PacketList * packet_list,const Operations & operation,AudioDecoder * decoder,int * decoded_length,AudioDecoder::SpeechType * speech_type)1344 int NetEqImpl::DecodeLoop(PacketList* packet_list, const Operations& operation,
1345 AudioDecoder* decoder, int* decoded_length,
1346 AudioDecoder::SpeechType* speech_type) {
1347 Packet* packet = NULL;
1348 if (!packet_list->empty()) {
1349 packet = packet_list->front();
1350 }
1351
1352 // Do decoding.
1353 while (packet &&
1354 !decoder_database_->IsComfortNoise(packet->header.payloadType)) {
1355 assert(decoder); // At this point, we must have a decoder object.
1356 // The number of channels in the |sync_buffer_| should be the same as the
1357 // number decoder channels.
1358 assert(sync_buffer_->Channels() == decoder->Channels());
1359 assert(decoded_buffer_length_ >= kMaxFrameSize * decoder->Channels());
1360 assert(operation == kNormal || operation == kAccelerate ||
1361 operation == kFastAccelerate || operation == kMerge ||
1362 operation == kPreemptiveExpand);
1363 packet_list->pop_front();
1364 size_t payload_length = packet->payload_length;
1365 int decode_length;
1366 if (packet->sync_packet) {
1367 // Decode to silence with the same frame size as the last decode.
1368 memset(&decoded_buffer_[*decoded_length], 0,
1369 decoder_frame_length_ * decoder->Channels() *
1370 sizeof(decoded_buffer_[0]));
1371 decode_length = rtc::checked_cast<int>(decoder_frame_length_);
1372 } else if (!packet->primary) {
1373 // This is a redundant payload; call the special decoder method.
1374 decode_length = decoder->DecodeRedundant(
1375 packet->payload, packet->payload_length, fs_hz_,
1376 (decoded_buffer_length_ - *decoded_length) * sizeof(int16_t),
1377 &decoded_buffer_[*decoded_length], speech_type);
1378 } else {
1379 decode_length =
1380 decoder->Decode(
1381 packet->payload, packet->payload_length, fs_hz_,
1382 (decoded_buffer_length_ - *decoded_length) * sizeof(int16_t),
1383 &decoded_buffer_[*decoded_length], speech_type);
1384 }
1385
1386 delete[] packet->payload;
1387 delete packet;
1388 packet = NULL;
1389 if (decode_length > 0) {
1390 *decoded_length += decode_length;
1391 // Update |decoder_frame_length_| with number of samples per channel.
1392 decoder_frame_length_ =
1393 static_cast<size_t>(decode_length) / decoder->Channels();
1394 } else if (decode_length < 0) {
1395 // Error.
1396 LOG(LS_WARNING) << "Decode " << decode_length << " " << payload_length;
1397 *decoded_length = -1;
1398 PacketBuffer::DeleteAllPackets(packet_list);
1399 break;
1400 }
1401 if (*decoded_length > static_cast<int>(decoded_buffer_length_)) {
1402 // Guard against overflow.
1403 LOG(LS_WARNING) << "Decoded too much.";
1404 PacketBuffer::DeleteAllPackets(packet_list);
1405 return kDecodedTooMuch;
1406 }
1407 if (!packet_list->empty()) {
1408 packet = packet_list->front();
1409 } else {
1410 packet = NULL;
1411 }
1412 } // End of decode loop.
1413
1414 // If the list is not empty at this point, either a decoding error terminated
1415 // the while-loop, or list must hold exactly one CNG packet.
1416 assert(packet_list->empty() || *decoded_length < 0 ||
1417 (packet_list->size() == 1 && packet &&
1418 decoder_database_->IsComfortNoise(packet->header.payloadType)));
1419 return 0;
1420 }
1421
DoNormal(const int16_t * decoded_buffer,size_t decoded_length,AudioDecoder::SpeechType speech_type,bool play_dtmf)1422 void NetEqImpl::DoNormal(const int16_t* decoded_buffer, size_t decoded_length,
1423 AudioDecoder::SpeechType speech_type, bool play_dtmf) {
1424 assert(normal_.get());
1425 assert(mute_factor_array_.get());
1426 normal_->Process(decoded_buffer, decoded_length, last_mode_,
1427 mute_factor_array_.get(), algorithm_buffer_.get());
1428 if (decoded_length != 0) {
1429 last_mode_ = kModeNormal;
1430 }
1431
1432 // If last packet was decoded as an inband CNG, set mode to CNG instead.
