1 //===- RDFLiveness.cpp ----------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Computation of the liveness information from the data-flow graph.
11 //
12 // The main functionality of this code is to compute block live-in
13 // information. With the live-in information in place, the placement
14 // of kill flags can also be recalculated.
15 //
16 // The block live-in calculation is based on the ideas from the following
17 // publication:
18 //
19 // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
20 // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
21 // ACM Transactions on Architecture and Code Optimization, Association for
22 // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
23 // and Embedded Architectures and Compilers", 8 (4),
24 // <10.1145/2086696.2086706>. <hal-00647369>
25 //
26 #include "RDFLiveness.h"
27 #include "RDFGraph.h"
28 #include "RDFRegisters.h"
29 #include "llvm/ADT/BitVector.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineDominanceFrontier.h"
34 #include "llvm/CodeGen/MachineDominators.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/MC/LaneBitmask.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <map>
49 #include <utility>
50 #include <vector>
51
52 using namespace llvm;
53 using namespace rdf;
54
55 static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25),
56 cl::Hidden, cl::desc("Maximum recursion level"));
57
58 namespace llvm {
59 namespace rdf {
60
61 template<>
operator <<(raw_ostream & OS,const Print<Liveness::RefMap> & P)62 raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
63 OS << '{';
64 for (auto &I : P.Obj) {
65 OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{';
66 for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
67 OS << Print<NodeId>(J->first, P.G) << PrintLaneMaskOpt(J->second);
68 if (++J != E)
69 OS << ',';
70 }
71 OS << '}';
72 }
73 OS << " }";
74 return OS;
75 }
76
77 } // end namespace rdf
78 } // end namespace llvm
79
80 // The order in the returned sequence is the order of reaching defs in the
81 // upward traversal: the first def is the closest to the given reference RefA,
82 // the next one is further up, and so on.
83 // The list ends at a reaching phi def, or when the reference from RefA is
84 // covered by the defs in the list (see FullChain).
85 // This function provides two modes of operation:
86 // (1) Returning the sequence of reaching defs for a particular reference
87 // node. This sequence will terminate at the first phi node [1].
88 // (2) Returning a partial sequence of reaching defs, where the final goal
89 // is to traverse past phi nodes to the actual defs arising from the code
90 // itself.
91 // In mode (2), the register reference for which the search was started
92 // may be different from the reference node RefA, for which this call was
93 // made, hence the argument RefRR, which holds the original register.
94 // Also, some definitions may have already been encountered in a previous
95 // call that will influence register covering. The register references
96 // already defined are passed in through DefRRs.
97 // In mode (1), the "continuation" considerations do not apply, and the
98 // RefRR is the same as the register in RefA, and the set DefRRs is empty.
99 //
100 // [1] It is possible for multiple phi nodes to be included in the returned
101 // sequence:
102 // SubA = phi ...
103 // SubB = phi ...
104 // ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
105 // However, these phi nodes are independent from one another in terms of
106 // the data-flow.
107
getAllReachingDefs(RegisterRef RefRR,NodeAddr<RefNode * > RefA,bool TopShadows,bool FullChain,const RegisterAggr & DefRRs)108 NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
109 NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain,
110 const RegisterAggr &DefRRs) {
111 NodeList RDefs; // Return value.
112 SetVector<NodeId> DefQ;
113 SetVector<NodeId> Owners;
114
115 // Dead defs will be treated as if they were live, since they are actually
116 // on the data-flow path. They cannot be ignored because even though they
117 // do not generate meaningful values, they still modify registers.
118
119 // If the reference is undefined, there is nothing to do.
120 if (RefA.Addr->getFlags() & NodeAttrs::Undef)
121 return RDefs;
122
123 // The initial queue should not have reaching defs for shadows. The
124 // whole point of a shadow is that it will have a reaching def that
125 // is not aliased to the reaching defs of the related shadows.
126 NodeId Start = RefA.Id;
127 auto SNA = DFG.addr<RefNode*>(Start);
128 if (NodeId RD = SNA.Addr->getReachingDef())
129 DefQ.insert(RD);
130 if (TopShadows) {
131 for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA))
132 if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
133 DefQ.insert(RD);
134 }
135
136 // Collect all the reaching defs, going up until a phi node is encountered,
137 // or there are no more reaching defs. From this set, the actual set of
138 // reaching defs will be selected.
139 // The traversal upwards must go on until a covering def is encountered.
140 // It is possible that a collection of non-covering (individually) defs
141 // will be sufficient, but keep going until a covering one is found.
142 for (unsigned i = 0; i < DefQ.size(); ++i) {
143 auto TA = DFG.addr<DefNode*>(DefQ[i]);
144 if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
145 continue;
146 // Stop at the covering/overwriting def of the initial register reference.
147 RegisterRef RR = TA.Addr->getRegRef(DFG);
148 if (!DFG.IsPreservingDef(TA))
149 if (RegisterAggr::isCoverOf(RR, RefRR, PRI))
150 continue;
151 // Get the next level of reaching defs. This will include multiple
152 // reaching defs for shadows.
