• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- RDFLiveness.cpp ----------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Computation of the liveness information from the data-flow graph.
11 //
12 // The main functionality of this code is to compute block live-in
13 // information. With the live-in information in place, the placement
14 // of kill flags can also be recalculated.
15 //
16 // The block live-in calculation is based on the ideas from the following
17 // publication:
18 //
19 // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
20 // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
21 // ACM Transactions on Architecture and Code Optimization, Association for
22 // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
23 // and Embedded Architectures and Compilers", 8 (4),
24 // <10.1145/2086696.2086706>. <hal-00647369>
25 //
26 #include "RDFLiveness.h"
27 #include "RDFGraph.h"
28 #include "RDFRegisters.h"
29 #include "llvm/ADT/BitVector.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineDominanceFrontier.h"
34 #include "llvm/CodeGen/MachineDominators.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/MC/LaneBitmask.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <map>
49 #include <utility>
50 #include <vector>
51 
52 using namespace llvm;
53 using namespace rdf;
54 
55 static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25),
56   cl::Hidden, cl::desc("Maximum recursion level"));
57 
58 namespace llvm {
59 namespace rdf {
60 
61   template<>
operator <<(raw_ostream & OS,const Print<Liveness::RefMap> & P)62   raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
63     OS << '{';
64     for (auto &I : P.Obj) {
65       OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{';
66       for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
67         OS << Print<NodeId>(J->first, P.G) << PrintLaneMaskOpt(J->second);
68         if (++J != E)
69           OS << ',';
70       }
71       OS << '}';
72     }
73     OS << " }";
74     return OS;
75   }
76 
77 } // end namespace rdf
78 } // end namespace llvm
79 
80 // The order in the returned sequence is the order of reaching defs in the
81 // upward traversal: the first def is the closest to the given reference RefA,
82 // the next one is further up, and so on.
83 // The list ends at a reaching phi def, or when the reference from RefA is
84 // covered by the defs in the list (see FullChain).
85 // This function provides two modes of operation:
86 // (1) Returning the sequence of reaching defs for a particular reference
87 // node. This sequence will terminate at the first phi node [1].
88 // (2) Returning a partial sequence of reaching defs, where the final goal
89 // is to traverse past phi nodes to the actual defs arising from the code
90 // itself.
91 // In mode (2), the register reference for which the search was started
92 // may be different from the reference node RefA, for which this call was
93 // made, hence the argument RefRR, which holds the original register.
94 // Also, some definitions may have already been encountered in a previous
95 // call that will influence register covering. The register references
96 // already defined are passed in through DefRRs.
97 // In mode (1), the "continuation" considerations do not apply, and the
98 // RefRR is the same as the register in RefA, and the set DefRRs is empty.
99 //
100 // [1] It is possible for multiple phi nodes to be included in the returned
101 // sequence:
102 //   SubA = phi ...
103 //   SubB = phi ...
104 //   ...  = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
105 // However, these phi nodes are independent from one another in terms of
106 // the data-flow.
107 
getAllReachingDefs(RegisterRef RefRR,NodeAddr<RefNode * > RefA,bool TopShadows,bool FullChain,const RegisterAggr & DefRRs)108 NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
109       NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain,
110       const RegisterAggr &DefRRs) {
111   NodeList RDefs; // Return value.
112   SetVector<NodeId> DefQ;
113   SetVector<NodeId> Owners;
114 
115   // Dead defs will be treated as if they were live, since they are actually
116   // on the data-flow path. They cannot be ignored because even though they
117   // do not generate meaningful values, they still modify registers.
118 
119   // If the reference is undefined, there is nothing to do.
120   if (RefA.Addr->getFlags() & NodeAttrs::Undef)
121     return RDefs;
122 
123   // The initial queue should not have reaching defs for shadows. The
124   // whole point of a shadow is that it will have a reaching def that
125   // is not aliased to the reaching defs of the related shadows.
126   NodeId Start = RefA.Id;
127   auto SNA = DFG.addr<RefNode*>(Start);
128   if (NodeId RD = SNA.Addr->getReachingDef())
129     DefQ.insert(RD);
130   if (TopShadows) {
131     for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA))
132       if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
133         DefQ.insert(RD);
134   }
135 
136   // Collect all the reaching defs, going up until a phi node is encountered,
137   // or there are no more reaching defs. From this set, the actual set of
138   // reaching defs will be selected.
139   // The traversal upwards must go on until a covering def is encountered.
140   // It is possible that a collection of non-covering (individually) defs
141   // will be sufficient, but keep going until a covering one is found.
142   for (unsigned i = 0; i < DefQ.size(); ++i) {
143     auto TA = DFG.addr<DefNode*>(DefQ[i]);
144     if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
145       continue;
146     // Stop at the covering/overwriting def of the initial register reference.
147     RegisterRef RR = TA.Addr->getRegRef(DFG);
148     if (!DFG.IsPreservingDef(TA))
149       if (RegisterAggr::isCoverOf(RR, RefRR, PRI))
150         continue;
151     // Get the next level of reaching defs. This will include multiple
152     // reaching defs for shadows.
153     for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
154       if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
155         DefQ.insert(RD);
156   }
157 
158   // Remove all non-phi defs that are not aliased to RefRR, and collect
159   // the owners of the remaining defs.
