• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- X86MCTargetDesc.cpp - X86 Target Descriptions -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides X86 specific target descriptions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86MCTargetDesc.h"
15 #include "X86MCAsmInfo.h"
16 #include "InstPrinter/X86ATTInstPrinter.h"
17 #include "InstPrinter/X86IntelInstPrinter.h"
18 #include "llvm/MC/MachineLocation.h"
19 #include "llvm/MC/MCCodeGenInfo.h"
20 #include "llvm/MC/MCInstrAnalysis.h"
21 #include "llvm/MC/MCInstrInfo.h"
22 #include "llvm/MC/MCRegisterInfo.h"
23 #include "llvm/MC/MCStreamer.h"
24 #include "llvm/MC/MCSubtargetInfo.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/Support/Host.h"
27 #include "llvm/Support/TargetRegistry.h"
28 
29 #define GET_REGINFO_MC_DESC
30 #include "X86GenRegisterInfo.inc"
31 
32 #define GET_INSTRINFO_MC_DESC
33 #include "X86GenInstrInfo.inc"
34 
35 #define GET_SUBTARGETINFO_MC_DESC
36 #include "X86GenSubtargetInfo.inc"
37 
38 #ifdef _MSC_VER
39 #include <intrin.h>
40 #endif
41 
42 using namespace llvm;
43 
44 
ParseX86Triple(StringRef TT)45 std::string X86_MC::ParseX86Triple(StringRef TT) {
46   Triple TheTriple(TT);
47   std::string FS;
48   if (TheTriple.getArch() == Triple::x86_64)
49     FS = "+64bit-mode";
50   else
51     FS = "-64bit-mode";
52   if (TheTriple.getOS() == Triple::NativeClient)
53     FS += ",+nacl-mode";
54   else
55     FS += ",-nacl-mode";
56   return FS;
57 }
58 
59 /// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
60 /// specified arguments.  If we can't run cpuid on the host, return true.
GetCpuIDAndInfo(unsigned value,unsigned * rEAX,unsigned * rEBX,unsigned * rECX,unsigned * rEDX)61 bool X86_MC::GetCpuIDAndInfo(unsigned value, unsigned *rEAX,
62                              unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
63 #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
64   #if defined(__GNUC__)
65     // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
66     asm ("movq\t%%rbx, %%rsi\n\t"
67          "cpuid\n\t"
68          "xchgq\t%%rbx, %%rsi\n\t"
69          : "=a" (*rEAX),
70            "=S" (*rEBX),
71            "=c" (*rECX),
72            "=d" (*rEDX)
73          :  "a" (value));
74     return false;
75   #elif defined(_MSC_VER)
76     int registers[4];
77     __cpuid(registers, value);
78     *rEAX = registers[0];
79     *rEBX = registers[1];
80     *rECX = registers[2];
81     *rEDX = registers[3];
82     return false;
83   #endif
84 #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
85   #if defined(__GNUC__)
86     asm ("movl\t%%ebx, %%esi\n\t"
87          "cpuid\n\t"
88          "xchgl\t%%ebx, %%esi\n\t"
89          : "=a" (*rEAX),
90            "=S" (*rEBX),
91            "=c" (*rECX),
92            "=d" (*rEDX)
93          :  "a" (value));
94     return false;
95   #elif defined(_MSC_VER)
96     __asm {
97       mov   eax,value
98       cpuid
99       mov   esi,rEAX
100       mov   dword ptr [esi],eax
101       mov   esi,rEBX
102       mov   dword ptr [esi],ebx
103       mov   esi,rECX
104       mov   dword ptr [esi],ecx
105       mov   esi,rEDX
106       mov   dword ptr [esi],edx
107     }
108     return false;
109   #endif
110 #endif
111   return true;
112 }
113 
DetectFamilyModel(unsigned EAX,unsigned & Family,unsigned & Model)114 void X86_MC::DetectFamilyModel(unsigned EAX, unsigned &Family,
115                                unsigned &Model) {
116   Family = (EAX >> 8) & 0xf; // Bits 8 - 11
117   Model  = (EAX >> 4) & 0xf; // Bits 4 - 7
118   if (Family == 6 || Family == 0xf) {
119     if (Family == 0xf)
120       // Examine extended family ID if family ID is F.
121       Family += (EAX >> 20) & 0xff;    // Bits 20 - 27
122     // Examine extended model ID if family ID is 6 or F.