153 for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
154 if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
155 DefQ.insert(RD);
156 }
157
158 // Remove all non-phi defs that are not aliased to RefRR, and collect
159 // the owners of the remaining defs.
160 SetVector<NodeId> Defs;
161 for (NodeId N : DefQ) {
162 auto TA = DFG.addr<DefNode*>(N);
163 bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
164 if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG)))
165 continue;
166 Defs.insert(TA.Id);
167 Owners.insert(TA.Addr->getOwner(DFG).Id);
168 }
169
170 // Return the MachineBasicBlock containing a given instruction.
171 auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
172 if (IA.Addr->getKind() == NodeAttrs::Stmt)
173 return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
174 assert(IA.Addr->getKind() == NodeAttrs::Phi);
175 NodeAddr<PhiNode*> PA = IA;
176 NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
177 return BA.Addr->getCode();
178 };
179 // Less(A,B) iff instruction A is further down in the dominator tree than B.
180 auto Less = [&Block,this] (NodeId A, NodeId B) -> bool {
181 if (A == B)
182 return false;
183 auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B);
184 MachineBasicBlock *BA = Block(OA), *BB = Block(OB);
185 if (BA != BB)
186 return MDT.dominates(BB, BA);
187 // They are in the same block.
188 bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
189 bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
190 if (StmtA) {
191 if (!StmtB) // OB is a phi and phis dominate statements.
192 return true;
193 MachineInstr *CA = NodeAddr<StmtNode*>(OA).Addr->getCode();
194 MachineInstr *CB = NodeAddr<StmtNode*>(OB).Addr->getCode();
195 // The order must be linear, so tie-break such equalities.
196 if (CA == CB)
197 return A < B;
198 return MDT.dominates(CB, CA);
199 } else {
200 // OA is a phi.
201 if (StmtB)
202 return false;
203 // Both are phis. There is no ordering between phis (in terms of
204 // the data-flow), so tie-break this via node id comparison.
205 return A < B;
206 }
207 };
208
209 std::vector<NodeId> Tmp(Owners.begin(), Owners.end());
210 llvm::sort(Tmp.begin(), Tmp.end(), Less);
211
212 // The vector is a list of instructions, so that defs coming from
213 // the same instruction don't need to be artificially ordered.
214 // Then, when computing the initial segment, and iterating over an
215 // instruction, pick the defs that contribute to the covering (i.e. is
216 // not covered by previously added defs). Check the defs individually,
217 // i.e. first check each def if is covered or not (without adding them
218 // to the tracking set), and then add all the selected ones.
219
220 // The reason for this is this example:
221 // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
222 // *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be
223 // covered if we added A first, and A would be covered
224 // if we added B first.
225
226 RegisterAggr RRs(DefRRs);
227
228 auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
229 return TA.Addr->getKind() == NodeAttrs::Def &&
230 Defs.count(TA.Id);
231 };
232 for (NodeId T : Tmp) {
233 if (!FullChain && RRs.hasCoverOf(RefRR))
234 break;
235 auto TA = DFG.addr<InstrNode*>(T);
236 bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
237 NodeList Ds;
238 for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
239 RegisterRef QR = DA.Addr->getRegRef(DFG);
240 // Add phi defs even if they are covered by subsequent defs. This is
241 // for cases where the reached use is not covered by any of the defs
242 // encountered so far: the phi def is needed to expose the liveness
243 // of that use to the entry of the block.
244 // Example:
245 // phi d1<R3>(,d2,), ... Phi def d1 is covered by d2.
246 // d2<R3>(d1,,u3), ...
247 // ..., u3<D1>(d2) This use needs to be live on entry.
248 if (FullChain || IsPhi || !RRs.hasCoverOf(QR))
249 Ds.push_back(DA);
250 }
251 RDefs.insert(RDefs.end(), Ds.begin(), Ds.end());
252 for (NodeAddr<DefNode*> DA : Ds) {
253 // When collecting a full chain of definitions, do not consider phi
254 // defs to actually define a register.
255 uint16_t Flags = DA.Addr->getFlags();
256 if (!FullChain || !(Flags & NodeAttrs::PhiRef))
257 if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here.
258 RRs.insert(DA.Addr->getRegRef(DFG));
259 }
260 }
261
262 auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool {
263 return DA.Addr->getFlags() & NodeAttrs::Dead;
264 };
265 RDefs.resize(std::distance(RDefs.begin(), llvm::remove_if(RDefs, DeadP)));
266
267 return RDefs;
268 }
269
270 std::pair<NodeSet,bool>
getAllReachingDefsRec(RegisterRef RefRR,NodeAddr<RefNode * > RefA,NodeSet & Visited,const NodeSet & Defs)271 Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
272 NodeSet &Visited, const NodeSet &Defs) {
273 return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest);
274 }
275
276 std::pair<NodeSet,bool>
getAllReachingDefsRecImpl(RegisterRef RefRR,NodeAddr<RefNode * > RefA,NodeSet & Visited,const NodeSet & Defs,unsigned Nest,unsigned MaxNest)277 Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
278 NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) {
279 if (Nest > MaxNest)
280 return { NodeSet(), false };
281 // Collect all defined registers. Do not consider phis to be defining
282 // anything, only collect "real" definitions.