1433 if ((speech_type == AudioDecoder::kComfortNoise)
1434 || ((last_mode_ == kModeCodecInternalCng)
1435 && (decoded_length == 0))) {
1436 // TODO(hlundin): Remove second part of || statement above.
1437 last_mode_ = kModeCodecInternalCng;
1438 }
1439
1440 if (!play_dtmf) {
1441 dtmf_tone_generator_->Reset();
1442 }
1443 }
1444
DoMerge(int16_t * decoded_buffer,size_t decoded_length,AudioDecoder::SpeechType speech_type,bool play_dtmf)1445 void NetEqImpl::DoMerge(int16_t* decoded_buffer, size_t decoded_length,
1446 AudioDecoder::SpeechType speech_type, bool play_dtmf) {
1447 assert(mute_factor_array_.get());
1448 assert(merge_.get());
1449 size_t new_length = merge_->Process(decoded_buffer, decoded_length,
1450 mute_factor_array_.get(),
1451 algorithm_buffer_.get());
1452 size_t expand_length_correction = new_length -
1453 decoded_length / algorithm_buffer_->Channels();
1454
1455 // Update in-call and post-call statistics.
1456 if (expand_->MuteFactor(0) == 0) {
1457 // Expand generates only noise.
1458 stats_.ExpandedNoiseSamples(expand_length_correction);
1459 } else {
1460 // Expansion generates more than only noise.
1461 stats_.ExpandedVoiceSamples(expand_length_correction);
1462 }
1463
1464 last_mode_ = kModeMerge;
1465 // If last packet was decoded as an inband CNG, set mode to CNG instead.
1466 if (speech_type == AudioDecoder::kComfortNoise) {
1467 last_mode_ = kModeCodecInternalCng;
1468 }
1469 expand_->Reset();
1470 if (!play_dtmf) {
1471 dtmf_tone_generator_->Reset();
1472 }
1473 }
1474
DoExpand(bool play_dtmf)1475 int NetEqImpl::DoExpand(bool play_dtmf) {
1476 while ((sync_buffer_->FutureLength() - expand_->overlap_length()) <
1477 output_size_samples_) {
1478 algorithm_buffer_->Clear();
1479 int return_value = expand_->Process(algorithm_buffer_.get());
1480 size_t length = algorithm_buffer_->Size();
1481
1482 // Update in-call and post-call statistics.
1483 if (expand_->MuteFactor(0) == 0) {
1484 // Expand operation generates only noise.
1485 stats_.ExpandedNoiseSamples(length);
1486 } else {
1487 // Expand operation generates more than only noise.
1488 stats_.ExpandedVoiceSamples(length);
1489 }
1490
1491 last_mode_ = kModeExpand;
1492
1493 if (return_value < 0) {
1494 return return_value;
1495 }
1496
1497 sync_buffer_->PushBack(*algorithm_buffer_);
1498 algorithm_buffer_->Clear();
1499 }
1500 if (!play_dtmf) {
1501 dtmf_tone_generator_->Reset();
1502 }
1503 return 0;
1504 }
1505
DoAccelerate(int16_t * decoded_buffer,size_t decoded_length,AudioDecoder::SpeechType speech_type,bool play_dtmf,bool fast_accelerate)1506 int NetEqImpl::DoAccelerate(int16_t* decoded_buffer,
1507 size_t decoded_length,
1508 AudioDecoder::SpeechType speech_type,
1509 bool play_dtmf,
1510 bool fast_accelerate) {
1511 const size_t required_samples =
1512 static_cast<size_t>(240 * fs_mult_); // Must have 30 ms.
1513 size_t borrowed_samples_per_channel = 0;
1514 size_t num_channels = algorithm_buffer_->Channels();
1515 size_t decoded_length_per_channel = decoded_length / num_channels;
1516 if (decoded_length_per_channel < required_samples) {
1517 // Must move data from the |sync_buffer_| in order to get 30 ms.
