1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <iomanip>
6
7 #include "src/compiler/types.h"
8
9 #include "src/handles-inl.h"
10 #include "src/objects-inl.h"
11 #include "src/ostreams.h"
12
13 namespace v8 {
14 namespace internal {
15 namespace compiler {
16
17 // -----------------------------------------------------------------------------
18 // Range-related helper functions.
19
IsEmpty()20 bool RangeType::Limits::IsEmpty() { return this->min > this->max; }
21
Intersect(Limits lhs,Limits rhs)22 RangeType::Limits RangeType::Limits::Intersect(Limits lhs, Limits rhs) {
23 DisallowHeapAllocation no_allocation;
24 Limits result(lhs);
25 if (lhs.min < rhs.min) result.min = rhs.min;
26 if (lhs.max > rhs.max) result.max = rhs.max;
27 return result;
28 }
29
Union(Limits lhs,Limits rhs)30 RangeType::Limits RangeType::Limits::Union(Limits lhs, Limits rhs) {
31 DisallowHeapAllocation no_allocation;
32 if (lhs.IsEmpty()) return rhs;
33 if (rhs.IsEmpty()) return lhs;
34 Limits result(lhs);
35 if (lhs.min > rhs.min) result.min = rhs.min;
36 if (lhs.max < rhs.max) result.max = rhs.max;
37 return result;
38 }
39
Overlap(const RangeType * lhs,const RangeType * rhs)40 bool Type::Overlap(const RangeType* lhs, const RangeType* rhs) {
41 DisallowHeapAllocation no_allocation;
42 return !RangeType::Limits::Intersect(RangeType::Limits(lhs),
43 RangeType::Limits(rhs))
44 .IsEmpty();
45 }
46
Contains(const RangeType * lhs,const RangeType * rhs)47 bool Type::Contains(const RangeType* lhs, const RangeType* rhs) {
48 DisallowHeapAllocation no_allocation;
49 return lhs->Min() <= rhs->Min() && rhs->Max() <= lhs->Max();
50 }
51
52 // -----------------------------------------------------------------------------
53 // Min and Max computation.
54
Min() const55 double Type::Min() const {
56 DCHECK(this->Is(Number()));
57 DCHECK(!this->Is(NaN()));
58 if (this->IsBitset()) return BitsetType::Min(this->AsBitset());
59 if (this->IsUnion()) {
60 double min = +V8_INFINITY;
61 for (int i = 1, n = AsUnion()->Length(); i < n; ++i) {
62 min = std::min(min, AsUnion()->Get(i).Min());
63 }
64 Type bitset = AsUnion()->Get(0);
65 if (!bitset.Is(NaN())) min = std::min(min, bitset.Min());
66 return min;
67 }
68 if (this->IsRange()) return this->AsRange()->Min();
69 DCHECK(this->IsOtherNumberConstant());
70 return this->AsOtherNumberConstant()->Value();
71 }
72
Max() const73 double Type::Max() const {
74 DCHECK(this->Is(Number()));
75 DCHECK(!this->Is(NaN()));
76 if (this->IsBitset()) return BitsetType::Max(this->AsBitset());
77 if (this->IsUnion()) {
78 double max = -V8_INFINITY;
79 for (int i = 1, n = this->AsUnion()->Length(); i < n; ++i) {
80 max = std::max(max, this->AsUnion()->Get(i).Max());
81 }
82 Type bitset = this->AsUnion()->Get(0);
83 if (!bitset.Is(NaN())) max = std::max(max, bitset.Max());
84 return max;
85 }
86 if (this->IsRange()) return this->AsRange()->Max();
87 DCHECK(this->IsOtherNumberConstant());
88 return this->AsOtherNumberConstant()->Value();
89 }
90
91 // -----------------------------------------------------------------------------
92 // Glb and lub computation.
93
94 // The largest bitset subsumed by this type.
BitsetGlb() const95 Type::bitset Type::BitsetGlb() const {
96 DisallowHeapAllocation no_allocation;
97 // Fast case.
98 if (IsBitset()) {
99 return AsBitset();
100 } else if (IsUnion()) {
101 SLOW_DCHECK(AsUnion()->Wellformed());
102 return AsUnion()->Get(0).BitsetGlb() |
103 AsUnion()->Get(1).BitsetGlb(); // Shortcut.
104 } else if (IsRange()) {
105 bitset glb = BitsetType::Glb(AsRange()->Min(), AsRange()->Max());
106 return glb;
107 } else {
108 return BitsetType::kNone;
109 }
110 }
111
112 // The smallest bitset subsuming this type, possibly not a proper one.
