1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "fault_handler.h"
18
19 #include <string.h>
20 #include <sys/mman.h>
21 #include <sys/ucontext.h>
22
23 #include "art_method-inl.h"
24 #include "base/logging.h" // For VLOG
25 #include "base/safe_copy.h"
26 #include "base/stl_util.h"
27 #include "dex/dex_file_types.h"
28 #include "mirror/class.h"
29 #include "mirror/object_reference.h"
30 #include "oat_quick_method_header.h"
31 #include "sigchain.h"
32 #include "thread-current-inl.h"
33 #include "verify_object-inl.h"
34
35 namespace art {
36 // Static fault manger object accessed by signal handler.
37 FaultManager fault_manager;
38
39 // This needs to be NO_INLINE since some debuggers do not read the inline-info to set a breakpoint
40 // if it isn't.
art_sigsegv_fault()41 extern "C" NO_INLINE __attribute__((visibility("default"))) void art_sigsegv_fault() {
42 // Set a breakpoint here to be informed when a SIGSEGV is unhandled by ART.
43 VLOG(signals)<< "Caught unknown SIGSEGV in ART fault handler - chaining to next handler.";
44 }
45
46 // Signal handler called on SIGSEGV.
art_fault_handler(int sig,siginfo_t * info,void * context)47 static bool art_fault_handler(int sig, siginfo_t* info, void* context) {
48 return fault_manager.HandleFault(sig, info, context);
49 }
50
51 #if defined(__linux__)
52
53 // Change to verify the safe implementations against the original ones.
54 constexpr bool kVerifySafeImpls = false;
55
56 // Provide implementations of ArtMethod::GetDeclaringClass and VerifyClassClass that use SafeCopy
57 // to safely dereference pointers which are potentially garbage.
58 // Only available on Linux due to availability of SafeCopy.
59
SafeGetDeclaringClass(ArtMethod * method)60 static mirror::Class* SafeGetDeclaringClass(ArtMethod* method)
61 REQUIRES_SHARED(Locks::mutator_lock_) {
62 char* method_declaring_class =
63 reinterpret_cast<char*>(method) + ArtMethod::DeclaringClassOffset().SizeValue();
64
65 // ArtMethod::declaring_class_ is a GcRoot<mirror::Class>.
66 // Read it out into as a CompressedReference directly for simplicity's sake.
67 mirror::CompressedReference<mirror::Class> cls;
68 ssize_t rc = SafeCopy(&cls, method_declaring_class, sizeof(cls));
69 CHECK_NE(-1, rc);
70
71 if (kVerifySafeImpls) {
72 ObjPtr<mirror::Class> actual_class = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
73 CHECK_EQ(actual_class, cls.AsMirrorPtr());
74 }
75
76 if (rc != sizeof(cls)) {
77 return nullptr;
78 }
79
80 return cls.AsMirrorPtr();
81 }
82
SafeGetClass(mirror::Object * obj)83 static mirror::Class* SafeGetClass(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
84 char* obj_cls = reinterpret_cast<char*>(obj) + mirror::Object::ClassOffset().SizeValue();
85
86 mirror::HeapReference<mirror::Class> cls;
87 ssize_t rc = SafeCopy(&cls, obj_cls, sizeof(cls));
88 CHECK_NE(-1, rc);
89
90 if (kVerifySafeImpls) {
91 mirror::Class* actual_class = obj->GetClass<kVerifyNone>();
92 CHECK_EQ(actual_class, cls.AsMirrorPtr());
93 }
94
95 if (rc != sizeof(cls)) {
96 return nullptr;
97 }
98
99 return cls.AsMirrorPtr();
100 }
101
SafeVerifyClassClass(mirror::Class * cls)102 static bool SafeVerifyClassClass(mirror::Class* cls) REQUIRES_SHARED(Locks::mutator_lock_) {
103 mirror::Class* c_c = SafeGetClass(cls);