160   SetVector<NodeId> Defs;
161   for (NodeId N : DefQ) {
162     auto TA = DFG.addr<DefNode*>(N);
163     bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
164     if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG)))
165       continue;
166     Defs.insert(TA.Id);
167     Owners.insert(TA.Addr->getOwner(DFG).Id);
168   }
169 
170   // Return the MachineBasicBlock containing a given instruction.
171   auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
172     if (IA.Addr->getKind() == NodeAttrs::Stmt)
173       return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
174     assert(IA.Addr->getKind() == NodeAttrs::Phi);
175     NodeAddr<PhiNode*> PA = IA;
176     NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
177     return BA.Addr->getCode();
178   };
179   // Less(A,B) iff instruction A is further down in the dominator tree than B.
180   auto Less = [&Block,this] (NodeId A, NodeId B) -> bool {
181     if (A == B)
182       return false;
183     auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B);
184     MachineBasicBlock *BA = Block(OA), *BB = Block(OB);
185     if (BA != BB)
186       return MDT.dominates(BB, BA);
187     // They are in the same block.
188     bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
189     bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
190     if (StmtA) {
191       if (!StmtB)   // OB is a phi and phis dominate statements.
192         return true;
193       MachineInstr *CA = NodeAddr<StmtNode*>(OA).Addr->getCode();
194       MachineInstr *CB = NodeAddr<StmtNode*>(OB).Addr->getCode();
195       // The order must be linear, so tie-break such equalities.
196       if (CA == CB)
197         return A < B;
198       return MDT.dominates(CB, CA);
199     } else {
200       // OA is a phi.
201       if (StmtB)
202         return false;
203       // Both are phis. There is no ordering between phis (in terms of
204       // the data-flow), so tie-break this via node id comparison.
205       return A < B;
206     }
207   };
208 
209   std::vector<NodeId> Tmp(Owners.begin(), Owners.end());
210   llvm::sort(Tmp.begin(), Tmp.end(), Less);
211 
212   // The vector is a list of instructions, so that defs coming from
213   // the same instruction don't need to be artificially ordered.
214   // Then, when computing the initial segment, and iterating over an
215   // instruction, pick the defs that contribute to the covering (i.e. is
216   // not covered by previously added defs). Check the defs individually,
217   // i.e. first check each def if is covered or not (without adding them
218   // to the tracking set), and then add all the selected ones.
219 
220   // The reason for this is this example:
221   // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
222   // *d3<C>              If A \incl BuC, and B \incl AuC, then *d2 would be
223   //                     covered if we added A first, and A would be covered
224   //                     if we added B first.
225 
226   RegisterAggr RRs(DefRRs);
227 
228   auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
229     return TA.Addr->getKind() == NodeAttrs::Def &&
230            Defs.count(TA.Id);
231   };
232   for (NodeId T : Tmp) {
233     if (!FullChain && RRs.hasCoverOf(RefRR))
234       break;
235     auto TA = DFG.addr<InstrNode*>(T);
236     bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
237     NodeList Ds;
238     for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
239       RegisterRef QR = DA.Addr->getRegRef(DFG);
240       // Add phi defs even if they are covered by subsequent defs. This is
241       // for cases where the reached use is not covered by any of the defs
242       // encountered so far: the phi def is needed to expose the liveness
243       // of that use to the entry of the block.
244       // Example:
245       //   phi d1<R3>(,d2,), ...  Phi def d1 is covered by d2.
246       //   d2<R3>(d1,,u3), ...
247       //   ..., u3<D1>(d2)        This use needs to be live on entry.
248       if (FullChain || IsPhi || !RRs.hasCoverOf(QR))
249         Ds.push_back(DA);
250     }
251     RDefs.insert(RDefs.end(), Ds.begin(), Ds.end());
252     for (NodeAddr<DefNode*> DA : Ds) {
253       // When collecting a full chain of definitions, do not consider phi
254       // defs to actually define a register.
255       uint16_t Flags = DA.Addr->getFlags();
256       if (!FullChain || !(Flags & NodeAttrs::PhiRef))
257         if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here.
258           RRs.insert(DA.Addr->getRegRef(DFG));
259     }
260   }
261 
262   auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool {
263     return DA.Addr->getFlags() & NodeAttrs::Dead;
264   };
265   RDefs.resize(std::distance(RDefs.begin(), llvm::remove_if(RDefs, DeadP)));
266 
267   return RDefs;
268 }
269 
270 std::pair<NodeSet,bool>
getAllReachingDefsRec(RegisterRef RefRR,NodeAddr<RefNode * > RefA,NodeSet & Visited,const NodeSet & Defs)271 Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
272       NodeSet &Visited, const NodeSet &Defs) {
273   return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest);
274 }
275 
276 std::pair<NodeSet,bool>
getAllReachingDefsRecImpl(RegisterRef RefRR,NodeAddr<RefNode * > RefA,NodeSet & Visited,const NodeSet & Defs,unsigned Nest,unsigned MaxNest)277 Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
278       NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) {
279   if (Nest > MaxNest)
280     return { NodeSet(), false };
281   // Collect all defined registers. Do not consider phis to be defining
282   // anything, only collect "real" definitions.