BitsetLub() const113 Type::bitset Type::BitsetLub() const {
114 DisallowHeapAllocation no_allocation;
115 if (IsBitset()) return AsBitset();
116 if (IsUnion()) {
117 // Take the representation from the first element, which is always
118 // a bitset.
119 int bitset = AsUnion()->Get(0).BitsetLub();
120 for (int i = 0, n = AsUnion()->Length(); i < n; ++i) {
121 // Other elements only contribute their semantic part.
122 bitset |= AsUnion()->Get(i).BitsetLub();
123 }
124 return bitset;
125 }
126 if (IsHeapConstant()) return AsHeapConstant()->Lub();
127 if (IsOtherNumberConstant()) {
128 return AsOtherNumberConstant()->Lub();
129 }
130 if (IsRange()) return AsRange()->Lub();
131 if (IsTuple()) return BitsetType::kOtherInternal;
132 UNREACHABLE();
133 }
134
Lub(HeapObjectType const & type)135 Type::bitset BitsetType::Lub(HeapObjectType const& type) {
136 switch (type.instance_type()) {
137 case CONS_STRING_TYPE:
138 case CONS_ONE_BYTE_STRING_TYPE:
139 case THIN_STRING_TYPE:
140 case THIN_ONE_BYTE_STRING_TYPE:
141 case SLICED_STRING_TYPE:
142 case SLICED_ONE_BYTE_STRING_TYPE:
143 case EXTERNAL_STRING_TYPE:
144 case EXTERNAL_ONE_BYTE_STRING_TYPE:
145 case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
146 case SHORT_EXTERNAL_STRING_TYPE:
147 case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE:
148 case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
149 case STRING_TYPE:
150 case ONE_BYTE_STRING_TYPE:
151 return kString;
152 case EXTERNAL_INTERNALIZED_STRING_TYPE:
153 case EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE:
154 case EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE:
155 case SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE:
156 case SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE:
157 case SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE:
158 case INTERNALIZED_STRING_TYPE:
159 case ONE_BYTE_INTERNALIZED_STRING_TYPE:
160 return kInternalizedString;
161 case SYMBOL_TYPE:
162 return kSymbol;
163 case BIGINT_TYPE:
164 return kBigInt;
165 case ODDBALL_TYPE:
166 switch (type.oddball_type()) {
167 case OddballType::kNone:
168 break;
169 case OddballType::kHole:
170 return kHole;
171 case OddballType::kBoolean:
172 return kBoolean;
173 case OddballType::kNull:
174 return kNull;
175 case OddballType::kUndefined:
176 return kUndefined;
177 case OddballType::kUninitialized:
178 case OddballType::kOther:
179 // TODO(neis): We should add a kOtherOddball type.
180 return kOtherInternal;
181 }
182 UNREACHABLE();
183 case HEAP_NUMBER_TYPE:
184 return kNumber;
185 case JS_OBJECT_TYPE:
186 case JS_ARGUMENTS_TYPE:
187 case JS_ERROR_TYPE:
188 case JS_GLOBAL_OBJECT_TYPE:
189 case JS_GLOBAL_PROXY_TYPE:
190 case JS_API_OBJECT_TYPE:
191 case JS_SPECIAL_API_OBJECT_TYPE:
192 if (type.is_undetectable()) {
193 // Currently we assume that every undetectable receiver is also
194 // callable, which is what we need to support document.all. We
195 // could add another Type bit to support other use cases in the
196 // future if necessary.
197 DCHECK(type.is_callable());
198 return kOtherUndetectable;
199 }
200 if (type.is_callable()) {
201 return kOtherCallable;
202 }
203 return kOtherObject;
204 case JS_ARRAY_TYPE:
205 return kArray;
206 case JS_VALUE_TYPE:
207 case JS_MESSAGE_OBJECT_TYPE:
208 case JS_DATE_TYPE:
209 #ifdef V8_INTL_SUPPORT
210 case JS_INTL_COLLATOR_TYPE:
211 case JS_INTL_LIST_FORMAT_TYPE:
212 case JS_INTL_LOCALE_TYPE:
213 case JS_INTL_PLURAL_RULES_TYPE:
214 case JS_INTL_RELATIVE_TIME_FORMAT_TYPE:
215 #endif // V8_INTL_SUPPORT
216 case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
217 case JS_GENERATOR_OBJECT_TYPE:
218 case JS_ASYNC_GENERATOR_OBJECT_TYPE:
219 case JS_MODULE_NAMESPACE_TYPE:
220 case JS_ARRAY_BUFFER_TYPE:
221 case JS_ARRAY_ITERATOR_TYPE:
222 case JS_REGEXP_TYPE: // TODO(rossberg): there should be a RegExp type.