104 bool result = c_c != nullptr && c_c == SafeGetClass(c_c);
105
106 if (kVerifySafeImpls) {
107 CHECK_EQ(VerifyClassClass(cls), result);
108 }
109
110 return result;
111 }
112
113 #else
114
SafeGetDeclaringClass(ArtMethod * method_obj)115 static mirror::Class* SafeGetDeclaringClass(ArtMethod* method_obj)
116 REQUIRES_SHARED(Locks::mutator_lock_) {
117 return method_obj->GetDeclaringClassUnchecked<kWithoutReadBarrier>().Ptr();
118 }
119
SafeVerifyClassClass(mirror::Class * cls)120 static bool SafeVerifyClassClass(mirror::Class* cls) REQUIRES_SHARED(Locks::mutator_lock_) {
121 return VerifyClassClass(cls);
122 }
123 #endif
124
125
FaultManager()126 FaultManager::FaultManager() : initialized_(false) {
127 sigaction(SIGSEGV, nullptr, &oldaction_);
128 }
129
~FaultManager()130 FaultManager::~FaultManager() {
131 }
132
Init()133 void FaultManager::Init() {
134 CHECK(!initialized_);
135 sigset_t mask;
136 sigfillset(&mask);
137 sigdelset(&mask, SIGABRT);
138 sigdelset(&mask, SIGBUS);
139 sigdelset(&mask, SIGFPE);
140 sigdelset(&mask, SIGILL);
141 sigdelset(&mask, SIGSEGV);
142
143 SigchainAction sa = {
144 .sc_sigaction = art_fault_handler,
145 .sc_mask = mask,
146 .sc_flags = 0UL,
147 };
148
149 AddSpecialSignalHandlerFn(SIGSEGV, &sa);
150 initialized_ = true;
151 }
152
Release()153 void FaultManager::Release() {
154 if (initialized_) {
155 RemoveSpecialSignalHandlerFn(SIGSEGV, art_fault_handler);
156 initialized_ = false;
157 }
158 }
159
Shutdown()160 void FaultManager::Shutdown() {
161 if (initialized_) {
162 Release();
163
164 // Free all handlers.
165 STLDeleteElements(&generated_code_handlers_);
166 STLDeleteElements(&other_handlers_);
167 }
168 }
169
HandleFaultByOtherHandlers(int sig,siginfo_t * info,void * context)170 bool FaultManager::HandleFaultByOtherHandlers(int sig, siginfo_t* info, void* context) {
171 if (other_handlers_.empty()) {
172 return false;
173 }
174
175 Thread* self = Thread::Current();
176
177 DCHECK(self != nullptr);
178 DCHECK(Runtime::Current() != nullptr);
179 DCHECK(Runtime::Current()->IsStarted());
180 for (const auto& handler : other_handlers_) {
181 if (handler->Action(sig, info, context)) {
182 return true;
183 }
184 }
185 return false;
186 }
187
SignalCodeName(int sig,int code)188 static const char* SignalCodeName(int sig, int code) {
189 if (sig != SIGSEGV) {
190 return "UNKNOWN";
191 } else {
192 switch (code) {
193 case SEGV_MAPERR: return "SEGV_MAPERR";
194 case SEGV_ACCERR: return "SEGV_ACCERR";
195 default: return "UNKNOWN";
196 }
197 }
198 }
PrintSignalInfo(std::ostream & os,siginfo_t * info)199 static std::ostream& PrintSignalInfo(std::ostream& os, siginfo_t* info) {
200 os << " si_signo: " << info->si_signo << " (" << strsignal(info->si_signo) << ")\n"
201 << " si_code: " << info->si_code
202 << " (" << SignalCodeName(info->si_signo, info->si_code) << ")";
203 if (info->si_signo == SIGSEGV) {
204 os << "\n" << " si_addr: " << info->si_addr;
205 }
206 return os;
207 }
208
HandleFault(int sig,siginfo_t * info,void * context)209 bool FaultManager::HandleFault(int sig, siginfo_t* info, void* context) {
210 if (VLOG_IS_ON(signals)) {
211 PrintSignalInfo(VLOG_STREAM(signals) << "Handling fault:" << "\n", info);
212 }
213
214 #ifdef TEST_NESTED_SIGNAL
215 // Simulate a crash in a handler.