123     Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
124   }
125 }
126 
getDwarfRegFlavour(StringRef TT,bool isEH)127 unsigned X86_MC::getDwarfRegFlavour(StringRef TT, bool isEH) {
128   Triple TheTriple(TT);
129   if (TheTriple.getArch() == Triple::x86_64)
130     return DWARFFlavour::X86_64;
131 
132   if (TheTriple.isOSDarwin())
133     return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
134   if (TheTriple.getOS() == Triple::MinGW32 ||
135       TheTriple.getOS() == Triple::Cygwin)
136     // Unsupported by now, just quick fallback
137     return DWARFFlavour::X86_32_Generic;
138   return DWARFFlavour::X86_32_Generic;
139 }
140 
141 /// getX86RegNum - This function maps LLVM register identifiers to their X86
142 /// specific numbering, which is used in various places encoding instructions.
getX86RegNum(unsigned RegNo)143 unsigned X86_MC::getX86RegNum(unsigned RegNo) {
144   switch(RegNo) {
145   case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
146   case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
147   case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
148   case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
149   case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
150     return N86::ESP;
151   case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
152     return N86::EBP;
153   case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
154     return N86::ESI;
155   case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
156     return N86::EDI;
157 
158   case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
159     return N86::EAX;
160   case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
161     return N86::ECX;
162   case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
163     return N86::EDX;
164   case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
165     return N86::EBX;
166   case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
167     return N86::ESP;
168   case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
169     return N86::EBP;
170   case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
171     return N86::ESI;
172   case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
173     return N86::EDI;
174 
175   case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
176   case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
177     return RegNo-X86::ST0;
178 
179   case X86::XMM0: case X86::XMM8:
180   case X86::YMM0: case X86::YMM8: case X86::MM0:
181     return 0;
182   case X86::XMM1: case X86::XMM9:
183   case X86::YMM1: case X86::YMM9: case X86::MM1:
184     return 1;
185   case X86::XMM2: case X86::XMM10:
186   case X86::YMM2: case X86::YMM10: case X86::MM2:
187     return 2;
188   case X86::XMM3: case X86::XMM11:
189   case X86::YMM3: case X86::YMM11: case X86::MM3:
190     return 3;
191   case X86::XMM4: case X86::XMM12:
192   case X86::YMM4: case X86::YMM12: case X86::MM4:
193     return 4;
194   case X86::XMM5: case X86::XMM13:
195   case X86::YMM5: case X86::YMM13: case X86::MM5:
196     return 5;
197   case X86::XMM6: case X86::XMM14:
198   case X86::YMM6: case X86::YMM14: case X86::MM6:
199     return 6;
200   case X86::XMM7: case X86::XMM15:
201   case X86::YMM7: case X86::YMM15: case X86::MM7:
202     return 7;
203 
204   case X86::ES: return 0;
205   case X86::CS: return 1;
206   case X86::SS: return 2;
207   case X86::DS: return 3;
208   case X86::FS: return 4;
209   case X86::GS: return 5;
210 
211   case X86::CR0: case X86::CR8 : case X86::DR0: return 0;
212   case X86::CR1: case X86::CR9 : case X86::DR1: return 1;
213   case X86::CR2: case X86::CR10: case X86::DR2: return 2;
214   case X86::CR3: case X86::CR11: case X86::DR3: return 3;
215   case X86::CR4: case X86::CR12: case X86::DR4: return 4;
216   case X86::CR5: case X86::CR13: case X86::DR5: return 5;
217   case X86::CR6: case X86::CR14: case X86::DR6: return 6;
218   case X86::CR7: case X86::CR15: case X86::DR7: return 7;
219 
220   // Pseudo index registers are equivalent to a "none"
221   // scaled index (See Intel Manual 2A, table 2-3)
222   case X86::EIZ:
223   case X86::RIZ:
224     return 4;
225 
226   default:
227     assert((int(RegNo) > 0) && "Unknown physical register!");
228     return 0;
229   }
230 }
231 
InitLLVM2SEHRegisterMapping(MCRegisterInfo * MRI)232 void X86_MC::InitLLVM2SEHRegisterMapping(MCRegisterInfo *MRI) {
233   // FIXME: TableGen these.