1518 borrowed_samples_per_channel = static_cast<int>(required_samples -
1519 decoded_length_per_channel);
1520 memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels],
1521 decoded_buffer,
1522 sizeof(int16_t) * decoded_length);
1523 sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel,
1524 decoded_buffer);
1525 decoded_length = required_samples * num_channels;
1526 }
1527
1528 size_t samples_removed;
1529 Accelerate::ReturnCodes return_code =
1530 accelerate_->Process(decoded_buffer, decoded_length, fast_accelerate,
1531 algorithm_buffer_.get(), &samples_removed);
1532 stats_.AcceleratedSamples(samples_removed);
1533 switch (return_code) {
1534 case Accelerate::kSuccess:
1535 last_mode_ = kModeAccelerateSuccess;
1536 break;
1537 case Accelerate::kSuccessLowEnergy:
1538 last_mode_ = kModeAccelerateLowEnergy;
1539 break;
1540 case Accelerate::kNoStretch:
1541 last_mode_ = kModeAccelerateFail;
1542 break;
1543 case Accelerate::kError:
1544 // TODO(hlundin): Map to kModeError instead?
1545 last_mode_ = kModeAccelerateFail;
1546 return kAccelerateError;
1547 }
1548
1549 if (borrowed_samples_per_channel > 0) {
1550 // Copy borrowed samples back to the |sync_buffer_|.
1551 size_t length = algorithm_buffer_->Size();
1552 if (length < borrowed_samples_per_channel) {
1553 // This destroys the beginning of the buffer, but will not cause any
1554 // problems.
1555 sync_buffer_->ReplaceAtIndex(*algorithm_buffer_,
1556 sync_buffer_->Size() -
1557 borrowed_samples_per_channel);
1558 sync_buffer_->PushFrontZeros(borrowed_samples_per_channel - length);
1559 algorithm_buffer_->PopFront(length);
1560 assert(algorithm_buffer_->Empty());
1561 } else {
1562 sync_buffer_->ReplaceAtIndex(*algorithm_buffer_,
1563 borrowed_samples_per_channel,
1564 sync_buffer_->Size() -
1565 borrowed_samples_per_channel);
1566 algorithm_buffer_->PopFront(borrowed_samples_per_channel);
1567 }
1568 }
1569
1570 // If last packet was decoded as an inband CNG, set mode to CNG instead.
1571 if (speech_type == AudioDecoder::kComfortNoise) {
1572 last_mode_ = kModeCodecInternalCng;
1573 }
1574 if (!play_dtmf) {
1575 dtmf_tone_generator_->Reset();
1576 }
1577 expand_->Reset();
1578 return 0;
1579 }
1580
DoPreemptiveExpand(int16_t * decoded_buffer,size_t decoded_length,AudioDecoder::SpeechType speech_type,bool play_dtmf)1581 int NetEqImpl::DoPreemptiveExpand(int16_t* decoded_buffer,
1582 size_t decoded_length,
1583 AudioDecoder::SpeechType speech_type,
1584 bool play_dtmf) {
1585 const size_t required_samples =
1586 static_cast<size_t>(240 * fs_mult_); // Must have 30 ms.
1587 size_t num_channels = algorithm_buffer_->Channels();
1588 size_t borrowed_samples_per_channel = 0;
1589 size_t old_borrowed_samples_per_channel = 0;
1590 size_t decoded_length_per_channel = decoded_length / num_channels;
1591 if (decoded_length_per_channel < required_samples) {
1592 // Must move data from the |sync_buffer_| in order to get 30 ms.
1593 borrowed_samples_per_channel =
1594 required_samples - decoded_length_per_channel;
1595 // Calculate how many of these were already played out.
1596 old_borrowed_samples_per_channel =
1597 (borrowed_samples_per_channel > sync_buffer_->FutureLength()) ?