223 case JS_REGEXP_STRING_ITERATOR_TYPE:
224 case JS_TYPED_ARRAY_TYPE:
225 case JS_DATA_VIEW_TYPE:
226 case JS_SET_TYPE:
227 case JS_MAP_TYPE:
228 case JS_SET_KEY_VALUE_ITERATOR_TYPE:
229 case JS_SET_VALUE_ITERATOR_TYPE:
230 case JS_MAP_KEY_ITERATOR_TYPE:
231 case JS_MAP_KEY_VALUE_ITERATOR_TYPE:
232 case JS_MAP_VALUE_ITERATOR_TYPE:
233 case JS_STRING_ITERATOR_TYPE:
234 case JS_ASYNC_FROM_SYNC_ITERATOR_TYPE:
235 case JS_WEAK_MAP_TYPE:
236 case JS_WEAK_SET_TYPE:
237 case JS_PROMISE_TYPE:
238 case WASM_MODULE_TYPE:
239 case WASM_GLOBAL_TYPE:
240 case WASM_INSTANCE_TYPE:
241 case WASM_MEMORY_TYPE:
242 case WASM_TABLE_TYPE:
243 DCHECK(!type.is_callable());
244 DCHECK(!type.is_undetectable());
245 return kOtherObject;
246 case JS_BOUND_FUNCTION_TYPE:
247 DCHECK(!type.is_undetectable());
248 return kBoundFunction;
249 case JS_FUNCTION_TYPE:
250 DCHECK(!type.is_undetectable());
251 return kFunction;
252 case JS_PROXY_TYPE:
253 DCHECK(!type.is_undetectable());
254 if (type.is_callable()) return kCallableProxy;
255 return kOtherProxy;
256 case MAP_TYPE:
257 case ALLOCATION_SITE_TYPE:
258 case ACCESSOR_INFO_TYPE:
259 case SHARED_FUNCTION_INFO_TYPE:
260 case FUNCTION_TEMPLATE_INFO_TYPE:
261 case ACCESSOR_PAIR_TYPE:
262 case FIXED_ARRAY_TYPE:
263 case HASH_TABLE_TYPE:
264 case ORDERED_HASH_MAP_TYPE:
265 case ORDERED_HASH_SET_TYPE:
266 case NAME_DICTIONARY_TYPE:
267 case GLOBAL_DICTIONARY_TYPE:
268 case NUMBER_DICTIONARY_TYPE:
269 case SIMPLE_NUMBER_DICTIONARY_TYPE:
270 case STRING_TABLE_TYPE:
271 case EPHEMERON_HASH_TABLE_TYPE:
272 case WEAK_FIXED_ARRAY_TYPE:
273 case WEAK_ARRAY_LIST_TYPE:
274 case FIXED_DOUBLE_ARRAY_TYPE:
275 case FEEDBACK_METADATA_TYPE:
276 case BYTE_ARRAY_TYPE:
277 case BYTECODE_ARRAY_TYPE:
278 case OBJECT_BOILERPLATE_DESCRIPTION_TYPE:
279 case ARRAY_BOILERPLATE_DESCRIPTION_TYPE:
280 case DESCRIPTOR_ARRAY_TYPE:
281 case TRANSITION_ARRAY_TYPE:
282 case FEEDBACK_CELL_TYPE:
283 case FEEDBACK_VECTOR_TYPE:
284 case PROPERTY_ARRAY_TYPE:
285 case FOREIGN_TYPE:
286 case SCOPE_INFO_TYPE:
287 case SCRIPT_CONTEXT_TABLE_TYPE:
288 case BLOCK_CONTEXT_TYPE:
289 case CATCH_CONTEXT_TYPE:
290 case DEBUG_EVALUATE_CONTEXT_TYPE:
291 case EVAL_CONTEXT_TYPE:
292 case FUNCTION_CONTEXT_TYPE:
293 case MODULE_CONTEXT_TYPE:
294 case NATIVE_CONTEXT_TYPE:
295 case SCRIPT_CONTEXT_TYPE:
296 case WITH_CONTEXT_TYPE:
297 case SCRIPT_TYPE:
298 case CODE_TYPE:
299 case PROPERTY_CELL_TYPE:
300 case MODULE_TYPE:
301 case MODULE_INFO_ENTRY_TYPE:
302 case CELL_TYPE:
303 case PRE_PARSED_SCOPE_DATA_TYPE:
304 case UNCOMPILED_DATA_WITHOUT_PRE_PARSED_SCOPE_TYPE:
305 case UNCOMPILED_DATA_WITH_PRE_PARSED_SCOPE_TYPE:
306 return kOtherInternal;
307
308 // Remaining instance types are unsupported for now. If any of them do
309 // require bit set types, they should get kOtherInternal.