283   RegisterAggr DefRRs(PRI);
284   for (NodeId D : Defs) {
285     const auto DA = DFG.addr<const DefNode*>(D);
286     if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
287       DefRRs.insert(DA.Addr->getRegRef(DFG));
288   }
289 
290   NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs);
291   if (RDs.empty())
292     return { Defs, true };
293 
294   // Make a copy of the preexisting definitions and add the newly found ones.
295   NodeSet TmpDefs = Defs;
296   for (NodeAddr<NodeBase*> R : RDs)
297     TmpDefs.insert(R.Id);
298 
299   NodeSet Result = Defs;
300 
301   for (NodeAddr<DefNode*> DA : RDs) {
302     Result.insert(DA.Id);
303     if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
304       continue;
305     NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
306     if (Visited.count(PA.Id))
307       continue;
308     Visited.insert(PA.Id);
309     // Go over all phi uses and get the reaching defs for each use.
310     for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
311       const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs,
312                                                 Nest+1, MaxNest);
313       if (!T.second)
314         return { T.first, false };
315       Result.insert(T.first.begin(), T.first.end());
316     }
317   }
318 
319   return { Result, true };
320 }
321 
322 /// Find the nearest ref node aliased to RefRR, going upwards in the data
323 /// flow, starting from the instruction immediately preceding Inst.
getNearestAliasedRef(RegisterRef RefRR,NodeAddr<InstrNode * > IA)324 NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR,
325       NodeAddr<InstrNode*> IA) {
326   NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
327   NodeList Ins = BA.Addr->members(DFG);
328   NodeId FindId = IA.Id;
329   auto E = Ins.rend();
330   auto B = std::find_if(Ins.rbegin(), E,
331                         [FindId] (const NodeAddr<InstrNode*> T) {
332                           return T.Id == FindId;
333                         });
334   // Do not scan IA (which is what B would point to).
335   if (B != E)
336     ++B;
337 
338   do {
339     // Process the range of instructions from B to E.
340     for (NodeAddr<InstrNode*> I : make_range(B, E)) {
341       NodeList Refs = I.Addr->members(DFG);
342       NodeAddr<RefNode*> Clob, Use;
343       // Scan all the refs in I aliased to RefRR, and return the one that
344       // is the closest to the output of I, i.e. def > clobber > use.
345       for (NodeAddr<RefNode*> R : Refs) {
346         if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR))
347           continue;
348         if (DFG.IsDef(R)) {
349           // If it's a non-clobbering def, just return it.
350           if (!(R.Addr->getFlags() & NodeAttrs::Clobbering))
351             return R;
352           Clob = R;
353         } else {
354           Use = R;
355         }
356       }
357       if (Clob.Id != 0)
358         return Clob;
359       if (Use.Id != 0)
360         return Use;
361     }
362 
363     // Go up to the immediate dominator, if any.
364     MachineBasicBlock *BB = BA.Addr->getCode();
365     BA = NodeAddr<BlockNode*>();
366     if (MachineDomTreeNode *N = MDT.getNode(BB)) {
367       if ((N = N->getIDom()))
368         BA = DFG.findBlock(N->getBlock());
369     }
370     if (!BA.Id)
371       break;
372 
373     Ins = BA.Addr->members(DFG);
374     B = Ins.rbegin();
375     E = Ins.rend();
376   } while (true);
377 
378   return NodeAddr<RefNode*>();
379 }
380 
getAllReachedUses(RegisterRef RefRR,NodeAddr<DefNode * > DefA,const RegisterAggr & DefRRs)381 NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
382       NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) {
383   NodeSet Uses;
384 
385   // If the original register is already covered by all the intervening
386   // defs, no more uses can be reached.
387   if (DefRRs.hasCoverOf(RefRR))
388     return Uses;
389 
390   // Add all directly reached uses.
391   // If the def is dead, it does not provide a value for any use.
392   bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead;
393   NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0;
394   while (U != 0) {
395     auto UA = DFG.addr<UseNode*>(U);
396     if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) {
397       RegisterRef UR = UA.Addr->getRegRef(DFG);
398       if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR))
399         Uses.insert(U);
400     }
401     U = UA.Addr->getSibling();
402   }
403 
404   // Traverse all reached defs. This time dead defs cannot be ignored.
405   for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
406     auto DA = DFG.addr<DefNode*>(D);
407     NextD = DA.Addr->getSibling();
408     RegisterRef DR = DA.Addr->getRegRef(DFG);
409     // If this def is already covered, it cannot reach anything new.
410     // Similarly, skip it if it is not aliased to the interesting register.
411     if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR))
412       continue;
413     NodeSet T;
414     if (DFG.IsPreservingDef(DA)) {
415       // If it is a preserving def, do not update the set of intervening defs.
