• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // The Google C++ Testing and Mocking Framework (Google Test)
31 //
32 // This header file declares functions and macros used internally by
33 // Google Test.  They are subject to change without notice.
34 
35 // GOOGLETEST_CM0001 DO NOT DELETE
36 
37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39 
40 #include "gtest/internal/gtest-port.h"
41 
42 #if GTEST_OS_LINUX
43 # include <stdlib.h>
44 # include <sys/types.h>
45 # include <sys/wait.h>
46 # include <unistd.h>
47 #endif  // GTEST_OS_LINUX
48 
49 #if GTEST_HAS_EXCEPTIONS
50 # include <stdexcept>
51 #endif
52 
53 #include <ctype.h>
54 #include <float.h>
55 #include <string.h>
56 #include <iomanip>
57 #include <limits>
58 #include <map>
59 #include <set>
60 #include <string>
61 #include <type_traits>
62 #include <vector>
63 
64 #include "gtest/gtest-message.h"
65 #include "gtest/internal/gtest-filepath.h"
66 #include "gtest/internal/gtest-string.h"
67 #include "gtest/internal/gtest-type-util.h"
68 
69 // Due to C++ preprocessor weirdness, we need double indirection to
70 // concatenate two tokens when one of them is __LINE__.  Writing
71 //
72 //   foo ## __LINE__
73 //
74 // will result in the token foo__LINE__, instead of foo followed by
75 // the current line number.  For more details, see
76 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
77 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
78 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
79 
80 // Stringifies its argument.
81 #define GTEST_STRINGIFY_(name) #name
82 
83 class ProtocolMessage;
84 namespace proto2 { class Message; }
85 
86 namespace testing {
87 
88 // Forward declarations.
89 
90 class AssertionResult;                 // Result of an assertion.
91 class Message;                         // Represents a failure message.
92 class Test;                            // Represents a test.
93 class TestInfo;                        // Information about a test.
94 class TestPartResult;                  // Result of a test part.
95 class UnitTest;                        // A collection of test suites.
96 
97 template <typename T>
98 ::std::string PrintToString(const T& value);
99 
100 namespace internal {
101 
102 struct TraceInfo;                      // Information about a trace point.
103 class TestInfoImpl;                    // Opaque implementation of TestInfo
104 class UnitTestImpl;                    // Opaque implementation of UnitTest
105 
106 // The text used in failure messages to indicate the start of the
107 // stack trace.
108 GTEST_API_ extern const char kStackTraceMarker[];
109 
110 // An IgnoredValue object can be implicitly constructed from ANY value.
111 class IgnoredValue {
112   struct Sink {};
113  public:
114   // This constructor template allows any value to be implicitly
115   // converted to IgnoredValue.  The object has no data member and
116   // doesn't try to remember anything about the argument.  We
117   // deliberately omit the 'explicit' keyword in order to allow the
118   // conversion to be implicit.
119   // Disable the conversion if T already has a magical conversion operator.
120   // Otherwise we get ambiguity.
121   template <typename T,
122             typename std::enable_if<!std::is_convertible<T, Sink>::value,
123                                     int>::type = 0>
IgnoredValue(const T &)124   IgnoredValue(const T& /* ignored */) {}  // NOLINT(runtime/explicit)
125 };
126 
127 // Appends the user-supplied message to the Google-Test-generated message.
128 GTEST_API_ std::string AppendUserMessage(
129     const std::string& gtest_msg, const Message& user_msg);
130 
131 #if GTEST_HAS_EXCEPTIONS
132 
133 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \
134 /* an exported class was derived from a class that was not exported */)
135 
136 // This exception is thrown by (and only by) a failed Google Test
137 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
138 // are enabled).  We derive it from std::runtime_error, which is for
139 // errors presumably detectable only at run time.  Since
140 // std::runtime_error inherits from std::exception, many testing
141 // frameworks know how to extract and print the message inside it.
142 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
143  public:
144   explicit GoogleTestFailureException(const TestPartResult& failure);
145 };
146 
GTEST_DISABLE_MSC_WARNINGS_POP_()147 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4275
148 
149 #endif  // GTEST_HAS_EXCEPTIONS
150 
151 namespace edit_distance {
152 // Returns the optimal edits to go from 'left' to 'right'.
153 // All edits cost the same, with replace having lower priority than
154 // add/remove.
155 // Simple implementation of the Wagner-Fischer algorithm.
156 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
157 enum EditType { kMatch, kAdd, kRemove, kReplace };
158 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
159     const std::vector<size_t>& left, const std::vector<size_t>& right);
160 
161 // Same as above, but the input is represented as strings.
162 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
163     const std::vector<std::string>& left,
164     const std::vector<std::string>& right);
165 
166 // Create a diff of the input strings in Unified diff format.
167 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
168                                          const std::vector<std::string>& right,
169                                          size_t context = 2);
170 
171 }  // namespace edit_distance
172 
173 // Calculate the diff between 'left' and 'right' and return it in unified diff
174 // format.
175 // If not null, stores in 'total_line_count' the total number of lines found
176 // in left + right.
177 GTEST_API_ std::string DiffStrings(const std::string& left,
178                                    const std::string& right,
179                                    size_t* total_line_count);
180 
181 // Constructs and returns the message for an equality assertion
182 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
183 //
184 // The first four parameters are the expressions used in the assertion
185 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
186 // where foo is 5 and bar is 6, we have:
187 //
188 //   expected_expression: "foo"
189 //   actual_expression:   "bar"
190 //   expected_value:      "5"
191 //   actual_value:        "6"
192 //
193 // The ignoring_case parameter is true iff the assertion is a
194 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
195 // be inserted into the message.
196 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
197                                      const char* actual_expression,
198                                      const std::string& expected_value,
199                                      const std::string& actual_value,
200                                      bool ignoring_case);
201 
202 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
203 GTEST_API_ std::string GetBoolAssertionFailureMessage(
204     const AssertionResult& assertion_result,
205     const char* expression_text,
206     const char* actual_predicate_value,
207     const char* expected_predicate_value);
208 
209 // This template class represents an IEEE floating-point number
210 // (either single-precision or double-precision, depending on the
211 // template parameters).