310 case MUTABLE_HEAP_NUMBER_TYPE:
311 case FREE_SPACE_TYPE:
312 #define FIXED_TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
313 case FIXED_##TYPE##_ARRAY_TYPE:
314
315 TYPED_ARRAYS(FIXED_TYPED_ARRAY_CASE)
316 #undef FIXED_TYPED_ARRAY_CASE
317 case FILLER_TYPE:
318 case ACCESS_CHECK_INFO_TYPE:
319 case CALL_HANDLER_INFO_TYPE:
320 case INTERCEPTOR_INFO_TYPE:
321 case OBJECT_TEMPLATE_INFO_TYPE:
322 case ALLOCATION_MEMENTO_TYPE:
323 case ALIASED_ARGUMENTS_ENTRY_TYPE:
324 case PROMISE_CAPABILITY_TYPE:
325 case PROMISE_REACTION_TYPE:
326 case DEBUG_INFO_TYPE:
327 case STACK_FRAME_INFO_TYPE:
328 case SMALL_ORDERED_HASH_MAP_TYPE:
329 case SMALL_ORDERED_HASH_SET_TYPE:
330 case PROTOTYPE_INFO_TYPE:
331 case INTERPRETER_DATA_TYPE:
332 case TUPLE2_TYPE:
333 case TUPLE3_TYPE:
334 case WASM_DEBUG_INFO_TYPE:
335 case WASM_EXPORTED_FUNCTION_DATA_TYPE:
336 case LOAD_HANDLER_TYPE:
337 case STORE_HANDLER_TYPE:
338 case ASYNC_GENERATOR_REQUEST_TYPE:
339 case CODE_DATA_CONTAINER_TYPE:
340 case CALLBACK_TASK_TYPE:
341 case CALLABLE_TASK_TYPE:
342 case PROMISE_FULFILL_REACTION_JOB_TASK_TYPE:
343 case PROMISE_REJECT_REACTION_JOB_TASK_TYPE:
344 case PROMISE_RESOLVE_THENABLE_JOB_TASK_TYPE:
345 UNREACHABLE();
346 }
347 UNREACHABLE();
348 }
349
Lub(double value)350 Type::bitset BitsetType::Lub(double value) {
351 DisallowHeapAllocation no_allocation;
352 if (IsMinusZero(value)) return kMinusZero;
353 if (std::isnan(value)) return kNaN;
354 if (IsUint32Double(value) || IsInt32Double(value)) return Lub(value, value);
355 return kOtherNumber;
356 }
357
358 // Minimum values of plain numeric bitsets.
359 const BitsetType::Boundary BitsetType::BoundariesArray[] = {
360 {kOtherNumber, kPlainNumber, -V8_INFINITY},
361 {kOtherSigned32, kNegative32, kMinInt},
362 {kNegative31, kNegative31, -0x40000000},
363 {kUnsigned30, kUnsigned30, 0},
364 {kOtherUnsigned31, kUnsigned31, 0x40000000},
365 {kOtherUnsigned32, kUnsigned32, 0x80000000},
366 {kOtherNumber, kPlainNumber, static_cast<double>(kMaxUInt32) + 1}};
367
Boundaries()368 const BitsetType::Boundary* BitsetType::Boundaries() { return BoundariesArray; }
369
BoundariesSize()370 size_t BitsetType::BoundariesSize() {
371 // Windows doesn't like arraysize here.
372 // return arraysize(BoundariesArray);
373 return 7;
374 }
375
ExpandInternals(Type::bitset bits)376 Type::bitset BitsetType::ExpandInternals(Type::bitset bits) {
377 DCHECK_IMPLIES(bits & kOtherString, (bits & kString) == kString);
378 DisallowHeapAllocation no_allocation;
379 if (!(bits & kPlainNumber)) return bits; // Shortcut.
