1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "heap.h"
18
19 #include <limits>
20 #if defined(__BIONIC__) || defined(__GLIBC__)
21 #include <malloc.h> // For mallinfo()
22 #endif
23 #include <memory>
24 #include <vector>
25
26 #include "android-base/stringprintf.h"
27
28 #include "allocation_listener.h"
29 #include "art_field-inl.h"
30 #include "backtrace_helper.h"
31 #include "base/allocator.h"
32 #include "base/arena_allocator.h"
33 #include "base/dumpable.h"
34 #include "base/file_utils.h"
35 #include "base/histogram-inl.h"
36 #include "base/logging.h" // For VLOG.
37 #include "base/memory_tool.h"
38 #include "base/mutex.h"
39 #include "base/os.h"
40 #include "base/stl_util.h"
41 #include "base/systrace.h"
42 #include "base/time_utils.h"
43 #include "base/utils.h"
44 #include "common_throws.h"
45 #include "debugger.h"
46 #include "dex/dex_file-inl.h"
47 #include "entrypoints/quick/quick_alloc_entrypoints.h"
48 #include "gc/accounting/card_table-inl.h"
49 #include "gc/accounting/heap_bitmap-inl.h"
50 #include "gc/accounting/mod_union_table-inl.h"
51 #include "gc/accounting/read_barrier_table.h"
52 #include "gc/accounting/remembered_set.h"
53 #include "gc/accounting/space_bitmap-inl.h"
54 #include "gc/collector/concurrent_copying.h"
55 #include "gc/collector/mark_sweep.h"
56 #include "gc/collector/partial_mark_sweep.h"
57 #include "gc/collector/semi_space.h"
58 #include "gc/collector/sticky_mark_sweep.h"
59 #include "gc/racing_check.h"
60 #include "gc/reference_processor.h"
61 #include "gc/scoped_gc_critical_section.h"
62 #include "gc/space/bump_pointer_space.h"
63 #include "gc/space/dlmalloc_space-inl.h"
64 #include "gc/space/image_space.h"
65 #include "gc/space/large_object_space.h"
66 #include "gc/space/region_space.h"
67 #include "gc/space/rosalloc_space-inl.h"
68 #include "gc/space/space-inl.h"
69 #include "gc/space/zygote_space.h"
70 #include "gc/task_processor.h"
71 #include "gc/verification.h"
72 #include "gc_pause_listener.h"
73 #include "gc_root.h"
74 #include "handle_scope-inl.h"
75 #include "heap-inl.h"
76 #include "heap-visit-objects-inl.h"
77 #include "image.h"
78 #include "intern_table.h"
79 #include "jit/jit.h"
80 #include "jit/jit_code_cache.h"
81 #include "jni/java_vm_ext.h"
82 #include "mirror/class-inl.h"
83 #include "mirror/object-inl.h"
84 #include "mirror/object-refvisitor-inl.h"
85 #include "mirror/object_array-inl.h"
86 #include "mirror/reference-inl.h"
87 #include "nativehelper/scoped_local_ref.h"
88 #include "obj_ptr-inl.h"
89 #include "reflection.h"
90 #include "runtime.h"
91 #include "scoped_thread_state_change-inl.h"
92 #include "thread_list.h"
93 #include "verify_object-inl.h"
94 #include "well_known_classes.h"
95
96 namespace art {
97
98 namespace gc {
99
100 static constexpr size_t kCollectorTransitionStressIterations = 0;
101 static constexpr size_t kCollectorTransitionStressWait = 10 * 1000; // Microseconds
102
103 DEFINE_RUNTIME_DEBUG_FLAG(Heap, kStressCollectorTransition);
104
105 // Minimum amount of remaining bytes before a concurrent GC is triggered.
106 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
107 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
108 // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
109 // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
110 // threads (lower pauses, use less memory bandwidth).
GetStickyGcThroughputAdjustment(bool use_generational_cc)111 static double GetStickyGcThroughputAdjustment(bool use_generational_cc) {
112 return use_generational_cc ? 0.5 : 1.0;
113 }
114 // Whether or not we compact the zygote in PreZygoteFork.
115 static constexpr bool kCompactZygote = kMovingCollector;
116 // How many reserve entries are at the end of the allocation stack, these are only needed if the
117 // allocation stack overflows.
118 static constexpr size_t kAllocationStackReserveSize = 1024;
119 // Default mark stack size in bytes.
120 static const size_t kDefaultMarkStackSize = 64 * KB;
121 // Define space name.
122 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
123 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
124 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
125 static const char* kNonMovingSpaceName = "non moving space";
126 static const char* kZygoteSpaceName = "zygote space";
127 static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
128 static constexpr bool kGCALotMode = false;
129 // GC alot mode uses a small allocation stack to stress test a lot of GC.
130 static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
131 sizeof(mirror::HeapReference<mirror::Object>);
132 // Verify objet has a small allocation stack size since searching the allocation stack is slow.
133 static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
134 sizeof(mirror::HeapReference<mirror::Object>);
135 static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
136 sizeof(mirror::HeapReference<mirror::Object>);
137
138 // For deterministic compilation, we need the heap to be at a well-known address.
139 static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000;
140 // Dump the rosalloc stats on SIGQUIT.
141 static constexpr bool kDumpRosAllocStatsOnSigQuit = false;
142
143 static const char* kRegionSpaceName = "main space (region space)";
144
145 // If true, we log all GCs in the both the foreground and background. Used for debugging.
146 static constexpr bool kLogAllGCs = false;
147
148 // How much we grow the TLAB if we can do it.
149 static constexpr size_t kPartialTlabSize = 16 * KB;
150 static constexpr bool kUsePartialTlabs = true;
151
152 // Use Max heap for 2 seconds, this is smaller than the usual 5s window since we don't want to leave
153 // allocate with relaxed ergonomics for that long.
154 static constexpr size_t kPostForkMaxHeapDurationMS = 2000;
155
156 #if defined(__LP64__) || !defined(ADDRESS_SANITIZER)
157 // 300 MB (0x12c00000) - (default non-moving space capacity).
158 uint8_t* const Heap::kPreferredAllocSpaceBegin =
159 reinterpret_cast<uint8_t*>(300 * MB - kDefaultNonMovingSpaceCapacity);
160 #else
161 #ifdef __ANDROID__
162 // For 32-bit Android, use 0x20000000 because asan reserves 0x04000000 - 0x20000000.
163 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x20000000);
164 #else
165 // For 32-bit host, use 0x40000000 because asan uses most of the space below this.
166 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x40000000);
167 #endif
168 #endif
169
CareAboutPauseTimes()170 static inline bool CareAboutPauseTimes() {
171 return Runtime::Current()->InJankPerceptibleProcessState();
172 }
173
Heap(size_t initial_size,size_t growth_limit,size_t min_free,size_t max_free,double target_utilization,double foreground_heap_growth_multiplier,size_t capacity,size_t non_moving_space_capacity,const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,const std::string & image_file_name,const InstructionSet image_instruction_set,CollectorType foreground_collector_type,CollectorType background_collector_type,space::LargeObjectSpaceType large_object_space_type,size_t large_object_threshold,size_t parallel_gc_threads,size_t conc_gc_threads,bool low_memory_mode,size_t long_pause_log_threshold,size_t long_gc_log_threshold,bool ignore_target_footprint,bool use_tlab,bool verify_pre_gc_heap,bool verify_pre_sweeping_heap,bool verify_post_gc_heap,bool verify_pre_gc_rosalloc,bool verify_pre_sweeping_rosalloc,bool verify_post_gc_rosalloc,bool gc_stress_mode,bool measure_gc_performance,bool use_homogeneous_space_compaction_for_oom,bool use_generational_cc,uint64_t min_interval_homogeneous_space_compaction_by_oom,bool dump_region_info_before_gc,bool dump_region_info_after_gc,space::ImageSpaceLoadingOrder image_space_loading_order)174 Heap::Heap(size_t initial_size,
175 size_t growth_limit,
176 size_t min_free,
177 size_t max_free,
178 double target_utilization,
179 double foreground_heap_growth_multiplier,
180 size_t capacity,
181 size_t non_moving_space_capacity,
182 const std::vector<std::string>& boot_class_path,
183 const std::vector<std::string>& boot_class_path_locations,
184 const std::string& image_file_name,
185 const InstructionSet image_instruction_set,
186 CollectorType foreground_collector_type,
187 CollectorType background_collector_type,
188 space::LargeObjectSpaceType large_object_space_type,
189 size_t large_object_threshold,
190 size_t parallel_gc_threads,
191 size_t conc_gc_threads,
192 bool low_memory_mode,
193 size_t long_pause_log_threshold,
194 size_t long_gc_log_threshold,
195 bool ignore_target_footprint,
196 bool use_tlab,
197 bool verify_pre_gc_heap,
198 bool verify_pre_sweeping_heap,
199 bool verify_post_gc_heap,
200 bool verify_pre_gc_rosalloc,
201 bool verify_pre_sweeping_rosalloc,
202 bool verify_post_gc_rosalloc,
203 bool gc_stress_mode,
204 bool measure_gc_performance,
205 bool use_homogeneous_space_compaction_for_oom,
206 bool use_generational_cc,
207 uint64_t min_interval_homogeneous_space_compaction_by_oom,
208 bool dump_region_info_before_gc,
209 bool dump_region_info_after_gc,
210 space::ImageSpaceLoadingOrder image_space_loading_order)
211 : non_moving_space_(nullptr),
212 rosalloc_space_(nullptr),
213 dlmalloc_space_(nullptr),
214 main_space_(nullptr),
215 collector_type_(kCollectorTypeNone),
216 foreground_collector_type_(foreground_collector_type),
217 background_collector_type_(background_collector_type),
218 desired_collector_type_(foreground_collector_type_),
219 pending_task_lock_(nullptr),
220 parallel_gc_threads_(parallel_gc_threads),
221 conc_gc_threads_(conc_gc_threads),
222 low_memory_mode_(low_memory_mode),
223 long_pause_log_threshold_(long_pause_log_threshold),
224 long_gc_log_threshold_(long_gc_log_threshold),
225 process_cpu_start_time_ns_(ProcessCpuNanoTime()),
226 pre_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
227 post_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
228 pre_gc_weighted_allocated_bytes_(0.0),
229 post_gc_weighted_allocated_bytes_(0.0),
230 ignore_target_footprint_(ignore_target_footprint),
231 zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
232 zygote_space_(nullptr),
233 large_object_threshold_(large_object_threshold),
234 disable_thread_flip_count_(0),
235 thread_flip_running_(false),
236 collector_type_running_(kCollectorTypeNone),
237 last_gc_cause_(kGcCauseNone),
238 thread_running_gc_(nullptr),
239 last_gc_type_(collector::kGcTypeNone),
240 next_gc_type_(collector::kGcTypePartial),
241 capacity_(capacity),
242 growth_limit_(growth_limit),
243 target_footprint_(initial_size),
244 concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
245 total_bytes_freed_ever_(0),
246 total_objects_freed_ever_(0),
247 num_bytes_allocated_(0),
248 native_bytes_registered_(0),
249 old_native_bytes_allocated_(0),
250 native_objects_notified_(0),
251 num_bytes_freed_revoke_(0),
252 verify_missing_card_marks_(false),
253 verify_system_weaks_(false),
254 verify_pre_gc_heap_(verify_pre_gc_heap),
255 verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
256 verify_post_gc_heap_(verify_post_gc_heap),
257 verify_mod_union_table_(false),
258 verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
259 verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
260 verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
261 gc_stress_mode_(gc_stress_mode),
262 /* For GC a lot mode, we limit the allocation stacks to be kGcAlotInterval allocations. This
263 * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
264 * verification is enabled, we limit the size of allocation stacks to speed up their
265 * searching.
266 */
267 max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
268 : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
269 kDefaultAllocationStackSize),
270 current_allocator_(kAllocatorTypeDlMalloc),
271 current_non_moving_allocator_(kAllocatorTypeNonMoving),
272 bump_pointer_space_(nullptr),
273 temp_space_(nullptr),
274 region_space_(nullptr),
275 min_free_(min_free),
276 max_free_(max_free),
277 target_utilization_(target_utilization),
278 foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
279 total_wait_time_(0),
280 verify_object_mode_(kVerifyObjectModeDisabled),
281 disable_moving_gc_count_(0),
282 semi_space_collector_(nullptr),
283 active_concurrent_copying_collector_(nullptr),
284 young_concurrent_copying_collector_(nullptr),
285 concurrent_copying_collector_(nullptr),
286 is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()),
287 use_tlab_(use_tlab),
288 main_space_backup_(nullptr),
289 min_interval_homogeneous_space_compaction_by_oom_(
290 min_interval_homogeneous_space_compaction_by_oom),
291 last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
292 pending_collector_transition_(nullptr),
293 pending_heap_trim_(nullptr),
294 use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
295 use_generational_cc_(use_generational_cc),
296 running_collection_is_blocking_(false),
297 blocking_gc_count_(0U),
298 blocking_gc_time_(0U),
299 last_update_time_gc_count_rate_histograms_( // Round down by the window duration.
300 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
301 gc_count_last_window_(0U),
302 blocking_gc_count_last_window_(0U),
303 gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
304 blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U,
305 kGcCountRateMaxBucketCount),
306 alloc_tracking_enabled_(false),
307 alloc_record_depth_(AllocRecordObjectMap::kDefaultAllocStackDepth),
308 backtrace_lock_(nullptr),
309 seen_backtrace_count_(0u),
310 unique_backtrace_count_(0u),
311 gc_disabled_for_shutdown_(false),
312 dump_region_info_before_gc_(dump_region_info_before_gc),
313 dump_region_info_after_gc_(dump_region_info_after_gc) {
314 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
315 LOG(INFO) << "Heap() entering";
316 }
317 if (kUseReadBarrier) {
318 CHECK_EQ(foreground_collector_type_, kCollectorTypeCC);
319 CHECK_EQ(background_collector_type_, kCollectorTypeCCBackground);
320 }
321 verification_.reset(new Verification(this));
322 CHECK_GE(large_object_threshold, kMinLargeObjectThreshold);
323 ScopedTrace trace(__FUNCTION__);
324 Runtime* const runtime = Runtime::Current();
325 // If we aren't the zygote, switch to the default non zygote allocator. This may update the
326 // entrypoints.
327 const bool is_zygote = runtime->IsZygote();
328 if (!is_zygote) {
329 // Background compaction is currently not supported for command line runs.
330 if (background_collector_type_ != foreground_collector_type_) {
331 VLOG(heap) << "Disabling background compaction for non zygote";
332 background_collector_type_ = foreground_collector_type_;
333 }
334 }
335 ChangeCollector(desired_collector_type_);
336 live_bitmap_.reset(new accounting::HeapBitmap(this));
337 mark_bitmap_.reset(new accounting::HeapBitmap(this));
338
339 // We don't have hspace compaction enabled with GSS or CC.
340 if (foreground_collector_type_ == kCollectorTypeGSS ||
341 foreground_collector_type_ == kCollectorTypeCC) {
342 use_homogeneous_space_compaction_for_oom_ = false;
343 }
344 bool support_homogeneous_space_compaction =
345 background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
346 use_homogeneous_space_compaction_for_oom_;
347 // We may use the same space the main space for the non moving space if we don't need to compact
348 // from the main space.
349 // This is not the case if we support homogeneous compaction or have a moving background
350 // collector type.
351 bool separate_non_moving_space = is_zygote ||
352 support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
353 IsMovingGc(background_collector_type_);
354 if (foreground_collector_type_ == kCollectorTypeGSS) {
355 separate_non_moving_space = false;
356 }
357
358 // Requested begin for the alloc space, to follow the mapped image and oat files
359 uint8_t* request_begin = nullptr;
360 // Calculate the extra space required after the boot image, see allocations below.
361 size_t heap_reservation_size = 0u;
362 if (separate_non_moving_space) {
363 heap_reservation_size = non_moving_space_capacity;
364 } else if ((foreground_collector_type_ != kCollectorTypeCC) &&
365 (is_zygote || foreground_collector_type_ == kCollectorTypeGSS)) {
366 heap_reservation_size = capacity_;
367 }
368 heap_reservation_size = RoundUp(heap_reservation_size, kPageSize);
369 // Load image space(s).
370 std::vector<std::unique_ptr<space::ImageSpace>> boot_image_spaces;
371 MemMap heap_reservation;
372 if (space::ImageSpace::LoadBootImage(boot_class_path,
373 boot_class_path_locations,
374 image_file_name,
375 image_instruction_set,
376 image_space_loading_order,
377 runtime->ShouldRelocate(),
378 /*executable=*/ !runtime->IsAotCompiler(),
379 is_zygote,
380 heap_reservation_size,
381 &boot_image_spaces,
382 &heap_reservation)) {
383 DCHECK_EQ(heap_reservation_size, heap_reservation.IsValid() ? heap_reservation.Size() : 0u);
384 DCHECK(!boot_image_spaces.empty());
385 request_begin = boot_image_spaces.back()->GetImageHeader().GetOatFileEnd();
386 DCHECK(!heap_reservation.IsValid() || request_begin == heap_reservation.Begin())
387 << "request_begin=" << static_cast<const void*>(request_begin)
388 << " heap_reservation.Begin()=" << static_cast<const void*>(heap_reservation.Begin());
389 for (std::unique_ptr<space::ImageSpace>& space : boot_image_spaces) {
390 boot_image_spaces_.push_back(space.get());
391 AddSpace(space.release());
392 }
393 } else {
394 if (foreground_collector_type_ == kCollectorTypeCC) {
395 // Need to use a low address so that we can allocate a contiguous 2 * Xmx space
396 // when there's no image (dex2oat for target).
397 request_begin = kPreferredAllocSpaceBegin;
398 }
399 // Gross hack to make dex2oat deterministic.
400 if (foreground_collector_type_ == kCollectorTypeMS && Runtime::Current()->IsAotCompiler()) {
401 // Currently only enabled for MS collector since that is what the deterministic dex2oat uses.
402 // b/26849108
403 request_begin = reinterpret_cast<uint8_t*>(kAllocSpaceBeginForDeterministicAoT);
404 }
405 }
406
407 /*
408 requested_alloc_space_begin -> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
409 +- nonmoving space (non_moving_space_capacity)+-
410 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
411 +-????????????????????????????????????????????+-
412 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
413 +-main alloc space / bump space 1 (capacity_) +-
414 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
415 +-????????????????????????????????????????????+-
416 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
417 +-main alloc space2 / bump space 2 (capacity_)+-
418 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
419 */
420
421 MemMap main_mem_map_1;
422 MemMap main_mem_map_2;
423
424 std::string error_str;
425 MemMap non_moving_space_mem_map;
426 if (separate_non_moving_space) {
427 ScopedTrace trace2("Create separate non moving space");
428 // If we are the zygote, the non moving space becomes the zygote space when we run
429 // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
430 // rename the mem map later.
431 const char* space_name = is_zygote ? kZygoteSpaceName : kNonMovingSpaceName;
432 // Reserve the non moving mem map before the other two since it needs to be at a specific
433 // address.
434 DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
435 if (heap_reservation.IsValid()) {
436 non_moving_space_mem_map = heap_reservation.RemapAtEnd(
437 heap_reservation.Begin(), space_name, PROT_READ | PROT_WRITE, &error_str);
438 } else {
439 non_moving_space_mem_map = MapAnonymousPreferredAddress(
440 space_name, request_begin, non_moving_space_capacity, &error_str);
441 }
442 CHECK(non_moving_space_mem_map.IsValid()) << error_str;
443 DCHECK(!heap_reservation.IsValid());
444 // Try to reserve virtual memory at a lower address if we have a separate non moving space.
445 request_begin = kPreferredAllocSpaceBegin + non_moving_space_capacity;
446 }
447 // Attempt to create 2 mem maps at or after the requested begin.
448 if (foreground_collector_type_ != kCollectorTypeCC) {
449 ScopedTrace trace2("Create main mem map");
450 if (separate_non_moving_space ||
451 !(is_zygote || foreground_collector_type_ == kCollectorTypeGSS)) {
452 main_mem_map_1 = MapAnonymousPreferredAddress(
453 kMemMapSpaceName[0], request_begin, capacity_, &error_str);
454 } else {
455 // If no separate non-moving space and we are the zygote or the collector type is GSS,
456 // the main space must come right after the image space to avoid a gap.
457 // This is required since we want the zygote space to be adjacent to the image space.
458 DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
459 main_mem_map_1 = MemMap::MapAnonymous(
460 kMemMapSpaceName[0],
461 request_begin,
462 capacity_,
463 PROT_READ | PROT_WRITE,
464 /* low_4gb= */ true,
465 /* reuse= */ false,
466 heap_reservation.IsValid() ? &heap_reservation : nullptr,
467 &error_str);
468 }
469 CHECK(main_mem_map_1.IsValid()) << error_str;
470 DCHECK(!heap_reservation.IsValid());
471 }
472 if (support_homogeneous_space_compaction ||
473 background_collector_type_ == kCollectorTypeSS ||
474 foreground_collector_type_ == kCollectorTypeSS) {
475 ScopedTrace trace2("Create main mem map 2");
476 main_mem_map_2 = MapAnonymousPreferredAddress(
477 kMemMapSpaceName[1], main_mem_map_1.End(), capacity_, &error_str);
478 CHECK(main_mem_map_2.IsValid()) << error_str;
479 }
480
481 // Create the non moving space first so that bitmaps don't take up the address range.
482 if (separate_non_moving_space) {
483 ScopedTrace trace2("Add non moving space");
484 // Non moving space is always dlmalloc since we currently don't have support for multiple
485 // active rosalloc spaces.
486 const size_t size = non_moving_space_mem_map.Size();
487 const void* non_moving_space_mem_map_begin = non_moving_space_mem_map.Begin();
488 non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(std::move(non_moving_space_mem_map),
489 "zygote / non moving space",
490 kDefaultStartingSize,
491 initial_size,
492 size,
493 size,
494 /* can_move_objects= */ false);
495 CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
496 << non_moving_space_mem_map_begin;
497 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
498 AddSpace(non_moving_space_);
499 }
500 // Create other spaces based on whether or not we have a moving GC.
501 if (foreground_collector_type_ == kCollectorTypeCC) {
502 CHECK(separate_non_moving_space);
503 // Reserve twice the capacity, to allow evacuating every region for explicit GCs.
504 MemMap region_space_mem_map =
505 space::RegionSpace::CreateMemMap(kRegionSpaceName, capacity_ * 2, request_begin);
506 CHECK(region_space_mem_map.IsValid()) << "No region space mem map";
507 region_space_ = space::RegionSpace::Create(
508 kRegionSpaceName, std::move(region_space_mem_map), use_generational_cc_);
509 AddSpace(region_space_);
510 } else if (IsMovingGc(foreground_collector_type_) &&
511 foreground_collector_type_ != kCollectorTypeGSS) {
512 // Create bump pointer spaces.
513 // We only to create the bump pointer if the foreground collector is a compacting GC.