1598 (borrowed_samples_per_channel - sync_buffer_->FutureLength()) : 0;
1599 memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels],
1600 decoded_buffer,
1601 sizeof(int16_t) * decoded_length);
1602 sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel,
1603 decoded_buffer);
1604 decoded_length = required_samples * num_channels;
1605 }
1606
1607 size_t samples_added;
1608 PreemptiveExpand::ReturnCodes return_code = preemptive_expand_->Process(
1609 decoded_buffer, decoded_length,
1610 old_borrowed_samples_per_channel,
1611 algorithm_buffer_.get(), &samples_added);
1612 stats_.PreemptiveExpandedSamples(samples_added);
1613 switch (return_code) {
1614 case PreemptiveExpand::kSuccess:
1615 last_mode_ = kModePreemptiveExpandSuccess;
1616 break;
1617 case PreemptiveExpand::kSuccessLowEnergy:
1618 last_mode_ = kModePreemptiveExpandLowEnergy;
1619 break;
1620 case PreemptiveExpand::kNoStretch:
1621 last_mode_ = kModePreemptiveExpandFail;
1622 break;
1623 case PreemptiveExpand::kError:
1624 // TODO(hlundin): Map to kModeError instead?
1625 last_mode_ = kModePreemptiveExpandFail;
1626 return kPreemptiveExpandError;
1627 }
1628
1629 if (borrowed_samples_per_channel > 0) {
1630 // Copy borrowed samples back to the |sync_buffer_|.
1631 sync_buffer_->ReplaceAtIndex(
1632 *algorithm_buffer_, borrowed_samples_per_channel,
1633 sync_buffer_->Size() - borrowed_samples_per_channel);
1634 algorithm_buffer_->PopFront(borrowed_samples_per_channel);
1635 }
1636
1637 // If last packet was decoded as an inband CNG, set mode to CNG instead.
1638 if (speech_type == AudioDecoder::kComfortNoise) {
1639 last_mode_ = kModeCodecInternalCng;
1640 }
1641 if (!play_dtmf) {
1642 dtmf_tone_generator_->Reset();
1643 }
1644 expand_->Reset();
1645 return 0;
1646 }
1647
DoRfc3389Cng(PacketList * packet_list,bool play_dtmf)1648 int NetEqImpl::DoRfc3389Cng(PacketList* packet_list, bool play_dtmf) {
1649 if (!packet_list->empty()) {
1650 // Must have exactly one SID frame at this point.
1651 assert(packet_list->size() == 1);
1652 Packet* packet = packet_list->front();
1653 packet_list->pop_front();
1654 if (!decoder_database_->IsComfortNoise(packet->header.payloadType)) {
1655 #ifdef LEGACY_BITEXACT
1656 // This can happen due to a bug in GetDecision. Change the payload type
1657 // to a CNG type, and move on. Note that this means that we are in fact
1658 // sending a non-CNG payload to the comfort noise decoder for decoding.
1659 // Clearly wrong, but will maintain bit-exactness with legacy.
1660 if (fs_hz_ == 8000) {
1661 packet->header.payloadType =
1662 decoder_database_->GetRtpPayloadType(NetEqDecoder::kDecoderCNGnb);
1663 } else if (fs_hz_ == 16000) {
1664 packet->header.payloadType =
1665 decoder_database_->GetRtpPayloadType(NetEqDecoder::kDecoderCNGwb);
1666 } else if (fs_hz_ == 32000) {
1667 packet->header.payloadType = decoder_database_->GetRtpPayloadType(
1668 NetEqDecoder::kDecoderCNGswb32kHz);
1669 } else if (fs_hz_ == 48000) {
1670 packet->header.payloadType = decoder_database_->GetRtpPayloadType(
1671 NetEqDecoder::kDecoderCNGswb48kHz);
1672 }
1673 assert(decoder_database_->IsComfortNoise(packet->header.payloadType));
1674 #else
1675 LOG(LS_ERROR) << "Trying to decode non-CNG payload as CNG.";
1676 return kOtherError;
1677 #endif
1678 }
1679 // UpdateParameters() deletes |packet|.