380 const Boundary* boundaries = Boundaries();
381 for (size_t i = 0; i < BoundariesSize(); ++i) {
382 DCHECK(BitsetType::Is(boundaries[i].internal, boundaries[i].external));
383 if (bits & boundaries[i].internal) bits |= boundaries[i].external;
384 }
385 return bits;
386 }
387
Lub(double min,double max)388 Type::bitset BitsetType::Lub(double min, double max) {
389 DisallowHeapAllocation no_allocation;
390 int lub = kNone;
391 const Boundary* mins = Boundaries();
392
393 for (size_t i = 1; i < BoundariesSize(); ++i) {
394 if (min < mins[i].min) {
395 lub |= mins[i - 1].internal;
396 if (max < mins[i].min) return lub;
397 }
398 }
399 return lub | mins[BoundariesSize() - 1].internal;
400 }
401
NumberBits(bitset bits)402 Type::bitset BitsetType::NumberBits(bitset bits) { return bits & kPlainNumber; }
403
Glb(double min,double max)404 Type::bitset BitsetType::Glb(double min, double max) {
405 DisallowHeapAllocation no_allocation;
406 int glb = kNone;
407 const Boundary* mins = Boundaries();
408
409 // If the range does not touch 0, the bound is empty.
410 if (max < -1 || min > 0) return glb;
411
412 for (size_t i = 1; i + 1 < BoundariesSize(); ++i) {
413 if (min <= mins[i].min) {
414 if (max + 1 < mins[i + 1].min) break;
415 glb |= mins[i].external;
416 }
417 }
418 // OtherNumber also contains float numbers, so it can never be
419 // in the greatest lower bound.
420 return glb & ~(kOtherNumber);
421 }
422
Min(bitset bits)423 double BitsetType::Min(bitset bits) {
424 DisallowHeapAllocation no_allocation;
425 DCHECK(Is(bits, kNumber));
426 DCHECK(!Is(bits, kNaN));
427 const Boundary* mins = Boundaries();
428 bool mz = bits & kMinusZero;
429 for (size_t i = 0; i < BoundariesSize(); ++i) {
430 if (Is(mins[i].internal, bits)) {
431 return mz ? std::min(0.0, mins[i].min) : mins[i].min;
432 }
433 }
434 DCHECK(mz);
435 return 0;
436 }
437
Max(bitset bits)438 double BitsetType::Max(bitset bits) {
439 DisallowHeapAllocation no_allocation;
440 DCHECK(Is(bits, kNumber));
441 DCHECK(!Is(bits, kNaN));
442 const Boundary* mins = Boundaries();
443 bool mz = bits & kMinusZero;
444 if (BitsetType::Is(mins[BoundariesSize() - 1].internal, bits)) {
445 return +V8_INFINITY;
446 }
447 for (size_t i = BoundariesSize() - 1; i-- > 0;) {
448 if (Is(mins[i].internal, bits)) {
449 return mz ? std::max(0.0, mins[i + 1].min - 1) : mins[i + 1].min - 1;
450 }
451 }
452 DCHECK(mz);
453 return 0;
454 }
455
456 // static
IsOtherNumberConstant(double value)457 bool OtherNumberConstantType::IsOtherNumberConstant(double value) {
458 // Not an integer, not NaN, and not -0.
459 return !std::isnan(value) && !RangeType::IsInteger(value) &&
460 !IsMinusZero(value);
461 }
462
HeapConstantType(BitsetType::bitset bitset,const HeapObjectRef & heap_ref)463 HeapConstantType::HeapConstantType(BitsetType::bitset bitset,
464 const HeapObjectRef& heap_ref)
465 : TypeBase(kHeapConstant), bitset_(bitset), heap_ref_(heap_ref) {}
466
Value() const467 Handle<HeapObject> HeapConstantType::Value() const {
468 return heap_ref_.object<HeapObject>();
469 }
470
471 // -----------------------------------------------------------------------------
472 // Predicates.
473
SimplyEquals(Type that) const474 bool Type::SimplyEquals(Type that) const {
475 DisallowHeapAllocation no_allocation;
476 if (this->IsHeapConstant()) {
477 return that.IsHeapConstant() &&
478 this->AsHeapConstant()->Value().address() ==
479 that.AsHeapConstant()->Value().address();
480 }
481 if (this->IsOtherNumberConstant()) {
482 return that.IsOtherNumberConstant() &&
483 this->AsOtherNumberConstant()->Value() ==
484 that.AsOtherNumberConstant()->Value();
485 }
486 if (this->IsRange()) {
487 if (that.IsHeapConstant() || that.IsOtherNumberConstant()) return false;
488 }
489 if (this->IsTuple()) {
490 if (!that.IsTuple()) return false;
491 const TupleType* this_tuple = this->AsTuple();
492 const TupleType* that_tuple = that.AsTuple();
493 if (this_tuple->Arity() != that_tuple->Arity()) {
494 return false;
495 }
496 for (int i = 0, n = this_tuple->Arity(); i < n; ++i) {
497 if (!this_tuple->Element(i).Equals(that_tuple->Element(i))) return false;
498 }
499 return true;
500 }
501 UNREACHABLE();
502 }
503
504 // Check if [this] <= [that].