416       T = getAllReachedUses(RefRR, DA, DefRRs);
417     } else {
418       RegisterAggr NewDefRRs = DefRRs;
419       NewDefRRs.insert(DR);
420       T = getAllReachedUses(RefRR, DA, NewDefRRs);
421     }
422     Uses.insert(T.begin(), T.end());
423   }
424   return Uses;
425 }
426 
computePhiInfo()427 void Liveness::computePhiInfo() {
428   RealUseMap.clear();
429 
430   NodeList Phis;
431   NodeAddr<FuncNode*> FA = DFG.getFunc();
432   NodeList Blocks = FA.Addr->members(DFG);
433   for (NodeAddr<BlockNode*> BA : Blocks) {
434     auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
435     Phis.insert(Phis.end(), Ps.begin(), Ps.end());
436   }
437 
438   // phi use -> (map: reaching phi -> set of registers defined in between)
439   std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp;
440   std::vector<NodeId> PhiUQ;  // Work list of phis for upward propagation.
441   std::map<NodeId,RegisterAggr> PhiDRs;  // Phi -> registers defined by it.
442 
443   // Go over all phis.
444   for (NodeAddr<PhiNode*> PhiA : Phis) {
445     // Go over all defs and collect the reached uses that are non-phi uses
446     // (i.e. the "real uses").
447     RefMap &RealUses = RealUseMap[PhiA.Id];
448     NodeList PhiRefs = PhiA.Addr->members(DFG);
449 
450     // Have a work queue of defs whose reached uses need to be found.
451     // For each def, add to the queue all reached (non-phi) defs.
452     SetVector<NodeId> DefQ;
453     NodeSet PhiDefs;
454     RegisterAggr DRs(PRI);
455     for (NodeAddr<RefNode*> R : PhiRefs) {
456       if (!DFG.IsRef<NodeAttrs::Def>(R))
457         continue;
458       DRs.insert(R.Addr->getRegRef(DFG));
459       DefQ.insert(R.Id);
460       PhiDefs.insert(R.Id);
461     }
462     PhiDRs.insert(std::make_pair(PhiA.Id, DRs));
463 
464     // Collect the super-set of all possible reached uses. This set will
465     // contain all uses reached from this phi, either directly from the
466     // phi defs, or (recursively) via non-phi defs reached by the phi defs.
467     // This set of uses will later be trimmed to only contain these uses that
468     // are actually reached by the phi defs.
469     for (unsigned i = 0; i < DefQ.size(); ++i) {
470       NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
471       // Visit all reached uses. Phi defs should not really have the "dead"
472       // flag set, but check it anyway for consistency.
473       bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
474       NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
475       while (UN != 0) {
476         NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
477         uint16_t F = A.Addr->getFlags();
478         if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
479           RegisterRef R = PRI.normalize(A.Addr->getRegRef(DFG));
480           RealUses[R.Reg].insert({A.Id,R.Mask});
481         }
482         UN = A.Addr->getSibling();
483       }
484       // Visit all reached defs, and add them to the queue. These defs may
485       // override some of the uses collected here, but that will be handled
486       // later.
487       NodeId DN = DA.Addr->getReachedDef();
488       while (DN != 0) {
489         NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
490         for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
491           uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
492           // Must traverse the reached-def chain. Consider:
493           //   def(D0) -> def(R0) -> def(R0) -> use(D0)
494           // The reachable use of D0 passes through a def of R0.
495           if (!(Flags & NodeAttrs::PhiRef))
496             DefQ.insert(T.Id);
497         }
498         DN = A.Addr->getSibling();
499       }
500     }
501     // Filter out these uses that appear to be reachable, but really
502     // are not. For example:
503     //
504     // R1:0 =          d1
505     //      = R1:0     u2     Reached by d1.
506     //   R0 =          d3
507     //      = R1:0     u4     Still reached by d1: indirectly through
508     //                        the def d3.
509     //   R1 =          d5
510     //      = R1:0     u6     Not reached by d1 (covered collectively
511     //                        by d3 and d5), but following reached
512     //                        defs and uses from d1 will lead here.
513     for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
514       // For each reached register UI->first, there is a set UI->second, of
515       // uses of it. For each such use, check if it is reached by this phi,
516       // i.e. check if the set of its reaching uses intersects the set of
517       // this phi's defs.
518       NodeRefSet Uses = UI->second;
519       UI->second.clear();
520       for (std::pair<NodeId,LaneBitmask> I : Uses) {
521         auto UA = DFG.addr<UseNode*>(I.first);
522         // Undef flag is checked above.
523         assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
524         RegisterRef R(UI->first, I.second);
525         // Calculate the exposed part of the reached use.
526         RegisterAggr Covered(PRI);
527         for (NodeAddr<DefNode*> DA : getAllReachingDefs(R, UA)) {
528           if (PhiDefs.count(DA.Id))
529             break;
530           Covered.insert(DA.Addr->getRegRef(DFG));
531         }
532         if (RegisterRef RC = Covered.clearIn(R)) {
533           // We are updating the map for register UI->first, so we need
534           // to map RC to be expressed in terms of that register.
535           RegisterRef S = PRI.mapTo(RC, UI->first);
536           UI->second.insert({I.first, S.Mask});
537         }
538       }
539       UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI);
540     }
541 
542     // If this phi reaches some "real" uses, add it to the queue for upward
543     // propagation.
544     if (!RealUses.empty())
545       PhiUQ.push_back(PhiA.Id);
546 
547     // Go over all phi uses and check if the reaching def is another phi.
548     // Collect the phis that are among the reaching defs of these uses.
549     // While traversing the list of reaching defs for each phi use, accumulate
550     // the set of registers defined between this phi (PhiA) and the owner phi
551     // of the reaching def.