514 // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
515 bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
516 std::move(main_mem_map_1));
517 CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
518 AddSpace(bump_pointer_space_);
519 temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
520 std::move(main_mem_map_2));
521 CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
522 AddSpace(temp_space_);
523 CHECK(separate_non_moving_space);
524 } else {
525 CreateMainMallocSpace(std::move(main_mem_map_1), initial_size, growth_limit_, capacity_);
526 CHECK(main_space_ != nullptr);
527 AddSpace(main_space_);
528 if (!separate_non_moving_space) {
529 non_moving_space_ = main_space_;
530 CHECK(!non_moving_space_->CanMoveObjects());
531 }
532 if (foreground_collector_type_ == kCollectorTypeGSS) {
533 CHECK_EQ(foreground_collector_type_, background_collector_type_);
534 // Create bump pointer spaces instead of a backup space.
535 main_mem_map_2.Reset();
536 bump_pointer_space_ = space::BumpPointerSpace::Create(
537 "Bump pointer space 1", kGSSBumpPointerSpaceCapacity);
538 CHECK(bump_pointer_space_ != nullptr);
539 AddSpace(bump_pointer_space_);
540 temp_space_ = space::BumpPointerSpace::Create(
541 "Bump pointer space 2", kGSSBumpPointerSpaceCapacity);
542 CHECK(temp_space_ != nullptr);
543 AddSpace(temp_space_);
544 } else if (main_mem_map_2.IsValid()) {
545 const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
546 main_space_backup_.reset(CreateMallocSpaceFromMemMap(std::move(main_mem_map_2),
547 initial_size,
548 growth_limit_,
549 capacity_,
550 name,
551 /* can_move_objects= */ true));
552 CHECK(main_space_backup_.get() != nullptr);
553 // Add the space so its accounted for in the heap_begin and heap_end.
554 AddSpace(main_space_backup_.get());
555 }
556 }
557 CHECK(non_moving_space_ != nullptr);
558 CHECK(!non_moving_space_->CanMoveObjects());
559 // Allocate the large object space.
560 if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
561 large_object_space_ = space::FreeListSpace::Create("free list large object space", capacity_);
562 CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
563 } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
564 large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
565 CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
566 } else {
567 // Disable the large object space by making the cutoff excessively large.
568 large_object_threshold_ = std::numeric_limits<size_t>::max();
569 large_object_space_ = nullptr;
570 }
571 if (large_object_space_ != nullptr) {
572 AddSpace(large_object_space_);
573 }
574 // Compute heap capacity. Continuous spaces are sorted in order of Begin().
575 CHECK(!continuous_spaces_.empty());
576 // Relies on the spaces being sorted.
577 uint8_t* heap_begin = continuous_spaces_.front()->Begin();
578 uint8_t* heap_end = continuous_spaces_.back()->Limit();
579 size_t heap_capacity = heap_end - heap_begin;
580 // Remove the main backup space since it slows down the GC to have unused extra spaces.
581 // TODO: Avoid needing to do this.
582 if (main_space_backup_.get() != nullptr) {
583 RemoveSpace(main_space_backup_.get());
584 }
585 // Allocate the card table.
586 // We currently don't support dynamically resizing the card table.
587 // Since we don't know where in the low_4gb the app image will be located, make the card table
588 // cover the whole low_4gb. TODO: Extend the card table in AddSpace.
589 UNUSED(heap_capacity);
590 // Start at 4 KB, we can be sure there are no spaces mapped this low since the address range is
591 // reserved by the kernel.
592 static constexpr size_t kMinHeapAddress = 4 * KB;
593 card_table_.reset(accounting::CardTable::Create(reinterpret_cast<uint8_t*>(kMinHeapAddress),
594 4 * GB - kMinHeapAddress));
595 CHECK(card_table_.get() != nullptr) << "Failed to create card table";
596 if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
597 rb_table_.reset(new accounting::ReadBarrierTable());
598 DCHECK(rb_table_->IsAllCleared());
599 }
600 if (HasBootImageSpace()) {
601 // Don't add the image mod union table if we are running without an image, this can crash if
602 // we use the CardCache implementation.
603 for (space::ImageSpace* image_space : GetBootImageSpaces()) {
604 accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
605 "Image mod-union table", this, image_space);
606 CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
607 AddModUnionTable(mod_union_table);
608 }
609 }
610 if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
611 accounting::RememberedSet* non_moving_space_rem_set =
612 new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
613 CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
614 AddRememberedSet(non_moving_space_rem_set);
615 }
616 // TODO: Count objects in the image space here?
617 num_bytes_allocated_.store(0, std::memory_order_relaxed);
618 mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
619 kDefaultMarkStackSize));
620 const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
621 allocation_stack_.reset(accounting::ObjectStack::Create(
622 "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
623 live_stack_.reset(accounting::ObjectStack::Create(
624 "live stack", max_allocation_stack_size_, alloc_stack_capacity));
625 // It's still too early to take a lock because there are no threads yet, but we can create locks
626 // now. We don't create it earlier to make it clear that you can't use locks during heap
627 // initialization.
628 gc_complete_lock_ = new Mutex("GC complete lock");
629 gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
630 *gc_complete_lock_));
631
632 thread_flip_lock_ = new Mutex("GC thread flip lock");
633 thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable",
634 *thread_flip_lock_));
635 task_processor_.reset(new TaskProcessor());
636 reference_processor_.reset(new ReferenceProcessor());
637 pending_task_lock_ = new Mutex("Pending task lock");
638 if (ignore_target_footprint_) {
639 SetIdealFootprint(std::numeric_limits<size_t>::max());
640 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
641 }
642 CHECK_NE(target_footprint_.load(std::memory_order_relaxed), 0U);
643 // Create our garbage collectors.
644 for (size_t i = 0; i < 2; ++i) {
645 const bool concurrent = i != 0;
646 if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
647 (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
648 garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
649 garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
650 garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
651 }
652 }
653 if (kMovingCollector) {
654 if (MayUseCollector(kCollectorTypeSS) || MayUseCollector(kCollectorTypeGSS) ||
655 MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
656 use_homogeneous_space_compaction_for_oom_) {
657 // TODO: Clean this up.
658 const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
659 semi_space_collector_ = new collector::SemiSpace(this, generational,
660 generational ? "generational" : "");
661 garbage_collectors_.push_back(semi_space_collector_);
662 }
663 if (MayUseCollector(kCollectorTypeCC)) {
664 concurrent_copying_collector_ = new collector::ConcurrentCopying(this,
665 /*young_gen=*/false,
666 use_generational_cc_,
667 "",
668 measure_gc_performance);
669 if (use_generational_cc_) {
670 young_concurrent_copying_collector_ = new collector::ConcurrentCopying(
671 this,
672 /*young_gen=*/true,
673 use_generational_cc_,
674 "young",
675 measure_gc_performance);
676 }
677 active_concurrent_copying_collector_ = concurrent_copying_collector_;
678 DCHECK(region_space_ != nullptr);
679 concurrent_copying_collector_->SetRegionSpace(region_space_);
680 if (use_generational_cc_) {
681 young_concurrent_copying_collector_->SetRegionSpace(region_space_);
682 // At this point, non-moving space should be created.
683 DCHECK(non_moving_space_ != nullptr);
684 concurrent_copying_collector_->CreateInterRegionRefBitmaps();
685 }
686 garbage_collectors_.push_back(concurrent_copying_collector_);
687 if (use_generational_cc_) {
688 garbage_collectors_.push_back(young_concurrent_copying_collector_);
689 }
690 }
691 }
692 if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr &&
693 (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) {
694 // Check that there's no gap between the image space and the non moving space so that the
695 // immune region won't break (eg. due to a large object allocated in the gap). This is only
696 // required when we're the zygote or using GSS.
697 // Space with smallest Begin().
698 space::ImageSpace* first_space = nullptr;
699 for (space::ImageSpace* space : boot_image_spaces_) {
700 if (first_space == nullptr || space->Begin() < first_space->Begin()) {
701 first_space = space;
702 }
703 }
704 bool no_gap = MemMap::CheckNoGaps(*first_space->GetMemMap(), *non_moving_space_->GetMemMap());
705 if (!no_gap) {
706 PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
707 MemMap::DumpMaps(LOG_STREAM(ERROR), /* terse= */ true);
708 LOG(FATAL) << "There's a gap between the image space and the non-moving space";
709 }
710 }
711 instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
712 if (gc_stress_mode_) {
713 backtrace_lock_ = new Mutex("GC complete lock");
714 }
715 if (is_running_on_memory_tool_ || gc_stress_mode_) {
716 instrumentation->InstrumentQuickAllocEntryPoints();
717 }
718 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
719 LOG(INFO) << "Heap() exiting";
720 }
721 }
722
MapAnonymousPreferredAddress(const char * name,uint8_t * request_begin,size_t capacity,std::string * out_error_str)723 MemMap Heap::MapAnonymousPreferredAddress(const char* name,
724 uint8_t* request_begin,
725 size_t capacity,
726 std::string* out_error_str) {
727 while (true) {
728 MemMap map = MemMap::MapAnonymous(name,
729 request_begin,
730 capacity,
731 PROT_READ | PROT_WRITE,
732 /*low_4gb=*/ true,
733 /*reuse=*/ false,
734 /*reservation=*/ nullptr,
735 out_error_str);
736 if (map.IsValid() || request_begin == nullptr) {
737 return map;
738 }
739 // Retry a second time with no specified request begin.
740 request_begin = nullptr;
741 }
742 }
743
MayUseCollector(CollectorType type) const744 bool Heap::MayUseCollector(CollectorType type) const {
745 return foreground_collector_type_ == type || background_collector_type_ == type;
746 }
747
CreateMallocSpaceFromMemMap(MemMap && mem_map,size_t initial_size,size_t growth_limit,size_t capacity,const char * name,bool can_move_objects)748 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap&& mem_map,
749 size_t initial_size,
750 size_t growth_limit,
751 size_t capacity,
752 const char* name,
753 bool can_move_objects) {
754 space::MallocSpace* malloc_space = nullptr;
755 if (kUseRosAlloc) {
756 // Create rosalloc space.
757 malloc_space = space::RosAllocSpace::CreateFromMemMap(std::move(mem_map),
758 name,
759 kDefaultStartingSize,
760 initial_size,
761 growth_limit,
762 capacity,
763 low_memory_mode_,
764 can_move_objects);
765 } else {
766 malloc_space = space::DlMallocSpace::CreateFromMemMap(std::move(mem_map),
767 name,
768 kDefaultStartingSize,
769 initial_size,
770 growth_limit,
771 capacity,
772 can_move_objects);
773 }
774 if (collector::SemiSpace::kUseRememberedSet) {
775 accounting::RememberedSet* rem_set =
776 new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
777 CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
778 AddRememberedSet(rem_set);
779 }
780 CHECK(malloc_space != nullptr) << "Failed to create " << name;
781 malloc_space->SetFootprintLimit(malloc_space->Capacity());
782 return malloc_space;
783 }
784
CreateMainMallocSpace(MemMap && mem_map,size_t initial_size,size_t growth_limit,size_t capacity)785 void Heap::CreateMainMallocSpace(MemMap&& mem_map,
786 size_t initial_size,
787 size_t growth_limit,
788 size_t capacity) {
789 // Is background compaction is enabled?
790 bool can_move_objects = IsMovingGc(background_collector_type_) !=
791 IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
792 // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
793 // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
794 // from the main space to the zygote space. If background compaction is enabled, always pass in
795 // that we can move objets.
796 if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
797 // After the zygote we want this to be false if we don't have background compaction enabled so
798 // that getting primitive array elements is faster.
799 // We never have homogeneous compaction with GSS and don't need a space with movable objects.
800 can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS;
801 }
802 if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
803 RemoveRememberedSet(main_space_);
804 }
805 const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
806 main_space_ = CreateMallocSpaceFromMemMap(std::move(mem_map),
807 initial_size,
808 growth_limit,
809 capacity, name,
810 can_move_objects);
811 SetSpaceAsDefault(main_space_);
812 VLOG(heap) << "Created main space " << main_space_;
813 }
814
ChangeAllocator(AllocatorType allocator)815 void Heap::ChangeAllocator(AllocatorType allocator) {
816 if (current_allocator_ != allocator) {
817 // These two allocators are only used internally and don't have any entrypoints.
818 CHECK_NE(allocator, kAllocatorTypeLOS);
819 CHECK_NE(allocator, kAllocatorTypeNonMoving);
820 current_allocator_ = allocator;
821 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
822 SetQuickAllocEntryPointsAllocator(current_allocator_);
823 Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
824 }
825 }
826
DisableMovingGc()827 void Heap::DisableMovingGc() {
828 CHECK(!kUseReadBarrier);
829 if (IsMovingGc(foreground_collector_type_)) {
830 foreground_collector_type_ = kCollectorTypeCMS;
831 }
832 if (IsMovingGc(background_collector_type_)) {
833 background_collector_type_ = foreground_collector_type_;
834 }
835 TransitionCollector(foreground_collector_type_);
836 Thread* const self = Thread::Current();
837 ScopedThreadStateChange tsc(self, kSuspended);
838 ScopedSuspendAll ssa(__FUNCTION__);
839 // Something may have caused the transition to fail.
840 if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
841 CHECK(main_space_ != nullptr);
842 // The allocation stack may have non movable objects in it. We need to flush it since the GC
843 // can't only handle marking allocation stack objects of one non moving space and one main
844 // space.
845 {
846 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
847 FlushAllocStack();
848 }
849 main_space_->DisableMovingObjects();
850 non_moving_space_ = main_space_;
851 CHECK(!non_moving_space_->CanMoveObjects());
852 }
853 }
854
IsCompilingBoot() const855 bool Heap::IsCompilingBoot() const {
856 if (!Runtime::Current()->IsAotCompiler()) {
857 return false;
858 }
859 ScopedObjectAccess soa(Thread::Current());
860 for (const auto& space : continuous_spaces_) {
861 if (space->IsImageSpace() || space->IsZygoteSpace()) {
862 return false;
863 }
864 }
865 return true;
866 }
867
IncrementDisableMovingGC(Thread * self)868 void Heap::IncrementDisableMovingGC(Thread* self) {
869 // Need to do this holding the lock to prevent races where the GC is about to run / running when
870 // we attempt to disable it.
871 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
872 MutexLock mu(self, *gc_complete_lock_);
873 ++disable_moving_gc_count_;
874 if (IsMovingGc(collector_type_running_)) {
875 WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
876 }
877 }
878
DecrementDisableMovingGC(Thread * self)879 void Heap::DecrementDisableMovingGC(Thread* self) {
880 MutexLock mu(self, *gc_complete_lock_);
881 CHECK_GT(disable_moving_gc_count_, 0U);
882 --disable_moving_gc_count_;
883 }
884
IncrementDisableThreadFlip(Thread * self)885 void Heap::IncrementDisableThreadFlip(Thread* self) {
886 // Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead.
887 CHECK(kUseReadBarrier);
888 bool is_nested = self->GetDisableThreadFlipCount() > 0;
889 self->IncrementDisableThreadFlipCount();
890 if (is_nested) {
891 // If this is a nested JNI critical section enter, we don't need to wait or increment the global
892 // counter. The global counter is incremented only once for a thread for the outermost enter.
893 return;
894 }
895 ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
896 MutexLock mu(self, *thread_flip_lock_);
897 thread_flip_cond_->CheckSafeToWait(self);
898 bool has_waited = false;
899 uint64_t wait_start = NanoTime();
900 if (thread_flip_running_) {
901 ScopedTrace trace("IncrementDisableThreadFlip");
902 while (thread_flip_running_) {
903 has_waited = true;
904 thread_flip_cond_->Wait(self);
905 }
906 }
907 ++disable_thread_flip_count_;
908 if (has_waited) {
909 uint64_t wait_time = NanoTime() - wait_start;
910 total_wait_time_ += wait_time;
911 if (wait_time > long_pause_log_threshold_) {
912 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
913 }
914 }
915 }
916
DecrementDisableThreadFlip(Thread * self)917 void Heap::DecrementDisableThreadFlip(Thread* self) {
918 // Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up
919 // the GC waiting before doing a thread flip.
920 CHECK(kUseReadBarrier);
921 self->DecrementDisableThreadFlipCount();
922 bool is_outermost = self->GetDisableThreadFlipCount() == 0;
923 if (!is_outermost) {
924 // If this is not an outermost JNI critical exit, we don't need to decrement the global counter.
925 // The global counter is decremented only once for a thread for the outermost exit.
926 return;
927 }
928 MutexLock mu(self, *thread_flip_lock_);
929 CHECK_GT(disable_thread_flip_count_, 0U);
930 --disable_thread_flip_count_;
931 if (disable_thread_flip_count_ == 0) {
932 // Potentially notify the GC thread blocking to begin a thread flip.
933 thread_flip_cond_->Broadcast(self);
934 }
935 }
936
ThreadFlipBegin(Thread * self)937 void Heap::ThreadFlipBegin(Thread* self) {
938 // Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_
939 // > 0, block. Otherwise, go ahead.
940 CHECK(kUseReadBarrier);
941 ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
942 MutexLock mu(self, *thread_flip_lock_);
943 thread_flip_cond_->CheckSafeToWait(self);
944 bool has_waited = false;
945 uint64_t wait_start = NanoTime();
946 CHECK(!thread_flip_running_);
947 // Set this to true before waiting so that frequent JNI critical enter/exits won't starve
948 // GC. This like a writer preference of a reader-writer lock.
949 thread_flip_running_ = true;
950 while (disable_thread_flip_count_ > 0) {
951 has_waited = true;
952 thread_flip_cond_->Wait(self);
953 }
954 if (has_waited) {
955 uint64_t wait_time = NanoTime() - wait_start;
956 total_wait_time_ += wait_time;
957 if (wait_time > long_pause_log_threshold_) {
958 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
959 }
960 }
961 }
962
ThreadFlipEnd(Thread * self)963 void Heap::ThreadFlipEnd(Thread* self) {
964 // Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators
965 // waiting before doing a JNI critical.
966 CHECK(kUseReadBarrier);
967 MutexLock mu(self, *thread_flip_lock_);
968 CHECK(thread_flip_running_);
969 thread_flip_running_ = false;
970 // Potentially notify mutator threads blocking to enter a JNI critical section.
971 thread_flip_cond_->Broadcast(self);
972 }
973
UpdateProcessState(ProcessState old_process_state,ProcessState new_process_state)974 void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) {
975 if (old_process_state != new_process_state) {
976 const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible;
977 for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
978 // Start at index 1 to avoid "is always false" warning.
979 // Have iteration 1 always transition the collector.
980 TransitionCollector((((i & 1) == 1) == jank_perceptible)
981 ? foreground_collector_type_
982 : background_collector_type_);
983 usleep(kCollectorTransitionStressWait);
984 }
985 if (jank_perceptible) {
986 // Transition back to foreground right away to prevent jank.
987 RequestCollectorTransition(foreground_collector_type_, 0);
988 } else {
989 // Don't delay for debug builds since we may want to stress test the GC.
990 // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
991 // special handling which does a homogenous space compaction once but then doesn't transition
992 // the collector. Similarly, we invoke a full compaction for kCollectorTypeCC but don't
993 // transition the collector.
994 RequestCollectorTransition(background_collector_type_,
995 kStressCollectorTransition
996 ? 0
997 : kCollectorTransitionWait);
998 }
999 }
1000 }
1001
CreateThreadPool()1002 void Heap::CreateThreadPool() {
1003 const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
1004 if (num_threads != 0) {
1005 thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
1006 }
1007 }
1008
MarkAllocStackAsLive(accounting::ObjectStack * stack)1009 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
1010 space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
1011 space::ContinuousSpace* space2 = non_moving_space_;
1012 // TODO: Generalize this to n bitmaps?
1013 CHECK(space1 != nullptr);
1014 CHECK(space2 != nullptr);
1015 MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
1016 (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
1017 stack);
1018 }
1019
DeleteThreadPool()1020 void Heap::DeleteThreadPool() {
1021 thread_pool_.reset(nullptr);
1022 }
1023
AddSpace(space::Space * space)1024 void Heap::AddSpace(space::Space* space) {
1025 CHECK(space != nullptr);
1026 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1027 if (space->IsContinuousSpace()) {
1028 DCHECK(!space->IsDiscontinuousSpace());
1029 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
1030 // Continuous spaces don't necessarily have bitmaps.
1031 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
1032 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
1033 // The region space bitmap is not added since VisitObjects visits the region space objects with
1034 // special handling.
1035 if (live_bitmap != nullptr && !space->IsRegionSpace()) {
1036 CHECK(mark_bitmap != nullptr);
1037 live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
1038 mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
1039 }
1040 continuous_spaces_.push_back(continuous_space);
1041 // Ensure that spaces remain sorted in increasing order of start address.
1042 std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
1043 [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
1044 return a->Begin() < b->Begin();
1045 });
1046 } else {
1047 CHECK(space->IsDiscontinuousSpace());
1048 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
1049 live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
1050 mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
1051 discontinuous_spaces_.push_back(discontinuous_space);
1052 }
1053 if (space->IsAllocSpace()) {
1054 alloc_spaces_.push_back(space->AsAllocSpace());
1055 }
1056 }
1057
SetSpaceAsDefault(space::ContinuousSpace * continuous_space)1058 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
1059 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1060 if (continuous_space->IsDlMallocSpace()) {
1061 dlmalloc_space_ = continuous_space->AsDlMallocSpace();
1062 } else if (continuous_space->IsRosAllocSpace()) {
1063 rosalloc_space_ = continuous_space->AsRosAllocSpace();
1064 }
1065 }
1066
RemoveSpace(space::Space * space)1067 void Heap::RemoveSpace(space::Space* space) {
1068 DCHECK(space != nullptr);
1069 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1070 if (space->IsContinuousSpace()) {
1071 DCHECK(!space->IsDiscontinuousSpace());
1072 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
1073 // Continuous spaces don't necessarily have bitmaps.
1074 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
1075 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
1076 if (live_bitmap != nullptr && !space->IsRegionSpace()) {
1077 DCHECK(mark_bitmap != nullptr);
1078 live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
1079 mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
1080 }
1081 auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
1082 DCHECK(it != continuous_spaces_.end());
1083 continuous_spaces_.erase(it);
1084 } else {
1085 DCHECK(space->IsDiscontinuousSpace());
1086 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
1087 live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
1088 mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
1089 auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
1090 discontinuous_space);
1091 DCHECK(it != discontinuous_spaces_.end());
1092 discontinuous_spaces_.erase(it);
1093 }
1094 if (space->IsAllocSpace()) {
1095 auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
1096 DCHECK(it != alloc_spaces_.end());
1097 alloc_spaces_.erase(it);
1098 }
1099 }
1100
CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,uint64_t current_process_cpu_time) const1101 double Heap::CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,
1102 uint64_t current_process_cpu_time) const {
1103 uint64_t bytes_allocated = GetBytesAllocated();
1104 double weight = current_process_cpu_time - gc_last_process_cpu_time_ns;
1105 return weight * bytes_allocated;
1106 }
1107
CalculatePreGcWeightedAllocatedBytes()1108 void Heap::CalculatePreGcWeightedAllocatedBytes() {
1109 uint64_t current_process_cpu_time = ProcessCpuNanoTime();
1110 pre_gc_weighted_allocated_bytes_ +=
1111 CalculateGcWeightedAllocatedBytes(pre_gc_last_process_cpu_time_ns_, current_process_cpu_time);
1112 pre_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
1113 }
1114
CalculatePostGcWeightedAllocatedBytes()1115 void Heap::CalculatePostGcWeightedAllocatedBytes() {
1116 uint64_t current_process_cpu_time = ProcessCpuNanoTime();
1117 post_gc_weighted_allocated_bytes_ +=
1118 CalculateGcWeightedAllocatedBytes(post_gc_last_process_cpu_time_ns_, current_process_cpu_time);
1119 post_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
1120 }
1121
GetTotalGcCpuTime()1122 uint64_t Heap::GetTotalGcCpuTime() {
1123 uint64_t sum = 0;
1124 for (auto* collector : garbage_collectors_) {
1125 sum += collector->GetTotalCpuTime();
1126 }
1127 return sum;
1128 }
1129
DumpGcPerformanceInfo(std::ostream & os)1130 void Heap::DumpGcPerformanceInfo(std::ostream& os) {
1131 // Dump cumulative timings.