SlowIs(Type that) const505 bool Type::SlowIs(Type that) const {
506 DisallowHeapAllocation no_allocation;
507
508 // Fast bitset cases
509 if (that.IsBitset()) {
510 return BitsetType::Is(this->BitsetLub(), that.AsBitset());
511 }
512
513 if (this->IsBitset()) {
514 return BitsetType::Is(this->AsBitset(), that.BitsetGlb());
515 }
516
517 // (T1 \/ ... \/ Tn) <= T if (T1 <= T) /\ ... /\ (Tn <= T)
518 if (this->IsUnion()) {
519 for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
520 if (!this->AsUnion()->Get(i).Is(that)) return false;
521 }
522 return true;
523 }
524
525 // T <= (T1 \/ ... \/ Tn) if (T <= T1) \/ ... \/ (T <= Tn)
526 if (that.IsUnion()) {
527 for (int i = 0, n = that.AsUnion()->Length(); i < n; ++i) {
528 if (this->Is(that.AsUnion()->Get(i))) return true;
529 if (i > 1 && this->IsRange()) return false; // Shortcut.
530 }
531 return false;
532 }
533
534 if (that.IsRange()) {
535 return (this->IsRange() && Contains(that.AsRange(), this->AsRange()));
536 }
537 if (this->IsRange()) return false;
538
539 return this->SimplyEquals(that);
540 }
541
542 // Check if [this] and [that] overlap.
Maybe(Type that) const543 bool Type::Maybe(Type that) const {
544 DisallowHeapAllocation no_allocation;
545
546 if (BitsetType::IsNone(this->BitsetLub() & that.BitsetLub())) return false;
547
548 // (T1 \/ ... \/ Tn) overlaps T if (T1 overlaps T) \/ ... \/ (Tn overlaps T)
549 if (this->IsUnion()) {
550 for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
551 if (this->AsUnion()->Get(i).Maybe(that)) return true;
552 }
553 return false;
554 }
555
556 // T overlaps (T1 \/ ... \/ Tn) if (T overlaps T1) \/ ... \/ (T overlaps Tn)
557 if (that.IsUnion()) {
558 for (int i = 0, n = that.AsUnion()->Length(); i < n; ++i) {
559 if (this->Maybe(that.AsUnion()->Get(i))) return true;
560 }
561 return false;
562 }
563
564 if (this->IsBitset() && that.IsBitset()) return true;
565
566 if (this->IsRange()) {
567 if (that.IsRange()) {
568 return Overlap(this->AsRange(), that.AsRange());
569 }
570 if (that.IsBitset()) {
571 bitset number_bits = BitsetType::NumberBits(that.AsBitset());
572 if (number_bits == BitsetType::kNone) {
573 return false;
574 }
575 double min = std::max(BitsetType::Min(number_bits), this->Min());
576 double max = std::min(BitsetType::Max(number_bits), this->Max());
577 return min <= max;
578 }
579 }
580 if (that.IsRange()) {
581 return that.Maybe(*this); // This case is handled above.
582 }
583
584 if (this->IsBitset() || that.IsBitset()) return true;
585
586 return this->SimplyEquals(that);
587 }
588
589 // Return the range in [this], or [nullptr].
GetRange() const590 Type Type::GetRange() const {
591 DisallowHeapAllocation no_allocation;
592 if (this->IsRange()) return *this;
593 if (this->IsUnion() && this->AsUnion()->Get(1).IsRange()) {
594 return this->AsUnion()->Get(1);
595 }
596 return nullptr;
597 }
598
Wellformed() const599 bool UnionType::Wellformed() const {
600 DisallowHeapAllocation no_allocation;
601 // This checks the invariants of the union representation:
602 // 1. There are at least two elements.
603 // 2. The first element is a bitset, no other element is a bitset.
604 // 3. At most one element is a range, and it must be the second one.
605 // 4. No element is itself a union.
606 // 5. No element (except the bitset) is a subtype of any other.
607 // 6. If there is a range, then the bitset type does not contain
608 // plain number bits.