1680 if (comfort_noise_->UpdateParameters(packet) ==
1681 ComfortNoise::kInternalError) {
1682 algorithm_buffer_->Zeros(output_size_samples_);
1683 return -comfort_noise_->internal_error_code();
1684 }
1685 }
1686 int cn_return = comfort_noise_->Generate(output_size_samples_,
1687 algorithm_buffer_.get());
1688 expand_->Reset();
1689 last_mode_ = kModeRfc3389Cng;
1690 if (!play_dtmf) {
1691 dtmf_tone_generator_->Reset();
1692 }
1693 if (cn_return == ComfortNoise::kInternalError) {
1694 decoder_error_code_ = comfort_noise_->internal_error_code();
1695 return kComfortNoiseErrorCode;
1696 } else if (cn_return == ComfortNoise::kUnknownPayloadType) {
1697 return kUnknownRtpPayloadType;
1698 }
1699 return 0;
1700 }
1701
DoCodecInternalCng(const int16_t * decoded_buffer,size_t decoded_length)1702 void NetEqImpl::DoCodecInternalCng(const int16_t* decoded_buffer,
1703 size_t decoded_length) {
1704 RTC_DCHECK(normal_.get());
1705 RTC_DCHECK(mute_factor_array_.get());
1706 normal_->Process(decoded_buffer, decoded_length, last_mode_,
1707 mute_factor_array_.get(), algorithm_buffer_.get());
1708 last_mode_ = kModeCodecInternalCng;
1709 expand_->Reset();
1710 }
1711
DoDtmf(const DtmfEvent & dtmf_event,bool * play_dtmf)1712 int NetEqImpl::DoDtmf(const DtmfEvent& dtmf_event, bool* play_dtmf) {
1713 // This block of the code and the block further down, handling |dtmf_switch|
1714 // are commented out. Otherwise playing out-of-band DTMF would fail in VoE
1715 // test, DtmfTest.ManualSuccessfullySendsOutOfBandTelephoneEvents. This is
1716 // equivalent to |dtmf_switch| always be false.
1717 //
1718 // See http://webrtc-codereview.appspot.com/1195004/ for discussion
1719 // On this issue. This change might cause some glitches at the point of
1720 // switch from audio to DTMF. Issue 1545 is filed to track this.
1721 //
1722 // bool dtmf_switch = false;
1723 // if ((last_mode_ != kModeDtmf) && dtmf_tone_generator_->initialized()) {
1724 // // Special case; see below.
1725 // // We must catch this before calling Generate, since |initialized| is
1726 // // modified in that call.
1727 // dtmf_switch = true;
1728 // }
1729
1730 int dtmf_return_value = 0;
1731 if (!dtmf_tone_generator_->initialized()) {
1732 // Initialize if not already done.
1733 dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no,
1734 dtmf_event.volume);
1735 }
1736
1737 if (dtmf_return_value == 0) {
1738 // Generate DTMF signal.
1739 dtmf_return_value = dtmf_tone_generator_->Generate(output_size_samples_,
1740 algorithm_buffer_.get());
1741 }
1742
1743 if (dtmf_return_value < 0) {
1744 algorithm_buffer_->Zeros(output_size_samples_);
1745 return dtmf_return_value;
1746 }
1747
1748 // if (dtmf_switch) {
1749 // // This is the special case where the previous operation was DTMF
1750 // // overdub, but the current instruction is "regular" DTMF. We must make
1751 // // sure that the DTMF does not have any discontinuities. The first DTMF
1752 // // sample that we generate now must be played out immediately, therefore
1753 // // it must be copied to the speech buffer.
1754 // // TODO(hlundin): This code seems incorrect. (Legacy.) Write test and
1755 // // verify correct operation.
1756 // assert(false);
1757 // // Must generate enough data to replace all of the |sync_buffer_|
1758 // // "future".
1759 // int required_length = sync_buffer_->FutureLength();
1760 // assert(dtmf_tone_generator_->initialized());
1761 // dtmf_return_value = dtmf_tone_generator_->Generate(required_length,
1762 // algorithm_buffer_);
1763 // assert((size_t) required_length == algorithm_buffer_->Size());
1764 // if (dtmf_return_value < 0) {
1765 // algorithm_buffer_->Zeros(output_size_samples_);
1766 // return dtmf_return_value;
1767 // }
1768 //
1769 // // Overwrite the "future" part of the speech buffer with the new DTMF
1770 // // data.
1771 // // TODO(hlundin): It seems that this overwriting has gone lost.
1772 // // Not adapted for multi-channel yet.
1773 // assert(algorithm_buffer_->Channels() == 1);
1774 // if (algorithm_buffer_->Channels() != 1) {
1775 // LOG(LS_WARNING) << "DTMF not supported for more than one channel";
1776 // return kStereoNotSupported;
1777 // }
1778 // // Shuffle the remaining data to the beginning of algorithm buffer.