552     NodeSet SeenUses;
553 
554     for (auto I : PhiRefs) {
555       if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
556         continue;
557       NodeAddr<PhiUseNode*> PUA = I;
558       if (PUA.Addr->getReachingDef() == 0)
559         continue;
560 
561       RegisterRef UR = PUA.Addr->getRegRef(DFG);
562       NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
563       RegisterAggr DefRRs(PRI);
564 
565       for (NodeAddr<DefNode*> D : Ds) {
566         if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
567           NodeId RP = D.Addr->getOwner(DFG).Id;
568           std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id];
569           auto F = M.find(RP);
570           if (F == M.end())
571             M.insert(std::make_pair(RP, DefRRs));
572           else
573             F->second.insert(DefRRs);
574         }
575         DefRRs.insert(D.Addr->getRegRef(DFG));
576       }
577 
578       for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA))
579         SeenUses.insert(T.Id);
580     }
581   }
582 
583   if (Trace) {
584     dbgs() << "Phi-up-to-phi map with intervening defs:\n";
585     for (auto I : PhiUp) {
586       dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
587       for (auto R : I.second)
588         dbgs() << ' ' << Print<NodeId>(R.first, DFG)
589                << Print<RegisterAggr>(R.second, DFG);
590       dbgs() << " }\n";
591     }
592   }
593 
594   // Propagate the reached registers up in the phi chain.
595   //
596   // The following type of situation needs careful handling:
597   //
598   //   phi d1<R1:0>  (1)
599   //        |
600   //   ... d2<R1>
601   //        |
602   //   phi u3<R1:0>  (2)
603   //        |
604   //   ... u4<R1>
605   //
606   // The phi node (2) defines a register pair R1:0, and reaches a "real"
607   // use u4 of just R1. The same phi node is also known to reach (upwards)
608   // the phi node (1). However, the use u4 is not reached by phi (1),
609   // because of the intervening definition d2 of R1. The data flow between
610   // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
611   //
612   // When propagating uses up the phi chains, get the all reaching defs
613   // for a given phi use, and traverse the list until the propagated ref
614   // is covered, or until reaching the final phi. Only assume that the
615   // reference reaches the phi in the latter case.
616 
617   for (unsigned i = 0; i < PhiUQ.size(); ++i) {
618     auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
619     NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
620     RefMap &RUM = RealUseMap[PA.Id];
621 
622     for (NodeAddr<UseNode*> UA : PUs) {
623       std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id];
624       RegisterRef UR = PRI.normalize(UA.Addr->getRegRef(DFG));
625       for (const std::pair<NodeId,RegisterAggr> &P : PUM) {
626         bool Changed = false;
627         const RegisterAggr &MidDefs = P.second;
628 
629         // Collect the set PropUp of uses that are reached by the current
630         // phi PA, and are not covered by any intervening def between the
631         // currently visited use UA and the upward phi P.
632 
633         if (MidDefs.hasCoverOf(UR))
634           continue;
635 
636         // General algorithm:
637         //   for each (R,U) : U is use node of R, U is reached by PA
638         //     if MidDefs does not cover (R,U)
639         //       then add (R-MidDefs,U) to RealUseMap[P]
640         //
641         for (const std::pair<RegisterId,NodeRefSet> &T : RUM) {
642           RegisterRef R(T.first);
643           // The current phi (PA) could be a phi for a regmask. It could
644           // reach a whole variety of uses that are not related to the
645           // specific upward phi (P.first).
646           const RegisterAggr &DRs = PhiDRs.at(P.first);
647           if (!DRs.hasAliasOf(R))
648             continue;
649           R = PRI.mapTo(DRs.intersectWith(R), T.first);
650           for (std::pair<NodeId,LaneBitmask> V : T.second) {
651             LaneBitmask M = R.Mask & V.second;
652             if (M.none())
653               continue;
654             if (RegisterRef SS = MidDefs.clearIn(RegisterRef(R.Reg, M))) {
655               NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
656               Changed |= RS.insert({V.first,SS.Mask}).second;
657             }
658           }
659         }
660 
661         if (Changed)
662           PhiUQ.push_back(P.first);
663       }
664     }
665   }
666 
667   if (Trace) {
668     dbgs() << "Real use map:\n";
669     for (auto I : RealUseMap) {
670       dbgs() << "phi " << Print<NodeId>(I.first, DFG);
671       NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
672       NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
673       if (!Ds.empty()) {
674         RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG);
675         dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
676       } else {
677         dbgs() << "<noreg>";
678       }
679       dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
680     }
681   }
682 }
683 
computeLiveIns()684 void Liveness::computeLiveIns() {
685   // Populate the node-to-block map. This speeds up the calculations
686   // significantly.
687   NBMap.clear();
688   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
689     MachineBasicBlock *BB = BA.Addr->getCode();
690     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
691       for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
692         NBMap.insert(std::make_pair(RA.Id, BB));
693       NBMap.insert(std::make_pair(IA.Id, BB));
694     }
695   }
696 
697   MachineFunction &MF = DFG.getMF();
698 
699   // Compute IDF first, then the inverse.