212 //
213 // The purpose of this class is to do more sophisticated number
214 // comparison.  (Due to round-off error, etc, it's very unlikely that
215 // two floating-points will be equal exactly.  Hence a naive
216 // comparison by the == operation often doesn't work.)
217 //
218 // Format of IEEE floating-point:
219 //
220 //   The most-significant bit being the leftmost, an IEEE
221 //   floating-point looks like
222 //
223 //     sign_bit exponent_bits fraction_bits
224 //
225 //   Here, sign_bit is a single bit that designates the sign of the
226 //   number.
227 //
228 //   For float, there are 8 exponent bits and 23 fraction bits.
229 //
230 //   For double, there are 11 exponent bits and 52 fraction bits.
231 //
232 //   More details can be found at
233 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
234 //
235 // Template parameter:
236 //
237 //   RawType: the raw floating-point type (either float or double)
238 template <typename RawType>
239 class FloatingPoint {
240  public:
241   // Defines the unsigned integer type that has the same size as the
242   // floating point number.
243   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
244 
245   // Constants.
246 
247   // # of bits in a number.
248   static const size_t kBitCount = 8*sizeof(RawType);
249 
250   // # of fraction bits in a number.
251   static const size_t kFractionBitCount =
252     std::numeric_limits<RawType>::digits - 1;
253 
254   // # of exponent bits in a number.
255   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
256 
257   // The mask for the sign bit.
258   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
259 
260   // The mask for the fraction bits.
261   static const Bits kFractionBitMask =
262     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
263 
264   // The mask for the exponent bits.
265   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
266 
267   // How many ULP's (Units in the Last Place) we want to tolerate when
268   // comparing two numbers.  The larger the value, the more error we
269   // allow.  A 0 value means that two numbers must be exactly the same
270   // to be considered equal.
271   //
272   // The maximum error of a single floating-point operation is 0.5
273   // units in the last place.  On Intel CPU's, all floating-point
274   // calculations are done with 80-bit precision, while double has 64
275   // bits.  Therefore, 4 should be enough for ordinary use.
276   //
277   // See the following article for more details on ULP:
278   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
279   static const size_t kMaxUlps = 4;
280 
281   // Constructs a FloatingPoint from a raw floating-point number.
282   //
283   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
284   // around may change its bits, although the new value is guaranteed
285   // to be also a NAN.  Therefore, don't expect this constructor to
286   // preserve the bits in x when x is a NAN.
FloatingPoint(const RawType & x)287   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
288 
289   // Static methods
290 
291   // Reinterprets a bit pattern as a floating-point number.
292   //
293   // This function is needed to test the AlmostEquals() method.
ReinterpretBits(const Bits bits)294   static RawType ReinterpretBits(const Bits bits) {
295     FloatingPoint fp(0);
296     fp.u_.bits_ = bits;
297     return fp.u_.value_;
298   }
299 
300   // Returns the floating-point number that represent positive infinity.
Infinity()301   static RawType Infinity() {
302     return ReinterpretBits(kExponentBitMask);
303   }
304 
305   // Returns the maximum representable finite floating-point number.
306   static RawType Max();
307 
308   // Non-static methods
309 
310   // Returns the bits that represents this number.
bits()311   const Bits &bits() const { return u_.bits_; }
312 
313   // Returns the exponent bits of this number.
exponent_bits()314   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
315 
316   // Returns the fraction bits of this number.
fraction_bits()317   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
318 
319   // Returns the sign bit of this number.
sign_bit()320   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
321 
322   // Returns true iff this is NAN (not a number).
is_nan()323   bool is_nan() const {
324     // It's a NAN if the exponent bits are all ones and the fraction
325     // bits are not entirely zeros.
326     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
327   }
328 
329   // Returns true iff this number is at most kMaxUlps ULP's away from
330   // rhs.  In particular, this function:
331   //
332   //   - returns false if either number is (or both are) NAN.
333   //   - treats really large numbers as almost equal to infinity.
334   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
AlmostEquals(const FloatingPoint & rhs)335   bool AlmostEquals(const FloatingPoint& rhs) const {
336     // The IEEE standard says that any comparison operation involving
337     // a NAN must return false.
338     if (is_nan() || rhs.is_nan()) return false;
339 
340     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
341         <= kMaxUlps;
342   }
343 
344  private:
345   // The data type used to store the actual floating-point number.
346   union FloatingPointUnion {
347     RawType value_;  // The raw floating-point number.
348     Bits bits_;      // The bits that represent the number.
349   };
350 
351   // Converts an integer from the sign-and-magnitude representation to
352   // the biased representation.  More precisely, let N be 2 to the
353   // power of (kBitCount - 1), an integer x is represented by the
354   // unsigned number x + N.
355   //
356   // For instance,
357   //
358   //   -N + 1 (the most negative number representable using
359   //          sign-and-magnitude) is represented by 1;
360   //   0      is represented by N; and
361   //   N - 1  (the biggest number representable using
362   //          sign-and-magnitude) is represented by 2N - 1.
363   //
364   // Read http://en.wikipedia.org/wiki/Signed_number_representations
365   // for more details on signed number representations.
SignAndMagnitudeToBiased(const Bits & sam)366   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
367     if (kSignBitMask & sam) {
368       // sam represents a negative number.
369       return ~sam + 1;
370     } else {
371       // sam represents a positive number.
372       return kSignBitMask | sam;
373     }
374   }
375 
376   // Given two numbers in the sign-and-magnitude representation,
377   // returns the distance between them as an unsigned number.
DistanceBetweenSignAndMagnitudeNumbers(const Bits & sam1,const Bits & sam2)378   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
379                                                      const Bits &sam2) {
380     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
381     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
382     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
383   }
384 
385   FloatingPointUnion u_;
386 };
387 
388 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
389 // macro defined by <windows.h>.
390 template <>
Max()391 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
392 template <>
Max()393 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
394 
395 // Typedefs the instances of the FloatingPoint template class that we
396 // care to use.