283 RegisterAggr DefRRs(PRI);
284 for (NodeId D : Defs) {
285 const auto DA = DFG.addr<const DefNode*>(D);
286 if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
287 DefRRs.insert(DA.Addr->getRegRef(DFG));
288 }
289
290 NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs);
291 if (RDs.empty())
292 return { Defs, true };
293
294 // Make a copy of the preexisting definitions and add the newly found ones.
295 NodeSet TmpDefs = Defs;
296 for (NodeAddr<NodeBase*> R : RDs)
297 TmpDefs.insert(R.Id);
298
299 NodeSet Result = Defs;
300
301 for (NodeAddr<DefNode*> DA : RDs) {
302 Result.insert(DA.Id);
303 if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
304 continue;
305 NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
306 if (Visited.count(PA.Id))
307 continue;
308 Visited.insert(PA.Id);
309 // Go over all phi uses and get the reaching defs for each use.
310 for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
311 const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs,
312 Nest+1, MaxNest);
313 if (!T.second)
314 return { T.first, false };
315 Result.insert(T.first.begin(), T.first.end());
316 }
317 }
318
319 return { Result, true };
320 }
321
322 /// Find the nearest ref node aliased to RefRR, going upwards in the data
323 /// flow, starting from the instruction immediately preceding Inst.
getNearestAliasedRef(RegisterRef RefRR,NodeAddr<InstrNode * > IA)324 NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR,
325 NodeAddr<InstrNode*> IA) {
326 NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
327 NodeList Ins = BA.Addr->members(DFG);
328 NodeId FindId = IA.Id;
329 auto E = Ins.rend();
330 auto B = std::find_if(Ins.rbegin(), E,
331 [FindId] (const NodeAddr<InstrNode*> T) {
332 return T.Id == FindId;
333 });
334 // Do not scan IA (which is what B would point to).
335 if (B != E)
336 ++B;
337
338 do {
339 // Process the range of instructions from B to E.
340 for (NodeAddr<InstrNode*> I : make_range(B, E)) {
341 NodeList Refs = I.Addr->members(DFG);
342 NodeAddr<RefNode*> Clob, Use;
343 // Scan all the refs in I aliased to RefRR, and return the one that
344 // is the closest to the output of I, i.e. def > clobber > use.
345 for (NodeAddr<RefNode*> R : Refs) {
346 if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR))
347 continue;
348 if (DFG.IsDef(R)) {
349 // If it's a non-clobbering def, just return it.
350 if (!(R.Addr->getFlags() & NodeAttrs::Clobbering))
351 return R;
352 Clob = R;
353 } else {
354 Use = R;
355 }
356 }
357 if (Clob.Id != 0)
358 return Clob;
359 if (Use.Id != 0)
360 return Use;
361 }
362
363 // Go up to the immediate dominator, if any.
364 MachineBasicBlock *BB = BA.Addr->getCode();
365 BA = NodeAddr<BlockNode*>();
366 if (MachineDomTreeNode *N = MDT.getNode(BB)) {
367 if ((N = N->getIDom()))
368 BA = DFG.findBlock(N->getBlock());
369 }
370 if (!BA.Id)
371 break;
372
373 Ins = BA.Addr->members(DFG);
374 B = Ins.rbegin();
375 E = Ins.rend();
376 } while (true);
377
378 return NodeAddr<RefNode*>();
379 }
380
getAllReachedUses(RegisterRef RefRR,NodeAddr<DefNode * > DefA,const RegisterAggr & DefRRs)381 NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
382 NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) {
383 NodeSet Uses;
384
385 // If the original register is already covered by all the intervening
386 // defs, no more uses can be reached.
387 if (DefRRs.hasCoverOf(RefRR))
388 return Uses;
389
390 // Add all directly reached uses.
391 // If the def is dead, it does not provide a value for any use.
392 bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead;
393 NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0;
394 while (U != 0) {
395 auto UA = DFG.addr<UseNode*>(U);
396 if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) {
397 RegisterRef UR = UA.Addr->getRegRef(DFG);
398 if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR))
399 Uses.insert(U);
400 }
401 U = UA.Addr->getSibling();
402 }
403
404 // Traverse all reached defs. This time dead defs cannot be ignored.
405 for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
406 auto DA = DFG.addr<DefNode*>(D);
407 NextD = DA.Addr->getSibling();
408 RegisterRef DR = DA.Addr->getRegRef(DFG);
409 // If this def is already covered, it cannot reach anything new.
410 // Similarly, skip it if it is not aliased to the interesting register.
411 if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR))
412 continue;
413 NodeSet T;
414 if (DFG.IsPreservingDef(DA)) {
415 // If it is a preserving def, do not update the set of intervening defs.
416 T = getAllReachedUses(RefRR, DA, DefRRs);
417 } else {
418 RegisterAggr NewDefRRs = DefRRs;
419 NewDefRRs.insert(DR);
420 T = getAllReachedUses(RefRR, DA, NewDefRRs);
421 }
422 Uses.insert(T.begin(), T.end());
423 }
424 return Uses;
425 }
426
computePhiInfo()427 void Liveness::computePhiInfo() {
428 RealUseMap.clear();
429
430 NodeList Phis;
431 NodeAddr<FuncNode*> FA = DFG.getFunc();
432 NodeList Blocks = FA.Addr->members(DFG);
433 for (NodeAddr<BlockNode*> BA : Blocks) {
434 auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
435 Phis.insert(Phis.end(), Ps.begin(), Ps.end());
436 }
437
438 // phi use -> (map: reaching phi -> set of registers defined in between)
439 std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp;
440 std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation.