1132 os << "Dumping cumulative Gc timings\n";
1133 uint64_t total_duration = 0;
1134 // Dump cumulative loggers for each GC type.
1135 uint64_t total_paused_time = 0;
1136 for (auto* collector : garbage_collectors_) {
1137 total_duration += collector->GetCumulativeTimings().GetTotalNs();
1138 total_paused_time += collector->GetTotalPausedTimeNs();
1139 collector->DumpPerformanceInfo(os);
1140 }
1141 if (total_duration != 0) {
1142 const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
1143 os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
1144 os << "Mean GC size throughput: "
1145 << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
1146 os << "Mean GC object throughput: "
1147 << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
1148 }
1149 uint64_t total_objects_allocated = GetObjectsAllocatedEver();
1150 os << "Total number of allocations " << total_objects_allocated << "\n";
1151 os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
1152 os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
1153 os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
1154 os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
1155 os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
1156 os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
1157 os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
1158 if (HasZygoteSpace()) {
1159 os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
1160 }
1161 os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
1162 os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
1163 os << "Total GC count: " << GetGcCount() << "\n";
1164 os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
1165 os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
1166 os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
1167
1168 {
1169 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1170 if (gc_count_rate_histogram_.SampleSize() > 0U) {
1171 os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1172 gc_count_rate_histogram_.DumpBins(os);
1173 os << "\n";
1174 }
1175 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1176 os << "Histogram of blocking GC count per "
1177 << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1178 blocking_gc_count_rate_histogram_.DumpBins(os);
1179 os << "\n";
1180 }
1181 }
1182
1183 if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) {
1184 rosalloc_space_->DumpStats(os);
1185 }
1186
1187 os << "Native bytes total: " << GetNativeBytes()
1188 << " registered: " << native_bytes_registered_.load(std::memory_order_relaxed) << "\n";
1189
1190 os << "Total native bytes at last GC: "
1191 << old_native_bytes_allocated_.load(std::memory_order_relaxed) << "\n";
1192
1193 BaseMutex::DumpAll(os);
1194 }
1195
ResetGcPerformanceInfo()1196 void Heap::ResetGcPerformanceInfo() {
1197 for (auto* collector : garbage_collectors_) {
1198 collector->ResetMeasurements();
1199 }
1200
1201 process_cpu_start_time_ns_ = ProcessCpuNanoTime();
1202
1203 pre_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
1204 pre_gc_weighted_allocated_bytes_ = 0u;
1205
1206 post_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
1207 post_gc_weighted_allocated_bytes_ = 0u;
1208
1209 total_bytes_freed_ever_ = 0;
1210 total_objects_freed_ever_ = 0;
1211 total_wait_time_ = 0;
1212 blocking_gc_count_ = 0;
1213 blocking_gc_time_ = 0;
1214 gc_count_last_window_ = 0;
1215 blocking_gc_count_last_window_ = 0;
1216 last_update_time_gc_count_rate_histograms_ = // Round down by the window duration.
1217 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
1218 {
1219 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1220 gc_count_rate_histogram_.Reset();
1221 blocking_gc_count_rate_histogram_.Reset();
1222 }
1223 }
1224
GetGcCount() const1225 uint64_t Heap::GetGcCount() const {
1226 uint64_t gc_count = 0U;
1227 for (auto* collector : garbage_collectors_) {
1228 gc_count += collector->GetCumulativeTimings().GetIterations();
1229 }
1230 return gc_count;
1231 }
1232
GetGcTime() const1233 uint64_t Heap::GetGcTime() const {
1234 uint64_t gc_time = 0U;
1235 for (auto* collector : garbage_collectors_) {
1236 gc_time += collector->GetCumulativeTimings().GetTotalNs();
1237 }
1238 return gc_time;
1239 }
1240
GetBlockingGcCount() const1241 uint64_t Heap::GetBlockingGcCount() const {
1242 return blocking_gc_count_;
1243 }
1244
GetBlockingGcTime() const1245 uint64_t Heap::GetBlockingGcTime() const {
1246 return blocking_gc_time_;
1247 }
1248
DumpGcCountRateHistogram(std::ostream & os) const1249 void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
1250 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1251 if (gc_count_rate_histogram_.SampleSize() > 0U) {
1252 gc_count_rate_histogram_.DumpBins(os);
1253 }
1254 }
1255
DumpBlockingGcCountRateHistogram(std::ostream & os) const1256 void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
1257 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1258 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1259 blocking_gc_count_rate_histogram_.DumpBins(os);
1260 }
1261 }
1262
1263 ALWAYS_INLINE
GetAndOverwriteAllocationListener(Atomic<AllocationListener * > * storage,AllocationListener * new_value)1264 static inline AllocationListener* GetAndOverwriteAllocationListener(
1265 Atomic<AllocationListener*>* storage, AllocationListener* new_value) {
1266 return storage->exchange(new_value);
1267 }
1268
~Heap()1269 Heap::~Heap() {
1270 VLOG(heap) << "Starting ~Heap()";
1271 STLDeleteElements(&garbage_collectors_);
1272 // If we don't reset then the mark stack complains in its destructor.
1273 allocation_stack_->Reset();
1274 allocation_records_.reset();
1275 live_stack_->Reset();
1276 STLDeleteValues(&mod_union_tables_);
1277 STLDeleteValues(&remembered_sets_);
1278 STLDeleteElements(&continuous_spaces_);
1279 STLDeleteElements(&discontinuous_spaces_);
1280 delete gc_complete_lock_;
1281 delete thread_flip_lock_;
1282 delete pending_task_lock_;
1283 delete backtrace_lock_;
1284 uint64_t unique_count = unique_backtrace_count_.load();
1285 uint64_t seen_count = seen_backtrace_count_.load();
1286 if (unique_count != 0 || seen_count != 0) {
1287 LOG(INFO) << "gc stress unique=" << unique_count << " total=" << (unique_count + seen_count);
1288 }
1289 VLOG(heap) << "Finished ~Heap()";
1290 }
1291
1292
FindContinuousSpaceFromAddress(const mirror::Object * addr) const1293 space::ContinuousSpace* Heap::FindContinuousSpaceFromAddress(const mirror::Object* addr) const {
1294 for (const auto& space : continuous_spaces_) {
1295 if (space->Contains(addr)) {
1296 return space;
1297 }
1298 }
1299 return nullptr;
1300 }
1301
FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1302 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1303 bool fail_ok) const {
1304 space::ContinuousSpace* space = FindContinuousSpaceFromAddress(obj.Ptr());
1305 if (space != nullptr) {
1306 return space;
1307 }
1308 if (!fail_ok) {
1309 LOG(FATAL) << "object " << obj << " not inside any spaces!";
1310 }
1311 return nullptr;
1312 }
1313
FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1314 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1315 bool fail_ok) const {
1316 for (const auto& space : discontinuous_spaces_) {
1317 if (space->Contains(obj.Ptr())) {
1318 return space;
1319 }
1320 }
1321 if (!fail_ok) {
1322 LOG(FATAL) << "object " << obj << " not inside any spaces!";
1323 }
1324 return nullptr;
1325 }
1326
FindSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1327 space::Space* Heap::FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const {
1328 space::Space* result = FindContinuousSpaceFromObject(obj, true);
1329 if (result != nullptr) {
1330 return result;
1331 }
1332 return FindDiscontinuousSpaceFromObject(obj, fail_ok);
1333 }
1334
FindSpaceFromAddress(const void * addr) const1335 space::Space* Heap::FindSpaceFromAddress(const void* addr) const {
1336 for (const auto& space : continuous_spaces_) {
1337 if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1338 return space;
1339 }
1340 }
1341 for (const auto& space : discontinuous_spaces_) {
1342 if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1343 return space;
1344 }
1345 }
1346 return nullptr;
1347 }
1348
DumpSpaceNameFromAddress(const void * addr) const1349 std::string Heap::DumpSpaceNameFromAddress(const void* addr) const {
1350 space::Space* space = FindSpaceFromAddress(addr);
1351 return (space != nullptr) ? space->GetName() : "no space";
1352 }
1353
ThrowOutOfMemoryError(Thread * self,size_t byte_count,AllocatorType allocator_type)1354 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
1355 // If we're in a stack overflow, do not create a new exception. It would require running the
1356 // constructor, which will of course still be in a stack overflow.
1357 if (self->IsHandlingStackOverflow()) {
1358 self->SetException(
1359 Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
1360 return;
1361 }
1362
1363 std::ostringstream oss;
1364 size_t total_bytes_free = GetFreeMemory();
1365 oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
1366 << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM,"
1367 << " target footprint " << target_footprint_.load(std::memory_order_relaxed)
1368 << ", growth limit "
1369 << growth_limit_;
1370 // If the allocation failed due to fragmentation, print out the largest continuous allocation.
1371 if (total_bytes_free >= byte_count) {
1372 space::AllocSpace* space = nullptr;
1373 if (allocator_type == kAllocatorTypeNonMoving) {
1374 space = non_moving_space_;
1375 } else if (allocator_type == kAllocatorTypeRosAlloc ||
1376 allocator_type == kAllocatorTypeDlMalloc) {
1377 space = main_space_;
1378 } else if (allocator_type == kAllocatorTypeBumpPointer ||
1379 allocator_type == kAllocatorTypeTLAB) {
1380 space = bump_pointer_space_;
1381 } else if (allocator_type == kAllocatorTypeRegion ||
1382 allocator_type == kAllocatorTypeRegionTLAB) {
1383 space = region_space_;
1384 }
1385 if (space != nullptr) {
1386 space->LogFragmentationAllocFailure(oss, byte_count);
1387 }
1388 }
1389 self->ThrowOutOfMemoryError(oss.str().c_str());
1390 }
1391
DoPendingCollectorTransition()1392 void Heap::DoPendingCollectorTransition() {
1393 CollectorType desired_collector_type = desired_collector_type_;
1394 // Launch homogeneous space compaction if it is desired.
1395 if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
1396 if (!CareAboutPauseTimes()) {
1397 PerformHomogeneousSpaceCompact();
1398 } else {
1399 VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
1400 }
1401 } else if (desired_collector_type == kCollectorTypeCCBackground) {
1402 DCHECK(kUseReadBarrier);
1403 if (!CareAboutPauseTimes()) {
1404 // Invoke CC full compaction.
1405 CollectGarbageInternal(collector::kGcTypeFull,
1406 kGcCauseCollectorTransition,
1407 /*clear_soft_references=*/false);
1408 } else {
1409 VLOG(gc) << "CC background compaction ignored due to jank perceptible process state";
1410 }
1411 } else {
1412 TransitionCollector(desired_collector_type);
1413 }
1414 }
1415
Trim(Thread * self)1416 void Heap::Trim(Thread* self) {
1417 Runtime* const runtime = Runtime::Current();
1418 if (!CareAboutPauseTimes()) {
1419 // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
1420 // about pauses.
1421 ScopedTrace trace("Deflating monitors");
1422 // Avoid race conditions on the lock word for CC.
1423 ScopedGCCriticalSection gcs(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1424 ScopedSuspendAll ssa(__FUNCTION__);
1425 uint64_t start_time = NanoTime();
1426 size_t count = runtime->GetMonitorList()->DeflateMonitors();
1427 VLOG(heap) << "Deflating " << count << " monitors took "
1428 << PrettyDuration(NanoTime() - start_time);
1429 }
1430 TrimIndirectReferenceTables(self);
1431 TrimSpaces(self);
1432 // Trim arenas that may have been used by JIT or verifier.
1433 runtime->GetArenaPool()->TrimMaps();
1434 }
1435
1436 class TrimIndirectReferenceTableClosure : public Closure {
1437 public:
TrimIndirectReferenceTableClosure(Barrier * barrier)1438 explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
1439 }
Run(Thread * thread)1440 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
1441 thread->GetJniEnv()->TrimLocals();
1442 // If thread is a running mutator, then act on behalf of the trim thread.
1443 // See the code in ThreadList::RunCheckpoint.
1444 barrier_->Pass(Thread::Current());
1445 }
1446
1447 private:
1448 Barrier* const barrier_;
1449 };
1450
TrimIndirectReferenceTables(Thread * self)1451 void Heap::TrimIndirectReferenceTables(Thread* self) {
1452 ScopedObjectAccess soa(self);
1453 ScopedTrace trace(__PRETTY_FUNCTION__);
1454 JavaVMExt* vm = soa.Vm();
1455 // Trim globals indirect reference table.
1456 vm->TrimGlobals();
1457 // Trim locals indirect reference tables.
1458 Barrier barrier(0);
1459 TrimIndirectReferenceTableClosure closure(&barrier);
1460 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1461 size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
1462 if (barrier_count != 0) {
1463 barrier.Increment(self, barrier_count);
1464 }
1465 }
1466
StartGC(Thread * self,GcCause cause,CollectorType collector_type)1467 void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) {
1468 // Need to do this before acquiring the locks since we don't want to get suspended while
1469 // holding any locks.
1470 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1471 MutexLock mu(self, *gc_complete_lock_);
1472 // Ensure there is only one GC at a time.
1473 WaitForGcToCompleteLocked(cause, self);
1474 collector_type_running_ = collector_type;
1475 last_gc_cause_ = cause;
1476 thread_running_gc_ = self;
1477 }
1478
TrimSpaces(Thread * self)1479 void Heap::TrimSpaces(Thread* self) {
1480 // Pretend we are doing a GC to prevent background compaction from deleting the space we are
1481 // trimming.
1482 StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1483 ScopedTrace trace(__PRETTY_FUNCTION__);
1484 const uint64_t start_ns = NanoTime();
1485 // Trim the managed spaces.
1486 uint64_t total_alloc_space_allocated = 0;
1487 uint64_t total_alloc_space_size = 0;
1488 uint64_t managed_reclaimed = 0;
1489 {
1490 ScopedObjectAccess soa(self);
1491 for (const auto& space : continuous_spaces_) {
1492 if (space->IsMallocSpace()) {
1493 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1494 if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1495 // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1496 // for a long period of time.
1497 managed_reclaimed += malloc_space->Trim();
1498 }
1499 total_alloc_space_size += malloc_space->Size();
1500 }
1501 }
1502 }
1503 total_alloc_space_allocated = GetBytesAllocated();
1504 if (large_object_space_ != nullptr) {
1505 total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
1506 }
1507 if (bump_pointer_space_ != nullptr) {
1508 total_alloc_space_allocated -= bump_pointer_space_->Size();
1509 }
1510 if (region_space_ != nullptr) {
1511 total_alloc_space_allocated -= region_space_->GetBytesAllocated();
1512 }
1513 const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1514 static_cast<float>(total_alloc_space_size);
1515 uint64_t gc_heap_end_ns = NanoTime();
1516 // We never move things in the native heap, so we can finish the GC at this point.
1517 FinishGC(self, collector::kGcTypeNone);
1518
1519 VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1520 << ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of "
1521 << static_cast<int>(100 * managed_utilization) << "%.";
1522 }
1523
IsValidObjectAddress(const void * addr) const1524 bool Heap::IsValidObjectAddress(const void* addr) const {
1525 if (addr == nullptr) {
1526 return true;
1527 }
1528 return IsAligned<kObjectAlignment>(addr) && FindSpaceFromAddress(addr) != nullptr;
1529 }
1530
IsNonDiscontinuousSpaceHeapAddress(const void * addr) const1531 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const void* addr) const {
1532 return FindContinuousSpaceFromAddress(reinterpret_cast<const mirror::Object*>(addr)) != nullptr;
1533 }
1534
IsLiveObjectLocked(ObjPtr<mirror::Object> obj,bool search_allocation_stack,bool search_live_stack,bool sorted)1535 bool Heap::IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
1536 bool search_allocation_stack,
1537 bool search_live_stack,
1538 bool sorted) {
1539 if (UNLIKELY(!IsAligned<kObjectAlignment>(obj.Ptr()))) {
1540 return false;
1541 }
1542 if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj.Ptr())) {
1543 mirror::Class* klass = obj->GetClass<kVerifyNone>();
1544 if (obj == klass) {
1545 // This case happens for java.lang.Class.
1546 return true;
1547 }
1548 return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1549 } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj.Ptr())) {
1550 // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1551 // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1552 return temp_space_->Contains(obj.Ptr());
1553 }
1554 if (region_space_ != nullptr && region_space_->HasAddress(obj.Ptr())) {
1555 return true;
1556 }
1557 space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1558 space::DiscontinuousSpace* d_space = nullptr;
1559 if (c_space != nullptr) {
1560 if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1561 return true;
1562 }
1563 } else {
1564 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1565 if (d_space != nullptr) {
1566 if (d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1567 return true;
1568 }
1569 }
1570 }
1571 // This is covering the allocation/live stack swapping that is done without mutators suspended.
1572 for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1573 if (i > 0) {
1574 NanoSleep(MsToNs(10));
1575 }
1576 if (search_allocation_stack) {
1577 if (sorted) {
1578 if (allocation_stack_->ContainsSorted(obj.Ptr())) {
1579 return true;
1580 }
1581 } else if (allocation_stack_->Contains(obj.Ptr())) {
1582 return true;
1583 }
1584 }
1585
1586 if (search_live_stack) {
1587 if (sorted) {
1588 if (live_stack_->ContainsSorted(obj.Ptr())) {
1589 return true;
1590 }
1591 } else if (live_stack_->Contains(obj.Ptr())) {
1592 return true;
1593 }
1594 }
1595 }
1596 // We need to check the bitmaps again since there is a race where we mark something as live and
1597 // then clear the stack containing it.
1598 if (c_space != nullptr) {
1599 if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1600 return true;
1601 }
1602 } else {
1603 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1604 if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1605 return true;
1606 }
1607 }
1608 return false;
1609 }
1610
DumpSpaces() const1611 std::string Heap::DumpSpaces() const {
1612 std::ostringstream oss;
1613 DumpSpaces(oss);
1614 return oss.str();
1615 }
1616
DumpSpaces(std::ostream & stream) const1617 void Heap::DumpSpaces(std::ostream& stream) const {
1618 for (const auto& space : continuous_spaces_) {
1619 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1620 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1621 stream << space << " " << *space << "\n";
1622 if (live_bitmap != nullptr) {
1623 stream << live_bitmap << " " << *live_bitmap << "\n";
1624 }
1625 if (mark_bitmap != nullptr) {
1626 stream << mark_bitmap << " " << *mark_bitmap << "\n";
1627 }
1628 }
1629 for (const auto& space : discontinuous_spaces_) {
1630 stream << space << " " << *space << "\n";
1631 }
1632 }
1633
VerifyObjectBody(ObjPtr<mirror::Object> obj)1634 void Heap::VerifyObjectBody(ObjPtr<mirror::Object> obj) {
1635 if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1636 return;
1637 }
1638
1639 // Ignore early dawn of the universe verifications.
1640 if (UNLIKELY(num_bytes_allocated_.load(std::memory_order_relaxed) < 10 * KB)) {
1641 return;
1642 }
1643 CHECK_ALIGNED(obj.Ptr(), kObjectAlignment) << "Object isn't aligned";
1644 mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1645 CHECK(c != nullptr) << "Null class in object " << obj;
1646 CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj;
1647 CHECK(VerifyClassClass(c));
1648
1649 if (verify_object_mode_ > kVerifyObjectModeFast) {
1650 // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1651 CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1652 }
1653 }
1654
VerifyHeap()1655 void Heap::VerifyHeap() {
1656 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1657 auto visitor = [&](mirror::Object* obj) {
1658 VerifyObjectBody(obj);
1659 };
1660 // Technically we need the mutator lock here to call Visit. However, VerifyObjectBody is already
1661 // NO_THREAD_SAFETY_ANALYSIS.
1662 auto no_thread_safety_analysis = [&]() NO_THREAD_SAFETY_ANALYSIS {
1663 GetLiveBitmap()->Visit(visitor);
1664 };
1665 no_thread_safety_analysis();
1666 }
1667
RecordFree(uint64_t freed_objects,int64_t freed_bytes)1668 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1669 // Use signed comparison since freed bytes can be negative when background compaction foreground
1670 // transitions occurs. This is typically due to objects moving from a bump pointer space to a
1671 // free list backed space, which may increase memory footprint due to padding and binning.
1672 RACING_DCHECK_LE(freed_bytes,
1673 static_cast<int64_t>(num_bytes_allocated_.load(std::memory_order_relaxed)));
1674 // Note: This relies on 2s complement for handling negative freed_bytes.
1675 num_bytes_allocated_.fetch_sub(static_cast<ssize_t>(freed_bytes), std::memory_order_relaxed);
1676 if (Runtime::Current()->HasStatsEnabled()) {
1677 RuntimeStats* thread_stats = Thread::Current()->GetStats();
1678 thread_stats->freed_objects += freed_objects;
1679 thread_stats->freed_bytes += freed_bytes;
1680 // TODO: Do this concurrently.
1681 RuntimeStats* global_stats = Runtime::Current()->GetStats();
1682 global_stats->freed_objects += freed_objects;
1683 global_stats->freed_bytes += freed_bytes;
1684 }
1685 }
1686
RecordFreeRevoke()1687 void Heap::RecordFreeRevoke() {
1688 // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
1689 // ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
1690 // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
1691 // all the way to zero exactly as the remainder will be subtracted at the next GC.