397 typedef FloatingPoint<float> Float;
398 typedef FloatingPoint<double> Double;
399 
400 // In order to catch the mistake of putting tests that use different
401 // test fixture classes in the same test suite, we need to assign
402 // unique IDs to fixture classes and compare them.  The TypeId type is
403 // used to hold such IDs.  The user should treat TypeId as an opaque
404 // type: the only operation allowed on TypeId values is to compare
405 // them for equality using the == operator.
406 typedef const void* TypeId;
407 
408 template <typename T>
409 class TypeIdHelper {
410  public:
411   // dummy_ must not have a const type.  Otherwise an overly eager
412   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
413   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
414   static bool dummy_;
415 };
416 
417 template <typename T>
418 bool TypeIdHelper<T>::dummy_ = false;
419 
420 // GetTypeId<T>() returns the ID of type T.  Different values will be
421 // returned for different types.  Calling the function twice with the
422 // same type argument is guaranteed to return the same ID.
423 template <typename T>
GetTypeId()424 TypeId GetTypeId() {
425   // The compiler is required to allocate a different
426   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
427   // the template.  Therefore, the address of dummy_ is guaranteed to
428   // be unique.
429   return &(TypeIdHelper<T>::dummy_);
430 }
431 
432 // Returns the type ID of ::testing::Test.  Always call this instead
433 // of GetTypeId< ::testing::Test>() to get the type ID of
434 // ::testing::Test, as the latter may give the wrong result due to a
435 // suspected linker bug when compiling Google Test as a Mac OS X
436 // framework.
437 GTEST_API_ TypeId GetTestTypeId();
438 
439 // Defines the abstract factory interface that creates instances
440 // of a Test object.
441 class TestFactoryBase {
442  public:
~TestFactoryBase()443   virtual ~TestFactoryBase() {}
444 
445   // Creates a test instance to run. The instance is both created and destroyed
446   // within TestInfoImpl::Run()
447   virtual Test* CreateTest() = 0;
448 
449  protected:
TestFactoryBase()450   TestFactoryBase() {}
451 
452  private:
453   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
454 };
455 
456 // This class provides implementation of TeastFactoryBase interface.
457 // It is used in TEST and TEST_F macros.
458 template <class TestClass>
459 class TestFactoryImpl : public TestFactoryBase {
460  public:
CreateTest()461   Test* CreateTest() override { return new TestClass; }
462 };
463 
464 #if GTEST_OS_WINDOWS
465 
466 // Predicate-formatters for implementing the HRESULT checking macros
467 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
468 // We pass a long instead of HRESULT to avoid causing an
469 // include dependency for the HRESULT type.
470 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
471                                             long hr);  // NOLINT
472 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
473                                             long hr);  // NOLINT
474 
475 #endif  // GTEST_OS_WINDOWS
476 
477 // Types of SetUpTestSuite() and TearDownTestSuite() functions.
478 using SetUpTestSuiteFunc = void (*)();
479 using TearDownTestSuiteFunc = void (*)();
480 
481 struct CodeLocation {
CodeLocationCodeLocation482   CodeLocation(const std::string& a_file, int a_line)
483       : file(a_file), line(a_line) {}
484 
485   std::string file;
486   int line;
487 };
488 
489 //  Helper to identify which setup function for TestCase / TestSuite to call.
490 //  Only one function is allowed, either TestCase or TestSute but not both.
491 
492 // Utility functions to help SuiteApiResolver
493 using SetUpTearDownSuiteFuncType = void (*)();
494 
GetNotDefaultOrNull(SetUpTearDownSuiteFuncType a,SetUpTearDownSuiteFuncType def)495 inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
496     SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
497   return a == def ? nullptr : a;
498 }
499 
500 template <typename T>
501 //  Note that SuiteApiResolver inherits from T because
502 //  SetUpTestSuite()/TearDownTestSuite() could be protected. Ths way
503 //  SuiteApiResolver can access them.
504 struct SuiteApiResolver : T {
505   // testing::Test is only forward declared at this point. So we make it a
506   // dependend class for the compiler to be OK with it.
507   using Test =
508       typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
509 
GetSetUpCaseOrSuiteSuiteApiResolver510   static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite() {
511     SetUpTearDownSuiteFuncType test_case_fp =
512         GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
513     SetUpTearDownSuiteFuncType test_suite_fp =
514         GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
515 
516     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
517         << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
518            "make sure there is only one present ";
519 
520     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
521   }
522 
GetTearDownCaseOrSuiteSuiteApiResolver523   static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite() {
524     SetUpTearDownSuiteFuncType test_case_fp =
525         GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
526     SetUpTearDownSuiteFuncType test_suite_fp =
527         GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
528 
529     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
530         << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
531            " please make sure there is only one present ";
532 
533     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
534   }
535 };
536 
537 // Creates a new TestInfo object and registers it with Google Test;
538 // returns the created object.
539 //
540 // Arguments:
541 //
542 //   test_suite_name:   name of the test suite
543 //   name:             name of the test
544 //   type_param        the name of the test's type parameter, or NULL if
545 //                     this is not a typed or a type-parameterized test.
546 //   value_param       text representation of the test's value parameter,
547 //                     or NULL if this is not a type-parameterized test.
548 //   code_location:    code location where the test is defined
549 //   fixture_class_id: ID of the test fixture class
550 //   set_up_tc:        pointer to the function that sets up the test suite
551 //   tear_down_tc:     pointer to the function that tears down the test suite
552 //   factory:          pointer to the factory that creates a test object.
553 //                     The newly created TestInfo instance will assume
554 //                     ownership of the factory object.
555 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
556     const char* test_suite_name, const char* name, const char* type_param,
557     const char* value_param, CodeLocation code_location,
558     TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
559     TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
560 
561 // If *pstr starts with the given prefix, modifies *pstr to be right
562 // past the prefix and returns true; otherwise leaves *pstr unchanged
563 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
564 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
565 
566 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
567 
568 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
569 /* class A needs to have dll-interface to be used by clients of class B */)
570 
571 // State of the definition of a type-parameterized test suite.