441 std::map<NodeId,RegisterAggr> PhiDRs; // Phi -> registers defined by it.
442
443 // Go over all phis.
444 for (NodeAddr<PhiNode*> PhiA : Phis) {
445 // Go over all defs and collect the reached uses that are non-phi uses
446 // (i.e. the "real uses").
447 RefMap &RealUses = RealUseMap[PhiA.Id];
448 NodeList PhiRefs = PhiA.Addr->members(DFG);
449
450 // Have a work queue of defs whose reached uses need to be found.
451 // For each def, add to the queue all reached (non-phi) defs.
452 SetVector<NodeId> DefQ;
453 NodeSet PhiDefs;
454 RegisterAggr DRs(PRI);
455 for (NodeAddr<RefNode*> R : PhiRefs) {
456 if (!DFG.IsRef<NodeAttrs::Def>(R))
457 continue;
458 DRs.insert(R.Addr->getRegRef(DFG));
459 DefQ.insert(R.Id);
460 PhiDefs.insert(R.Id);
461 }
462 PhiDRs.insert(std::make_pair(PhiA.Id, DRs));
463
464 // Collect the super-set of all possible reached uses. This set will
465 // contain all uses reached from this phi, either directly from the
466 // phi defs, or (recursively) via non-phi defs reached by the phi defs.
467 // This set of uses will later be trimmed to only contain these uses that
468 // are actually reached by the phi defs.
469 for (unsigned i = 0; i < DefQ.size(); ++i) {
470 NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
471 // Visit all reached uses. Phi defs should not really have the "dead"
472 // flag set, but check it anyway for consistency.
473 bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
474 NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
475 while (UN != 0) {
476 NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
477 uint16_t F = A.Addr->getFlags();
478 if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
479 RegisterRef R = PRI.normalize(A.Addr->getRegRef(DFG));
480 RealUses[R.Reg].insert({A.Id,R.Mask});
481 }
482 UN = A.Addr->getSibling();
483 }
484 // Visit all reached defs, and add them to the queue. These defs may
485 // override some of the uses collected here, but that will be handled
486 // later.
487 NodeId DN = DA.Addr->getReachedDef();
488 while (DN != 0) {
489 NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
490 for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
491 uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
492 // Must traverse the reached-def chain. Consider:
493 // def(D0) -> def(R0) -> def(R0) -> use(D0)
494 // The reachable use of D0 passes through a def of R0.
495 if (!(Flags & NodeAttrs::PhiRef))
496 DefQ.insert(T.Id);
497 }
498 DN = A.Addr->getSibling();
499 }
500 }
501 // Filter out these uses that appear to be reachable, but really
502 // are not. For example:
503 //
504 // R1:0 = d1
505 // = R1:0 u2 Reached by d1.
506 // R0 = d3
507 // = R1:0 u4 Still reached by d1: indirectly through
508 // the def d3.
509 // R1 = d5
510 // = R1:0 u6 Not reached by d1 (covered collectively
511 // by d3 and d5), but following reached
512 // defs and uses from d1 will lead here.
513 for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
514 // For each reached register UI->first, there is a set UI->second, of
515 // uses of it. For each such use, check if it is reached by this phi,
516 // i.e. check if the set of its reaching uses intersects the set of
517 // this phi's defs.
518 NodeRefSet Uses = UI->second;
519 UI->second.clear();
520 for (std::pair<NodeId,LaneBitmask> I : Uses) {
521 auto UA = DFG.addr<UseNode*>(I.first);
522 // Undef flag is checked above.
523 assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
524 RegisterRef R(UI->first, I.second);
525 // Calculate the exposed part of the reached use.
526 RegisterAggr Covered(PRI);
527 for (NodeAddr<DefNode*> DA : getAllReachingDefs(R, UA)) {
528 if (PhiDefs.count(DA.Id))
529 break;
530 Covered.insert(DA.Addr->getRegRef(DFG));
531 }
532 if (RegisterRef RC = Covered.clearIn(R)) {
533 // We are updating the map for register UI->first, so we need
534 // to map RC to be expressed in terms of that register.
535 RegisterRef S = PRI.mapTo(RC, UI->first);
536 UI->second.insert({I.first, S.Mask});
537 }
538 }
539 UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI);
540 }
541
542 // If this phi reaches some "real" uses, add it to the queue for upward
543 // propagation.
544 if (!RealUses.empty())
545 PhiUQ.push_back(PhiA.Id);
546
547 // Go over all phi uses and check if the reaching def is another phi.
548 // Collect the phis that are among the reaching defs of these uses.
549 // While traversing the list of reaching defs for each phi use, accumulate
550 // the set of registers defined between this phi (PhiA) and the owner phi
551 // of the reaching def.