609 DCHECK_LE(2, this->Length()); // (1)
610 DCHECK(this->Get(0).IsBitset()); // (2a)
611
612 for (int i = 0; i < this->Length(); ++i) {
613 if (i != 0) DCHECK(!this->Get(i).IsBitset()); // (2b)
614 if (i != 1) DCHECK(!this->Get(i).IsRange()); // (3)
615 DCHECK(!this->Get(i).IsUnion()); // (4)
616 for (int j = 0; j < this->Length(); ++j) {
617 if (i != j && i != 0) DCHECK(!this->Get(i).Is(this->Get(j))); // (5)
618 }
619 }
620 DCHECK(!this->Get(1).IsRange() ||
621 (BitsetType::NumberBits(this->Get(0).AsBitset()) ==
622 BitsetType::kNone)); // (6)
623 return true;
624 }
625
626 // -----------------------------------------------------------------------------
627 // Union and intersection
628
Intersect(Type type1,Type type2,Zone * zone)629 Type Type::Intersect(Type type1, Type type2, Zone* zone) {
630 // Fast case: bit sets.
631 if (type1.IsBitset() && type2.IsBitset()) {
632 return NewBitset(type1.AsBitset() & type2.AsBitset());
633 }
634
635 // Fast case: top or bottom types.
636 if (type1.IsNone() || type2.IsAny()) return type1; // Shortcut.
637 if (type2.IsNone() || type1.IsAny()) return type2; // Shortcut.
638
639 // Semi-fast case.
640 if (type1.Is(type2)) return type1;
641 if (type2.Is(type1)) return type2;
642
643 // Slow case: create union.
644
645 // Semantic subtyping check - this is needed for consistency with the
646 // semi-fast case above.
647 if (type1.Is(type2)) {
648 type2 = Any();
649 } else if (type2.Is(type1)) {
650 type1 = Any();
651 }
652
653 bitset bits = type1.BitsetGlb() & type2.BitsetGlb();
654 int size1 = type1.IsUnion() ? type1.AsUnion()->Length() : 1;
655 int size2 = type2.IsUnion() ? type2.AsUnion()->Length() : 1;
656 int size;
657 if (base::bits::SignedAddOverflow32(size1, size2, &size)) return Any();
658 if (base::bits::SignedAddOverflow32(size, 2, &size)) return Any();
659 UnionType* result = UnionType::New(size, zone);
660 size = 0;
661
662 // Deal with bitsets.
663 result->Set(size++, NewBitset(bits));
664
665 RangeType::Limits lims = RangeType::Limits::Empty();
666 size = IntersectAux(type1, type2, result, size, &lims, zone);
667
668 // If the range is not empty, then insert it into the union and
669 // remove the number bits from the bitset.
670 if (!lims.IsEmpty()) {
671 size = UpdateRange(Type::Range(lims, zone), result, size, zone);
672
673 // Remove the number bits.
674 bitset number_bits = BitsetType::NumberBits(bits);
675 bits &= ~number_bits;
676 result->Set(0, NewBitset(bits));
677 }
678 return NormalizeUnion(result, size, zone);
679 }
680
UpdateRange(Type range,UnionType * result,int size,Zone * zone)681 int Type::UpdateRange(Type range, UnionType* result, int size, Zone* zone) {
682 if (size == 1) {
683 result->Set(size++, range);
684 } else {
685 // Make space for the range.
686 result->Set(size++, result->Get(1));
687 result->Set(1, range);
688 }
689
690 // Remove any components that just got subsumed.