572 class GTEST_API_ TypedTestSuitePState {
573  public:
TypedTestSuitePState()574   TypedTestSuitePState() : registered_(false) {}
575 
576   // Adds the given test name to defined_test_names_ and return true
577   // if the test suite hasn't been registered; otherwise aborts the
578   // program.
AddTestName(const char * file,int line,const char * case_name,const char * test_name)579   bool AddTestName(const char* file, int line, const char* case_name,
580                    const char* test_name) {
581     if (registered_) {
582       fprintf(stderr,
583               "%s Test %s must be defined before "
584               "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
585               FormatFileLocation(file, line).c_str(), test_name, case_name);
586       fflush(stderr);
587       posix::Abort();
588     }
589     registered_tests_.insert(
590         ::std::make_pair(test_name, CodeLocation(file, line)));
591     return true;
592   }
593 
TestExists(const std::string & test_name)594   bool TestExists(const std::string& test_name) const {
595     return registered_tests_.count(test_name) > 0;
596   }
597 
GetCodeLocation(const std::string & test_name)598   const CodeLocation& GetCodeLocation(const std::string& test_name) const {
599     RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
600     GTEST_CHECK_(it != registered_tests_.end());
601     return it->second;
602   }
603 
604   // Verifies that registered_tests match the test names in
605   // defined_test_names_; returns registered_tests if successful, or
606   // aborts the program otherwise.
607   const char* VerifyRegisteredTestNames(
608       const char* file, int line, const char* registered_tests);
609 
610  private:
611   typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
612 
613   bool registered_;
614   RegisteredTestsMap registered_tests_;
615 };
616 
617 //  Legacy API is deprecated but still available
618 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
619 using TypedTestCasePState = TypedTestSuitePState;
620 #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
621 
GTEST_DISABLE_MSC_WARNINGS_POP_()622 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
623 
624 // Skips to the first non-space char after the first comma in 'str';
625 // returns NULL if no comma is found in 'str'.
626 inline const char* SkipComma(const char* str) {
627   const char* comma = strchr(str, ',');
628   if (comma == nullptr) {
629     return nullptr;
630   }
631   while (IsSpace(*(++comma))) {}
632   return comma;
633 }
634 
635 // Returns the prefix of 'str' before the first comma in it; returns
636 // the entire string if it contains no comma.
GetPrefixUntilComma(const char * str)637 inline std::string GetPrefixUntilComma(const char* str) {
638   const char* comma = strchr(str, ',');
639   return comma == nullptr ? str : std::string(str, comma);
640 }
641 
642 // Splits a given string on a given delimiter, populating a given
643 // vector with the fields.
644 void SplitString(const ::std::string& str, char delimiter,
645                  ::std::vector< ::std::string>* dest);
646 
647 // The default argument to the template below for the case when the user does
648 // not provide a name generator.
649 struct DefaultNameGenerator {
650   template <typename T>
GetNameDefaultNameGenerator651   static std::string GetName(int i) {
652     return StreamableToString(i);
653   }
654 };
655 
656 template <typename Provided = DefaultNameGenerator>
657 struct NameGeneratorSelector {
658   typedef Provided type;
659 };
660 
661 template <typename NameGenerator>
GenerateNamesRecursively(Types0,std::vector<std::string> *,int)662 void GenerateNamesRecursively(Types0, std::vector<std::string>*, int) {}
663 
664 template <typename NameGenerator, typename Types>
GenerateNamesRecursively(Types,std::vector<std::string> * result,int i)665 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
666   result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
667   GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
668                                           i + 1);
669 }
670 
671 template <typename NameGenerator, typename Types>
GenerateNames()672 std::vector<std::string> GenerateNames() {
673   std::vector<std::string> result;
674   GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
675   return result;
676 }
677 
678 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
679 // registers a list of type-parameterized tests with Google Test.  The
680 // return value is insignificant - we just need to return something
681 // such that we can call this function in a namespace scope.
682 //
683 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
684 // template parameter.  It's defined in gtest-type-util.h.
685 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
686 class TypeParameterizedTest {
687  public:
688   // 'index' is the index of the test in the type list 'Types'
689   // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
690   // Types).  Valid values for 'index' are [0, N - 1] where N is the
691   // length of Types.
692   static bool Register(const char* prefix, const CodeLocation& code_location,
693                        const char* case_name, const char* test_names, int index,
694                        const std::vector<std::string>& type_names =
695                            GenerateNames<DefaultNameGenerator, Types>()) {
696     typedef typename Types::Head Type;
697     typedef Fixture<Type> FixtureClass;
698     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
699 
700     // First, registers the first type-parameterized test in the type
701     // list.
702     MakeAndRegisterTestInfo(
703         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
704          "/" + type_names[index])
705             .c_str(),
706         StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
707         GetTypeName<Type>().c_str(),
708         nullptr,  // No value parameter.
709         code_location, GetTypeId<FixtureClass>(),
710         SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(),
711         SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(),
712         new TestFactoryImpl<TestClass>);
713 
714     // Next, recurses (at compile time) with the tail of the type list.
715     return TypeParameterizedTest<Fixture, TestSel,
716                                  typename Types::Tail>::Register(prefix,
717                                                                  code_location,
718                                                                  case_name,
719                                                                  test_names,
720                                                                  index + 1,
721                                                                  type_names);
722   }
723 };
724 
725 // The base case for the compile time recursion.
726 template <GTEST_TEMPLATE_ Fixture, class TestSel>
727 class TypeParameterizedTest<Fixture, TestSel, Types0> {
728  public:
729   static bool Register(const char* /*prefix*/, const CodeLocation&,
730                        const char* /*case_name*/, const char* /*test_names*/,
731                        int /*index*/,
732                        const std::vector<std::string>& =
733                            std::vector<std::string>() /*type_names*/) {
734     return true;
735   }
736 };
737 
738 // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
739 // registers *all combinations* of 'Tests' and 'Types' with Google
740 // Test.  The return value is insignificant - we just need to return
741 // something such that we can call this function in a namespace scope.