552 NodeSet SeenUses;
553
554 for (auto I : PhiRefs) {
555 if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
556 continue;
557 NodeAddr<PhiUseNode*> PUA = I;
558 if (PUA.Addr->getReachingDef() == 0)
559 continue;
560
561 RegisterRef UR = PUA.Addr->getRegRef(DFG);
562 NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
563 RegisterAggr DefRRs(PRI);
564
565 for (NodeAddr<DefNode*> D : Ds) {
566 if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
567 NodeId RP = D.Addr->getOwner(DFG).Id;
568 std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id];
569 auto F = M.find(RP);
570 if (F == M.end())
571 M.insert(std::make_pair(RP, DefRRs));
572 else
573 F->second.insert(DefRRs);
574 }
575 DefRRs.insert(D.Addr->getRegRef(DFG));
576 }
577
578 for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA))
579 SeenUses.insert(T.Id);
580 }
581 }
582
583 if (Trace) {
584 dbgs() << "Phi-up-to-phi map with intervening defs:\n";
585 for (auto I : PhiUp) {
586 dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
587 for (auto R : I.second)
588 dbgs() << ' ' << Print<NodeId>(R.first, DFG)
589 << Print<RegisterAggr>(R.second, DFG);
590 dbgs() << " }\n";
591 }
592 }
593
594 // Propagate the reached registers up in the phi chain.
595 //
596 // The following type of situation needs careful handling:
597 //
598 // phi d1<R1:0> (1)
599 // |
600 // ... d2<R1>
601 // |
602 // phi u3<R1:0> (2)
603 // |
604 // ... u4<R1>
605 //
606 // The phi node (2) defines a register pair R1:0, and reaches a "real"
607 // use u4 of just R1. The same phi node is also known to reach (upwards)
608 // the phi node (1). However, the use u4 is not reached by phi (1),
609 // because of the intervening definition d2 of R1. The data flow between
610 // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
611 //
612 // When propagating uses up the phi chains, get the all reaching defs
613 // for a given phi use, and traverse the list until the propagated ref
614 // is covered, or until reaching the final phi. Only assume that the
615 // reference reaches the phi in the latter case.
616
617 for (unsigned i = 0; i < PhiUQ.size(); ++i) {
618 auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
619 NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
620 RefMap &RUM = RealUseMap[PA.Id];
621
622 for (NodeAddr<UseNode*> UA : PUs) {
623 std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id];
624 RegisterRef UR = PRI.normalize(UA.Addr->getRegRef(DFG));
625 for (const std::pair<NodeId,RegisterAggr> &P : PUM) {
626 bool Changed = false;
627 const RegisterAggr &MidDefs = P.second;
628
629 // Collect the set PropUp of uses that are reached by the current
630 // phi PA, and are not covered by any intervening def between the
631 // currently visited use UA and the upward phi P.
632
633 if (MidDefs.hasCoverOf(UR))
634 continue;
635
636 // General algorithm:
637 // for each (R,U) : U is use node of R, U is reached by PA
638 // if MidDefs does not cover (R,U)
639 // then add (R-MidDefs,U) to RealUseMap[P]
640 //
641 for (const std::pair<RegisterId,NodeRefSet> &T : RUM) {
642 RegisterRef R(T.first);
643 // The current phi (PA) could be a phi for a regmask. It could
644 // reach a whole variety of uses that are not related to the
645 // specific upward phi (P.first).
646 const RegisterAggr &DRs = PhiDRs.at(P.first);
647 if (!DRs.hasAliasOf(R))
648 continue;
649 R = PRI.mapTo(DRs.intersectWith(R), T.first);
650 for (std::pair<NodeId,LaneBitmask> V : T.second) {
651 LaneBitmask M = R.Mask & V.second;
652 if (M.none())
653 continue;
654 if (RegisterRef SS = MidDefs.clearIn(RegisterRef(R.Reg, M))) {
655 NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
656 Changed |= RS.insert({V.first,SS.Mask}).second;
657 }
658 }
659 }
660
661 if (Changed)
662 PhiUQ.push_back(P.first);
663 }
664 }
665 }
666
667 if (Trace) {
668 dbgs() << "Real use map:\n";
669 for (auto I : RealUseMap) {
670 dbgs() << "phi " << Print<NodeId>(I.first, DFG);
671 NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
672 NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
673 if (!Ds.empty()) {
674 RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG);
675 dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
676 } else {
677 dbgs() << "<noreg>";
678 }
679 dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
680 }
681 }
682 }
683
computeLiveIns()684 void Liveness::computeLiveIns() {
685 // Populate the node-to-block map. This speeds up the calculations
686 // significantly.
687 NBMap.clear();
688 for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
689 MachineBasicBlock *BB = BA.Addr->getCode();
690 for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
691 for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
692 NBMap.insert(std::make_pair(RA.Id, BB));
693 NBMap.insert(std::make_pair(IA.Id, BB));
694 }
695 }
696
697 MachineFunction &MF = DFG.getMF();
698
699 // Compute IDF first, then the inverse.