700   decltype(IIDF) IDF;
701   for (MachineBasicBlock &B : MF) {
702     auto F1 = MDF.find(&B);
703     if (F1 == MDF.end())
704       continue;
705     SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
706     for (unsigned i = 0; i < IDFB.size(); ++i) {
707       auto F2 = MDF.find(IDFB[i]);
708       if (F2 != MDF.end())
709         IDFB.insert(F2->second.begin(), F2->second.end());
710     }
711     // Add B to the IDF(B). This will put B in the IIDF(B).
712     IDFB.insert(&B);
713     IDF[&B].insert(IDFB.begin(), IDFB.end());
714   }
715 
716   for (auto I : IDF)
717     for (auto S : I.second)
718       IIDF[S].insert(I.first);
719 
720   computePhiInfo();
721 
722   NodeAddr<FuncNode*> FA = DFG.getFunc();
723   NodeList Blocks = FA.Addr->members(DFG);
724 
725   // Build the phi live-on-entry map.
726   for (NodeAddr<BlockNode*> BA : Blocks) {
727     MachineBasicBlock *MB = BA.Addr->getCode();
728     RefMap &LON = PhiLON[MB];
729     for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
730       for (const RefMap::value_type &S : RealUseMap[P.Id])
731         LON[S.first].insert(S.second.begin(), S.second.end());
732   }
733 
734   if (Trace) {
735     dbgs() << "Phi live-on-entry map:\n";
736     for (auto &I : PhiLON)
737       dbgs() << "block #" << I.first->getNumber() << " -> "
738              << Print<RefMap>(I.second, DFG) << '\n';
739   }
740 
741   // Build the phi live-on-exit map. Each phi node has some set of reached
742   // "real" uses. Propagate this set backwards into the block predecessors
743   // through the reaching defs of the corresponding phi uses.
744   for (NodeAddr<BlockNode*> BA : Blocks) {
745     NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
746     for (NodeAddr<PhiNode*> PA : Phis) {
747       RefMap &RUs = RealUseMap[PA.Id];
748       if (RUs.empty())
749         continue;
750 
751       NodeSet SeenUses;
752       for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
753         if (!SeenUses.insert(U.Id).second)
754           continue;
755         NodeAddr<PhiUseNode*> PUA = U;
756         if (PUA.Addr->getReachingDef() == 0)
757           continue;
758 
759         // Each phi has some set (possibly empty) of reached "real" uses,
760         // that is, uses that are part of the compiled program. Such a use
761         // may be located in some farther block, but following a chain of
762         // reaching defs will eventually lead to this phi.
763         // Any chain of reaching defs may fork at a phi node, but there
764         // will be a path upwards that will lead to this phi. Now, this
765         // chain will need to fork at this phi, since some of the reached
766         // uses may have definitions joining in from multiple predecessors.
767         // For each reached "real" use, identify the set of reaching defs
768         // coming from each predecessor P, and add them to PhiLOX[P].
769         //
770         auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor());
771         RefMap &LOX = PhiLOX[PrA.Addr->getCode()];
772 
773         for (const std::pair<RegisterId,NodeRefSet> &RS : RUs) {
774           // We need to visit each individual use.
775           for (std::pair<NodeId,LaneBitmask> P : RS.second) {
776             // Create a register ref corresponding to the use, and find
777             // all reaching defs starting from the phi use, and treating
778             // all related shadows as a single use cluster.
779             RegisterRef S(RS.first, P.second);
780             NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs);
781             for (NodeAddr<DefNode*> D : Ds) {
782               // Calculate the mask corresponding to the visited def.
783               RegisterAggr TA(PRI);
784               TA.insert(D.Addr->getRegRef(DFG)).intersect(S);
785               LaneBitmask TM = TA.makeRegRef().Mask;
786               LOX[S.Reg].insert({D.Id, TM});
787             }
788           }
789         }
790 
791         for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA))
792           SeenUses.insert(T.Id);
793       }  // for U : phi uses
794     }  // for P : Phis
795   }  // for B : Blocks
796 
797   if (Trace) {
798     dbgs() << "Phi live-on-exit map:\n";
799     for (auto &I : PhiLOX)
800       dbgs() << "block #" << I.first->getNumber() << " -> "
801              << Print<RefMap>(I.second, DFG) << '\n';
802   }
803 
804   RefMap LiveIn;
805   traverse(&MF.front(), LiveIn);
806 
807   // Add function live-ins to the live-in set of the function entry block.
808   LiveMap[&MF.front()].insert(DFG.getLiveIns());
809 
810   if (Trace) {
811     // Dump the liveness map
812     for (MachineBasicBlock &B : MF) {
813       std::vector<RegisterRef> LV;
814       for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
815         LV.push_back(RegisterRef(I->PhysReg, I->LaneMask));
816       llvm::sort(LV.begin(), LV.end());
817       dbgs() << printMBBReference(B) << "\t rec = {";
818       for (auto I : LV)
819         dbgs() << ' ' << Print<RegisterRef>(I, DFG);
820       dbgs() << " }\n";
821       //dbgs() << "\tcomp = " << Print<RegisterAggr>(LiveMap[&B], DFG) << '\n';
822 
823       LV.clear();
824       const RegisterAggr &LG = LiveMap[&B];
825       for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I)
826         LV.push_back(*I);
827       llvm::sort(LV.begin(), LV.end());
828       dbgs() << "\tcomp = {";
829       for (auto I : LV)
830         dbgs() << ' ' << Print<RegisterRef>(I, DFG);
831       dbgs() << " }\n";
832 
833     }
834   }
835 }
836 
resetLiveIns()837 void Liveness::resetLiveIns() {
838   for (auto &B : DFG.getMF()) {
839     // Remove all live-ins.