1692 size_t bytes_freed = num_bytes_freed_revoke_.load(std::memory_order_relaxed);
1693 CHECK_GE(num_bytes_freed_revoke_.fetch_sub(bytes_freed, std::memory_order_relaxed),
1694 bytes_freed) << "num_bytes_freed_revoke_ underflow";
1695 CHECK_GE(num_bytes_allocated_.fetch_sub(bytes_freed, std::memory_order_relaxed),
1696 bytes_freed) << "num_bytes_allocated_ underflow";
1697 GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
1698 }
1699
GetRosAllocSpace(gc::allocator::RosAlloc * rosalloc) const1700 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1701 if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) {
1702 return rosalloc_space_;
1703 }
1704 for (const auto& space : continuous_spaces_) {
1705 if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1706 if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1707 return space->AsContinuousSpace()->AsRosAllocSpace();
1708 }
1709 }
1710 }
1711 return nullptr;
1712 }
1713
EntrypointsInstrumented()1714 static inline bool EntrypointsInstrumented() REQUIRES_SHARED(Locks::mutator_lock_) {
1715 instrumentation::Instrumentation* const instrumentation =
1716 Runtime::Current()->GetInstrumentation();
1717 return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented();
1718 }
1719
AllocateInternalWithGc(Thread * self,AllocatorType allocator,bool instrumented,size_t alloc_size,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated,ObjPtr<mirror::Class> * klass)1720 mirror::Object* Heap::AllocateInternalWithGc(Thread* self,
1721 AllocatorType allocator,
1722 bool instrumented,
1723 size_t alloc_size,
1724 size_t* bytes_allocated,
1725 size_t* usable_size,
1726 size_t* bytes_tl_bulk_allocated,
1727 ObjPtr<mirror::Class>* klass) {
1728 bool was_default_allocator = allocator == GetCurrentAllocator();
1729 // Make sure there is no pending exception since we may need to throw an OOME.
1730 self->AssertNoPendingException();
1731 DCHECK(klass != nullptr);
1732 StackHandleScope<1> hs(self);
1733 HandleWrapperObjPtr<mirror::Class> h(hs.NewHandleWrapper(klass));
1734 // The allocation failed. If the GC is running, block until it completes, and then retry the
1735 // allocation.
1736 collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1737 // If we were the default allocator but the allocator changed while we were suspended,
1738 // abort the allocation.
1739 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1740 (!instrumented && EntrypointsInstrumented())) {
1741 return nullptr;
1742 }
1743 if (last_gc != collector::kGcTypeNone) {
1744 // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1745 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1746 usable_size, bytes_tl_bulk_allocated);
1747 if (ptr != nullptr) {
1748 return ptr;
1749 }
1750 }
1751
1752 collector::GcType tried_type = next_gc_type_;
1753 const bool gc_ran =
1754 CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1755 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1756 (!instrumented && EntrypointsInstrumented())) {
1757 return nullptr;
1758 }
1759 if (gc_ran) {
1760 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1761 usable_size, bytes_tl_bulk_allocated);
1762 if (ptr != nullptr) {
1763 return ptr;
1764 }
1765 }
1766
1767 // Loop through our different Gc types and try to Gc until we get enough free memory.
1768 for (collector::GcType gc_type : gc_plan_) {
1769 if (gc_type == tried_type) {
1770 continue;
1771 }
1772 // Attempt to run the collector, if we succeed, re-try the allocation.
1773 const bool plan_gc_ran =
1774 CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1775 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1776 (!instrumented && EntrypointsInstrumented())) {
1777 return nullptr;
1778 }
1779 if (plan_gc_ran) {
1780 // Did we free sufficient memory for the allocation to succeed?
1781 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1782 usable_size, bytes_tl_bulk_allocated);
1783 if (ptr != nullptr) {
1784 return ptr;
1785 }
1786 }
1787 }
1788 // Allocations have failed after GCs; this is an exceptional state.
1789 // Try harder, growing the heap if necessary.
1790 mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1791 usable_size, bytes_tl_bulk_allocated);
1792 if (ptr != nullptr) {
1793 return ptr;
1794 }
1795 // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1796 // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1797 // VM spec requires that all SoftReferences have been collected and cleared before throwing
1798 // OOME.
1799 VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1800 << " allocation";
1801 // TODO: Run finalization, but this may cause more allocations to occur.
1802 // We don't need a WaitForGcToComplete here either.
1803 DCHECK(!gc_plan_.empty());
1804 CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1805 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1806 (!instrumented && EntrypointsInstrumented())) {
1807 return nullptr;
1808 }
1809 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size,
1810 bytes_tl_bulk_allocated);
1811 if (ptr == nullptr) {
1812 const uint64_t current_time = NanoTime();
1813 switch (allocator) {
1814 case kAllocatorTypeRosAlloc:
1815 // Fall-through.
1816 case kAllocatorTypeDlMalloc: {
1817 if (use_homogeneous_space_compaction_for_oom_ &&
1818 current_time - last_time_homogeneous_space_compaction_by_oom_ >
1819 min_interval_homogeneous_space_compaction_by_oom_) {
1820 last_time_homogeneous_space_compaction_by_oom_ = current_time;
1821 HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1822 // Thread suspension could have occurred.
1823 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1824 (!instrumented && EntrypointsInstrumented())) {
1825 return nullptr;
1826 }
1827 switch (result) {
1828 case HomogeneousSpaceCompactResult::kSuccess:
1829 // If the allocation succeeded, we delayed an oom.
1830 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1831 usable_size, bytes_tl_bulk_allocated);
1832 if (ptr != nullptr) {
1833 count_delayed_oom_++;
1834 }
1835 break;
1836 case HomogeneousSpaceCompactResult::kErrorReject:
1837 // Reject due to disabled moving GC.
1838 break;
1839 case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1840 // Throw OOM by default.
1841 break;
1842 default: {
1843 UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
1844 << static_cast<size_t>(result);
1845 UNREACHABLE();
1846 }
1847 }
1848 // Always print that we ran homogeneous space compation since this can cause jank.
1849 VLOG(heap) << "Ran heap homogeneous space compaction, "
1850 << " requested defragmentation "
1851 << count_requested_homogeneous_space_compaction_.load()
1852 << " performed defragmentation "
1853 << count_performed_homogeneous_space_compaction_.load()
1854 << " ignored homogeneous space compaction "
1855 << count_ignored_homogeneous_space_compaction_.load()
1856 << " delayed count = "
1857 << count_delayed_oom_.load();
1858 }
1859 break;
1860 }
1861 case kAllocatorTypeNonMoving: {
1862 if (kUseReadBarrier) {
1863 // DisableMovingGc() isn't compatible with CC.
1864 break;
1865 }
1866 // Try to transition the heap if the allocation failure was due to the space being full.
1867 if (!IsOutOfMemoryOnAllocation(allocator, alloc_size, /*grow=*/ false)) {
1868 // If we aren't out of memory then the OOM was probably from the non moving space being
1869 // full. Attempt to disable compaction and turn the main space into a non moving space.
1870 DisableMovingGc();
1871 // Thread suspension could have occurred.
1872 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1873 (!instrumented && EntrypointsInstrumented())) {
1874 return nullptr;
1875 }
1876 // If we are still a moving GC then something must have caused the transition to fail.
1877 if (IsMovingGc(collector_type_)) {
1878 MutexLock mu(self, *gc_complete_lock_);
1879 // If we couldn't disable moving GC, just throw OOME and return null.
1880 LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
1881 << disable_moving_gc_count_;
1882 } else {
1883 LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
1884 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1885 usable_size, bytes_tl_bulk_allocated);
1886 }
1887 }
1888 break;
1889 }
1890 default: {
1891 // Do nothing for others allocators.
1892 }
1893 }
1894 }
1895 // If the allocation hasn't succeeded by this point, throw an OOM error.
1896 if (ptr == nullptr) {
1897 ThrowOutOfMemoryError(self, alloc_size, allocator);
1898 }
1899 return ptr;
1900 }
1901
SetTargetHeapUtilization(float target)1902 void Heap::SetTargetHeapUtilization(float target) {
1903 DCHECK_GT(target, 0.1f); // asserted in Java code
1904 DCHECK_LT(target, 1.0f);
1905 target_utilization_ = target;
1906 }
1907
GetObjectsAllocated() const1908 size_t Heap::GetObjectsAllocated() const {
1909 Thread* const self = Thread::Current();
1910 ScopedThreadStateChange tsc(self, kWaitingForGetObjectsAllocated);
1911 // Prevent GC running during GetObjectsAllocated since we may get a checkpoint request that tells
1912 // us to suspend while we are doing SuspendAll. b/35232978
1913 gc::ScopedGCCriticalSection gcs(Thread::Current(),
1914 gc::kGcCauseGetObjectsAllocated,
1915 gc::kCollectorTypeGetObjectsAllocated);
1916 // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
1917 ScopedSuspendAll ssa(__FUNCTION__);
1918 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1919 size_t total = 0;
1920 for (space::AllocSpace* space : alloc_spaces_) {
1921 total += space->GetObjectsAllocated();
1922 }
1923 return total;
1924 }
1925
GetObjectsAllocatedEver() const1926 uint64_t Heap::GetObjectsAllocatedEver() const {
1927 uint64_t total = GetObjectsFreedEver();
1928 // If we are detached, we can't use GetObjectsAllocated since we can't change thread states.
1929 if (Thread::Current() != nullptr) {
1930 total += GetObjectsAllocated();
1931 }
1932 return total;
1933 }
1934
GetBytesAllocatedEver() const1935 uint64_t Heap::GetBytesAllocatedEver() const {
1936 return GetBytesFreedEver() + GetBytesAllocated();
1937 }
1938
1939 // Check whether the given object is an instance of the given class.
MatchesClass(mirror::Object * obj,Handle<mirror::Class> h_class,bool use_is_assignable_from)1940 static bool MatchesClass(mirror::Object* obj,
1941 Handle<mirror::Class> h_class,
1942 bool use_is_assignable_from) REQUIRES_SHARED(Locks::mutator_lock_) {
1943 mirror::Class* instance_class = obj->GetClass();
1944 CHECK(instance_class != nullptr);
1945 ObjPtr<mirror::Class> klass = h_class.Get();
1946 if (use_is_assignable_from) {
1947 return klass != nullptr && klass->IsAssignableFrom(instance_class);
1948 }
1949 return instance_class == klass;
1950 }
1951
CountInstances(const std::vector<Handle<mirror::Class>> & classes,bool use_is_assignable_from,uint64_t * counts)1952 void Heap::CountInstances(const std::vector<Handle<mirror::Class>>& classes,
1953 bool use_is_assignable_from,
1954 uint64_t* counts) {
1955 auto instance_counter = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1956 for (size_t i = 0; i < classes.size(); ++i) {
1957 if (MatchesClass(obj, classes[i], use_is_assignable_from)) {
1958 ++counts[i];
1959 }
1960 }
1961 };
1962 VisitObjects(instance_counter);
1963 }
1964
GetInstances(VariableSizedHandleScope & scope,Handle<mirror::Class> h_class,bool use_is_assignable_from,int32_t max_count,std::vector<Handle<mirror::Object>> & instances)1965 void Heap::GetInstances(VariableSizedHandleScope& scope,
1966 Handle<mirror::Class> h_class,
1967 bool use_is_assignable_from,
1968 int32_t max_count,
1969 std::vector<Handle<mirror::Object>>& instances) {
1970 DCHECK_GE(max_count, 0);
1971 auto instance_collector = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1972 if (MatchesClass(obj, h_class, use_is_assignable_from)) {
1973 if (max_count == 0 || instances.size() < static_cast<size_t>(max_count)) {
1974 instances.push_back(scope.NewHandle(obj));
1975 }
1976 }
1977 };
1978 VisitObjects(instance_collector);
1979 }
1980
GetReferringObjects(VariableSizedHandleScope & scope,Handle<mirror::Object> o,int32_t max_count,std::vector<Handle<mirror::Object>> & referring_objects)1981 void Heap::GetReferringObjects(VariableSizedHandleScope& scope,
1982 Handle<mirror::Object> o,
1983 int32_t max_count,
1984 std::vector<Handle<mirror::Object>>& referring_objects) {
1985 class ReferringObjectsFinder {
1986 public:
1987 ReferringObjectsFinder(VariableSizedHandleScope& scope_in,
1988 Handle<mirror::Object> object_in,
1989 int32_t max_count_in,
1990 std::vector<Handle<mirror::Object>>& referring_objects_in)
1991 REQUIRES_SHARED(Locks::mutator_lock_)
1992 : scope_(scope_in),
1993 object_(object_in),
1994 max_count_(max_count_in),
1995 referring_objects_(referring_objects_in) {}
1996
1997 // For Object::VisitReferences.
1998 void operator()(ObjPtr<mirror::Object> obj,
1999 MemberOffset offset,
2000 bool is_static ATTRIBUTE_UNUSED) const
2001 REQUIRES_SHARED(Locks::mutator_lock_) {
2002 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2003 if (ref == object_.Get() && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
2004 referring_objects_.push_back(scope_.NewHandle(obj));
2005 }
2006 }
2007
2008 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
2009 const {}
2010 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
2011
2012 private:
2013 VariableSizedHandleScope& scope_;
2014 Handle<mirror::Object> const object_;
2015 const uint32_t max_count_;
2016 std::vector<Handle<mirror::Object>>& referring_objects_;
2017 DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
2018 };
2019 ReferringObjectsFinder finder(scope, o, max_count, referring_objects);
2020 auto referring_objects_finder = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2021 obj->VisitReferences(finder, VoidFunctor());
2022 };
2023 VisitObjects(referring_objects_finder);
2024 }
2025
CollectGarbage(bool clear_soft_references,GcCause cause)2026 void Heap::CollectGarbage(bool clear_soft_references, GcCause cause) {
2027 // Even if we waited for a GC we still need to do another GC since weaks allocated during the
2028 // last GC will not have necessarily been cleared.
2029 CollectGarbageInternal(gc_plan_.back(), cause, clear_soft_references);
2030 }
2031
SupportHomogeneousSpaceCompactAndCollectorTransitions() const2032 bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const {
2033 return main_space_backup_.get() != nullptr && main_space_ != nullptr &&
2034 foreground_collector_type_ == kCollectorTypeCMS;
2035 }
2036
PerformHomogeneousSpaceCompact()2037 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
2038 Thread* self = Thread::Current();
2039 // Inc requested homogeneous space compaction.
2040 count_requested_homogeneous_space_compaction_++;
2041 // Store performed homogeneous space compaction at a new request arrival.
2042 ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2043 // TODO: Clang prebuilt for r316199 produces bogus thread safety analysis warning for holding both
2044 // exclusive and shared lock in the same scope. Remove the assertion as a temporary workaround.
2045 // http://b/71769596
2046 // Locks::mutator_lock_->AssertNotHeld(self);
2047 {
2048 ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2049 MutexLock mu(self, *gc_complete_lock_);
2050 // Ensure there is only one GC at a time.
2051 WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
2052 // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable
2053 // count is non zero.
2054 // If the collector type changed to something which doesn't benefit from homogeneous space
2055 // compaction, exit.
2056 if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
2057 !main_space_->CanMoveObjects()) {
2058 return kErrorReject;
2059 }
2060 if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) {
2061 return kErrorUnsupported;
2062 }
2063 collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
2064 }
2065 if (Runtime::Current()->IsShuttingDown(self)) {
2066 // Don't allow heap transitions to happen if the runtime is shutting down since these can
2067 // cause objects to get finalized.
2068 FinishGC(self, collector::kGcTypeNone);
2069 return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
2070 }
2071 collector::GarbageCollector* collector;
2072 {
2073 ScopedSuspendAll ssa(__FUNCTION__);
2074 uint64_t start_time = NanoTime();
2075 // Launch compaction.
2076 space::MallocSpace* to_space = main_space_backup_.release();
2077 space::MallocSpace* from_space = main_space_;
2078 to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2079 const uint64_t space_size_before_compaction = from_space->Size();
2080 AddSpace(to_space);
2081 // Make sure that we will have enough room to copy.
2082 CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
2083 collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
2084 const uint64_t space_size_after_compaction = to_space->Size();
2085 main_space_ = to_space;
2086 main_space_backup_.reset(from_space);
2087 RemoveSpace(from_space);
2088 SetSpaceAsDefault(main_space_); // Set as default to reset the proper dlmalloc space.
2089 // Update performed homogeneous space compaction count.
2090 count_performed_homogeneous_space_compaction_++;
2091 // Print statics log and resume all threads.
2092 uint64_t duration = NanoTime() - start_time;
2093 VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
2094 << PrettySize(space_size_before_compaction) << " -> "
2095 << PrettySize(space_size_after_compaction) << " compact-ratio: "
2096 << std::fixed << static_cast<double>(space_size_after_compaction) /
2097 static_cast<double>(space_size_before_compaction);
2098 }
2099 // Finish GC.
2100 // Get the references we need to enqueue.
2101 SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self);
2102 GrowForUtilization(semi_space_collector_);
2103 LogGC(kGcCauseHomogeneousSpaceCompact, collector);
2104 FinishGC(self, collector::kGcTypeFull);
2105 // Enqueue any references after losing the GC locks.
2106 clear->Run(self);
2107 clear->Finalize();
2108 {
2109 ScopedObjectAccess soa(self);
2110 soa.Vm()->UnloadNativeLibraries();
2111 }
2112 return HomogeneousSpaceCompactResult::kSuccess;
2113 }
2114
TransitionCollector(CollectorType collector_type)2115 void Heap::TransitionCollector(CollectorType collector_type) {
2116 if (collector_type == collector_type_) {
2117 return;
2118 }
2119 // Collector transition must not happen with CC
2120 CHECK(!kUseReadBarrier);
2121 VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
2122 << " -> " << static_cast<int>(collector_type);
2123 uint64_t start_time = NanoTime();
2124 uint32_t before_allocated = num_bytes_allocated_.load(std::memory_order_relaxed);
2125 Runtime* const runtime = Runtime::Current();
2126 Thread* const self = Thread::Current();
2127 ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2128 // TODO: Clang prebuilt for r316199 produces bogus thread safety analysis warning for holding both
2129 // exclusive and shared lock in the same scope. Remove the assertion as a temporary workaround.
2130 // http://b/71769596
2131 // Locks::mutator_lock_->AssertNotHeld(self);
2132 // Busy wait until we can GC (StartGC can fail if we have a non-zero
2133 // compacting_gc_disable_count_, this should rarely occurs).
2134 for (;;) {
2135 {
2136 ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2137 MutexLock mu(self, *gc_complete_lock_);
2138 // Ensure there is only one GC at a time.
2139 WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
2140 // Currently we only need a heap transition if we switch from a moving collector to a
2141 // non-moving one, or visa versa.
2142 const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
2143 // If someone else beat us to it and changed the collector before we could, exit.
2144 // This is safe to do before the suspend all since we set the collector_type_running_ before
2145 // we exit the loop. If another thread attempts to do the heap transition before we exit,
2146 // then it would get blocked on WaitForGcToCompleteLocked.
2147 if (collector_type == collector_type_) {
2148 return;
2149 }
2150 // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
2151 if (!copying_transition || disable_moving_gc_count_ == 0) {
2152 // TODO: Not hard code in semi-space collector?
2153 collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
2154 break;
2155 }
2156 }
2157 usleep(1000);
2158 }
2159 if (runtime->IsShuttingDown(self)) {
2160 // Don't allow heap transitions to happen if the runtime is shutting down since these can
2161 // cause objects to get finalized.
2162 FinishGC(self, collector::kGcTypeNone);
2163 return;
2164 }
2165 collector::GarbageCollector* collector = nullptr;
2166 {
2167 ScopedSuspendAll ssa(__FUNCTION__);
2168 switch (collector_type) {
2169 case kCollectorTypeSS: {
2170 if (!IsMovingGc(collector_type_)) {
2171 // Create the bump pointer space from the backup space.
2172 CHECK(main_space_backup_ != nullptr);
2173 MemMap mem_map = main_space_backup_->ReleaseMemMap();
2174 // We are transitioning from non moving GC -> moving GC, since we copied from the bump
2175 // pointer space last transition it will be protected.
2176 CHECK(mem_map.IsValid());
2177 mem_map.Protect(PROT_READ | PROT_WRITE);
2178 bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
2179 std::move(mem_map));
2180 AddSpace(bump_pointer_space_);
2181 collector = Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
2182 // Use the now empty main space mem map for the bump pointer temp space.
2183 mem_map = main_space_->ReleaseMemMap();
2184 // Unset the pointers just in case.
2185 if (dlmalloc_space_ == main_space_) {
2186 dlmalloc_space_ = nullptr;
2187 } else if (rosalloc_space_ == main_space_) {
2188 rosalloc_space_ = nullptr;
2189 }
2190 // Remove the main space so that we don't try to trim it, this doens't work for debug
2191 // builds since RosAlloc attempts to read the magic number from a protected page.
2192 RemoveSpace(main_space_);
2193 RemoveRememberedSet(main_space_);
2194 delete main_space_; // Delete the space since it has been removed.
2195 main_space_ = nullptr;
2196 RemoveRememberedSet(main_space_backup_.get());
2197 main_space_backup_.reset(nullptr); // Deletes the space.
2198 temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
2199 std::move(mem_map));
2200 AddSpace(temp_space_);
2201 }
2202 break;
2203 }
2204 case kCollectorTypeMS:
2205 // Fall through.
2206 case kCollectorTypeCMS: {
2207 if (IsMovingGc(collector_type_)) {
2208 CHECK(temp_space_ != nullptr);
2209 MemMap mem_map = temp_space_->ReleaseMemMap();
2210 RemoveSpace(temp_space_);
2211 temp_space_ = nullptr;
2212 mem_map.Protect(PROT_READ | PROT_WRITE);
2213 CreateMainMallocSpace(std::move(mem_map),
2214 kDefaultInitialSize,
2215 std::min(mem_map.Size(), growth_limit_),
2216 mem_map.Size());
2217 // Compact to the main space from the bump pointer space, don't need to swap semispaces.
2218 AddSpace(main_space_);
2219 collector = Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
2220 mem_map = bump_pointer_space_->ReleaseMemMap();
2221 RemoveSpace(bump_pointer_space_);
2222 bump_pointer_space_ = nullptr;
2223 const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
2224 // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
2225 if (kIsDebugBuild && kUseRosAlloc) {
2226 mem_map.Protect(PROT_READ | PROT_WRITE);
2227 }
2228 main_space_backup_.reset(CreateMallocSpaceFromMemMap(
2229 std::move(mem_map),
2230 kDefaultInitialSize,
2231 std::min(mem_map.Size(), growth_limit_),
2232 mem_map.Size(),
2233 name,
2234 true));
2235 if (kIsDebugBuild && kUseRosAlloc) {
2236 main_space_backup_->GetMemMap()->Protect(PROT_NONE);
2237 }
2238 }
2239 break;
2240 }
2241 default: {
2242 LOG(FATAL) << "Attempted to transition to invalid collector type "
2243 << static_cast<size_t>(collector_type);
2244 UNREACHABLE();
2245 }
2246 }
2247 ChangeCollector(collector_type);
2248 }
2249 // Can't call into java code with all threads suspended or the GC ongoing.
2250 SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self);
2251 uint64_t duration = NanoTime() - start_time;
2252 GrowForUtilization(semi_space_collector_);
2253 DCHECK(collector != nullptr);
2254 LogGC(kGcCauseCollectorTransition, collector);
2255 FinishGC(self, collector::kGcTypeFull);
2256 // Now call into java and enqueue the references.
2257 clear->Run(self);
2258 clear->Finalize();
2259 {
2260 ScopedObjectAccess soa(self);
2261 soa.Vm()->UnloadNativeLibraries();
2262 }
2263 int32_t after_allocated = num_bytes_allocated_.load(std::memory_order_relaxed);
2264 int32_t delta_allocated = before_allocated - after_allocated;
2265 std::string saved_str;
2266 if (delta_allocated >= 0) {
2267 saved_str = " saved at least " + PrettySize(delta_allocated);
2268 } else {
2269 saved_str = " expanded " + PrettySize(-delta_allocated);
2270 }
2271 VLOG(heap) << "Collector transition to " << collector_type << " took "
2272 << PrettyDuration(duration) << saved_str;
2273 }
2274
ChangeCollector(CollectorType collector_type)2275 void Heap::ChangeCollector(CollectorType collector_type) {
2276 // TODO: Only do this with all mutators suspended to avoid races.