700 decltype(IIDF) IDF;
701 for (MachineBasicBlock &B : MF) {
702 auto F1 = MDF.find(&B);
703 if (F1 == MDF.end())
704 continue;
705 SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
706 for (unsigned i = 0; i < IDFB.size(); ++i) {
707 auto F2 = MDF.find(IDFB[i]);
708 if (F2 != MDF.end())
709 IDFB.insert(F2->second.begin(), F2->second.end());
710 }
711 // Add B to the IDF(B). This will put B in the IIDF(B).
712 IDFB.insert(&B);
713 IDF[&B].insert(IDFB.begin(), IDFB.end());
714 }
715
716 for (auto I : IDF)
717 for (auto S : I.second)
718 IIDF[S].insert(I.first);
719
720 computePhiInfo();
721
722 NodeAddr<FuncNode*> FA = DFG.getFunc();
723 NodeList Blocks = FA.Addr->members(DFG);
724
725 // Build the phi live-on-entry map.
726 for (NodeAddr<BlockNode*> BA : Blocks) {
727 MachineBasicBlock *MB = BA.Addr->getCode();
728 RefMap &LON = PhiLON[MB];
729 for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
730 for (const RefMap::value_type &S : RealUseMap[P.Id])
731 LON[S.first].insert(S.second.begin(), S.second.end());
732 }
733
734 if (Trace) {
735 dbgs() << "Phi live-on-entry map:\n";
736 for (auto &I : PhiLON)
737 dbgs() << "block #" << I.first->getNumber() << " -> "
738 << Print<RefMap>(I.second, DFG) << '\n';
739 }
740
741 // Build the phi live-on-exit map. Each phi node has some set of reached
742 // "real" uses. Propagate this set backwards into the block predecessors
743 // through the reaching defs of the corresponding phi uses.
744 for (NodeAddr<BlockNode*> BA : Blocks) {
745 NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
746 for (NodeAddr<PhiNode*> PA : Phis) {
747 RefMap &RUs = RealUseMap[PA.Id];
748 if (RUs.empty())
749 continue;
750
751 NodeSet SeenUses;
752 for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
753 if (!SeenUses.insert(U.Id).second)
754 continue;
755 NodeAddr<PhiUseNode*> PUA = U;
756 if (PUA.Addr->getReachingDef() == 0)
757 continue;
758
759 // Each phi has some set (possibly empty) of reached "real" uses,
760 // that is, uses that are part of the compiled program. Such a use
761 // may be located in some farther block, but following a chain of
762 // reaching defs will eventually lead to this phi.
763 // Any chain of reaching defs may fork at a phi node, but there
764 // will be a path upwards that will lead to this phi. Now, this
765 // chain will need to fork at this phi, since some of the reached
766 // uses may have definitions joining in from multiple predecessors.
767 // For each reached "real" use, identify the set of reaching defs
768 // coming from each predecessor P, and add them to PhiLOX[P].
769 //
770 auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor());
771 RefMap &LOX = PhiLOX[PrA.Addr->getCode()];
772
773 for (const std::pair<RegisterId,NodeRefSet> &RS : RUs) {
774 // We need to visit each individual use.
775 for (std::pair<NodeId,LaneBitmask> P : RS.second) {
776 // Create a register ref corresponding to the use, and find
777 // all reaching defs starting from the phi use, and treating
778 // all related shadows as a single use cluster.
779 RegisterRef S(RS.first, P.second);
780 NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs);
781 for (NodeAddr<DefNode*> D : Ds) {
782 // Calculate the mask corresponding to the visited def.
783 RegisterAggr TA(PRI);
784 TA.insert(D.Addr->getRegRef(DFG)).intersect(S);
785 LaneBitmask TM = TA.makeRegRef().Mask;
786 LOX[S.Reg].insert({D.Id, TM});
787 }
788 }
789 }
790
791 for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA))
792 SeenUses.insert(T.Id);
793 } // for U : phi uses
794 } // for P : Phis
795 } // for B : Blocks
796
797 if (Trace) {
798 dbgs() << "Phi live-on-exit map:\n";
799 for (auto &I : PhiLOX)
800 dbgs() << "block #" << I.first->getNumber() << " -> "
801 << Print<RefMap>(I.second, DFG) << '\n';
802 }
803
804 RefMap LiveIn;
805 traverse(&MF.front(), LiveIn);
806
807 // Add function live-ins to the live-in set of the function entry block.
808 LiveMap[&MF.front()].insert(DFG.getLiveIns());
809
810 if (Trace) {
811 // Dump the liveness map
812 for (MachineBasicBlock &B : MF) {
813 std::vector<RegisterRef> LV;
814 for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
815 LV.push_back(RegisterRef(I->PhysReg, I->LaneMask));
816 llvm::sort(LV.begin(), LV.end());
817 dbgs() << printMBBReference(B) << "\t rec = {";
818 for (auto I : LV)
819 dbgs() << ' ' << Print<RegisterRef>(I, DFG);
820 dbgs() << " }\n";
821 //dbgs() << "\tcomp = " << Print<RegisterAggr>(LiveMap[&B], DFG) << '\n';
822
823 LV.clear();
824 const RegisterAggr &LG = LiveMap[&B];
825 for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I)
826 LV.push_back(*I);
827 llvm::sort(LV.begin(), LV.end());
828 dbgs() << "\tcomp = {";
829 for (auto I : LV)
830 dbgs() << ' ' << Print<RegisterRef>(I, DFG);
831 dbgs() << " }\n";
832
833 }
834 }
835 }
836
resetLiveIns()837 void Liveness::resetLiveIns() {
838 for (auto &B : DFG.getMF()) {
839 // Remove all live-ins.