216 raise(SIGSEGV);
217 #endif
218
219 if (IsInGeneratedCode(info, context, true)) {
220 VLOG(signals) << "in generated code, looking for handler";
221 for (const auto& handler : generated_code_handlers_) {
222 VLOG(signals) << "invoking Action on handler " << handler;
223 if (handler->Action(sig, info, context)) {
224 // We have handled a signal so it's time to return from the
225 // signal handler to the appropriate place.
226 return true;
227 }
228 }
229 }
230
231 // We hit a signal we didn't handle. This might be something for which
232 // we can give more information about so call all registered handlers to
233 // see if it is.
234 if (HandleFaultByOtherHandlers(sig, info, context)) {
235 return true;
236 }
237
238 // Set a breakpoint in this function to catch unhandled signals.
239 art_sigsegv_fault();
240 return false;
241 }
242
AddHandler(FaultHandler * handler,bool generated_code)243 void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) {
244 DCHECK(initialized_);
245 if (generated_code) {
246 generated_code_handlers_.push_back(handler);
247 } else {
248 other_handlers_.push_back(handler);
249 }
250 }
251
RemoveHandler(FaultHandler * handler)252 void FaultManager::RemoveHandler(FaultHandler* handler) {
253 auto it = std::find(generated_code_handlers_.begin(), generated_code_handlers_.end(), handler);
254 if (it != generated_code_handlers_.end()) {
255 generated_code_handlers_.erase(it);
256 return;
257 }
258 auto it2 = std::find(other_handlers_.begin(), other_handlers_.end(), handler);
259 if (it2 != other_handlers_.end()) {
260 other_handlers_.erase(it2);
261 return;
262 }
263 LOG(FATAL) << "Attempted to remove non existent handler " << handler;
264 }
265
266 // This function is called within the signal handler. It checks that
267 // the mutator_lock is held (shared). No annotalysis is done.
IsInGeneratedCode(siginfo_t * siginfo,void * context,bool check_dex_pc)268 bool FaultManager::IsInGeneratedCode(siginfo_t* siginfo, void* context, bool check_dex_pc) {
269 // We can only be running Java code in the current thread if it
270 // is in Runnable state.
271 VLOG(signals) << "Checking for generated code";
272 Thread* thread = Thread::Current();
273 if (thread == nullptr) {
274 VLOG(signals) << "no current thread";
275 return false;
276 }
277
278 ThreadState state = thread->GetState();
279 if (state != kRunnable) {
280 VLOG(signals) << "not runnable";
281 return false;
282 }
283
284 // Current thread is runnable.
285 // Make sure it has the mutator lock.
286 if (!Locks::mutator_lock_->IsSharedHeld(thread)) {
287 VLOG(signals) << "no lock";
288 return false;
289 }
290
291 ArtMethod* method_obj = nullptr;
292 uintptr_t return_pc = 0;
293 uintptr_t sp = 0;
294
295 // Get the architecture specific method address and return address. These
296 // are in architecture specific files in arch/<arch>/fault_handler_<arch>.
297 GetMethodAndReturnPcAndSp(siginfo, context, &method_obj, &return_pc, &sp);
298
299 // If we don't have a potential method, we're outta here.
300 VLOG(signals) << "potential method: " << method_obj;
301 // TODO: Check linear alloc and image.
302 DCHECK_ALIGNED(ArtMethod::Size(kRuntimePointerSize), sizeof(void*))
303 << "ArtMethod is not pointer aligned";
304 if (method_obj == nullptr || !IsAligned<sizeof(void*)>(method_obj)) {
305 VLOG(signals) << "no method";
306 return false;
307 }
308
309 // Verify that the potential method is indeed a method.