2277 if (collector_type != collector_type_) {
2278 collector_type_ = collector_type;
2279 gc_plan_.clear();
2280 switch (collector_type_) {
2281 case kCollectorTypeCC: {
2282 if (use_generational_cc_) {
2283 gc_plan_.push_back(collector::kGcTypeSticky);
2284 }
2285 gc_plan_.push_back(collector::kGcTypeFull);
2286 if (use_tlab_) {
2287 ChangeAllocator(kAllocatorTypeRegionTLAB);
2288 } else {
2289 ChangeAllocator(kAllocatorTypeRegion);
2290 }
2291 break;
2292 }
2293 case kCollectorTypeSS: // Fall-through.
2294 case kCollectorTypeGSS: {
2295 gc_plan_.push_back(collector::kGcTypeFull);
2296 if (use_tlab_) {
2297 ChangeAllocator(kAllocatorTypeTLAB);
2298 } else {
2299 ChangeAllocator(kAllocatorTypeBumpPointer);
2300 }
2301 break;
2302 }
2303 case kCollectorTypeMS: {
2304 gc_plan_.push_back(collector::kGcTypeSticky);
2305 gc_plan_.push_back(collector::kGcTypePartial);
2306 gc_plan_.push_back(collector::kGcTypeFull);
2307 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2308 break;
2309 }
2310 case kCollectorTypeCMS: {
2311 gc_plan_.push_back(collector::kGcTypeSticky);
2312 gc_plan_.push_back(collector::kGcTypePartial);
2313 gc_plan_.push_back(collector::kGcTypeFull);
2314 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2315 break;
2316 }
2317 default: {
2318 UNIMPLEMENTED(FATAL);
2319 UNREACHABLE();
2320 }
2321 }
2322 if (IsGcConcurrent()) {
2323 concurrent_start_bytes_ =
2324 UnsignedDifference(target_footprint_.load(std::memory_order_relaxed),
2325 kMinConcurrentRemainingBytes);
2326 } else {
2327 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2328 }
2329 }
2330 }
2331
2332 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
2333 class ZygoteCompactingCollector final : public collector::SemiSpace {
2334 public:
ZygoteCompactingCollector(gc::Heap * heap,bool is_running_on_memory_tool)2335 ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool)
2336 : SemiSpace(heap, false, "zygote collector"),
2337 bin_live_bitmap_(nullptr),
2338 bin_mark_bitmap_(nullptr),
2339 is_running_on_memory_tool_(is_running_on_memory_tool) {}
2340
BuildBins(space::ContinuousSpace * space)2341 void BuildBins(space::ContinuousSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
2342 bin_live_bitmap_ = space->GetLiveBitmap();
2343 bin_mark_bitmap_ = space->GetMarkBitmap();
2344 uintptr_t prev = reinterpret_cast<uintptr_t>(space->Begin());
2345 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2346 // Note: This requires traversing the space in increasing order of object addresses.
2347 auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2348 uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
2349 size_t bin_size = object_addr - prev;
2350 // Add the bin consisting of the end of the previous object to the start of the current object.
2351 AddBin(bin_size, prev);
2352 prev = object_addr + RoundUp(obj->SizeOf<kDefaultVerifyFlags>(), kObjectAlignment);
2353 };
2354 bin_live_bitmap_->Walk(visitor);
2355 // Add the last bin which spans after the last object to the end of the space.
2356 AddBin(reinterpret_cast<uintptr_t>(space->End()) - prev, prev);
2357 }
2358
2359 private:
2360 // Maps from bin sizes to locations.
2361 std::multimap<size_t, uintptr_t> bins_;
2362 // Live bitmap of the space which contains the bins.
2363 accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
2364 // Mark bitmap of the space which contains the bins.
2365 accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
2366 const bool is_running_on_memory_tool_;
2367
AddBin(size_t size,uintptr_t position)2368 void AddBin(size_t size, uintptr_t position) {
2369 if (is_running_on_memory_tool_) {
2370 MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast<void*>(position), size);
2371 }
2372 if (size != 0) {
2373 bins_.insert(std::make_pair(size, position));
2374 }
2375 }
2376
ShouldSweepSpace(space::ContinuousSpace * space ATTRIBUTE_UNUSED) const2377 bool ShouldSweepSpace(space::ContinuousSpace* space ATTRIBUTE_UNUSED) const override {
2378 // Don't sweep any spaces since we probably blasted the internal accounting of the free list
2379 // allocator.
2380 return false;
2381 }
2382
MarkNonForwardedObject(mirror::Object * obj)2383 mirror::Object* MarkNonForwardedObject(mirror::Object* obj) override
2384 REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
2385 size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
2386 size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
2387 mirror::Object* forward_address;
2388 // Find the smallest bin which we can move obj in.
2389 auto it = bins_.lower_bound(alloc_size);
2390 if (it == bins_.end()) {
2391 // No available space in the bins, place it in the target space instead (grows the zygote
2392 // space).
2393 size_t bytes_allocated, dummy;
2394 forward_address = to_space_->Alloc(self_, alloc_size, &bytes_allocated, nullptr, &dummy);
2395 if (to_space_live_bitmap_ != nullptr) {
2396 to_space_live_bitmap_->Set(forward_address);
2397 } else {
2398 GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
2399 GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
2400 }
2401 } else {
2402 size_t size = it->first;
2403 uintptr_t pos = it->second;
2404 bins_.erase(it); // Erase the old bin which we replace with the new smaller bin.
2405 forward_address = reinterpret_cast<mirror::Object*>(pos);
2406 // Set the live and mark bits so that sweeping system weaks works properly.
2407 bin_live_bitmap_->Set(forward_address);
2408 bin_mark_bitmap_->Set(forward_address);
2409 DCHECK_GE(size, alloc_size);
2410 // Add a new bin with the remaining space.
2411 AddBin(size - alloc_size, pos + alloc_size);
2412 }
2413 // Copy the object over to its new location.
2414 // Historical note: We did not use `alloc_size` to avoid a Valgrind error.
2415 memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
2416 if (kUseBakerReadBarrier) {
2417 obj->AssertReadBarrierState();
2418 forward_address->AssertReadBarrierState();
2419 }
2420 return forward_address;
2421 }
2422 };
2423
UnBindBitmaps()2424 void Heap::UnBindBitmaps() {
2425 TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
2426 for (const auto& space : GetContinuousSpaces()) {
2427 if (space->IsContinuousMemMapAllocSpace()) {
2428 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2429 if (alloc_space->HasBoundBitmaps()) {
2430 alloc_space->UnBindBitmaps();
2431 }
2432 }
2433 }
2434 }
2435
PreZygoteFork()2436 void Heap::PreZygoteFork() {
2437 if (!HasZygoteSpace()) {
2438 // We still want to GC in case there is some unreachable non moving objects that could cause a
2439 // suboptimal bin packing when we compact the zygote space.
2440 CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
2441 // Trim the pages at the end of the non moving space. Trim while not holding zygote lock since
2442 // the trim process may require locking the mutator lock.
2443 non_moving_space_->Trim();
2444 }
2445 Thread* self = Thread::Current();
2446 MutexLock mu(self, zygote_creation_lock_);
2447 // Try to see if we have any Zygote spaces.
2448 if (HasZygoteSpace()) {
2449 return;
2450 }
2451 Runtime::Current()->GetInternTable()->AddNewTable();
2452 Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
2453 VLOG(heap) << "Starting PreZygoteFork";
2454 // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
2455 // there.
2456 non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2457 const bool same_space = non_moving_space_ == main_space_;
2458 if (kCompactZygote) {
2459 // Temporarily disable rosalloc verification because the zygote
2460 // compaction will mess up the rosalloc internal metadata.
2461 ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
2462 ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_);
2463 zygote_collector.BuildBins(non_moving_space_);
2464 // Create a new bump pointer space which we will compact into.
2465 space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
2466 non_moving_space_->Limit());
2467 // Compact the bump pointer space to a new zygote bump pointer space.
2468 bool reset_main_space = false;
2469 if (IsMovingGc(collector_type_)) {
2470 if (collector_type_ == kCollectorTypeCC) {
2471 zygote_collector.SetFromSpace(region_space_);
2472 } else {
2473 zygote_collector.SetFromSpace(bump_pointer_space_);
2474 }
2475 } else {
2476 CHECK(main_space_ != nullptr);
2477 CHECK_NE(main_space_, non_moving_space_)
2478 << "Does not make sense to compact within the same space";
2479 // Copy from the main space.
2480 zygote_collector.SetFromSpace(main_space_);
2481 reset_main_space = true;
2482 }
2483 zygote_collector.SetToSpace(&target_space);
2484 zygote_collector.SetSwapSemiSpaces(false);
2485 zygote_collector.Run(kGcCauseCollectorTransition, false);
2486 if (reset_main_space) {
2487 main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2488 madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
2489 MemMap mem_map = main_space_->ReleaseMemMap();
2490 RemoveSpace(main_space_);
2491 space::Space* old_main_space = main_space_;
2492 CreateMainMallocSpace(std::move(mem_map),
2493 kDefaultInitialSize,
2494 std::min(mem_map.Size(), growth_limit_),
2495 mem_map.Size());
2496 delete old_main_space;
2497 AddSpace(main_space_);
2498 } else {
2499 if (collector_type_ == kCollectorTypeCC) {
2500 region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2501 // Evacuated everything out of the region space, clear the mark bitmap.
2502 region_space_->GetMarkBitmap()->Clear();
2503 } else {
2504 bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2505 }
2506 }
2507 if (temp_space_ != nullptr) {
2508 CHECK(temp_space_->IsEmpty());
2509 }
2510 total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2511 total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2512 // Update the end and write out image.
2513 non_moving_space_->SetEnd(target_space.End());
2514 non_moving_space_->SetLimit(target_space.Limit());
2515 VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
2516 }
2517 // Change the collector to the post zygote one.
2518 ChangeCollector(foreground_collector_type_);
2519 // Save the old space so that we can remove it after we complete creating the zygote space.
2520 space::MallocSpace* old_alloc_space = non_moving_space_;
2521 // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
2522 // the remaining available space.
2523 // Remove the old space before creating the zygote space since creating the zygote space sets
2524 // the old alloc space's bitmaps to null.
2525 RemoveSpace(old_alloc_space);
2526 if (collector::SemiSpace::kUseRememberedSet) {
2527 // Sanity bound check.
2528 FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
2529 // Remove the remembered set for the now zygote space (the old
2530 // non-moving space). Note now that we have compacted objects into
2531 // the zygote space, the data in the remembered set is no longer
2532 // needed. The zygote space will instead have a mod-union table
2533 // from this point on.
2534 RemoveRememberedSet(old_alloc_space);
2535 }
2536 // Remaining space becomes the new non moving space.
2537 zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
2538 &non_moving_space_);
2539 CHECK(!non_moving_space_->CanMoveObjects());
2540 if (same_space) {
2541 main_space_ = non_moving_space_;
2542 SetSpaceAsDefault(main_space_);
2543 }
2544 delete old_alloc_space;
2545 CHECK(HasZygoteSpace()) << "Failed creating zygote space";
2546 AddSpace(zygote_space_);
2547 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
2548 AddSpace(non_moving_space_);
2549 if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
2550 // Treat all of the objects in the zygote as marked to avoid unnecessary dirty pages. This is
2551 // safe since we mark all of the objects that may reference non immune objects as gray.
2552 zygote_space_->GetLiveBitmap()->VisitMarkedRange(
2553 reinterpret_cast<uintptr_t>(zygote_space_->Begin()),
2554 reinterpret_cast<uintptr_t>(zygote_space_->Limit()),
2555 [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2556 CHECK(obj->AtomicSetMarkBit(0, 1));
2557 });
2558 }
2559
2560 // Create the zygote space mod union table.
2561 accounting::ModUnionTable* mod_union_table =
2562 new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space_);
2563 CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
2564
2565 if (collector_type_ != kCollectorTypeCC) {
2566 // Set all the cards in the mod-union table since we don't know which objects contain references
2567 // to large objects.
2568 mod_union_table->SetCards();
2569 } else {
2570 // Make sure to clear the zygote space cards so that we don't dirty pages in the next GC. There
2571 // may be dirty cards from the zygote compaction or reference processing. These cards are not
2572 // necessary to have marked since the zygote space may not refer to any objects not in the
2573 // zygote or image spaces at this point.
2574 mod_union_table->ProcessCards();
2575 mod_union_table->ClearTable();
2576
2577 // For CC we never collect zygote large objects. This means we do not need to set the cards for
2578 // the zygote mod-union table and we can also clear all of the existing image mod-union tables.
2579 // The existing mod-union tables are only for image spaces and may only reference zygote and
2580 // image objects.
2581 for (auto& pair : mod_union_tables_) {
2582 CHECK(pair.first->IsImageSpace());
2583 CHECK(!pair.first->AsImageSpace()->GetImageHeader().IsAppImage());
2584 accounting::ModUnionTable* table = pair.second;
2585 table->ClearTable();
2586 }
2587 }
2588 AddModUnionTable(mod_union_table);
2589 large_object_space_->SetAllLargeObjectsAsZygoteObjects(self);
2590 if (collector::SemiSpace::kUseRememberedSet) {
2591 // Add a new remembered set for the post-zygote non-moving space.
2592 accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2593 new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2594 non_moving_space_);
2595 CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2596 << "Failed to create post-zygote non-moving space remembered set";
2597 AddRememberedSet(post_zygote_non_moving_space_rem_set);
2598 }
2599 }
2600
FlushAllocStack()2601 void Heap::FlushAllocStack() {
2602 MarkAllocStackAsLive(allocation_stack_.get());
2603 allocation_stack_->Reset();
2604 }
2605
MarkAllocStack(accounting::ContinuousSpaceBitmap * bitmap1,accounting::ContinuousSpaceBitmap * bitmap2,accounting::LargeObjectBitmap * large_objects,accounting::ObjectStack * stack)2606 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2607 accounting::ContinuousSpaceBitmap* bitmap2,
2608 accounting::LargeObjectBitmap* large_objects,
2609 accounting::ObjectStack* stack) {
2610 DCHECK(bitmap1 != nullptr);
2611 DCHECK(bitmap2 != nullptr);
2612 const auto* limit = stack->End();
2613 for (auto* it = stack->Begin(); it != limit; ++it) {
2614 const mirror::Object* obj = it->AsMirrorPtr();
2615 if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2616 if (bitmap1->HasAddress(obj)) {
2617 bitmap1->Set(obj);
2618 } else if (bitmap2->HasAddress(obj)) {
2619 bitmap2->Set(obj);
2620 } else {
2621 DCHECK(large_objects != nullptr);
2622 large_objects->Set(obj);
2623 }
2624 }
2625 }
2626 }
2627
SwapSemiSpaces()2628 void Heap::SwapSemiSpaces() {
2629 CHECK(bump_pointer_space_ != nullptr);
2630 CHECK(temp_space_ != nullptr);
2631 std::swap(bump_pointer_space_, temp_space_);
2632 }
2633
Compact(space::ContinuousMemMapAllocSpace * target_space,space::ContinuousMemMapAllocSpace * source_space,GcCause gc_cause)2634 collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2635 space::ContinuousMemMapAllocSpace* source_space,
2636 GcCause gc_cause) {
2637 CHECK(kMovingCollector);
2638 if (target_space != source_space) {
2639 // Don't swap spaces since this isn't a typical semi space collection.
2640 semi_space_collector_->SetSwapSemiSpaces(false);
2641 semi_space_collector_->SetFromSpace(source_space);
2642 semi_space_collector_->SetToSpace(target_space);
2643 semi_space_collector_->Run(gc_cause, false);
2644 return semi_space_collector_;
2645 }
2646 LOG(FATAL) << "Unsupported";
2647 UNREACHABLE();
2648 }
2649
TraceHeapSize(size_t heap_size)2650 void Heap::TraceHeapSize(size_t heap_size) {
2651 ATraceIntegerValue("Heap size (KB)", heap_size / KB);
2652 }
2653
GetNativeBytes()2654 size_t Heap::GetNativeBytes() {
2655 size_t malloc_bytes;
2656 #if defined(__BIONIC__) || defined(__GLIBC__)
2657 size_t mmapped_bytes;
2658 struct mallinfo mi = mallinfo();
2659 // In spite of the documentation, the jemalloc version of this call seems to do what we want,
2660 // and it is thread-safe.
2661 if (sizeof(size_t) > sizeof(mi.uordblks) && sizeof(size_t) > sizeof(mi.hblkhd)) {
2662 // Shouldn't happen, but glibc declares uordblks as int.
2663 // Avoiding sign extension gets us correct behavior for another 2 GB.
2664 malloc_bytes = (unsigned int)mi.uordblks;
2665 mmapped_bytes = (unsigned int)mi.hblkhd;
2666 } else {
2667 malloc_bytes = mi.uordblks;
2668 mmapped_bytes = mi.hblkhd;
2669 }
2670 // From the spec, we clearly have mmapped_bytes <= malloc_bytes. Reality is sometimes
2671 // dramatically different. (b/119580449) If so, fudge it.
2672 if (mmapped_bytes > malloc_bytes) {
2673 malloc_bytes = mmapped_bytes;
2674 }
2675 #else
2676 // We should hit this case only in contexts in which GC triggering is not critical. Effectively
2677 // disable GC triggering based on malloc().
2678 malloc_bytes = 1000;
2679 #endif
2680 return malloc_bytes + native_bytes_registered_.load(std::memory_order_relaxed);
2681 // An alternative would be to get RSS from /proc/self/statm. Empirically, that's no
2682 // more expensive, and it would allow us to count memory allocated by means other than malloc.
2683 // However it would change as pages are unmapped and remapped due to memory pressure, among
2684 // other things. It seems risky to trigger GCs as a result of such changes.
2685 }
2686
CollectGarbageInternal(collector::GcType gc_type,GcCause gc_cause,bool clear_soft_references)2687 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type,
2688 GcCause gc_cause,
2689 bool clear_soft_references) {
2690 Thread* self = Thread::Current();
2691 Runtime* runtime = Runtime::Current();
2692 // If the heap can't run the GC, silently fail and return that no GC was run.
2693 switch (gc_type) {
2694 case collector::kGcTypePartial: {
2695 if (!HasZygoteSpace()) {
2696 return collector::kGcTypeNone;
2697 }
2698 break;
2699 }
2700 default: {
2701 // Other GC types don't have any special cases which makes them not runnable. The main case
2702 // here is full GC.
2703 }
2704 }
2705 ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2706 // TODO: Clang prebuilt for r316199 produces bogus thread safety analysis warning for holding both
2707 // exclusive and shared lock in the same scope. Remove the assertion as a temporary workaround.
2708 // http://b/71769596
2709 // Locks::mutator_lock_->AssertNotHeld(self);
2710 if (self->IsHandlingStackOverflow()) {
2711 // If we are throwing a stack overflow error we probably don't have enough remaining stack
2712 // space to run the GC.
2713 return collector::kGcTypeNone;
2714 }
2715 bool compacting_gc;
2716 {
2717 gc_complete_lock_->AssertNotHeld(self);
2718 ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2719 MutexLock mu(self, *gc_complete_lock_);
2720 // Ensure there is only one GC at a time.
2721 WaitForGcToCompleteLocked(gc_cause, self);
2722 compacting_gc = IsMovingGc(collector_type_);
2723 // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2724 if (compacting_gc && disable_moving_gc_count_ != 0) {
2725 LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2726 return collector::kGcTypeNone;
2727 }
2728 if (gc_disabled_for_shutdown_) {
2729 return collector::kGcTypeNone;
2730 }
2731 collector_type_running_ = collector_type_;
2732 }
2733 if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2734 ++runtime->GetStats()->gc_for_alloc_count;
2735 ++self->GetStats()->gc_for_alloc_count;
2736 }
2737 const size_t bytes_allocated_before_gc = GetBytesAllocated();
2738
2739 DCHECK_LT(gc_type, collector::kGcTypeMax);
2740 DCHECK_NE(gc_type, collector::kGcTypeNone);
2741
2742 collector::GarbageCollector* collector = nullptr;
2743 // TODO: Clean this up.
2744 if (compacting_gc) {
2745 DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2746 current_allocator_ == kAllocatorTypeTLAB ||
2747 current_allocator_ == kAllocatorTypeRegion ||
2748 current_allocator_ == kAllocatorTypeRegionTLAB);
2749 switch (collector_type_) {
2750 case kCollectorTypeSS:
2751 // Fall-through.
2752 case kCollectorTypeGSS:
2753 semi_space_collector_->SetFromSpace(bump_pointer_space_);
2754 semi_space_collector_->SetToSpace(temp_space_);
2755 semi_space_collector_->SetSwapSemiSpaces(true);
2756 collector = semi_space_collector_;
2757 break;
2758 case kCollectorTypeCC:
2759 if (use_generational_cc_) {
2760 // TODO: Other threads must do the flip checkpoint before they start poking at
2761 // active_concurrent_copying_collector_. So we should not concurrency here.
2762 active_concurrent_copying_collector_ = (gc_type == collector::kGcTypeSticky) ?
2763 young_concurrent_copying_collector_ : concurrent_copying_collector_;
2764 DCHECK(active_concurrent_copying_collector_->RegionSpace() == region_space_);
2765 }
2766 collector = active_concurrent_copying_collector_;
2767 break;
2768 default:
2769 LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2770 }
2771 if (collector != active_concurrent_copying_collector_) {
2772 temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2773 if (kIsDebugBuild) {
2774 // Try to read each page of the memory map in case mprotect didn't work properly b/19894268.
2775 temp_space_->GetMemMap()->TryReadable();
2776 }
2777 CHECK(temp_space_->IsEmpty());
2778 }
2779 gc_type = collector::kGcTypeFull; // TODO: Not hard code this in.
2780 } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2781 current_allocator_ == kAllocatorTypeDlMalloc) {
2782 collector = FindCollectorByGcType(gc_type);
2783 } else {
2784 LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2785 }
2786
2787 CHECK(collector != nullptr)
2788 << "Could not find garbage collector with collector_type="
2789 << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2790 collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2791 total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2792 total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2793 RequestTrim(self);
2794 // Collect cleared references.
2795 SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self);
2796 // Grow the heap so that we know when to perform the next GC.
2797 GrowForUtilization(collector, bytes_allocated_before_gc);
2798 LogGC(gc_cause, collector);
2799 FinishGC(self, gc_type);
2800 // Actually enqueue all cleared references. Do this after the GC has officially finished since
2801 // otherwise we can deadlock.
2802 clear->Run(self);
2803 clear->Finalize();
2804 // Inform DDMS that a GC completed.
2805 Dbg::GcDidFinish();
2806
2807 old_native_bytes_allocated_.store(GetNativeBytes());
2808
2809 // Unload native libraries for class unloading. We do this after calling FinishGC to prevent
2810 // deadlocks in case the JNI_OnUnload function does allocations.