742 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
743 class TypeParameterizedTestSuite {
744  public:
745   static bool Register(const char* prefix, CodeLocation code_location,
746                        const TypedTestSuitePState* state, const char* case_name,
747                        const char* test_names,
748                        const std::vector<std::string>& type_names =
749                            GenerateNames<DefaultNameGenerator, Types>()) {
750     std::string test_name = StripTrailingSpaces(
751         GetPrefixUntilComma(test_names));
752     if (!state->TestExists(test_name)) {
753       fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
754               case_name, test_name.c_str(),
755               FormatFileLocation(code_location.file.c_str(),
756                                  code_location.line).c_str());
757       fflush(stderr);
758       posix::Abort();
759     }
760     const CodeLocation& test_location = state->GetCodeLocation(test_name);
761 
762     typedef typename Tests::Head Head;
763 
764     // First, register the first test in 'Test' for each type in 'Types'.
765     TypeParameterizedTest<Fixture, Head, Types>::Register(
766         prefix, test_location, case_name, test_names, 0, type_names);
767 
768     // Next, recurses (at compile time) with the tail of the test list.
769     return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
770                                       Types>::Register(prefix, code_location,
771                                                        state, case_name,
772                                                        SkipComma(test_names),
773                                                        type_names);
774   }
775 };
776 
777 // The base case for the compile time recursion.
778 template <GTEST_TEMPLATE_ Fixture, typename Types>
779 class TypeParameterizedTestSuite<Fixture, Templates0, Types> {
780  public:
781   static bool Register(const char* /*prefix*/, const CodeLocation&,
782                        const TypedTestSuitePState* /*state*/,
783                        const char* /*case_name*/, const char* /*test_names*/,
784                        const std::vector<std::string>& =
785                            std::vector<std::string>() /*type_names*/) {
786     return true;
787   }
788 };
789 
790 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
791 
792 // Returns the current OS stack trace as an std::string.
793 //
794 // The maximum number of stack frames to be included is specified by
795 // the gtest_stack_trace_depth flag.  The skip_count parameter
796 // specifies the number of top frames to be skipped, which doesn't
797 // count against the number of frames to be included.
798 //
799 // For example, if Foo() calls Bar(), which in turn calls
800 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
801 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
802 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
803     UnitTest* unit_test, int skip_count);
804 
805 // Helpers for suppressing warnings on unreachable code or constant
806 // condition.
807 
808 // Always returns true.
809 GTEST_API_ bool AlwaysTrue();
810 
811 // Always returns false.
AlwaysFalse()812 inline bool AlwaysFalse() { return !AlwaysTrue(); }
813 
814 // Helper for suppressing false warning from Clang on a const char*
815 // variable declared in a conditional expression always being NULL in
816 // the else branch.
817 struct GTEST_API_ ConstCharPtr {
ConstCharPtrConstCharPtr818   ConstCharPtr(const char* str) : value(str) {}
819   operator bool() const { return true; }
820   const char* value;
821 };
822 
823 // A simple Linear Congruential Generator for generating random
824 // numbers with a uniform distribution.  Unlike rand() and srand(), it
825 // doesn't use global state (and therefore can't interfere with user
826 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
827 // but it's good enough for our purposes.
828 class GTEST_API_ Random {
829  public:
830   static const UInt32 kMaxRange = 1u << 31;
831 
Random(UInt32 seed)832   explicit Random(UInt32 seed) : state_(seed) {}
833 
Reseed(UInt32 seed)834   void Reseed(UInt32 seed) { state_ = seed; }
835 
836   // Generates a random number from [0, range).  Crashes if 'range' is
837   // 0 or greater than kMaxRange.
838   UInt32 Generate(UInt32 range);
839 
840  private:
841   UInt32 state_;
842   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
843 };
844 
845 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
846 // compiler error iff T1 and T2 are different types.
847 template <typename T1, typename T2>
848 struct CompileAssertTypesEqual;
849 
850 template <typename T>
851 struct CompileAssertTypesEqual<T, T> {
852 };
853 
854 // Removes the reference from a type if it is a reference type,
855 // otherwise leaves it unchanged.  This is the same as
856 // tr1::remove_reference, which is not widely available yet.
857 template <typename T>
858 struct RemoveReference { typedef T type; };  // NOLINT
859 template <typename T>
860 struct RemoveReference<T&> { typedef T type; };  // NOLINT
861 
862 // A handy wrapper around RemoveReference that works when the argument
863 // T depends on template parameters.
864 #define GTEST_REMOVE_REFERENCE_(T) \
865     typename ::testing::internal::RemoveReference<T>::type
866 
867 // Removes const from a type if it is a const type, otherwise leaves
868 // it unchanged.  This is the same as tr1::remove_const, which is not
869 // widely available yet.
870 template <typename T>
871 struct RemoveConst { typedef T type; };  // NOLINT
872 template <typename T>
873 struct RemoveConst<const T> { typedef T type; };  // NOLINT
874 
875 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
876 // definition to fail to remove the const in 'const int[3]' and 'const
877 // char[3][4]'.  The following specialization works around the bug.
878 template <typename T, size_t N>
879 struct RemoveConst<const T[N]> {
880   typedef typename RemoveConst<T>::type type[N];
881 };
882 
883 // A handy wrapper around RemoveConst that works when the argument
884 // T depends on template parameters.
885 #define GTEST_REMOVE_CONST_(T) \
886     typename ::testing::internal::RemoveConst<T>::type
887 
888 // Turns const U&, U&, const U, and U all into U.
889 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
890     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
891 
892 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
893 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
894 // of those.
895 template <typename T>
896 struct IsAProtocolMessage
897     : public bool_constant<
898   std::is_convertible<const T*, const ::ProtocolMessage*>::value ||
899   std::is_convertible<const T*, const ::proto2::Message*>::value> {
900 };
901 
902 // When the compiler sees expression IsContainerTest<C>(0), if C is an
903 // STL-style container class, the first overload of IsContainerTest
904 // will be viable (since both C::iterator* and C::const_iterator* are
905 // valid types and NULL can be implicitly converted to them).  It will
906 // be picked over the second overload as 'int' is a perfect match for
907 // the type of argument 0.  If C::iterator or C::const_iterator is not
908 // a valid type, the first overload is not viable, and the second
909 // overload will be picked.  Therefore, we can determine whether C is
910 // a container class by checking the type of IsContainerTest<C>(0).