310 // TODO: check the GC maps to make sure it's an object.
311 // Check that the class pointer inside the object is not null and is aligned.
312 // No read barrier because method_obj may not be a real object.
313 mirror::Class* cls = SafeGetDeclaringClass(method_obj);
314 if (cls == nullptr) {
315 VLOG(signals) << "not a class";
316 return false;
317 }
318
319 if (!IsAligned<kObjectAlignment>(cls)) {
320 VLOG(signals) << "not aligned";
321 return false;
322 }
323
324 if (!SafeVerifyClassClass(cls)) {
325 VLOG(signals) << "not a class class";
326 return false;
327 }
328
329 const OatQuickMethodHeader* method_header = method_obj->GetOatQuickMethodHeader(return_pc);
330
331 // We can be certain that this is a method now. Check if we have a GC map
332 // at the return PC address.
333 if (true || kIsDebugBuild) {
334 VLOG(signals) << "looking for dex pc for return pc " << std::hex << return_pc;
335 uint32_t sought_offset = return_pc -
336 reinterpret_cast<uintptr_t>(method_header->GetEntryPoint());
337 VLOG(signals) << "pc offset: " << std::hex << sought_offset;
338 }
339 uint32_t dexpc = method_header->ToDexPc(method_obj, return_pc, false);
340 VLOG(signals) << "dexpc: " << dexpc;
341 return !check_dex_pc || dexpc != dex::kDexNoIndex;
342 }
343
FaultHandler(FaultManager * manager)344 FaultHandler::FaultHandler(FaultManager* manager) : manager_(manager) {
345 }
346
347 //
348 // Null pointer fault handler
349 //
NullPointerHandler(FaultManager * manager)350 NullPointerHandler::NullPointerHandler(FaultManager* manager) : FaultHandler(manager) {
351 manager_->AddHandler(this, true);
352 }
353
354 //
355 // Suspension fault handler
356 //
SuspensionHandler(FaultManager * manager)357 SuspensionHandler::SuspensionHandler(FaultManager* manager) : FaultHandler(manager) {
358 manager_->AddHandler(this, true);
359 }
360
361 //
362 // Stack overflow fault handler
363 //
StackOverflowHandler(FaultManager * manager)364 StackOverflowHandler::StackOverflowHandler(FaultManager* manager) : FaultHandler(manager) {
365 manager_->AddHandler(this, true);
366 }
367
368 //
369 // Stack trace handler, used to help get a stack trace from SIGSEGV inside of compiled code.
370 //
JavaStackTraceHandler(FaultManager * manager)371 JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandler(manager) {
372 manager_->AddHandler(this, false);
373 }
374
Action(int sig ATTRIBUTE_UNUSED,siginfo_t * siginfo,void * context)375 bool JavaStackTraceHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* siginfo, void* context) {
376 // Make sure that we are in the generated code, but we may not have a dex pc.
377 bool in_generated_code = manager_->IsInGeneratedCode(siginfo, context, false);
378 if (in_generated_code) {
379 LOG(ERROR) << "Dumping java stack trace for crash in generated code";
380 ArtMethod* method = nullptr;
381 uintptr_t return_pc = 0;
382 uintptr_t sp = 0;
383 Thread* self = Thread::Current();
384
385 manager_->GetMethodAndReturnPcAndSp(siginfo, context, &method, &return_pc, &sp);
386 // Inside of generated code, sp[0] is the method, so sp is the frame.
387 self->SetTopOfStack(reinterpret_cast<ArtMethod**>(sp));
388 self->DumpJavaStack(LOG_STREAM(ERROR));
389 }
390
391 return false; // Return false since we want to propagate the fault to the main signal handler.
392 }
393
394 } // namespace art
395