234   for (unsigned Reg = X86::NoRegister+1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
235     int SEH = X86_MC::getX86RegNum(Reg);
236     switch (Reg) {
237     case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
238     case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
239     case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
240     case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
241     case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
242     case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
243     case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
244     case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
245     case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
246     case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
247     case X86::YMM8:  case X86::YMM9:  case X86::YMM10: case X86::YMM11:
248     case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
249       SEH += 8;
250       break;
251     }
252     MRI->mapLLVMRegToSEHReg(Reg, SEH);
253   }
254 }
255 
createX86MCSubtargetInfo(StringRef TT,StringRef CPU,StringRef FS)256 MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(StringRef TT, StringRef CPU,
257                                                   StringRef FS) {
258   std::string ArchFS = X86_MC::ParseX86Triple(TT);
259   if (!FS.empty()) {
260     if (!ArchFS.empty())
261       ArchFS = ArchFS + "," + FS.str();
262     else
263       ArchFS = FS;
264   }
265 
266   std::string CPUName = CPU;
267   if (CPUName.empty()) {
268 #if defined (__x86_64__) || defined(__i386__)
269     CPUName = sys::getHostCPUName();
270 #else
271     CPUName = "generic";
272 #endif
273   }
274 
275   MCSubtargetInfo *X = new MCSubtargetInfo();
276   InitX86MCSubtargetInfo(X, TT, CPUName, ArchFS);
277   return X;
278 }
279 
createX86MCInstrInfo()280 static MCInstrInfo *createX86MCInstrInfo() {
281   MCInstrInfo *X = new MCInstrInfo();
282   InitX86MCInstrInfo(X);
283   return X;
284 }
285 
createX86MCRegisterInfo(StringRef TT)286 static MCRegisterInfo *createX86MCRegisterInfo(StringRef TT) {
287   Triple TheTriple(TT);
288   unsigned RA = (TheTriple.getArch() == Triple::x86_64)
289     ? X86::RIP     // Should have dwarf #16.
290     : X86::EIP;    // Should have dwarf #8.
291 
292   MCRegisterInfo *X = new MCRegisterInfo();
293   InitX86MCRegisterInfo(X, RA,
294                         X86_MC::getDwarfRegFlavour(TT, false),
295                         X86_MC::getDwarfRegFlavour(TT, true));
296   X86_MC::InitLLVM2SEHRegisterMapping(X);
297   return X;
298 }
299 
createX86MCAsmInfo(const Target & T,StringRef TT)300 static MCAsmInfo *createX86MCAsmInfo(const Target &T, StringRef TT) {
301   Triple TheTriple(TT);
302   bool is64Bit = TheTriple.getArch() == Triple::x86_64;
303 
304   MCAsmInfo *MAI;
305   if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) {
306     if (is64Bit)
307       MAI = new X86_64MCAsmInfoDarwin(TheTriple);
308     else
309       MAI = new X86MCAsmInfoDarwin(TheTriple);
310   } else if (TheTriple.isOSWindows()) {
311     MAI = new X86MCAsmInfoCOFF(TheTriple);
312   } else {
313     MAI = new X86ELFMCAsmInfo(TheTriple);
314   }
315 
316   // Initialize initial frame state.
317   // Calculate amount of bytes used for return address storing
318   int stackGrowth = is64Bit ? -8 : -4;
319 
320   // Initial state of the frame pointer is esp+stackGrowth.
321   MachineLocation Dst(MachineLocation::VirtualFP);
322   MachineLocation Src(is64Bit ? X86::RSP : X86::ESP, stackGrowth);
323   MAI->addInitialFrameState(0, Dst, Src);
324 
325   // Add return address to move list
326   MachineLocation CSDst(is64Bit ? X86::RSP : X86::ESP, stackGrowth);
327   MachineLocation CSSrc(is64Bit ? X86::RIP : X86::EIP);
328   MAI->addInitialFrameState(0, CSDst, CSSrc);
329 
330   return MAI;
331 }
332 
createX86MCCodeGenInfo(StringRef TT,Reloc::Model RM,CodeModel::Model CM)333 static MCCodeGenInfo *createX86MCCodeGenInfo(StringRef TT, Reloc::Model RM,
334                                              CodeModel::Model CM) {
335   MCCodeGenInfo *X = new MCCodeGenInfo();
336 
337   Triple T(TT);
338   bool is64Bit = T.getArch() == Triple::x86_64;
339 
340   if (RM == Reloc::Default) {
341     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
342     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
343     // use static relocation model by default.
344     if (T.isOSDarwin()) {
345       if (is64Bit)
346         RM = Reloc::PIC_;
347       else
348         RM = Reloc::DynamicNoPIC;
349     } else if (T.isOSWindows() && is64Bit)
350       RM = Reloc::PIC_;
351     else
352       RM = Reloc::Static;
353   }
354 
355   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
356   // is defined as a model for code which may be used in static or dynamic
357   // executables but not necessarily a shared library. On X86-32 we just
358   // compile in -static mode, in x86-64 we use PIC.
359   if (RM == Reloc::DynamicNoPIC) {
360     if (is64Bit)
361       RM = Reloc::PIC_;
362     else if (!T.isOSDarwin())
363       RM = Reloc::Static;
364   }
365 
366   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
367   // the Mach-O file format doesn't support it.
368   if (RM == Reloc::Static && T.isOSDarwin() && is64Bit)
369     RM = Reloc::PIC_;
370 
371   // For static codegen, if we're not already set, use Small codegen.
372   if (CM == CodeModel::Default)
373     CM = CodeModel::Small;
374   else if (CM == CodeModel::JITDefault)
375     // 64-bit JIT places everything in the same buffer except external funcs.