840     std::vector<unsigned> T;
841     for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
842       T.push_back(I->PhysReg);
843     for (auto I : T)
844       B.removeLiveIn(I);
845     // Add the newly computed live-ins.
846     const RegisterAggr &LiveIns = LiveMap[&B];
847     for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
848       RegisterRef R = *I;
849       B.addLiveIn({MCPhysReg(R.Reg), R.Mask});
850     }
851   }
852 }
853 
resetKills()854 void Liveness::resetKills() {
855   for (auto &B : DFG.getMF())
856     resetKills(&B);
857 }
858 
resetKills(MachineBasicBlock * B)859 void Liveness::resetKills(MachineBasicBlock *B) {
860   auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void {
861     for (auto I : B->liveins()) {
862       MCSubRegIndexIterator S(I.PhysReg, &TRI);
863       if (!S.isValid()) {
864         LV.set(I.PhysReg);
865         continue;
866       }
867       do {
868         LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex());
869         if ((M & I.LaneMask).any())
870           LV.set(S.getSubReg());
871         ++S;
872       } while (S.isValid());
873     }
874   };
875 
876   BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
877   CopyLiveIns(B, LiveIn);
878   for (auto SI : B->successors())
879     CopyLiveIns(SI, Live);
880 
881   for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
882     MachineInstr *MI = &*I;
883     if (MI->isDebugInstr())
884       continue;
885 
886     MI->clearKillInfo();
887     for (auto &Op : MI->operands()) {
888       // An implicit def of a super-register may not necessarily start a
889       // live range of it, since an implicit use could be used to keep parts
890       // of it live. Instead of analyzing the implicit operands, ignore
891       // implicit defs.
892       if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
893         continue;
894       unsigned R = Op.getReg();
895       if (!TargetRegisterInfo::isPhysicalRegister(R))
896         continue;
897       for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
898         Live.reset(*SR);
899     }
900     for (auto &Op : MI->operands()) {
901       if (!Op.isReg() || !Op.isUse() || Op.isUndef())
902         continue;
903       unsigned R = Op.getReg();
904       if (!TargetRegisterInfo::isPhysicalRegister(R))
905         continue;
906       bool IsLive = false;
907       for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
908         if (!Live[*AR])
909           continue;
910         IsLive = true;
911         break;
912       }
913       if (!IsLive)
914         Op.setIsKill(true);
915       for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
916         Live.set(*SR);
917     }
918   }
919 }
920 
921 // Helper function to obtain the basic block containing the reaching def
922 // of the given use.
getBlockWithRef(NodeId RN) const923 MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
924   auto F = NBMap.find(RN);
925   if (F != NBMap.end())
926     return F->second;
927   llvm_unreachable("Node id not in map");
928 }
929 
traverse(MachineBasicBlock * B,RefMap & LiveIn)930 void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
931   // The LiveIn map, for each (physical) register, contains the set of live
932   // reaching defs of that register that are live on entry to the associated
933   // block.
934 
935   // The summary of the traversal algorithm:
936   //
937   // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
938   // and (U \in IDF(B) or B dom U).
939   //
940   // for (C : children) {
941   //   LU = {}
942   //   traverse(C, LU)
943   //   LiveUses += LU
944   // }
945   //
946   // LiveUses -= Defs(B);
947   // LiveUses += UpwardExposedUses(B);
948   // for (C : IIDF[B])
949   //   for (U : LiveUses)
950   //     if (Rdef(U) dom C)
951   //       C.addLiveIn(U)
952   //
953 
954   // Go up the dominator tree (depth-first).
955   MachineDomTreeNode *N = MDT.getNode(B);
956   for (auto I : *N) {
957     RefMap L;
958     MachineBasicBlock *SB = I->getBlock();
959     traverse(SB, L);
960 
961     for (auto S : L)
962       LiveIn[S.first].insert(S.second.begin(), S.second.end());
963   }
964 
965   if (Trace) {
966     dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__
967            << " after recursion into: {";
968     for (auto I : *N)
969       dbgs() << ' ' << I->getBlock()->getNumber();
970     dbgs() << " }\n";
971     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
972     dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
973   }
974 
975   // Add reaching defs of phi uses that are live on exit from this block.
976   RefMap &PUs = PhiLOX[B];
977   for (auto &S : PUs)
978     LiveIn[S.first].insert(S.second.begin(), S.second.end());
979 
980   if (Trace) {
981     dbgs() << "after LOX\n";
982     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
983     dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
984   }
985 
986   // The LiveIn map at this point has all defs that are live-on-exit from B,
987   // as if they were live-on-entry to B. First, we need to filter out all
988   // defs that are present in this block. Then we will add reaching defs of
989   // all upward-exposed uses.
990 
991   // To filter out the defs, first make a copy of LiveIn, and then re-populate
992   // LiveIn with the defs that should remain.