840 std::vector<unsigned> T;
841 for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
842 T.push_back(I->PhysReg);
843 for (auto I : T)
844 B.removeLiveIn(I);
845 // Add the newly computed live-ins.
846 const RegisterAggr &LiveIns = LiveMap[&B];
847 for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
848 RegisterRef R = *I;
849 B.addLiveIn({MCPhysReg(R.Reg), R.Mask});
850 }
851 }
852 }
853
resetKills()854 void Liveness::resetKills() {
855 for (auto &B : DFG.getMF())
856 resetKills(&B);
857 }
858
resetKills(MachineBasicBlock * B)859 void Liveness::resetKills(MachineBasicBlock *B) {
860 auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void {
861 for (auto I : B->liveins()) {
862 MCSubRegIndexIterator S(I.PhysReg, &TRI);
863 if (!S.isValid()) {
864 LV.set(I.PhysReg);
865 continue;
866 }
867 do {
868 LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex());
869 if ((M & I.LaneMask).any())
870 LV.set(S.getSubReg());
871 ++S;
872 } while (S.isValid());
873 }
874 };
875
876 BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
877 CopyLiveIns(B, LiveIn);
878 for (auto SI : B->successors())
879 CopyLiveIns(SI, Live);
880
881 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
882 MachineInstr *MI = &*I;
883 if (MI->isDebugInstr())
884 continue;
885
886 MI->clearKillInfo();
887 for (auto &Op : MI->operands()) {
888 // An implicit def of a super-register may not necessarily start a
889 // live range of it, since an implicit use could be used to keep parts
890 // of it live. Instead of analyzing the implicit operands, ignore
891 // implicit defs.
892 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
893 continue;
894 unsigned R = Op.getReg();
895 if (!TargetRegisterInfo::isPhysicalRegister(R))
896 continue;
897 for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
898 Live.reset(*SR);
899 }
900 for (auto &Op : MI->operands()) {
901 if (!Op.isReg() || !Op.isUse() || Op.isUndef())
902 continue;
903 unsigned R = Op.getReg();
904 if (!TargetRegisterInfo::isPhysicalRegister(R))
905 continue;
906 bool IsLive = false;
907 for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
908 if (!Live[*AR])
909 continue;
910 IsLive = true;
911 break;
912 }
913 if (!IsLive)
914 Op.setIsKill(true);
915 for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
916 Live.set(*SR);
917 }
918 }
919 }
920
921 // Helper function to obtain the basic block containing the reaching def
922 // of the given use.
getBlockWithRef(NodeId RN) const923 MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
924 auto F = NBMap.find(RN);
925 if (F != NBMap.end())
926 return F->second;
927 llvm_unreachable("Node id not in map");
928 }
929
traverse(MachineBasicBlock * B,RefMap & LiveIn)930 void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
931 // The LiveIn map, for each (physical) register, contains the set of live
932 // reaching defs of that register that are live on entry to the associated
933 // block.
934
935 // The summary of the traversal algorithm:
936 //
937 // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
938 // and (U \in IDF(B) or B dom U).
939 //
940 // for (C : children) {
941 // LU = {}
942 // traverse(C, LU)
943 // LiveUses += LU
944 // }
945 //
946 // LiveUses -= Defs(B);
947 // LiveUses += UpwardExposedUses(B);
948 // for (C : IIDF[B])
949 // for (U : LiveUses)
950 // if (Rdef(U) dom C)
951 // C.addLiveIn(U)
952 //
953
954 // Go up the dominator tree (depth-first).
955 MachineDomTreeNode *N = MDT.getNode(B);
956 for (auto I : *N) {
957 RefMap L;
958 MachineBasicBlock *SB = I->getBlock();
959 traverse(SB, L);
960
961 for (auto S : L)
962 LiveIn[S.first].insert(S.second.begin(), S.second.end());
963 }
964
965 if (Trace) {
966 dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__
967 << " after recursion into: {";
968 for (auto I : *N)
969 dbgs() << ' ' << I->getBlock()->getNumber();
970 dbgs() << " }\n";
971 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
972 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
973 }
974
975 // Add reaching defs of phi uses that are live on exit from this block.
976 RefMap &PUs = PhiLOX[B];
977 for (auto &S : PUs)
978 LiveIn[S.first].insert(S.second.begin(), S.second.end());
979
980 if (Trace) {
981 dbgs() << "after LOX\n";
982 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
983 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
984 }
985
986 // The LiveIn map at this point has all defs that are live-on-exit from B,
987 // as if they were live-on-entry to B. First, we need to filter out all
988 // defs that are present in this block. Then we will add reaching defs of
989 // all upward-exposed uses.
990
991 // To filter out the defs, first make a copy of LiveIn, and then re-populate
992 // LiveIn with the defs that should remain.