911 // The value of the expression is insignificant.
912 //
913 // In C++11 mode we check the existence of a const_iterator and that an
914 // iterator is properly implemented for the container.
915 //
916 // For pre-C++11 that we look for both C::iterator and C::const_iterator.
917 // The reason is that C++ injects the name of a class as a member of the
918 // class itself (e.g. you can refer to class iterator as either
919 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
920 // only, for example, we would mistakenly think that a class named
921 // iterator is an STL container.
922 //
923 // Also note that the simpler approach of overloading
924 // IsContainerTest(typename C::const_iterator*) and
925 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
926 typedef int IsContainer;
927 template <class C,
928           class Iterator = decltype(::std::declval<const C&>().begin()),
929           class = decltype(::std::declval<const C&>().end()),
930           class = decltype(++::std::declval<Iterator&>()),
931           class = decltype(*::std::declval<Iterator>()),
932           class = typename C::const_iterator>
933 IsContainer IsContainerTest(int /* dummy */) {
934   return 0;
935 }
936 
937 typedef char IsNotContainer;
938 template <class C>
939 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
940 
941 // Trait to detect whether a type T is a hash table.
942 // The heuristic used is that the type contains an inner type `hasher` and does
943 // not contain an inner type `reverse_iterator`.
944 // If the container is iterable in reverse, then order might actually matter.
945 template <typename T>
946 struct IsHashTable {
947  private:
948   template <typename U>
949   static char test(typename U::hasher*, typename U::reverse_iterator*);
950   template <typename U>
951   static int test(typename U::hasher*, ...);
952   template <typename U>
953   static char test(...);
954 
955  public:
956   static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
957 };
958 
959 template <typename T>
960 const bool IsHashTable<T>::value;
961 
962 template <typename C,
963           bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
964 struct IsRecursiveContainerImpl;
965 
966 template <typename C>
967 struct IsRecursiveContainerImpl<C, false> : public false_type {};
968 
969 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
970 // obey the same inconsistencies as the IsContainerTest, namely check if
971 // something is a container is relying on only const_iterator in C++11 and
972 // is relying on both const_iterator and iterator otherwise
973 template <typename C>
974 struct IsRecursiveContainerImpl<C, true> {
975   using value_type = decltype(*std::declval<typename C::const_iterator>());
976   using type =
977       is_same<typename std::remove_const<
978                   typename std::remove_reference<value_type>::type>::type,
979               C>;
980 };
981 
982 // IsRecursiveContainer<Type> is a unary compile-time predicate that
983 // evaluates whether C is a recursive container type. A recursive container
984 // type is a container type whose value_type is equal to the container type
985 // itself. An example for a recursive container type is
986 // boost::filesystem::path, whose iterator has a value_type that is equal to
987 // boost::filesystem::path.
988 template <typename C>
989 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
990 
991 // EnableIf<condition>::type is void when 'Cond' is true, and
992 // undefined when 'Cond' is false.  To use SFINAE to make a function
993 // overload only apply when a particular expression is true, add
994 // "typename EnableIf<expression>::type* = 0" as the last parameter.
995 template<bool> struct EnableIf;
996 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
997 
998 // Utilities for native arrays.
999 
1000 // ArrayEq() compares two k-dimensional native arrays using the
1001 // elements' operator==, where k can be any integer >= 0.  When k is
1002 // 0, ArrayEq() degenerates into comparing a single pair of values.
1003 
1004 template <typename T, typename U>
1005 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
1006 
1007 // This generic version is used when k is 0.
1008 template <typename T, typename U>
1009 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
1010 
1011 // This overload is used when k >= 1.
1012 template <typename T, typename U, size_t N>
1013 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
1014   return internal::ArrayEq(lhs, N, rhs);
1015 }
1016 
1017 // This helper reduces code bloat.  If we instead put its logic inside
1018 // the previous ArrayEq() function, arrays with different sizes would
1019 // lead to different copies of the template code.
1020 template <typename T, typename U>
1021 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
1022   for (size_t i = 0; i != size; i++) {
1023     if (!internal::ArrayEq(lhs[i], rhs[i]))
1024       return false;
1025   }
1026   return true;
1027 }
1028 
1029 // Finds the first element in the iterator range [begin, end) that
1030 // equals elem.  Element may be a native array type itself.
1031 template <typename Iter, typename Element>
1032 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1033   for (Iter it = begin; it != end; ++it) {
1034     if (internal::ArrayEq(*it, elem))
1035       return it;
1036   }
1037   return end;
1038 }
1039 
1040 // CopyArray() copies a k-dimensional native array using the elements'
1041 // operator=, where k can be any integer >= 0.  When k is 0,
1042 // CopyArray() degenerates into copying a single value.
1043 
1044 template <typename T, typename U>
1045 void CopyArray(const T* from, size_t size, U* to);
1046 
1047 // This generic version is used when k is 0.
1048 template <typename T, typename U>
1049 inline void CopyArray(const T& from, U* to) { *to = from; }
1050 
1051 // This overload is used when k >= 1.
1052 template <typename T, typename U, size_t N>
1053 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1054   internal::CopyArray(from, N, *to);
1055 }
1056 
1057 // This helper reduces code bloat.  If we instead put its logic inside
1058 // the previous CopyArray() function, arrays with different sizes
1059 // would lead to different copies of the template code.
1060 template <typename T, typename U>
1061 void CopyArray(const T* from, size_t size, U* to) {
1062   for (size_t i = 0; i != size; i++) {
1063     internal::CopyArray(from[i], to + i);
1064   }
1065 }
1066 
1067 // The relation between an NativeArray object (see below) and the
1068 // native array it represents.
1069 // We use 2 different structs to allow non-copyable types to be used, as long
1070 // as RelationToSourceReference() is passed.