2811 {
2812 ScopedObjectAccess soa(self);
2813 soa.Vm()->UnloadNativeLibraries();
2814 }
2815 return gc_type;
2816 }
2817
LogGC(GcCause gc_cause,collector::GarbageCollector * collector)2818 void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
2819 const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2820 const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2821 // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2822 // (mutator time blocked >= long_pause_log_threshold_).
2823 bool log_gc = kLogAllGCs || gc_cause == kGcCauseExplicit;
2824 if (!log_gc && CareAboutPauseTimes()) {
2825 // GC for alloc pauses the allocating thread, so consider it as a pause.
2826 log_gc = duration > long_gc_log_threshold_ ||
2827 (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2828 for (uint64_t pause : pause_times) {
2829 log_gc = log_gc || pause >= long_pause_log_threshold_;
2830 }
2831 }
2832 if (log_gc) {
2833 const size_t percent_free = GetPercentFree();
2834 const size_t current_heap_size = GetBytesAllocated();
2835 const size_t total_memory = GetTotalMemory();
2836 std::ostringstream pause_string;
2837 for (size_t i = 0; i < pause_times.size(); ++i) {
2838 pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2839 << ((i != pause_times.size() - 1) ? "," : "");
2840 }
2841 LOG(INFO) << gc_cause << " " << collector->GetName()
2842 << " GC freed " << current_gc_iteration_.GetFreedObjects() << "("
2843 << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2844 << current_gc_iteration_.GetFreedLargeObjects() << "("
2845 << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2846 << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2847 << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2848 << " total " << PrettyDuration((duration / 1000) * 1000);
2849 VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2850 }
2851 }
2852
FinishGC(Thread * self,collector::GcType gc_type)2853 void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2854 MutexLock mu(self, *gc_complete_lock_);
2855 collector_type_running_ = kCollectorTypeNone;
2856 if (gc_type != collector::kGcTypeNone) {
2857 last_gc_type_ = gc_type;
2858
2859 // Update stats.
2860 ++gc_count_last_window_;
2861 if (running_collection_is_blocking_) {
2862 // If the currently running collection was a blocking one,
2863 // increment the counters and reset the flag.
2864 ++blocking_gc_count_;
2865 blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
2866 ++blocking_gc_count_last_window_;
2867 }
2868 // Update the gc count rate histograms if due.
2869 UpdateGcCountRateHistograms();
2870 }
2871 // Reset.
2872 running_collection_is_blocking_ = false;
2873 thread_running_gc_ = nullptr;
2874 // Wake anyone who may have been waiting for the GC to complete.
2875 gc_complete_cond_->Broadcast(self);
2876 }
2877
UpdateGcCountRateHistograms()2878 void Heap::UpdateGcCountRateHistograms() {
2879 // Invariant: if the time since the last update includes more than
2880 // one windows, all the GC runs (if > 0) must have happened in first
2881 // window because otherwise the update must have already taken place
2882 // at an earlier GC run. So, we report the non-first windows with
2883 // zero counts to the histograms.
2884 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2885 uint64_t now = NanoTime();
2886 DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
2887 uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
2888 uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
2889
2890 // The computed number of windows can be incoherently high if NanoTime() is not monotonic.
2891 // Setting a limit on its maximum value reduces the impact on CPU time in such cases.
2892 if (num_of_windows > kGcCountRateHistogramMaxNumMissedWindows) {
2893 LOG(WARNING) << "Reducing the number of considered missed Gc histogram windows from "
2894 << num_of_windows << " to " << kGcCountRateHistogramMaxNumMissedWindows;
2895 num_of_windows = kGcCountRateHistogramMaxNumMissedWindows;
2896 }
2897
2898 if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
2899 // Record the first window.
2900 gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1); // Exclude the current run.
2901 blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
2902 blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
2903 // Record the other windows (with zero counts).
2904 for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
2905 gc_count_rate_histogram_.AddValue(0);
2906 blocking_gc_count_rate_histogram_.AddValue(0);
2907 }
2908 // Update the last update time and reset the counters.
2909 last_update_time_gc_count_rate_histograms_ =
2910 (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
2911 gc_count_last_window_ = 1; // Include the current run.
2912 blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
2913 }
2914 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2915 }
2916
2917 class RootMatchesObjectVisitor : public SingleRootVisitor {
2918 public:
RootMatchesObjectVisitor(const mirror::Object * obj)2919 explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
2920
VisitRoot(mirror::Object * root,const RootInfo & info)2921 void VisitRoot(mirror::Object* root, const RootInfo& info)
2922 override REQUIRES_SHARED(Locks::mutator_lock_) {
2923 if (root == obj_) {
2924 LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
2925 }
2926 }
2927
2928 private:
2929 const mirror::Object* const obj_;
2930 };
2931
2932
2933 class ScanVisitor {
2934 public:
operator ()(const mirror::Object * obj) const2935 void operator()(const mirror::Object* obj) const {
2936 LOG(ERROR) << "Would have rescanned object " << obj;
2937 }
2938 };
2939
2940 // Verify a reference from an object.
2941 class VerifyReferenceVisitor : public SingleRootVisitor {
2942 public:
VerifyReferenceVisitor(Thread * self,Heap * heap,size_t * fail_count,bool verify_referent)2943 VerifyReferenceVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
2944 REQUIRES_SHARED(Locks::mutator_lock_)
2945 : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2946 CHECK_EQ(self_, Thread::Current());
2947 }
2948
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const2949 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, ObjPtr<mirror::Reference> ref) const
2950 REQUIRES_SHARED(Locks::mutator_lock_) {
2951 if (verify_referent_) {
2952 VerifyReference(ref.Ptr(), ref->GetReferent(), mirror::Reference::ReferentOffset());
2953 }
2954 }
2955
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const2956 void operator()(ObjPtr<mirror::Object> obj,
2957 MemberOffset offset,
2958 bool is_static ATTRIBUTE_UNUSED) const
2959 REQUIRES_SHARED(Locks::mutator_lock_) {
2960 VerifyReference(obj.Ptr(), obj->GetFieldObject<mirror::Object>(offset), offset);
2961 }
2962
IsLive(ObjPtr<mirror::Object> obj) const2963 bool IsLive(ObjPtr<mirror::Object> obj) const NO_THREAD_SAFETY_ANALYSIS {
2964 return heap_->IsLiveObjectLocked(obj, true, false, true);
2965 }
2966
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const2967 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
2968 REQUIRES_SHARED(Locks::mutator_lock_) {
2969 if (!root->IsNull()) {
2970 VisitRoot(root);
2971 }
2972 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const2973 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
2974 REQUIRES_SHARED(Locks::mutator_lock_) {
2975 const_cast<VerifyReferenceVisitor*>(this)->VisitRoot(
2976 root->AsMirrorPtr(), RootInfo(kRootVMInternal));
2977 }
2978
VisitRoot(mirror::Object * root,const RootInfo & root_info)2979 void VisitRoot(mirror::Object* root, const RootInfo& root_info) override
2980 REQUIRES_SHARED(Locks::mutator_lock_) {
2981 if (root == nullptr) {
2982 LOG(ERROR) << "Root is null with info " << root_info.GetType();
2983 } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
2984 LOG(ERROR) << "Root " << root << " is dead with type " << mirror::Object::PrettyTypeOf(root)
2985 << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
2986 }
2987 }
2988
2989 private:
2990 // TODO: Fix the no thread safety analysis.
2991 // Returns false on failure.
VerifyReference(mirror::Object * obj,mirror::Object * ref,MemberOffset offset) const2992 bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2993 NO_THREAD_SAFETY_ANALYSIS {
2994 if (ref == nullptr || IsLive(ref)) {
2995 // Verify that the reference is live.
2996 return true;
2997 }
2998 CHECK_EQ(self_, Thread::Current()); // fail_count_ is private to the calling thread.
2999 *fail_count_ += 1;
3000 if (*fail_count_ == 1) {
3001 // Only print message for the first failure to prevent spam.
3002 LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
3003 }
3004 if (obj != nullptr) {
3005 // Only do this part for non roots.
3006 accounting::CardTable* card_table = heap_->GetCardTable();
3007 accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
3008 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
3009 uint8_t* card_addr = card_table->CardFromAddr(obj);
3010 LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
3011 << offset << "\n card value = " << static_cast<int>(*card_addr);
3012 if (heap_->IsValidObjectAddress(obj->GetClass())) {
3013 LOG(ERROR) << "Obj type " << obj->PrettyTypeOf();
3014 } else {
3015 LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
3016 }
3017
3018 // Attempt to find the class inside of the recently freed objects.
3019 space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
3020 if (ref_space != nullptr && ref_space->IsMallocSpace()) {
3021 space::MallocSpace* space = ref_space->AsMallocSpace();
3022 mirror::Class* ref_class = space->FindRecentFreedObject(ref);
3023 if (ref_class != nullptr) {
3024 LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
3025 << ref_class->PrettyClass();
3026 } else {
3027 LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
3028 }
3029 }
3030
3031 if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
3032 ref->GetClass()->IsClass()) {
3033 LOG(ERROR) << "Ref type " << ref->PrettyTypeOf();
3034 } else {
3035 LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
3036 << ") is not a valid heap address";
3037 }
3038
3039 card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
3040 void* cover_begin = card_table->AddrFromCard(card_addr);
3041 void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
3042 accounting::CardTable::kCardSize);
3043 LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
3044 << "-" << cover_end;
3045 accounting::ContinuousSpaceBitmap* bitmap =
3046 heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
3047
3048 if (bitmap == nullptr) {
3049 LOG(ERROR) << "Object " << obj << " has no bitmap";
3050 if (!VerifyClassClass(obj->GetClass())) {
3051 LOG(ERROR) << "Object " << obj << " failed class verification!";
3052 }
3053 } else {
3054 // Print out how the object is live.
3055 if (bitmap->Test(obj)) {
3056 LOG(ERROR) << "Object " << obj << " found in live bitmap";
3057 }
3058 if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
3059 LOG(ERROR) << "Object " << obj << " found in allocation stack";
3060 }
3061 if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
3062 LOG(ERROR) << "Object " << obj << " found in live stack";
3063 }
3064 if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
3065 LOG(ERROR) << "Ref " << ref << " found in allocation stack";
3066 }
3067 if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
3068 LOG(ERROR) << "Ref " << ref << " found in live stack";
3069 }
3070 // Attempt to see if the card table missed the reference.
3071 ScanVisitor scan_visitor;
3072 uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
3073 card_table->Scan<false>(bitmap, byte_cover_begin,
3074 byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
3075 }
3076
3077 // Search to see if any of the roots reference our object.
3078 RootMatchesObjectVisitor visitor1(obj);
3079 Runtime::Current()->VisitRoots(&visitor1);
3080 // Search to see if any of the roots reference our reference.
3081 RootMatchesObjectVisitor visitor2(ref);
3082 Runtime::Current()->VisitRoots(&visitor2);
3083 }
3084 return false;
3085 }
3086
3087 Thread* const self_;
3088 Heap* const heap_;
3089 size_t* const fail_count_;
3090 const bool verify_referent_;
3091 };
3092
3093 // Verify all references within an object, for use with HeapBitmap::Visit.
3094 class VerifyObjectVisitor {
3095 public:
VerifyObjectVisitor(Thread * self,Heap * heap,size_t * fail_count,bool verify_referent)3096 VerifyObjectVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
3097 : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
3098
operator ()(mirror::Object * obj)3099 void operator()(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
3100 // Note: we are verifying the references in obj but not obj itself, this is because obj must
3101 // be live or else how did we find it in the live bitmap?
3102 VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
3103 // The class doesn't count as a reference but we should verify it anyways.
3104 obj->VisitReferences(visitor, visitor);
3105 }
3106
VerifyRoots()3107 void VerifyRoots() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) {
3108 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
3109 VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
3110 Runtime::Current()->VisitRoots(&visitor);
3111 }
3112
GetFailureCount() const3113 uint32_t GetFailureCount() const REQUIRES(Locks::mutator_lock_) {
3114 CHECK_EQ(self_, Thread::Current());
3115 return *fail_count_;
3116 }
3117
3118 private:
3119 Thread* const self_;
3120 Heap* const heap_;
3121 size_t* const fail_count_;
3122 const bool verify_referent_;
3123 };
3124
PushOnAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)3125 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) {
3126 // Slow path, the allocation stack push back must have already failed.
3127 DCHECK(!allocation_stack_->AtomicPushBack(obj->Ptr()));
3128 do {
3129 // TODO: Add handle VerifyObject.
3130 StackHandleScope<1> hs(self);
3131 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3132 // Push our object into the reserve region of the allocation stack. This is only required due
3133 // to heap verification requiring that roots are live (either in the live bitmap or in the
3134 // allocation stack).
3135 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
3136 CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
3137 } while (!allocation_stack_->AtomicPushBack(obj->Ptr()));
3138 }
3139
PushOnThreadLocalAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)3140 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self,
3141 ObjPtr<mirror::Object>* obj) {
3142 // Slow path, the allocation stack push back must have already failed.
3143 DCHECK(!self->PushOnThreadLocalAllocationStack(obj->Ptr()));
3144 StackReference<mirror::Object>* start_address;
3145 StackReference<mirror::Object>* end_address;
3146 while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
3147 &end_address)) {
3148 // TODO: Add handle VerifyObject.
3149 StackHandleScope<1> hs(self);
3150 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3151 // Push our object into the reserve region of the allocaiton stack. This is only required due
3152 // to heap verification requiring that roots are live (either in the live bitmap or in the
3153 // allocation stack).
3154 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
3155 // Push into the reserve allocation stack.
3156 CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
3157 }
3158 self->SetThreadLocalAllocationStack(start_address, end_address);
3159 // Retry on the new thread-local allocation stack.
3160 CHECK(self->PushOnThreadLocalAllocationStack(obj->Ptr())); // Must succeed.
3161 }
3162
3163 // Must do this with mutators suspended since we are directly accessing the allocation stacks.
VerifyHeapReferences(bool verify_referents)3164 size_t Heap::VerifyHeapReferences(bool verify_referents) {
3165 Thread* self = Thread::Current();
3166 Locks::mutator_lock_->AssertExclusiveHeld(self);
3167 // Lets sort our allocation stacks so that we can efficiently binary search them.
3168 allocation_stack_->Sort();
3169 live_stack_->Sort();
3170 // Since we sorted the allocation stack content, need to revoke all
3171 // thread-local allocation stacks.
3172 RevokeAllThreadLocalAllocationStacks(self);
3173 size_t fail_count = 0;
3174 VerifyObjectVisitor visitor(self, this, &fail_count, verify_referents);
3175 // Verify objects in the allocation stack since these will be objects which were:
3176 // 1. Allocated prior to the GC (pre GC verification).
3177 // 2. Allocated during the GC (pre sweep GC verification).
3178 // We don't want to verify the objects in the live stack since they themselves may be
3179 // pointing to dead objects if they are not reachable.
3180 VisitObjectsPaused(visitor);
3181 // Verify the roots:
3182 visitor.VerifyRoots();
3183 if (visitor.GetFailureCount() > 0) {
3184 // Dump mod-union tables.
3185 for (const auto& table_pair : mod_union_tables_) {
3186 accounting::ModUnionTable* mod_union_table = table_pair.second;
3187 mod_union_table->Dump(LOG_STREAM(ERROR) << mod_union_table->GetName() << ": ");
3188 }
3189 // Dump remembered sets.
3190 for (const auto& table_pair : remembered_sets_) {
3191 accounting::RememberedSet* remembered_set = table_pair.second;
3192 remembered_set->Dump(LOG_STREAM(ERROR) << remembered_set->GetName() << ": ");
3193 }
3194 DumpSpaces(LOG_STREAM(ERROR));
3195 }
3196 return visitor.GetFailureCount();
3197 }
3198
3199 class VerifyReferenceCardVisitor {
3200 public:
VerifyReferenceCardVisitor(Heap * heap,bool * failed)3201 VerifyReferenceCardVisitor(Heap* heap, bool* failed)
3202 REQUIRES_SHARED(Locks::mutator_lock_,
3203 Locks::heap_bitmap_lock_)
3204 : heap_(heap), failed_(failed) {
3205 }
3206
3207 // There is no card marks for native roots on a class.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3208 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
3209 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3210 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
3211
3212 // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
3213 // annotalysis on visitors.
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static) const3214 void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
3215 NO_THREAD_SAFETY_ANALYSIS {
3216 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
3217 // Filter out class references since changing an object's class does not mark the card as dirty.
3218 // Also handles large objects, since the only reference they hold is a class reference.
3219 if (ref != nullptr && !ref->IsClass()) {
3220 accounting::CardTable* card_table = heap_->GetCardTable();
3221 // If the object is not dirty and it is referencing something in the live stack other than
3222 // class, then it must be on a dirty card.
3223 if (!card_table->AddrIsInCardTable(obj)) {
3224 LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
3225 *failed_ = true;
3226 } else if (!card_table->IsDirty(obj)) {
3227 // TODO: Check mod-union tables.
3228 // Card should be either kCardDirty if it got re-dirtied after we aged it, or
3229 // kCardDirty - 1 if it didnt get touched since we aged it.
3230 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
3231 if (live_stack->ContainsSorted(ref)) {
3232 if (live_stack->ContainsSorted(obj)) {
3233 LOG(ERROR) << "Object " << obj << " found in live stack";
3234 }
3235 if (heap_->GetLiveBitmap()->Test(obj)) {
3236 LOG(ERROR) << "Object " << obj << " found in live bitmap";
3237 }
3238 LOG(ERROR) << "Object " << obj << " " << mirror::Object::PrettyTypeOf(obj)
3239 << " references " << ref << " " << mirror::Object::PrettyTypeOf(ref)
3240 << " in live stack";
3241
3242 // Print which field of the object is dead.
3243 if (!obj->IsObjectArray()) {
3244 ObjPtr<mirror::Class> klass = is_static ? obj->AsClass() : obj->GetClass();
3245 CHECK(klass != nullptr);
3246 for (ArtField& field : (is_static ? klass->GetSFields() : klass->GetIFields())) {
3247 if (field.GetOffset().Int32Value() == offset.Int32Value()) {
3248 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
3249 << field.PrettyField();
3250 break;
3251 }
3252 }
3253 } else {
3254 ObjPtr<mirror::ObjectArray<mirror::Object>> object_array =
3255 obj->AsObjectArray<mirror::Object>();
3256 for (int32_t i = 0; i < object_array->GetLength(); ++i) {
3257 if (object_array->Get(i) == ref) {
3258 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
3259 }
3260 }
3261 }
3262
3263 *failed_ = true;
3264 }
3265 }
3266 }
3267 }
3268
3269 private:
3270 Heap* const heap_;
3271 bool* const failed_;
3272 };
3273
3274 class VerifyLiveStackReferences {
3275 public:
VerifyLiveStackReferences(Heap * heap)3276 explicit VerifyLiveStackReferences(Heap* heap)
3277 : heap_(heap),
3278 failed_(false) {}
3279
operator ()(mirror::Object * obj) const3280 void operator()(mirror::Object* obj) const
3281 REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3282 VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
3283 obj->VisitReferences(visitor, VoidFunctor());
3284 }
3285
Failed() const3286 bool Failed() const {
3287 return failed_;
3288 }
3289
3290 private:
3291 Heap* const heap_;
3292 bool failed_;
3293 };
3294
VerifyMissingCardMarks()3295 bool Heap::VerifyMissingCardMarks() {
3296 Thread* self = Thread::Current();
3297 Locks::mutator_lock_->AssertExclusiveHeld(self);
3298 // We need to sort the live stack since we binary search it.
3299 live_stack_->Sort();
3300 // Since we sorted the allocation stack content, need to revoke all
3301 // thread-local allocation stacks.
3302 RevokeAllThreadLocalAllocationStacks(self);
3303 VerifyLiveStackReferences visitor(this);
3304 GetLiveBitmap()->Visit(visitor);
3305 // We can verify objects in the live stack since none of these should reference dead objects.
3306 for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
3307 if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
3308 visitor(it->AsMirrorPtr());
3309 }
3310 }
3311 return !visitor.Failed();
3312 }
3313
SwapStacks()3314 void Heap::SwapStacks() {
3315 if (kUseThreadLocalAllocationStack) {
3316 live_stack_->AssertAllZero();
3317 }
3318 allocation_stack_.swap(live_stack_);
3319 }
3320
RevokeAllThreadLocalAllocationStacks(Thread * self)3321 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
3322 // This must be called only during the pause.
3323 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
3324 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
3325 MutexLock mu2(self, *Locks::thread_list_lock_);
3326 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
3327 for (Thread* t : thread_list) {
3328 t->RevokeThreadLocalAllocationStack();
3329 }
3330 }
3331
AssertThreadLocalBuffersAreRevoked(Thread * thread)3332 void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
3333 if (kIsDebugBuild) {
3334 if (rosalloc_space_ != nullptr) {
3335 rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
3336 }
3337 if (bump_pointer_space_ != nullptr) {
3338 bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
3339 }
3340 }
3341 }
3342
AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked()3343 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
3344 if (kIsDebugBuild) {
3345 if (bump_pointer_space_ != nullptr) {
3346 bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
3347 }
3348 }
3349 }
3350
FindModUnionTableFromSpace(space::Space * space)3351 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
3352 auto it = mod_union_tables_.find(space);
3353 if (it == mod_union_tables_.end()) {
3354 return nullptr;
3355 }
3356 return it->second;
3357 }
3358
FindRememberedSetFromSpace(space::Space * space)3359 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
3360 auto it = remembered_sets_.find(space);
3361 if (it == remembered_sets_.end()) {
3362 return nullptr;
3363 }
3364 return it->second;
3365 }
3366
ProcessCards(TimingLogger * timings,bool use_rem_sets,bool process_alloc_space_cards,bool clear_alloc_space_cards)3367 void Heap::ProcessCards(TimingLogger* timings,
3368 bool use_rem_sets,
3369 bool process_alloc_space_cards,
3370 bool clear_alloc_space_cards) {
3371 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3372 // Clear cards and keep track of cards cleared in the mod-union table.
3373 for (const auto& space : continuous_spaces_) {
3374 accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
3375 accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
3376 if (table != nullptr) {
3377 const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
3378 "ImageModUnionClearCards";
3379 TimingLogger::ScopedTiming t2(name, timings);
3380 table->ProcessCards();
3381 } else if (use_rem_sets && rem_set != nullptr) {
3382 DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
3383 << static_cast<int>(collector_type_);
3384 TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
3385 rem_set->ClearCards();
3386 } else if (process_alloc_space_cards) {
3387 TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
3388 if (clear_alloc_space_cards) {
3389 uint8_t* end = space->End();
3390 if (space->IsImageSpace()) {
3391 // Image space end is the end of the mirror objects, it is not necessarily page or card
3392 // aligned. Align up so that the check in ClearCardRange does not fail.
3393 end = AlignUp(end, accounting::CardTable::kCardSize);
3394 }
3395 card_table_->ClearCardRange(space->Begin(), end);
3396 } else {
3397 // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
3398 // cards were dirty before the GC started.