993   RefMap LiveInCopy = LiveIn;
994   LiveIn.clear();
995 
996   for (const std::pair<RegisterId,NodeRefSet> &LE : LiveInCopy) {
997     RegisterRef LRef(LE.first);
998     NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled.
999     const NodeRefSet &OldDefs = LE.second;
1000     for (NodeRef OR : OldDefs) {
1001       // R is a def node that was live-on-exit
1002       auto DA = DFG.addr<DefNode*>(OR.first);
1003       NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
1004       NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
1005       if (B != BA.Addr->getCode()) {
1006         // Defs from a different block need to be preserved. Defs from this
1007         // block will need to be processed further, except for phi defs, the
1008         // liveness of which is handled through the PhiLON/PhiLOX maps.
1009         NewDefs.insert(OR);
1010         continue;
1011       }
1012 
1013       // Defs from this block need to stop the liveness from being
1014       // propagated upwards. This only applies to non-preserving defs,
1015       // and to the parts of the register actually covered by those defs.
1016       // (Note that phi defs should always be preserving.)
1017       RegisterAggr RRs(PRI);
1018       LRef.Mask = OR.second;
1019 
1020       if (!DFG.IsPreservingDef(DA)) {
1021         assert(!(IA.Addr->getFlags() & NodeAttrs::Phi));
1022         // DA is a non-phi def that is live-on-exit from this block, and
1023         // that is also located in this block. LRef is a register ref
1024         // whose use this def reaches. If DA covers LRef, then no part
1025         // of LRef is exposed upwards.A
1026         if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef))
1027           continue;
1028       }
1029 
1030       // DA itself was not sufficient to cover LRef. In general, it is
1031       // the last in a chain of aliased defs before the exit from this block.
1032       // There could be other defs in this block that are a part of that
1033       // chain. Check that now: accumulate the registers from these defs,
1034       // and if they all together cover LRef, it is not live-on-entry.
1035       for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
1036         // DefNode -> InstrNode -> BlockNode.
1037         NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG);
1038         NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG);
1039         // Reaching defs are ordered in the upward direction.
1040         if (BTA.Addr->getCode() != B) {
1041           // We have reached past the beginning of B, and the accumulated
1042           // registers are not covering LRef. The first def from the
1043           // upward chain will be live.
1044           // Subtract all accumulated defs (RRs) from LRef.
1045           RegisterRef T = RRs.clearIn(LRef);
1046           assert(T);
1047           NewDefs.insert({TA.Id,T.Mask});
1048           break;
1049         }
1050 
1051         // TA is in B. Only add this def to the accumulated cover if it is
1052         // not preserving.
1053         if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
1054           RRs.insert(TA.Addr->getRegRef(DFG));
1055         // If this is enough to cover LRef, then stop.
1056         if (RRs.hasCoverOf(LRef))
1057           break;
1058       }
1059     }
1060   }
1061 
1062   emptify(LiveIn);
1063 
1064   if (Trace) {
1065     dbgs() << "after defs in block\n";
1066     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1067     dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1068   }
1069 
1070   // Scan the block for upward-exposed uses and add them to the tracking set.
1071   for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
1072     NodeAddr<InstrNode*> IA = I;
1073     if (IA.Addr->getKind() != NodeAttrs::Stmt)
1074       continue;
1075     for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
1076       if (UA.Addr->getFlags() & NodeAttrs::Undef)
1077         continue;
1078       RegisterRef RR = PRI.normalize(UA.Addr->getRegRef(DFG));
1079       for (NodeAddr<DefNode*> D : getAllReachingDefs(UA))
1080         if (getBlockWithRef(D.Id) != B)
1081           LiveIn[RR.Reg].insert({D.Id,RR.Mask});
1082     }
1083   }
1084 
1085   if (Trace) {
1086     dbgs() << "after uses in block\n";
1087     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1088     dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1089   }
1090 
1091   // Phi uses should not be propagated up the dominator tree, since they
1092   // are not dominated by their corresponding reaching defs.
1093   RegisterAggr &Local = LiveMap[B];
1094   RefMap &LON = PhiLON[B];
1095   for (auto &R : LON) {
1096     LaneBitmask M;
1097     for (auto P : R.second)
1098       M |= P.second;
1099     Local.insert(RegisterRef(R.first,M));
1100   }
1101 
1102   if (Trace) {
1103     dbgs() << "after phi uses in block\n";
1104     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1105     dbgs() << "  Local:  " << Print<RegisterAggr>(Local, DFG) << '\n';
1106   }
1107 
1108   for (auto C : IIDF[B]) {
1109     RegisterAggr &LiveC = LiveMap[C];
1110     for (const std::pair<RegisterId,NodeRefSet> &S : LiveIn)
1111       for (auto R : S.second)
1112         if (MDT.properlyDominates(getBlockWithRef(R.first), C))
1113           LiveC.insert(RegisterRef(S.first, R.second));
1114   }
1115 }
1116 
emptify(RefMap & M)1117 void Liveness::emptify(RefMap &M) {
1118   for (auto I = M.begin(), E = M.end(); I != E; )
1119     I = I->second.empty() ? M.erase(I) : std::next(I);
1120 }
1121