1071 struct RelationToSourceReference {};
1072 struct RelationToSourceCopy {};
1073 
1074 // Adapts a native array to a read-only STL-style container.  Instead
1075 // of the complete STL container concept, this adaptor only implements
1076 // members useful for Google Mock's container matchers.  New members
1077 // should be added as needed.  To simplify the implementation, we only
1078 // support Element being a raw type (i.e. having no top-level const or
1079 // reference modifier).  It's the client's responsibility to satisfy
1080 // this requirement.  Element can be an array type itself (hence
1081 // multi-dimensional arrays are supported).
1082 template <typename Element>
1083 class NativeArray {
1084  public:
1085   // STL-style container typedefs.
1086   typedef Element value_type;
1087   typedef Element* iterator;
1088   typedef const Element* const_iterator;
1089 
1090   // Constructs from a native array. References the source.
1091   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1092     InitRef(array, count);
1093   }
1094 
1095   // Constructs from a native array. Copies the source.
1096   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1097     InitCopy(array, count);
1098   }
1099 
1100   // Copy constructor.
1101   NativeArray(const NativeArray& rhs) {
1102     (this->*rhs.clone_)(rhs.array_, rhs.size_);
1103   }
1104 
1105   ~NativeArray() {
1106     if (clone_ != &NativeArray::InitRef)
1107       delete[] array_;
1108   }
1109 
1110   // STL-style container methods.
1111   size_t size() const { return size_; }
1112   const_iterator begin() const { return array_; }
1113   const_iterator end() const { return array_ + size_; }
1114   bool operator==(const NativeArray& rhs) const {
1115     return size() == rhs.size() &&
1116         ArrayEq(begin(), size(), rhs.begin());
1117   }
1118 
1119  private:
1120   enum {
1121     kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper<
1122         Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value
1123   };
1124 
1125   // Initializes this object with a copy of the input.
1126   void InitCopy(const Element* array, size_t a_size) {
1127     Element* const copy = new Element[a_size];
1128     CopyArray(array, a_size, copy);
1129     array_ = copy;
1130     size_ = a_size;
1131     clone_ = &NativeArray::InitCopy;
1132   }
1133 
1134   // Initializes this object with a reference of the input.
1135   void InitRef(const Element* array, size_t a_size) {
1136     array_ = array;
1137     size_ = a_size;
1138     clone_ = &NativeArray::InitRef;
1139   }
1140 
1141   const Element* array_;
1142   size_t size_;
1143   void (NativeArray::*clone_)(const Element*, size_t);
1144 
1145   GTEST_DISALLOW_ASSIGN_(NativeArray);
1146 };
1147 
1148 // Backport of std::index_sequence.
1149 template <size_t... Is>
1150 struct IndexSequence {
1151   using type = IndexSequence;
1152 };
1153 
1154 // Double the IndexSequence, and one if plus_one is true.
1155 template <bool plus_one, typename T, size_t sizeofT>
1156 struct DoubleSequence;
1157 template <size_t... I, size_t sizeofT>
1158 struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
1159   using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
1160 };
1161 template <size_t... I, size_t sizeofT>
1162 struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
1163   using type = IndexSequence<I..., (sizeofT + I)...>;
1164 };
1165 
1166 // Backport of std::make_index_sequence.
1167 // It uses O(ln(N)) instantiation depth.
1168 template <size_t N>
1169 struct MakeIndexSequence
1170     : DoubleSequence<N % 2 == 1, typename MakeIndexSequence<N / 2>::type,
1171                      N / 2>::type {};
1172 
1173 template <>
1174 struct MakeIndexSequence<0> : IndexSequence<> {};
1175 
1176 // FIXME: This implementation of ElemFromList is O(1) in instantiation depth,
1177 // but it is O(N^2) in total instantiations. Not sure if this is the best
1178 // tradeoff, as it will make it somewhat slow to compile.
1179 template <typename T, size_t, size_t>
1180 struct ElemFromListImpl {};
1181 
1182 template <typename T, size_t I>
1183 struct ElemFromListImpl<T, I, I> {
1184   using type = T;
1185 };
1186 
1187 // Get the Nth element from T...
1188 // It uses O(1) instantiation depth.
1189 template <size_t N, typename I, typename... T>
1190 struct ElemFromList;
1191 
1192 template <size_t N, size_t... I, typename... T>
1193 struct ElemFromList<N, IndexSequence<I...>, T...>
1194     : ElemFromListImpl<T, N, I>... {};
1195 
1196 template <typename... T>
1197 class FlatTuple;
1198 
1199 template <typename Derived, size_t I>
1200 struct FlatTupleElemBase;
1201 
1202 template <typename... T, size_t I>
1203 struct FlatTupleElemBase<FlatTuple<T...>, I> {
1204   using value_type =
1205       typename ElemFromList<I, typename MakeIndexSequence<sizeof...(T)>::type,
1206                             T...>::type;
1207   FlatTupleElemBase() = default;
1208   explicit FlatTupleElemBase(value_type t) : value(std::move(t)) {}
1209   value_type value;
1210 };
1211 
1212 template <typename Derived, typename Idx>
1213 struct FlatTupleBase;
1214 
1215 template <size_t... Idx, typename... T>
1216 struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
1217     : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
1218   using Indices = IndexSequence<Idx...>;
1219   FlatTupleBase() = default;
1220   explicit FlatTupleBase(T... t)
1221       : FlatTupleElemBase<FlatTuple<T...>, Idx>(std::move(t))... {}
1222 };
1223 
1224 // Analog to std::tuple but with different tradeoffs.
1225 // This class minimizes the template instantiation depth, thus allowing more
1226 // elements that std::tuple would. std::tuple has been seen to require an
1227 // instantiation depth of more than 10x the number of elements in some
1228 // implementations.
1229 // FlatTuple and ElemFromList are not recursive and have a fixed depth
1230 // regardless of T...
1231 // MakeIndexSequence, on the other hand, it is recursive but with an
1232 // instantiation depth of O(ln(N)).