3399 // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
3400 // -> clean(cleaning thread).
3401 // The races are we either end up with: Aged card, unaged card. Since we have the
3402 // checkpoint roots and then we scan / update mod union tables after. We will always
3403 // scan either card. If we end up with the non aged card, we scan it it in the pause.
3404 card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
3405 VoidFunctor());
3406 }
3407 }
3408 }
3409 }
3410
3411 struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor {
MarkObjectart::gc::IdentityMarkHeapReferenceVisitor3412 mirror::Object* MarkObject(mirror::Object* obj) override {
3413 return obj;
3414 }
MarkHeapReferenceart::gc::IdentityMarkHeapReferenceVisitor3415 void MarkHeapReference(mirror::HeapReference<mirror::Object>*, bool) override {
3416 }
3417 };
3418
PreGcVerificationPaused(collector::GarbageCollector * gc)3419 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
3420 Thread* const self = Thread::Current();
3421 TimingLogger* const timings = current_gc_iteration_.GetTimings();
3422 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3423 if (verify_pre_gc_heap_) {
3424 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
3425 size_t failures = VerifyHeapReferences();
3426 if (failures > 0) {
3427 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3428 << " failures";
3429 }
3430 }
3431 // Check that all objects which reference things in the live stack are on dirty cards.
3432 if (verify_missing_card_marks_) {
3433 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
3434 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
3435 SwapStacks();
3436 // Sort the live stack so that we can quickly binary search it later.
3437 CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
3438 << " missing card mark verification failed\n" << DumpSpaces();
3439 SwapStacks();
3440 }
3441 if (verify_mod_union_table_) {
3442 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
3443 ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
3444 for (const auto& table_pair : mod_union_tables_) {
3445 accounting::ModUnionTable* mod_union_table = table_pair.second;
3446 IdentityMarkHeapReferenceVisitor visitor;
3447 mod_union_table->UpdateAndMarkReferences(&visitor);
3448 mod_union_table->Verify();
3449 }
3450 }
3451 }
3452
PreGcVerification(collector::GarbageCollector * gc)3453 void Heap::PreGcVerification(collector::GarbageCollector* gc) {
3454 if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
3455 collector::GarbageCollector::ScopedPause pause(gc, false);
3456 PreGcVerificationPaused(gc);
3457 }
3458 }
3459
PrePauseRosAllocVerification(collector::GarbageCollector * gc ATTRIBUTE_UNUSED)3460 void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc ATTRIBUTE_UNUSED) {
3461 // TODO: Add a new runtime option for this?
3462 if (verify_pre_gc_rosalloc_) {
3463 RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
3464 }
3465 }
3466
PreSweepingGcVerification(collector::GarbageCollector * gc)3467 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
3468 Thread* const self = Thread::Current();
3469 TimingLogger* const timings = current_gc_iteration_.GetTimings();
3470 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3471 // Called before sweeping occurs since we want to make sure we are not going so reclaim any
3472 // reachable objects.
3473 if (verify_pre_sweeping_heap_) {
3474 TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
3475 CHECK_NE(self->GetState(), kRunnable);
3476 {
3477 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3478 // Swapping bound bitmaps does nothing.
3479 gc->SwapBitmaps();
3480 }
3481 // Pass in false since concurrent reference processing can mean that the reference referents
3482 // may point to dead objects at the point which PreSweepingGcVerification is called.
3483 size_t failures = VerifyHeapReferences(false);
3484 if (failures > 0) {
3485 LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
3486 << " failures";
3487 }
3488 {
3489 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3490 gc->SwapBitmaps();
3491 }
3492 }
3493 if (verify_pre_sweeping_rosalloc_) {
3494 RosAllocVerification(timings, "PreSweepingRosAllocVerification");
3495 }
3496 }
3497
PostGcVerificationPaused(collector::GarbageCollector * gc)3498 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
3499 // Only pause if we have to do some verification.
3500 Thread* const self = Thread::Current();
3501 TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
3502 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3503 if (verify_system_weaks_) {
3504 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3505 collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
3506 mark_sweep->VerifySystemWeaks();
3507 }
3508 if (verify_post_gc_rosalloc_) {
3509 RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
3510 }
3511 if (verify_post_gc_heap_) {
3512 TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
3513 size_t failures = VerifyHeapReferences();
3514 if (failures > 0) {
3515 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3516 << " failures";
3517 }
3518 }
3519 }
3520
PostGcVerification(collector::GarbageCollector * gc)3521 void Heap::PostGcVerification(collector::GarbageCollector* gc) {
3522 if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
3523 collector::GarbageCollector::ScopedPause pause(gc, false);
3524 PostGcVerificationPaused(gc);
3525 }
3526 }
3527
RosAllocVerification(TimingLogger * timings,const char * name)3528 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
3529 TimingLogger::ScopedTiming t(name, timings);
3530 for (const auto& space : continuous_spaces_) {
3531 if (space->IsRosAllocSpace()) {
3532 VLOG(heap) << name << " : " << space->GetName();
3533 space->AsRosAllocSpace()->Verify();
3534 }
3535 }
3536 }
3537
WaitForGcToComplete(GcCause cause,Thread * self)3538 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
3539 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
3540 MutexLock mu(self, *gc_complete_lock_);
3541 return WaitForGcToCompleteLocked(cause, self);
3542 }
3543
WaitForGcToCompleteLocked(GcCause cause,Thread * self)3544 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
3545 gc_complete_cond_->CheckSafeToWait(self);
3546 collector::GcType last_gc_type = collector::kGcTypeNone;
3547 GcCause last_gc_cause = kGcCauseNone;
3548 uint64_t wait_start = NanoTime();
3549 while (collector_type_running_ != kCollectorTypeNone) {
3550 if (self != task_processor_->GetRunningThread()) {
3551 // The current thread is about to wait for a currently running
3552 // collection to finish. If the waiting thread is not the heap
3553 // task daemon thread, the currently running collection is
3554 // considered as a blocking GC.
3555 running_collection_is_blocking_ = true;
3556 VLOG(gc) << "Waiting for a blocking GC " << cause;
3557 }
3558 SCOPED_TRACE << "GC: Wait For Completion " << cause;
3559 // We must wait, change thread state then sleep on gc_complete_cond_;
3560 gc_complete_cond_->Wait(self);
3561 last_gc_type = last_gc_type_;
3562 last_gc_cause = last_gc_cause_;
3563 }
3564 uint64_t wait_time = NanoTime() - wait_start;
3565 total_wait_time_ += wait_time;
3566 if (wait_time > long_pause_log_threshold_) {
3567 LOG(INFO) << "WaitForGcToComplete blocked " << cause << " on " << last_gc_cause << " for "
3568 << PrettyDuration(wait_time);
3569 }
3570 if (self != task_processor_->GetRunningThread()) {
3571 // The current thread is about to run a collection. If the thread
3572 // is not the heap task daemon thread, it's considered as a
3573 // blocking GC (i.e., blocking itself).
3574 running_collection_is_blocking_ = true;
3575 // Don't log fake "GC" types that are only used for debugger or hidden APIs. If we log these,
3576 // it results in log spam. kGcCauseExplicit is already logged in LogGC, so avoid it here too.
3577 if (cause == kGcCauseForAlloc ||
3578 cause == kGcCauseForNativeAlloc ||
3579 cause == kGcCauseDisableMovingGc) {
3580 VLOG(gc) << "Starting a blocking GC " << cause;
3581 }
3582 }
3583 return last_gc_type;
3584 }
3585
DumpForSigQuit(std::ostream & os)3586 void Heap::DumpForSigQuit(std::ostream& os) {
3587 os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
3588 << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
3589 DumpGcPerformanceInfo(os);
3590 }
3591
GetPercentFree()3592 size_t Heap::GetPercentFree() {
3593 return static_cast<size_t>(100.0f * static_cast<float>(
3594 GetFreeMemory()) / target_footprint_.load(std::memory_order_relaxed));
3595 }
3596
SetIdealFootprint(size_t target_footprint)3597 void Heap::SetIdealFootprint(size_t target_footprint) {
3598 if (target_footprint > GetMaxMemory()) {
3599 VLOG(gc) << "Clamp target GC heap from " << PrettySize(target_footprint) << " to "
3600 << PrettySize(GetMaxMemory());
3601 target_footprint = GetMaxMemory();
3602 }
3603 target_footprint_.store(target_footprint, std::memory_order_relaxed);
3604 }
3605
IsMovableObject(ObjPtr<mirror::Object> obj) const3606 bool Heap::IsMovableObject(ObjPtr<mirror::Object> obj) const {
3607 if (kMovingCollector) {
3608 space::Space* space = FindContinuousSpaceFromObject(obj.Ptr(), true);
3609 if (space != nullptr) {
3610 // TODO: Check large object?
3611 return space->CanMoveObjects();
3612 }
3613 }
3614 return false;
3615 }
3616
FindCollectorByGcType(collector::GcType gc_type)3617 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
3618 for (auto* collector : garbage_collectors_) {
3619 if (collector->GetCollectorType() == collector_type_ &&
3620 collector->GetGcType() == gc_type) {
3621 return collector;
3622 }
3623 }
3624 return nullptr;
3625 }
3626
HeapGrowthMultiplier() const3627 double Heap::HeapGrowthMultiplier() const {
3628 // If we don't care about pause times we are background, so return 1.0.
3629 if (!CareAboutPauseTimes()) {
3630 return 1.0;
3631 }
3632 return foreground_heap_growth_multiplier_;
3633 }
3634
GrowForUtilization(collector::GarbageCollector * collector_ran,size_t bytes_allocated_before_gc)3635 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
3636 size_t bytes_allocated_before_gc) {
3637 // We know what our utilization is at this moment.
3638 // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
3639 const size_t bytes_allocated = GetBytesAllocated();
3640 // Trace the new heap size after the GC is finished.
3641 TraceHeapSize(bytes_allocated);
3642 uint64_t target_size;
3643 collector::GcType gc_type = collector_ran->GetGcType();
3644 // Use the multiplier to grow more for foreground.
3645 const double multiplier = HeapGrowthMultiplier(); // Use the multiplier to grow more for
3646 // foreground.
3647 const size_t adjusted_min_free = static_cast<size_t>(min_free_ * multiplier);
3648 const size_t adjusted_max_free = static_cast<size_t>(max_free_ * multiplier);
3649 if (gc_type != collector::kGcTypeSticky) {
3650 // Grow the heap for non sticky GC.
3651 uint64_t delta = bytes_allocated * (1.0 / GetTargetHeapUtilization() - 1.0);
3652 DCHECK_LE(delta, std::numeric_limits<size_t>::max()) << "bytes_allocated=" << bytes_allocated
3653 << " target_utilization_=" << target_utilization_;
3654 target_size = bytes_allocated + delta * multiplier;
3655 target_size = std::min(target_size,
3656 static_cast<uint64_t>(bytes_allocated + adjusted_max_free));
3657 target_size = std::max(target_size,
3658 static_cast<uint64_t>(bytes_allocated + adjusted_min_free));
3659 next_gc_type_ = collector::kGcTypeSticky;
3660 } else {
3661 collector::GcType non_sticky_gc_type = NonStickyGcType();
3662 // Find what the next non sticky collector will be.
3663 collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
3664 if (use_generational_cc_) {
3665 if (non_sticky_collector == nullptr) {
3666 non_sticky_collector = FindCollectorByGcType(collector::kGcTypePartial);
3667 }
3668 CHECK(non_sticky_collector != nullptr);
3669 }
3670 double sticky_gc_throughput_adjustment = GetStickyGcThroughputAdjustment(use_generational_cc_);
3671
3672 // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
3673 // do another sticky collection next.
3674 // We also check that the bytes allocated aren't over the target_footprint, or
3675 // concurrent_start_bytes in case of concurrent GCs, in order to prevent a
3676 // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
3677 // if the sticky GC throughput always remained >= the full/partial throughput.
3678 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
3679 if (current_gc_iteration_.GetEstimatedThroughput() * sticky_gc_throughput_adjustment >=
3680 non_sticky_collector->GetEstimatedMeanThroughput() &&
3681 non_sticky_collector->NumberOfIterations() > 0 &&
3682 bytes_allocated <= (IsGcConcurrent() ? concurrent_start_bytes_ : target_footprint)) {
3683 next_gc_type_ = collector::kGcTypeSticky;
3684 } else {
3685 next_gc_type_ = non_sticky_gc_type;
3686 }
3687 // If we have freed enough memory, shrink the heap back down.
3688 if (bytes_allocated + adjusted_max_free < target_footprint) {
3689 target_size = bytes_allocated + adjusted_max_free;
3690 } else {
3691 target_size = std::max(bytes_allocated, target_footprint);
3692 }
3693 }
3694 CHECK_LE(target_size, std::numeric_limits<size_t>::max());
3695 if (!ignore_target_footprint_) {
3696 SetIdealFootprint(target_size);
3697 if (IsGcConcurrent()) {
3698 const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
3699 current_gc_iteration_.GetFreedLargeObjectBytes() +
3700 current_gc_iteration_.GetFreedRevokeBytes();
3701 // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
3702 // how many bytes were allocated during the GC we need to add freed_bytes back on.
3703 CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
3704 const size_t bytes_allocated_during_gc = bytes_allocated + freed_bytes -
3705 bytes_allocated_before_gc;
3706 // Calculate when to perform the next ConcurrentGC.
3707 // Estimate how many remaining bytes we will have when we need to start the next GC.
3708 size_t remaining_bytes = bytes_allocated_during_gc;
3709 remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
3710 remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
3711 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
3712 if (UNLIKELY(remaining_bytes > target_footprint)) {
3713 // A never going to happen situation that from the estimated allocation rate we will exceed
3714 // the applications entire footprint with the given estimated allocation rate. Schedule
3715 // another GC nearly straight away.
3716 remaining_bytes = std::min(kMinConcurrentRemainingBytes, target_footprint);
3717 }
3718 DCHECK_LE(target_footprint_.load(std::memory_order_relaxed), GetMaxMemory());
3719 // Start a concurrent GC when we get close to the estimated remaining bytes. When the
3720 // allocation rate is very high, remaining_bytes could tell us that we should start a GC
3721 // right away.
3722 concurrent_start_bytes_ = std::max(target_footprint - remaining_bytes, bytes_allocated);
3723 }
3724 }
3725 }
3726
ClampGrowthLimit()3727 void Heap::ClampGrowthLimit() {
3728 // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
3729 ScopedObjectAccess soa(Thread::Current());
3730 WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_);
3731 capacity_ = growth_limit_;
3732 for (const auto& space : continuous_spaces_) {
3733 if (space->IsMallocSpace()) {
3734 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3735 malloc_space->ClampGrowthLimit();
3736 }
3737 }
3738 if (collector_type_ == kCollectorTypeCC) {
3739 DCHECK(region_space_ != nullptr);
3740 // Twice the capacity as CC needs extra space for evacuating objects.
3741 region_space_->ClampGrowthLimit(2 * capacity_);
3742 }
3743 // This space isn't added for performance reasons.
3744 if (main_space_backup_.get() != nullptr) {
3745 main_space_backup_->ClampGrowthLimit();
3746 }
3747 }
3748
ClearGrowthLimit()3749 void Heap::ClearGrowthLimit() {
3750 if (target_footprint_.load(std::memory_order_relaxed) == growth_limit_
3751 && growth_limit_ < capacity_) {
3752 target_footprint_.store(capacity_, std::memory_order_relaxed);
3753 concurrent_start_bytes_ =
3754 UnsignedDifference(capacity_, kMinConcurrentRemainingBytes);
3755 }
3756 growth_limit_ = capacity_;
3757 ScopedObjectAccess soa(Thread::Current());
3758 for (const auto& space : continuous_spaces_) {
3759 if (space->IsMallocSpace()) {
3760 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3761 malloc_space->ClearGrowthLimit();
3762 malloc_space->SetFootprintLimit(malloc_space->Capacity());
3763 }
3764 }
3765 // This space isn't added for performance reasons.
3766 if (main_space_backup_.get() != nullptr) {
3767 main_space_backup_->ClearGrowthLimit();
3768 main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
3769 }
3770 }
3771
AddFinalizerReference(Thread * self,ObjPtr<mirror::Object> * object)3772 void Heap::AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object) {
3773 ScopedObjectAccess soa(self);
3774 ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
3775 jvalue args[1];
3776 args[0].l = arg.get();
3777 InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
3778 // Restore object in case it gets moved.
3779 *object = soa.Decode<mirror::Object>(arg.get());
3780 }
3781
RequestConcurrentGCAndSaveObject(Thread * self,bool force_full,ObjPtr<mirror::Object> * obj)3782 void Heap::RequestConcurrentGCAndSaveObject(Thread* self,
3783 bool force_full,
3784 ObjPtr<mirror::Object>* obj) {
3785 StackHandleScope<1> hs(self);
3786 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3787 RequestConcurrentGC(self, kGcCauseBackground, force_full);
3788 }
3789
3790 class Heap::ConcurrentGCTask : public HeapTask {
3791 public:
ConcurrentGCTask(uint64_t target_time,GcCause cause,bool force_full)3792 ConcurrentGCTask(uint64_t target_time, GcCause cause, bool force_full)
3793 : HeapTask(target_time), cause_(cause), force_full_(force_full) {}
Run(Thread * self)3794 void Run(Thread* self) override {
3795 gc::Heap* heap = Runtime::Current()->GetHeap();
3796 heap->ConcurrentGC(self, cause_, force_full_);
3797 heap->ClearConcurrentGCRequest();
3798 }
3799
3800 private:
3801 const GcCause cause_;
3802 const bool force_full_; // If true, force full (or partial) collection.
3803 };
3804
CanAddHeapTask(Thread * self)3805 static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) {
3806 Runtime* runtime = Runtime::Current();
3807 return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
3808 !self->IsHandlingStackOverflow();
3809 }
3810
ClearConcurrentGCRequest()3811 void Heap::ClearConcurrentGCRequest() {
3812 concurrent_gc_pending_.store(false, std::memory_order_relaxed);
3813 }
3814
RequestConcurrentGC(Thread * self,GcCause cause,bool force_full)3815 void Heap::RequestConcurrentGC(Thread* self, GcCause cause, bool force_full) {
3816 if (CanAddHeapTask(self) &&
3817 concurrent_gc_pending_.CompareAndSetStrongSequentiallyConsistent(false, true)) {
3818 task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(), // Start straight away.
3819 cause,
3820 force_full));
3821 }
3822 }
3823
ConcurrentGC(Thread * self,GcCause cause,bool force_full)3824 void Heap::ConcurrentGC(Thread* self, GcCause cause, bool force_full) {
3825 if (!Runtime::Current()->IsShuttingDown(self)) {
3826 // Wait for any GCs currently running to finish.
3827 if (WaitForGcToComplete(cause, self) == collector::kGcTypeNone) {
3828 // If we can't run the GC type we wanted to run, find the next appropriate one and try
3829 // that instead. E.g. can't do partial, so do full instead.
3830 collector::GcType next_gc_type = next_gc_type_;
3831 // If forcing full and next gc type is sticky, override with a non-sticky type.
3832 if (force_full && next_gc_type == collector::kGcTypeSticky) {
3833 next_gc_type = NonStickyGcType();
3834 }
3835 if (CollectGarbageInternal(next_gc_type, cause, false) == collector::kGcTypeNone) {
3836 for (collector::GcType gc_type : gc_plan_) {
3837 // Attempt to run the collector, if we succeed, we are done.
3838 if (gc_type > next_gc_type &&
3839 CollectGarbageInternal(gc_type, cause, false) != collector::kGcTypeNone) {
3840 break;
3841 }
3842 }
3843 }
3844 }
3845 }
3846 }
3847
3848 class Heap::CollectorTransitionTask : public HeapTask {
3849 public:
CollectorTransitionTask(uint64_t target_time)3850 explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {}
3851
Run(Thread * self)3852 void Run(Thread* self) override {
3853 gc::Heap* heap = Runtime::Current()->GetHeap();
3854 heap->DoPendingCollectorTransition();
3855 heap->ClearPendingCollectorTransition(self);
3856 }
3857 };
3858
ClearPendingCollectorTransition(Thread * self)3859 void Heap::ClearPendingCollectorTransition(Thread* self) {
3860 MutexLock mu(self, *pending_task_lock_);
3861 pending_collector_transition_ = nullptr;
3862 }
3863
RequestCollectorTransition(CollectorType desired_collector_type,uint64_t delta_time)3864 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
3865 Thread* self = Thread::Current();
3866 desired_collector_type_ = desired_collector_type;
3867 if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
3868 return;
3869 }
3870 if (collector_type_ == kCollectorTypeCC) {
3871 // For CC, we invoke a full compaction when going to the background, but the collector type
3872 // doesn't change.
3873 DCHECK_EQ(desired_collector_type_, kCollectorTypeCCBackground);
3874 }
3875 DCHECK_NE(collector_type_, kCollectorTypeCCBackground);
3876 CollectorTransitionTask* added_task = nullptr;
3877 const uint64_t target_time = NanoTime() + delta_time;
3878 {
3879 MutexLock mu(self, *pending_task_lock_);
3880 // If we have an existing collector transition, update the targe time to be the new target.
3881 if (pending_collector_transition_ != nullptr) {
3882 task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
3883 return;
3884 }
3885 added_task = new CollectorTransitionTask(target_time);
3886 pending_collector_transition_ = added_task;
3887 }
3888 task_processor_->AddTask(self, added_task);
3889 }
3890
3891 class Heap::HeapTrimTask : public HeapTask {
3892 public:
HeapTrimTask(uint64_t delta_time)3893 explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
Run(Thread * self)3894 void Run(Thread* self) override {
3895 gc::Heap* heap = Runtime::Current()->GetHeap();
3896 heap->Trim(self);
3897 heap->ClearPendingTrim(self);
3898 }
3899 };
3900
ClearPendingTrim(Thread * self)3901 void Heap::ClearPendingTrim(Thread* self) {
3902 MutexLock mu(self, *pending_task_lock_);
3903 pending_heap_trim_ = nullptr;
3904 }
3905
RequestTrim(Thread * self)3906 void Heap::RequestTrim(Thread* self) {
3907 if (!CanAddHeapTask(self)) {
3908 return;
3909 }
3910 // GC completed and now we must decide whether to request a heap trim (advising pages back to the
3911 // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
3912 // a space it will hold its lock and can become a cause of jank.
3913 // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
3914 // forking.
3915
3916 // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
3917 // because that only marks object heads, so a large array looks like lots of empty space. We
3918 // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
3919 // to utilization (which is probably inversely proportional to how much benefit we can expect).
3920 // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
3921 // not how much use we're making of those pages.
3922 HeapTrimTask* added_task = nullptr;
3923 {
3924 MutexLock mu(self, *pending_task_lock_);
3925 if (pending_heap_trim_ != nullptr) {
3926 // Already have a heap trim request in task processor, ignore this request.