376     CM = is64Bit ? CodeModel::Large : CodeModel::Small;
377 
378   X->InitMCCodeGenInfo(RM, CM);
379   return X;
380 }
381 
createMCStreamer(const Target & T,StringRef TT,MCContext & Ctx,MCAsmBackend & MAB,raw_ostream & _OS,MCCodeEmitter * _Emitter,bool RelaxAll,bool NoExecStack)382 static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
383                                     MCContext &Ctx, MCAsmBackend &MAB,
384                                     raw_ostream &_OS,
385                                     MCCodeEmitter *_Emitter,
386                                     bool RelaxAll,
387                                     bool NoExecStack) {
388   Triple TheTriple(TT);
389 
390   if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
391     return createMachOStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll);
392 
393   if (TheTriple.isOSWindows())
394     return createWinCOFFStreamer(Ctx, MAB, *_Emitter, _OS, RelaxAll);
395 
396   return createELFStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll, NoExecStack);
397 }
398 
createX86MCInstPrinter(const Target & T,unsigned SyntaxVariant,const MCAsmInfo & MAI,const MCSubtargetInfo & STI)399 static MCInstPrinter *createX86MCInstPrinter(const Target &T,
400                                              unsigned SyntaxVariant,
401                                              const MCAsmInfo &MAI,
402                                              const MCSubtargetInfo &STI) {
403   if (SyntaxVariant == 0)
404     return new X86ATTInstPrinter(MAI);
405   if (SyntaxVariant == 1)
406     return new X86IntelInstPrinter(MAI);
407   return 0;
408 }
409 
createX86MCInstrAnalysis(const MCInstrInfo * Info)410 static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
411   return new MCInstrAnalysis(Info);
412 }
413 
414 // Force static initialization.
LLVMInitializeX86TargetMC()415 extern "C" void LLVMInitializeX86TargetMC() {
416   // Register the MC asm info.
417   RegisterMCAsmInfoFn A(TheX86_32Target, createX86MCAsmInfo);
418   RegisterMCAsmInfoFn B(TheX86_64Target, createX86MCAsmInfo);
419 
420   // Register the MC codegen info.
421   RegisterMCCodeGenInfoFn C(TheX86_32Target, createX86MCCodeGenInfo);
422   RegisterMCCodeGenInfoFn D(TheX86_64Target, createX86MCCodeGenInfo);
423 
424   // Register the MC instruction info.
425   TargetRegistry::RegisterMCInstrInfo(TheX86_32Target, createX86MCInstrInfo);
426   TargetRegistry::RegisterMCInstrInfo(TheX86_64Target, createX86MCInstrInfo);
427 
428   // Register the MC register info.
429   TargetRegistry::RegisterMCRegInfo(TheX86_32Target, createX86MCRegisterInfo);
430   TargetRegistry::RegisterMCRegInfo(TheX86_64Target, createX86MCRegisterInfo);
431 
432   // Register the MC subtarget info.
433   TargetRegistry::RegisterMCSubtargetInfo(TheX86_32Target,
434                                           X86_MC::createX86MCSubtargetInfo);
435   TargetRegistry::RegisterMCSubtargetInfo(TheX86_64Target,
436                                           X86_MC::createX86MCSubtargetInfo);
437 
438   // Register the MC instruction analyzer.
439   TargetRegistry::RegisterMCInstrAnalysis(TheX86_32Target,
440                                           createX86MCInstrAnalysis);
441   TargetRegistry::RegisterMCInstrAnalysis(TheX86_64Target,
442                                           createX86MCInstrAnalysis);
443 
444   // Register the code emitter.
445   TargetRegistry::RegisterMCCodeEmitter(TheX86_32Target,
446                                         createX86MCCodeEmitter);
447   TargetRegistry::RegisterMCCodeEmitter(TheX86_64Target,
448                                         createX86MCCodeEmitter);
449 
450   // Register the asm backend.
451   TargetRegistry::RegisterMCAsmBackend(TheX86_32Target,
452                                        createX86_32AsmBackend);
453   TargetRegistry::RegisterMCAsmBackend(TheX86_64Target,
454                                        createX86_64AsmBackend);
455 
456   // Register the object streamer.
457   TargetRegistry::RegisterMCObjectStreamer(TheX86_32Target,
458                                            createMCStreamer);
459   TargetRegistry::RegisterMCObjectStreamer(TheX86_64Target,
460                                            createMCStreamer);
461 
462   // Register the MCInstPrinter.
463   TargetRegistry::RegisterMCInstPrinter(TheX86_32Target,
464                                         createX86MCInstPrinter);
465   TargetRegistry::RegisterMCInstPrinter(TheX86_64Target,
466                                         createX86MCInstPrinter);
467 }
468