1233 template <typename... T>
1234 class FlatTuple
1235     : private FlatTupleBase<FlatTuple<T...>,
1236                             typename MakeIndexSequence<sizeof...(T)>::type> {
1237   using Indices = typename FlatTuple::FlatTupleBase::Indices;
1238 
1239  public:
1240   FlatTuple() = default;
1241   explicit FlatTuple(T... t) : FlatTuple::FlatTupleBase(std::move(t)...) {}
1242 
1243   template <size_t I>
1244   const typename ElemFromList<I, Indices, T...>::type& Get() const {
1245     return static_cast<const FlatTupleElemBase<FlatTuple, I>*>(this)->value;
1246   }
1247 
1248   template <size_t I>
1249   typename ElemFromList<I, Indices, T...>::type& Get() {
1250     return static_cast<FlatTupleElemBase<FlatTuple, I>*>(this)->value;
1251   }
1252 };
1253 
1254 // Utility functions to be called with static_assert to induce deprecation
1255 // warnings.
1256 GTEST_INTERNAL_DEPRECATED(
1257     "INSTANTIATE_TEST_CASE_P is deprecated, please use "
1258     "INSTANTIATE_TEST_SUITE_P")
1259 constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
1260 
1261 GTEST_INTERNAL_DEPRECATED(
1262     "TYPED_TEST_CASE_P is deprecated, please use "
1263     "TYPED_TEST_SUITE_P")
1264 constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
1265 
1266 GTEST_INTERNAL_DEPRECATED(
1267     "TYPED_TEST_CASE is deprecated, please use "
1268     "TYPED_TEST_SUITE")
1269 constexpr bool TypedTestCaseIsDeprecated() { return true; }
1270 
1271 GTEST_INTERNAL_DEPRECATED(
1272     "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
1273     "REGISTER_TYPED_TEST_SUITE_P")
1274 constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
1275 
1276 GTEST_INTERNAL_DEPRECATED(
1277     "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
1278     "INSTANTIATE_TYPED_TEST_SUITE_P")
1279 constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
1280 
1281 }  // namespace internal
1282 }  // namespace testing
1283 
1284 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1285   ::testing::internal::AssertHelper(result_type, file, line, message) \
1286     = ::testing::Message()
1287 
1288 #define GTEST_MESSAGE_(message, result_type) \
1289   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1290 
1291 #define GTEST_FATAL_FAILURE_(message) \
1292   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1293 
1294 #define GTEST_NONFATAL_FAILURE_(message) \
1295   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1296 
1297 #define GTEST_SUCCESS_(message) \
1298   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1299 
1300 #define GTEST_SKIP_(message) \
1301   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
1302 
1303 // Suppress MSVC warning 4072 (unreachable code) for the code following
1304 // statement if it returns or throws (or doesn't return or throw in some
1305 // situations).
1306 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1307   if (::testing::internal::AlwaysTrue()) { statement; }
1308 
1309 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1310   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1311   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1312     bool gtest_caught_expected = false; \
1313     try { \
1314       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1315     } \
1316     catch (expected_exception const&) { \
1317       gtest_caught_expected = true; \
1318     } \
1319     catch (...) { \
1320       gtest_msg.value = \
1321           "Expected: " #statement " throws an exception of type " \
1322           #expected_exception ".\n  Actual: it throws a different type."; \
1323       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1324     } \
1325     if (!gtest_caught_expected) { \
1326       gtest_msg.value = \
1327           "Expected: " #statement " throws an exception of type " \
1328           #expected_exception ".\n  Actual: it throws nothing."; \
1329       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1330     } \
1331   } else \
1332     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1333       fail(gtest_msg.value)
1334 
1335 #define GTEST_TEST_NO_THROW_(statement, fail) \
1336   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1337   if (::testing::internal::AlwaysTrue()) { \
1338     try { \
1339       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1340     } \
1341     catch (...) { \
1342       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1343     } \
1344   } else \
1345     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1346       fail("Expected: " #statement " doesn't throw an exception.\n" \
1347            "  Actual: it throws.")
1348 
1349 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1350   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1351   if (::testing::internal::AlwaysTrue()) { \
1352     bool gtest_caught_any = false; \
1353     try { \
1354       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1355     } \
1356     catch (...) { \
1357       gtest_caught_any = true; \
1358     } \
1359     if (!gtest_caught_any) { \
1360       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1361     } \
1362   } else \
1363     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1364       fail("Expected: " #statement " throws an exception.\n" \
1365            "  Actual: it doesn't.")
1366 
1367 
1368 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1369 // either a boolean expression or an AssertionResult. text is a textual
1370 // represenation of expression as it was passed into the EXPECT_TRUE.
1371 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1372   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1373   if (const ::testing::AssertionResult gtest_ar_ = \
1374       ::testing::AssertionResult(expression)) \
1375     ; \
1376   else \
1377     fail(::testing::internal::GetBoolAssertionFailureMessage(\
1378         gtest_ar_, text, #actual, #expected).c_str())
1379 
1380 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1381   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1382   if (::testing::internal::AlwaysTrue()) { \
1383     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1384     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1385     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1386       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1387     } \
1388   } else \
1389     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1390       fail("Expected: " #statement " doesn't generate new fatal " \
1391            "failures in the current thread.\n" \
1392            "  Actual: it does.")
1393 
1394 // Expands to the name of the class that implements the given test.
1395 #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1396   test_suite_name##_##test_name##_Test
1397 
1398 // Helper macro for defining tests.
1399 #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id)      \
1400   class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                    \
1401       : public parent_class {                                                 \
1402    public:                                                                    \
1403     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() {}                   \
1404                                                                               \
1405    private:                                                                   \
1406     virtual void TestBody();                                                  \
1407     static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;     \
1408     GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name,   \
1409                                                            test_name));       \
1410   };                                                                          \
1411                                                                               \
1412   ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name,          \
1413                                                     test_name)::test_info_ =  \
1414       ::testing::internal::MakeAndRegisterTestInfo(                           \
1415           #test_suite_name, #test_name, nullptr, nullptr,                     \
1416           ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
1417           ::testing::internal::SuiteApiResolver<                              \
1418               parent_class>::GetSetUpCaseOrSuite(),                           \
1419           ::testing::internal::SuiteApiResolver<                              \
1420               parent_class>::GetTearDownCaseOrSuite(),                        \
1421           new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_(    \
1422               test_suite_name, test_name)>);                                  \
1423   void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
1424 
1425 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1426