3927 return;
3928 }
3929 added_task = new HeapTrimTask(kHeapTrimWait);
3930 pending_heap_trim_ = added_task;
3931 }
3932 task_processor_->AddTask(self, added_task);
3933 }
3934
IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke)3935 void Heap::IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke) {
3936 size_t previous_num_bytes_freed_revoke =
3937 num_bytes_freed_revoke_.fetch_add(freed_bytes_revoke, std::memory_order_relaxed);
3938 // Check the updated value is less than the number of bytes allocated. There is a risk of
3939 // execution being suspended between the increment above and the CHECK below, leading to
3940 // the use of previous_num_bytes_freed_revoke in the comparison.
3941 CHECK_GE(num_bytes_allocated_.load(std::memory_order_relaxed),
3942 previous_num_bytes_freed_revoke + freed_bytes_revoke);
3943 }
3944
RevokeThreadLocalBuffers(Thread * thread)3945 void Heap::RevokeThreadLocalBuffers(Thread* thread) {
3946 if (rosalloc_space_ != nullptr) {
3947 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3948 if (freed_bytes_revoke > 0U) {
3949 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
3950 }
3951 }
3952 if (bump_pointer_space_ != nullptr) {
3953 CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
3954 }
3955 if (region_space_ != nullptr) {
3956 CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
3957 }
3958 }
3959
RevokeRosAllocThreadLocalBuffers(Thread * thread)3960 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
3961 if (rosalloc_space_ != nullptr) {
3962 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3963 if (freed_bytes_revoke > 0U) {
3964 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
3965 }
3966 }
3967 }
3968
RevokeAllThreadLocalBuffers()3969 void Heap::RevokeAllThreadLocalBuffers() {
3970 if (rosalloc_space_ != nullptr) {
3971 size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
3972 if (freed_bytes_revoke > 0U) {
3973 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
3974 }
3975 }
3976 if (bump_pointer_space_ != nullptr) {
3977 CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
3978 }
3979 if (region_space_ != nullptr) {
3980 CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
3981 }
3982 }
3983
IsGCRequestPending() const3984 bool Heap::IsGCRequestPending() const {
3985 return concurrent_gc_pending_.load(std::memory_order_relaxed);
3986 }
3987
RunFinalization(JNIEnv * env,uint64_t timeout)3988 void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) {
3989 env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime,
3990 WellKnownClasses::dalvik_system_VMRuntime_runFinalization,
3991 static_cast<jlong>(timeout));
3992 }
3993
3994 // For GC triggering purposes, we count old (pre-last-GC) and new native allocations as
3995 // different fractions of Java allocations.
3996 // For now, we essentially do not count old native allocations at all, so that we can preserve the
3997 // existing behavior of not limiting native heap size. If we seriously considered it, we would
3998 // have to adjust collection thresholds when we encounter large amounts of old native memory,
3999 // and handle native out-of-memory situations.
4000
4001 static constexpr size_t kOldNativeDiscountFactor = 65536; // Approximately infinite for now.
4002 static constexpr size_t kNewNativeDiscountFactor = 2;
4003
4004 // If weighted java + native memory use exceeds our target by kStopForNativeFactor, and
4005 // newly allocated memory exceeds kHugeNativeAlloc, we wait for GC to complete to avoid
4006 // running out of memory.
4007 static constexpr float kStopForNativeFactor = 4.0;
4008 // TODO: Allow this to be tuned. We want this much smaller for some apps, like Calculator.
4009 // But making it too small can cause jank in apps like launcher that intentionally allocate
4010 // large amounts of memory in rapid succession. (b/122099093)
4011 // For now, we punt, and use a value that should be easily large enough to disable this in all
4012 // questionable setting, but that is clearly too large to be effective for small memory devices.
4013 static constexpr size_t kHugeNativeAllocs = 1 * GB;
4014
4015 // Return the ratio of the weighted native + java allocated bytes to its target value.
4016 // A return value > 1.0 means we should collect. Significantly larger values mean we're falling
4017 // behind.
NativeMemoryOverTarget(size_t current_native_bytes,bool is_gc_concurrent)4018 inline float Heap::NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent) {
4019 // Collection check for native allocation. Does not enforce Java heap bounds.
4020 // With adj_start_bytes defined below, effectively checks
4021 // <java bytes allocd> + c1*<old native allocd> + c2*<new native allocd) >= adj_start_bytes,
4022 // where c3 > 1, and currently c1 and c2 are 1 divided by the values defined above.
4023 size_t old_native_bytes = old_native_bytes_allocated_.load(std::memory_order_relaxed);
4024 if (old_native_bytes > current_native_bytes) {
4025 // Net decrease; skip the check, but update old value.
4026 // It's OK to lose an update if two stores race.
4027 old_native_bytes_allocated_.store(current_native_bytes, std::memory_order_relaxed);
4028 return 0.0;
4029 } else {
4030 size_t new_native_bytes = UnsignedDifference(current_native_bytes, old_native_bytes);
4031 size_t weighted_native_bytes = new_native_bytes / kNewNativeDiscountFactor
4032 + old_native_bytes / kOldNativeDiscountFactor;
4033 size_t add_bytes_allowed = static_cast<size_t>(
4034 NativeAllocationGcWatermark() * HeapGrowthMultiplier());
4035 size_t java_gc_start_bytes = is_gc_concurrent
4036 ? concurrent_start_bytes_
4037 : target_footprint_.load(std::memory_order_relaxed);
4038 size_t adj_start_bytes = UnsignedSum(java_gc_start_bytes,
4039 add_bytes_allowed / kNewNativeDiscountFactor);
4040 return static_cast<float>(GetBytesAllocated() + weighted_native_bytes)
4041 / static_cast<float>(adj_start_bytes);
4042 }
4043 }
4044
CheckGCForNative(Thread * self)4045 inline void Heap::CheckGCForNative(Thread* self) {
4046 bool is_gc_concurrent = IsGcConcurrent();
4047 size_t current_native_bytes = GetNativeBytes();
4048 float gc_urgency = NativeMemoryOverTarget(current_native_bytes, is_gc_concurrent);
4049 if (UNLIKELY(gc_urgency >= 1.0)) {
4050 if (is_gc_concurrent) {
4051 RequestConcurrentGC(self, kGcCauseForNativeAlloc, /*force_full=*/true);
4052 if (gc_urgency > kStopForNativeFactor
4053 && current_native_bytes > kHugeNativeAllocs) {
4054 // We're in danger of running out of memory due to rampant native allocation.
4055 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
4056 LOG(INFO) << "Stopping for native allocation, urgency: " << gc_urgency;
4057 }
4058 WaitForGcToComplete(kGcCauseForNativeAlloc, self);
4059 }
4060 } else {
4061 CollectGarbageInternal(NonStickyGcType(), kGcCauseForNativeAlloc, false);
4062 }
4063 }
4064 }
4065
4066 // About kNotifyNativeInterval allocations have occurred. Check whether we should garbage collect.
NotifyNativeAllocations(JNIEnv * env)4067 void Heap::NotifyNativeAllocations(JNIEnv* env) {
4068 native_objects_notified_.fetch_add(kNotifyNativeInterval, std::memory_order_relaxed);
4069 CheckGCForNative(ThreadForEnv(env));
4070 }
4071
4072 // Register a native allocation with an explicit size.
4073 // This should only be done for large allocations of non-malloc memory, which we wouldn't
4074 // otherwise see.
RegisterNativeAllocation(JNIEnv * env,size_t bytes)4075 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
4076 native_bytes_registered_.fetch_add(bytes, std::memory_order_relaxed);
4077 uint32_t objects_notified =
4078 native_objects_notified_.fetch_add(1, std::memory_order_relaxed);
4079 if (objects_notified % kNotifyNativeInterval == kNotifyNativeInterval - 1
4080 || bytes > kCheckImmediatelyThreshold) {
4081 CheckGCForNative(ThreadForEnv(env));
4082 }
4083 }
4084
RegisterNativeFree(JNIEnv *,size_t bytes)4085 void Heap::RegisterNativeFree(JNIEnv*, size_t bytes) {
4086 size_t allocated;
4087 size_t new_freed_bytes;
4088 do {
4089 allocated = native_bytes_registered_.load(std::memory_order_relaxed);
4090 new_freed_bytes = std::min(allocated, bytes);
4091 // We should not be registering more free than allocated bytes.
4092 // But correctly keep going in non-debug builds.
4093 DCHECK_EQ(new_freed_bytes, bytes);
4094 } while (!native_bytes_registered_.CompareAndSetWeakRelaxed(allocated,
4095 allocated - new_freed_bytes));
4096 }
4097
GetTotalMemory() const4098 size_t Heap::GetTotalMemory() const {
4099 return std::max(target_footprint_.load(std::memory_order_relaxed), GetBytesAllocated());
4100 }
4101
AddModUnionTable(accounting::ModUnionTable * mod_union_table)4102 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
4103 DCHECK(mod_union_table != nullptr);
4104 mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
4105 }
4106
CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c,size_t byte_count)4107 void Heap::CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) {
4108 // Compare rounded sizes since the allocation may have been retried after rounding the size.
4109 // See b/37885600
4110 CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
4111 (c->IsVariableSize() ||
4112 RoundUp(c->GetObjectSize(), kObjectAlignment) ==
4113 RoundUp(byte_count, kObjectAlignment)))
4114 << "ClassFlags=" << c->GetClassFlags()
4115 << " IsClassClass=" << c->IsClassClass()
4116 << " byte_count=" << byte_count
4117 << " IsVariableSize=" << c->IsVariableSize()
4118 << " ObjectSize=" << c->GetObjectSize()
4119 << " sizeof(Class)=" << sizeof(mirror::Class)
4120 << " " << verification_->DumpObjectInfo(c.Ptr(), /*tag=*/ "klass");
4121 CHECK_GE(byte_count, sizeof(mirror::Object));
4122 }
4123
AddRememberedSet(accounting::RememberedSet * remembered_set)4124 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
4125 CHECK(remembered_set != nullptr);
4126 space::Space* space = remembered_set->GetSpace();
4127 CHECK(space != nullptr);
4128 CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
4129 remembered_sets_.Put(space, remembered_set);
4130 CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
4131 }
4132
RemoveRememberedSet(space::Space * space)4133 void Heap::RemoveRememberedSet(space::Space* space) {
4134 CHECK(space != nullptr);
4135 auto it = remembered_sets_.find(space);
4136 CHECK(it != remembered_sets_.end());
4137 delete it->second;
4138 remembered_sets_.erase(it);
4139 CHECK(remembered_sets_.find(space) == remembered_sets_.end());
4140 }
4141
ClearMarkedObjects()4142 void Heap::ClearMarkedObjects() {
4143 // Clear all of the spaces' mark bitmaps.
4144 for (const auto& space : GetContinuousSpaces()) {
4145 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
4146 if (space->GetLiveBitmap() != mark_bitmap) {
4147 mark_bitmap->Clear();
4148 }
4149 }
4150 // Clear the marked objects in the discontinous space object sets.
4151 for (const auto& space : GetDiscontinuousSpaces()) {
4152 space->GetMarkBitmap()->Clear();
4153 }
4154 }
4155
SetAllocationRecords(AllocRecordObjectMap * records)4156 void Heap::SetAllocationRecords(AllocRecordObjectMap* records) {
4157 allocation_records_.reset(records);
4158 }
4159
VisitAllocationRecords(RootVisitor * visitor) const4160 void Heap::VisitAllocationRecords(RootVisitor* visitor) const {
4161 if (IsAllocTrackingEnabled()) {
4162 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4163 if (IsAllocTrackingEnabled()) {
4164 GetAllocationRecords()->VisitRoots(visitor);
4165 }
4166 }
4167 }
4168
SweepAllocationRecords(IsMarkedVisitor * visitor) const4169 void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const {
4170 if (IsAllocTrackingEnabled()) {
4171 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4172 if (IsAllocTrackingEnabled()) {
4173 GetAllocationRecords()->SweepAllocationRecords(visitor);
4174 }
4175 }
4176 }
4177
AllowNewAllocationRecords() const4178 void Heap::AllowNewAllocationRecords() const {
4179 CHECK(!kUseReadBarrier);
4180 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4181 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4182 if (allocation_records != nullptr) {
4183 allocation_records->AllowNewAllocationRecords();
4184 }
4185 }
4186
DisallowNewAllocationRecords() const4187 void Heap::DisallowNewAllocationRecords() const {
4188 CHECK(!kUseReadBarrier);
4189 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4190 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4191 if (allocation_records != nullptr) {
4192 allocation_records->DisallowNewAllocationRecords();
4193 }
4194 }
4195
BroadcastForNewAllocationRecords() const4196 void Heap::BroadcastForNewAllocationRecords() const {
4197 // Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may
4198 // be set to false while some threads are waiting for system weak access in
4199 // AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554.
4200 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4201 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4202 if (allocation_records != nullptr) {
4203 allocation_records->BroadcastForNewAllocationRecords();
4204 }
4205 }
4206
CheckGcStressMode(Thread * self,ObjPtr<mirror::Object> * obj)4207 void Heap::CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) {
4208 DCHECK(gc_stress_mode_);
4209 auto* const runtime = Runtime::Current();
4210 if (runtime->GetClassLinker()->IsInitialized() && !runtime->IsActiveTransaction()) {
4211 // Check if we should GC.
4212 bool new_backtrace = false;
4213 {
4214 static constexpr size_t kMaxFrames = 16u;
4215 FixedSizeBacktrace<kMaxFrames> backtrace;
4216 backtrace.Collect(/* skip_count= */ 2);
4217 uint64_t hash = backtrace.Hash();
4218 MutexLock mu(self, *backtrace_lock_);
4219 new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
4220 if (new_backtrace) {
4221 seen_backtraces_.insert(hash);
4222 }
4223 }
4224 if (new_backtrace) {
4225 StackHandleScope<1> hs(self);
4226 auto h = hs.NewHandleWrapper(obj);
4227 CollectGarbage(/* clear_soft_references= */ false);
4228 unique_backtrace_count_.fetch_add(1);
4229 } else {
4230 seen_backtrace_count_.fetch_add(1);
4231 }
4232 }
4233 }
4234
DisableGCForShutdown()4235 void Heap::DisableGCForShutdown() {
4236 Thread* const self = Thread::Current();
4237 CHECK(Runtime::Current()->IsShuttingDown(self));
4238 MutexLock mu(self, *gc_complete_lock_);
4239 gc_disabled_for_shutdown_ = true;
4240 }
4241
ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const4242 bool Heap::ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const {
4243 for (gc::space::ImageSpace* space : boot_image_spaces_) {
4244 if (space->HasAddress(obj.Ptr())) {
4245 return true;
4246 }
4247 }
4248 return false;
4249 }
4250
IsInBootImageOatFile(const void * p) const4251 bool Heap::IsInBootImageOatFile(const void* p) const {
4252 for (gc::space::ImageSpace* space : boot_image_spaces_) {
4253 if (space->GetOatFile()->Contains(p)) {
4254 return true;
4255 }
4256 }
4257 return false;
4258 }
4259
GetBootImagesSize(uint32_t * boot_image_begin,uint32_t * boot_image_end,uint32_t * boot_oat_begin,uint32_t * boot_oat_end)4260 void Heap::GetBootImagesSize(uint32_t* boot_image_begin,
4261 uint32_t* boot_image_end,
4262 uint32_t* boot_oat_begin,
4263 uint32_t* boot_oat_end) {
4264 DCHECK(boot_image_begin != nullptr);
4265 DCHECK(boot_image_end != nullptr);
4266 DCHECK(boot_oat_begin != nullptr);
4267 DCHECK(boot_oat_end != nullptr);
4268 *boot_image_begin = 0u;
4269 *boot_image_end = 0u;
4270 *boot_oat_begin = 0u;
4271 *boot_oat_end = 0u;
4272 for (gc::space::ImageSpace* space_ : GetBootImageSpaces()) {
4273 const uint32_t image_begin = PointerToLowMemUInt32(space_->Begin());
4274 const uint32_t image_size = space_->GetImageHeader().GetImageSize();
4275 if (*boot_image_begin == 0 || image_begin < *boot_image_begin) {
4276 *boot_image_begin = image_begin;
4277 }
4278 *boot_image_end = std::max(*boot_image_end, image_begin + image_size);
4279 const OatFile* boot_oat_file = space_->GetOatFile();
4280 const uint32_t oat_begin = PointerToLowMemUInt32(boot_oat_file->Begin());
4281 const uint32_t oat_size = boot_oat_file->Size();
4282 if (*boot_oat_begin == 0 || oat_begin < *boot_oat_begin) {
4283 *boot_oat_begin = oat_begin;
4284 }
4285 *boot_oat_end = std::max(*boot_oat_end, oat_begin + oat_size);
4286 }
4287 }
4288
SetAllocationListener(AllocationListener * l)4289 void Heap::SetAllocationListener(AllocationListener* l) {
4290 AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, l);
4291
4292 if (old == nullptr) {
4293 Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
4294 }
4295 }
4296
RemoveAllocationListener()4297 void Heap::RemoveAllocationListener() {
4298 AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, nullptr);
4299
4300 if (old != nullptr) {
4301 Runtime::Current()->GetInstrumentation()->UninstrumentQuickAllocEntryPoints();
4302 }
4303 }
4304
SetGcPauseListener(GcPauseListener * l)4305 void Heap::SetGcPauseListener(GcPauseListener* l) {
4306 gc_pause_listener_.store(l, std::memory_order_relaxed);
4307 }
4308
RemoveGcPauseListener()4309 void Heap::RemoveGcPauseListener() {
4310 gc_pause_listener_.store(nullptr, std::memory_order_relaxed);
4311 }
4312
AllocWithNewTLAB(Thread * self,size_t alloc_size,bool grow,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)4313 mirror::Object* Heap::AllocWithNewTLAB(Thread* self,
4314 size_t alloc_size,
4315 bool grow,
4316 size_t* bytes_allocated,
4317 size_t* usable_size,
4318 size_t* bytes_tl_bulk_allocated) {
4319 const AllocatorType allocator_type = GetCurrentAllocator();
4320 if (kUsePartialTlabs && alloc_size <= self->TlabRemainingCapacity()) {
4321 DCHECK_GT(alloc_size, self->TlabSize());
4322 // There is enough space if we grow the TLAB. Lets do that. This increases the
4323 // TLAB bytes.
4324 const size_t min_expand_size = alloc_size - self->TlabSize();
4325 const size_t expand_bytes = std::max(
4326 min_expand_size,
4327 std::min(self->TlabRemainingCapacity() - self->TlabSize(), kPartialTlabSize));
4328 if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, expand_bytes, grow))) {
4329 return nullptr;
4330 }
4331 *bytes_tl_bulk_allocated = expand_bytes;
4332 self->ExpandTlab(expand_bytes);
4333 DCHECK_LE(alloc_size, self->TlabSize());
4334 } else if (allocator_type == kAllocatorTypeTLAB) {
4335 DCHECK(bump_pointer_space_ != nullptr);
4336 const size_t new_tlab_size = alloc_size + kDefaultTLABSize;
4337 if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, new_tlab_size, grow))) {
4338 return nullptr;
4339 }
4340 // Try allocating a new thread local buffer, if the allocation fails the space must be
4341 // full so return null.
4342 if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) {
4343 return nullptr;
4344 }
4345 *bytes_tl_bulk_allocated = new_tlab_size;
4346 } else {
4347 DCHECK(allocator_type == kAllocatorTypeRegionTLAB);
4348 DCHECK(region_space_ != nullptr);
4349 if (space::RegionSpace::kRegionSize >= alloc_size) {
4350 // Non-large. Check OOME for a tlab.
4351 if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type,
4352 space::RegionSpace::kRegionSize,
4353 grow))) {
4354 const size_t new_tlab_size = kUsePartialTlabs
4355 ? std::max(alloc_size, kPartialTlabSize)
4356 : gc::space::RegionSpace::kRegionSize;
4357 // Try to allocate a tlab.
4358 if (!region_space_->AllocNewTlab(self, new_tlab_size)) {
4359 // Failed to allocate a tlab. Try non-tlab.
4360 return region_space_->AllocNonvirtual<false>(alloc_size,
4361 bytes_allocated,
4362 usable_size,
4363 bytes_tl_bulk_allocated);
4364 }
4365 *bytes_tl_bulk_allocated = new_tlab_size;
4366 // Fall-through to using the TLAB below.
4367 } else {
4368 // Check OOME for a non-tlab allocation.
4369 if (!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow)) {
4370 return region_space_->AllocNonvirtual<false>(alloc_size,
4371 bytes_allocated,
4372 usable_size,
4373 bytes_tl_bulk_allocated);
4374 }
4375 // Neither tlab or non-tlab works. Give up.
4376 return nullptr;
4377 }
4378 } else {
4379 // Large. Check OOME.
4380 if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow))) {
4381 return region_space_->AllocNonvirtual<false>(alloc_size,
4382 bytes_allocated,
4383 usable_size,
4384 bytes_tl_bulk_allocated);
4385 }
4386 return nullptr;
4387 }
4388 }
4389 // Refilled TLAB, return.
4390 mirror::Object* ret = self->AllocTlab(alloc_size);
4391 DCHECK(ret != nullptr);
4392 *bytes_allocated = alloc_size;
4393 *usable_size = alloc_size;
4394 return ret;
4395 }
4396
GetVerification() const4397 const Verification* Heap::GetVerification() const {
4398 return verification_.get();
4399 }
4400
VlogHeapGrowth(size_t old_footprint,size_t new_footprint,size_t alloc_size)4401 void Heap::VlogHeapGrowth(size_t old_footprint, size_t new_footprint, size_t alloc_size) {
4402 VLOG(heap) << "Growing heap from " << PrettySize(old_footprint) << " to "
4403 << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
4404 }
4405
4406 class Heap::TriggerPostForkCCGcTask : public HeapTask {
4407 public:
TriggerPostForkCCGcTask(uint64_t target_time)4408 explicit TriggerPostForkCCGcTask(uint64_t target_time) : HeapTask(target_time) {}
Run(Thread * self)4409 void Run(Thread* self) override {
4410 gc::Heap* heap = Runtime::Current()->GetHeap();
4411 // Trigger a GC, if not already done. The first GC after fork, whenever it
4412 // takes place, will adjust the thresholds to normal levels.
4413 if (heap->target_footprint_.load(std::memory_order_relaxed) == heap->growth_limit_) {
4414 heap->RequestConcurrentGC(self, kGcCauseBackground, false);
4415 }
4416 }
4417 };
4418
PostForkChildAction(Thread * self)4419 void Heap::PostForkChildAction(Thread* self) {
4420 // Temporarily increase target_footprint_ and concurrent_start_bytes_ to
4421 // max values to avoid GC during app launch.
4422 if (collector_type_ == kCollectorTypeCC && !IsLowMemoryMode()) {
4423 // Set target_footprint_ to the largest allowed value.
4424 SetIdealFootprint(growth_limit_);
4425 // Set concurrent_start_bytes_ to half of the heap size.
4426 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
4427 concurrent_start_bytes_ = std::max(target_footprint / 2, GetBytesAllocated());
4428
4429 GetTaskProcessor()->AddTask(
4430 self, new TriggerPostForkCCGcTask(NanoTime() + MsToNs(kPostForkMaxHeapDurationMS)));
4431 }
4432 }
4433
4434 } // namespace gc
4435 } // namespace art
4436