1779 // algorithm_buffer_->PopFront(sync_buffer_->FutureLength());
1780 // }
1781
1782 sync_buffer_->IncreaseEndTimestamp(
1783 static_cast<uint32_t>(output_size_samples_));
1784 expand_->Reset();
1785 last_mode_ = kModeDtmf;
1786
1787 // Set to false because the DTMF is already in the algorithm buffer.
1788 *play_dtmf = false;
1789 return 0;
1790 }
1791
DoAlternativePlc(bool increase_timestamp)1792 void NetEqImpl::DoAlternativePlc(bool increase_timestamp) {
1793 AudioDecoder* decoder = decoder_database_->GetActiveDecoder();
1794 size_t length;
1795 if (decoder && decoder->HasDecodePlc()) {
1796 // Use the decoder's packet-loss concealment.
1797 // TODO(hlundin): Will probably need a longer buffer for multi-channel.
1798 int16_t decoded_buffer[kMaxFrameSize];
1799 length = decoder->DecodePlc(1, decoded_buffer);
1800 if (length > 0)
1801 algorithm_buffer_->PushBackInterleaved(decoded_buffer, length);
1802 } else {
1803 // Do simple zero-stuffing.
1804 length = output_size_samples_;
1805 algorithm_buffer_->Zeros(length);
1806 // By not advancing the timestamp, NetEq inserts samples.
1807 stats_.AddZeros(length);
1808 }
1809 if (increase_timestamp) {
1810 sync_buffer_->IncreaseEndTimestamp(static_cast<uint32_t>(length));
1811 }
1812 expand_->Reset();
1813 }
1814
DtmfOverdub(const DtmfEvent & dtmf_event,size_t num_channels,int16_t * output) const1815 int NetEqImpl::DtmfOverdub(const DtmfEvent& dtmf_event, size_t num_channels,
1816 int16_t* output) const {
1817 size_t out_index = 0;
1818 size_t overdub_length = output_size_samples_; // Default value.
1819
1820 if (sync_buffer_->dtmf_index() > sync_buffer_->next_index()) {
1821 // Special operation for transition from "DTMF only" to "DTMF overdub".
1822 out_index = std::min(
1823 sync_buffer_->dtmf_index() - sync_buffer_->next_index(),
1824 output_size_samples_);
1825 overdub_length = output_size_samples_ - out_index;
1826 }
1827
1828 AudioMultiVector dtmf_output(num_channels);
1829 int dtmf_return_value = 0;
1830 if (!dtmf_tone_generator_->initialized()) {
1831 dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no,
1832 dtmf_event.volume);
1833 }
1834 if (dtmf_return_value == 0) {
1835 dtmf_return_value = dtmf_tone_generator_->Generate(overdub_length,
1836 &dtmf_output);
1837 assert(overdub_length == dtmf_output.Size());
1838 }
1839 dtmf_output.ReadInterleaved(overdub_length, &output[out_index]);
1840 return dtmf_return_value < 0 ? dtmf_return_value : 0;
1841 }
1842
ExtractPackets(size_t required_samples,PacketList * packet_list)1843 int NetEqImpl::ExtractPackets(size_t required_samples,
1844 PacketList* packet_list) {
1845 bool first_packet = true;
1846 uint8_t prev_payload_type = 0;
1847 uint32_t prev_timestamp = 0;
1848 uint16_t prev_sequence_number = 0;
1849 bool next_packet_available = false;
1850
1851 const RTPHeader* header = packet_buffer_->NextRtpHeader();
1852 assert(header);
1853 if (!header) {
1854 LOG(LS_ERROR) << "Packet buffer unexpectedly empty.";
1855 return -1;
1856 }
1857 uint32_t first_timestamp = header->timestamp;
1858 int extracted_samples = 0;
1859
1860 // Packet extraction loop.
1861 do {
1862 timestamp_ = header->timestamp;
1863 size_t discard_count = 0;
1864 Packet* packet = packet_buffer_->GetNextPacket(&discard_count);
1865 // |header| may be invalid after the |packet_buffer_| operation.
1866 header = NULL;
1867 if (!packet) {
1868 LOG(LS_ERROR) << "Should always be able to extract a packet here";
1869 assert(false); // Should always be able to extract a packet here.
1870 return -1;
1871 }
1872 stats_.PacketsDiscarded(discard_count);
1873 // Store waiting time in ms; packets->waiting_time is in "output blocks".