993 RefMap LiveInCopy = LiveIn;
994 LiveIn.clear();
995
996 for (const std::pair<RegisterId,NodeRefSet> &LE : LiveInCopy) {
997 RegisterRef LRef(LE.first);
998 NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled.
999 const NodeRefSet &OldDefs = LE.second;
1000 for (NodeRef OR : OldDefs) {
1001 // R is a def node that was live-on-exit
1002 auto DA = DFG.addr<DefNode*>(OR.first);
1003 NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
1004 NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
1005 if (B != BA.Addr->getCode()) {
1006 // Defs from a different block need to be preserved. Defs from this
1007 // block will need to be processed further, except for phi defs, the
1008 // liveness of which is handled through the PhiLON/PhiLOX maps.
1009 NewDefs.insert(OR);
1010 continue;
1011 }
1012
1013 // Defs from this block need to stop the liveness from being
1014 // propagated upwards. This only applies to non-preserving defs,
1015 // and to the parts of the register actually covered by those defs.
1016 // (Note that phi defs should always be preserving.)
1017 RegisterAggr RRs(PRI);
1018 LRef.Mask = OR.second;
1019
1020 if (!DFG.IsPreservingDef(DA)) {
1021 assert(!(IA.Addr->getFlags() & NodeAttrs::Phi));
1022 // DA is a non-phi def that is live-on-exit from this block, and
1023 // that is also located in this block. LRef is a register ref
1024 // whose use this def reaches. If DA covers LRef, then no part
1025 // of LRef is exposed upwards.A
1026 if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef))
1027 continue;
1028 }
1029
1030 // DA itself was not sufficient to cover LRef. In general, it is
1031 // the last in a chain of aliased defs before the exit from this block.
1032 // There could be other defs in this block that are a part of that
1033 // chain. Check that now: accumulate the registers from these defs,
1034 // and if they all together cover LRef, it is not live-on-entry.
1035 for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
1036 // DefNode -> InstrNode -> BlockNode.
1037 NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG);
1038 NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG);
1039 // Reaching defs are ordered in the upward direction.
1040 if (BTA.Addr->getCode() != B) {
1041 // We have reached past the beginning of B, and the accumulated
1042 // registers are not covering LRef. The first def from the
1043 // upward chain will be live.
1044 // Subtract all accumulated defs (RRs) from LRef.
1045 RegisterRef T = RRs.clearIn(LRef);
1046 assert(T);
1047 NewDefs.insert({TA.Id,T.Mask});
1048 break;
1049 }
1050
1051 // TA is in B. Only add this def to the accumulated cover if it is
1052 // not preserving.
1053 if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
1054 RRs.insert(TA.Addr->getRegRef(DFG));
1055 // If this is enough to cover LRef, then stop.
1056 if (RRs.hasCoverOf(LRef))
1057 break;
1058 }
1059 }
1060 }
1061
1062 emptify(LiveIn);
1063
1064 if (Trace) {
1065 dbgs() << "after defs in block\n";
1066 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1067 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1068 }
1069
1070 // Scan the block for upward-exposed uses and add them to the tracking set.
1071 for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
1072 NodeAddr<InstrNode*> IA = I;
1073 if (IA.Addr->getKind() != NodeAttrs::Stmt)
1074 continue;
1075 for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
1076 if (UA.Addr->getFlags() & NodeAttrs::Undef)
1077 continue;
1078 RegisterRef RR = PRI.normalize(UA.Addr->getRegRef(DFG));
1079 for (NodeAddr<DefNode*> D : getAllReachingDefs(UA))
1080 if (getBlockWithRef(D.Id) != B)
1081 LiveIn[RR.Reg].insert({D.Id,RR.Mask});
1082 }
1083 }
1084
1085 if (Trace) {
1086 dbgs() << "after uses in block\n";
1087 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1088 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1089 }
1090
1091 // Phi uses should not be propagated up the dominator tree, since they
1092 // are not dominated by their corresponding reaching defs.
1093 RegisterAggr &Local = LiveMap[B];
1094 RefMap &LON = PhiLON[B];
1095 for (auto &R : LON) {
1096 LaneBitmask M;
1097 for (auto P : R.second)
1098 M |= P.second;
1099 Local.insert(RegisterRef(R.first,M));
1100 }
1101
1102 if (Trace) {
1103 dbgs() << "after phi uses in block\n";
1104 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1105 dbgs() << " Local: " << Print<RegisterAggr>(Local, DFG) << '\n';
1106 }
1107
1108 for (auto C : IIDF[B]) {
1109 RegisterAggr &LiveC = LiveMap[C];
1110 for (const std::pair<RegisterId,NodeRefSet> &S : LiveIn)
1111 for (auto R : S.second)
1112 if (MDT.properlyDominates(getBlockWithRef(R.first), C))
1113 LiveC.insert(RegisterRef(S.first, R.second));
1114 }
1115 }
1116
emptify(RefMap & M)1117 void Liveness::emptify(RefMap &M) {
1118 for (auto I = M.begin(), E = M.end(); I != E; )
1119 I = I->second.empty() ? M.erase(I) : std::next(I);
1120 }
1121