1874 stats_.StoreWaitingTime(packet->waiting_time * kOutputSizeMs);
1875 assert(packet->payload_length > 0);
1876 packet_list->push_back(packet); // Store packet in list.
1877
1878 if (first_packet) {
1879 first_packet = false;
1880 if (nack_enabled_) {
1881 RTC_DCHECK(nack_);
1882 // TODO(henrik.lundin): Should we update this for all decoded packets?
1883 nack_->UpdateLastDecodedPacket(packet->header.sequenceNumber,
1884 packet->header.timestamp);
1885 }
1886 prev_sequence_number = packet->header.sequenceNumber;
1887 prev_timestamp = packet->header.timestamp;
1888 prev_payload_type = packet->header.payloadType;
1889 }
1890
1891 // Store number of extracted samples.
1892 int packet_duration = 0;
1893 AudioDecoder* decoder = decoder_database_->GetDecoder(
1894 packet->header.payloadType);
1895 if (decoder) {
1896 if (packet->sync_packet) {
1897 packet_duration = rtc::checked_cast<int>(decoder_frame_length_);
1898 } else {
1899 if (packet->primary) {
1900 packet_duration = decoder->PacketDuration(packet->payload,
1901 packet->payload_length);
1902 } else {
1903 packet_duration = decoder->
1904 PacketDurationRedundant(packet->payload, packet->payload_length);
1905 stats_.SecondaryDecodedSamples(packet_duration);
1906 }
1907 }
1908 } else {
1909 LOG(LS_WARNING) << "Unknown payload type "
1910 << static_cast<int>(packet->header.payloadType);
1911 assert(false);
1912 }
1913 if (packet_duration <= 0) {
1914 // Decoder did not return a packet duration. Assume that the packet
1915 // contains the same number of samples as the previous one.
1916 packet_duration = rtc::checked_cast<int>(decoder_frame_length_);
1917 }
1918 extracted_samples = packet->header.timestamp - first_timestamp +
1919 packet_duration;
1920
1921 // Check what packet is available next.
1922 header = packet_buffer_->NextRtpHeader();
1923 next_packet_available = false;
1924 if (header && prev_payload_type == header->payloadType) {
1925 int16_t seq_no_diff = header->sequenceNumber - prev_sequence_number;
1926 size_t ts_diff = header->timestamp - prev_timestamp;
1927 if (seq_no_diff == 1 ||
1928 (seq_no_diff == 0 && ts_diff == decoder_frame_length_)) {
1929 // The next sequence number is available, or the next part of a packet
1930 // that was split into pieces upon insertion.
1931 next_packet_available = true;
1932 }
1933 prev_sequence_number = header->sequenceNumber;
1934 }
1935 } while (extracted_samples < rtc::checked_cast<int>(required_samples) &&
1936 next_packet_available);
1937
1938 if (extracted_samples > 0) {
1939 // Delete old packets only when we are going to decode something. Otherwise,
1940 // we could end up in the situation where we never decode anything, since
1941 // all incoming packets are considered too old but the buffer will also
1942 // never be flooded and flushed.
1943 packet_buffer_->DiscardAllOldPackets(timestamp_);
1944 }
1945
1946 return extracted_samples;
1947 }
1948
UpdatePlcComponents(int fs_hz,size_t channels)1949 void NetEqImpl::UpdatePlcComponents(int fs_hz, size_t channels) {
1950 // Delete objects and create new ones.
1951 expand_.reset(expand_factory_->Create(background_noise_.get(),
1952 sync_buffer_.get(), &random_vector_,
1953 &stats_, fs_hz, channels));
1954 merge_.reset(new Merge(fs_hz, channels, expand_.get(), sync_buffer_.get()));
1955 }
1956
SetSampleRateAndChannels(int fs_hz,size_t channels)1957 void NetEqImpl::SetSampleRateAndChannels(int fs_hz, size_t channels) {
1958 LOG(LS_VERBOSE) << "SetSampleRateAndChannels " << fs_hz << " " << channels;
1959 // TODO(hlundin): Change to an enumerator and skip assert.
1960 assert(fs_hz == 8000 || fs_hz == 16000 || fs_hz == 32000 || fs_hz == 48000);
1961 assert(channels > 0);
1962
1963 fs_hz_ = fs_hz;
1964 fs_mult_ = fs_hz / 8000;
1965 output_size_samples_ = static_cast<size_t>(kOutputSizeMs * 8 * fs_mult_);
1966 decoder_frame_length_ = 3 * output_size_samples_; // Initialize to 30ms.
1967
1968 last_mode_ = kModeNormal;
1969
1970 // Create a new array of mute factors and set all to 1.
1971 mute_factor_array_.reset(new int16_t[channels]);
1972 for (size_t i = 0; i < channels; ++i) {
1973 mute_factor_array_[i] = 16384; // 1.0 in Q14.
1974 }
1975
1976 AudioDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder();
1977 if (cng_decoder)
1978 cng_decoder->Reset();
1979
1980 // Reinit post-decode VAD with new sample rate.
1981 assert(vad_.get()); // Cannot be NULL here.
1982 vad_->Init();
1983
1984 // Delete algorithm buffer and create a new one.
1985 algorithm_buffer_.reset(new AudioMultiVector(channels));
1986
1987 // Delete sync buffer and create a new one.
1988 sync_buffer_.reset(new SyncBuffer(channels, kSyncBufferSize * fs_mult_));
1989
1990 // Delete BackgroundNoise object and create a new one.
1991 background_noise_.reset(new BackgroundNoise(channels));
1992 background_noise_->set_mode(background_noise_mode_);
1993
1994 // Reset random vector.
1995 random_vector_.Reset();
1996
1997 UpdatePlcComponents(fs_hz, channels);
1998
1999 // Move index so that we create a small set of future samples (all 0).
2000 sync_buffer_->set_next_index(sync_buffer_->next_index() -
2001 expand_->overlap_length());
2002
2003 normal_.reset(new Normal(fs_hz, decoder_database_.get(), *background_noise_,
2004 expand_.get()));
2005 accelerate_.reset(
2006 accelerate_factory_->Create(fs_hz, channels, *background_noise_));
2007 preemptive_expand_.reset(preemptive_expand_factory_->Create(
2008 fs_hz, channels, *background_noise_, expand_->overlap_length()));
2009
2010 // Delete ComfortNoise object and create a new one.
2011 comfort_noise_.reset(new ComfortNoise(fs_hz, decoder_database_.get(),
2012 sync_buffer_.get()));
2013
2014 // Verify that |decoded_buffer_| is long enough.
2015 if (decoded_buffer_length_ < kMaxFrameSize * channels) {
2016 // Reallocate to larger size.
2017 decoded_buffer_length_ = kMaxFrameSize * channels;
2018 decoded_buffer_.reset(new int16_t[decoded_buffer_length_]);
2019 }
2020
2021 // Create DecisionLogic if it is not created yet, then communicate new sample
2022 // rate and output size to DecisionLogic object.
2023 if (!decision_logic_.get()) {
2024 CreateDecisionLogic();
2025 }
2026 decision_logic_->SetSampleRate(fs_hz_, output_size_samples_);
2027 }
2028
LastOutputType()2029 NetEqOutputType NetEqImpl::LastOutputType() {
2030 assert(vad_.get());
2031 assert(expand_.get());
2032 if (last_mode_ == kModeCodecInternalCng || last_mode_ == kModeRfc3389Cng) {
2033 return kOutputCNG;
2034 } else if (last_mode_ == kModeExpand && expand_->MuteFactor(0) == 0) {
2035 // Expand mode has faded down to background noise only (very long expand).
2036 return kOutputPLCtoCNG;
2037 } else if (last_mode_ == kModeExpand) {
2038 return kOutputPLC;
2039 } else if (vad_->running() && !vad_->active_speech()) {
2040 return kOutputVADPassive;
2041 } else {
2042 return kOutputNormal;
2043 }
2044 }
2045
CreateDecisionLogic()2046 void NetEqImpl::CreateDecisionLogic() {
2047 decision_logic_.reset(DecisionLogic::Create(fs_hz_, output_size_samples_,
2048 playout_mode_,
2049 decoder_database_.get(),
2050 *packet_buffer_.get(),
2051 delay_manager_.get(),
2052 buffer_level_filter_.get()));
2053 }
2054 } // namespace webrtc
2055