691 for (int i = 2; i < size;) {
692 if (result->Get(i).Is(range)) {
693 result->Set(i, result->Get(--size));
694 } else {
695 ++i;
696 }
697 }
698 return size;
699 }
700
ToLimits(bitset bits,Zone * zone)701 RangeType::Limits Type::ToLimits(bitset bits, Zone* zone) {
702 bitset number_bits = BitsetType::NumberBits(bits);
703
704 if (number_bits == BitsetType::kNone) {
705 return RangeType::Limits::Empty();
706 }
707
708 return RangeType::Limits(BitsetType::Min(number_bits),
709 BitsetType::Max(number_bits));
710 }
711
IntersectRangeAndBitset(Type range,Type bitset,Zone * zone)712 RangeType::Limits Type::IntersectRangeAndBitset(Type range, Type bitset,
713 Zone* zone) {
714 RangeType::Limits range_lims(range.AsRange());
715 RangeType::Limits bitset_lims = ToLimits(bitset.AsBitset(), zone);
716 return RangeType::Limits::Intersect(range_lims, bitset_lims);
717 }
718
IntersectAux(Type lhs,Type rhs,UnionType * result,int size,RangeType::Limits * lims,Zone * zone)719 int Type::IntersectAux(Type lhs, Type rhs, UnionType* result, int size,
720 RangeType::Limits* lims, Zone* zone) {
721 if (lhs.IsUnion()) {
722 for (int i = 0, n = lhs.AsUnion()->Length(); i < n; ++i) {
723 size = IntersectAux(lhs.AsUnion()->Get(i), rhs, result, size, lims, zone);
724 }
725 return size;
726 }
727 if (rhs.IsUnion()) {
728 for (int i = 0, n = rhs.AsUnion()->Length(); i < n; ++i) {
729 size = IntersectAux(lhs, rhs.AsUnion()->Get(i), result, size, lims, zone);
730 }
731 return size;
732 }
733
734 if (BitsetType::IsNone(lhs.BitsetLub() & rhs.BitsetLub())) return size;
735
736 if (lhs.IsRange()) {
737 if (rhs.IsBitset()) {
738 RangeType::Limits lim = IntersectRangeAndBitset(lhs, rhs, zone);
739
740 if (!lim.IsEmpty()) {
741 *lims = RangeType::Limits::Union(lim, *lims);
742 }
743 return size;
744 }
745 if (rhs.IsRange()) {
746 RangeType::Limits lim = RangeType::Limits::Intersect(
747 RangeType::Limits(lhs.AsRange()), RangeType::Limits(rhs.AsRange()));
748 if (!lim.IsEmpty()) {
749 *lims = RangeType::Limits::Union(lim, *lims);
750 }
751 }
752 return size;
753 }
754 if (rhs.IsRange()) {
755 // This case is handled symmetrically above.
756 return IntersectAux(rhs, lhs, result, size, lims, zone);
757 }
758 if (lhs.IsBitset() || rhs.IsBitset()) {
759 return AddToUnion(lhs.IsBitset() ? rhs : lhs, result, size, zone);
760 }
761 if (lhs.SimplyEquals(rhs)) {
762 return AddToUnion(lhs, result, size, zone);
763 }
764 return size;
765 }
766
767 // Make sure that we produce a well-formed range and bitset:
768 // If the range is non-empty, the number bits in the bitset should be
769 // clear. Moreover, if we have a canonical range (such as Signed32),
770 // we want to produce a bitset rather than a range.
NormalizeRangeAndBitset(Type range,bitset * bits,Zone * zone)771 Type Type::NormalizeRangeAndBitset(Type range, bitset* bits, Zone* zone) {
772 // Fast path: If the bitset does not mention numbers, we can just keep the
773 // range.
774 bitset number_bits = BitsetType::NumberBits(*bits);
775 if (number_bits == 0) {
776 return range;
777 }
778
779 // If the range is semantically contained within the bitset, return None and
780 // leave the bitset untouched.
781 bitset range_lub = range.BitsetLub();
782 if (BitsetType::Is(range_lub, *bits)) {
783 return None();
784 }
785
786 // Slow path: reconcile the bitset range and the range.
787 double bitset_min = BitsetType::Min(number_bits);
788 double bitset_max = BitsetType::Max(number_bits);
789
790 double range_min = range.Min();
791 double range_max = range.Max();
792
793 // Remove the number bits from the bitset, they would just confuse us now.
794 // NOTE: bits contains OtherNumber iff bits contains PlainNumber, in which
795 // case we already returned after the subtype check above.
796 *bits &= ~number_bits;
797
798 if (range_min <= bitset_min && range_max >= bitset_max) {
799 // Bitset is contained within the range, just return the range.
800 return range;
801 }
802
803 if (bitset_min < range_min) {
804 range_min = bitset_min;
805 }
806 if (bitset_max > range_max) {
807 range_max = bitset_max;
808 }
809 return Type::Range(range_min, range_max, zone);
810 }
811
NewConstant(double value,Zone * zone)812 Type Type::NewConstant(double value, Zone* zone) {
813 if (RangeType::IsInteger(value)) {
814 return Range(value, value, zone);
815 } else if (IsMinusZero(value)) {
816 return Type::MinusZero();
817 } else if (std::isnan(value)) {
818 return Type::NaN();
819 }
820
821 DCHECK(OtherNumberConstantType::IsOtherNumberConstant(value));
822 return OtherNumberConstant(value, zone);
823 }
824
NewConstant(JSHeapBroker * js_heap_broker,Handle<i::Object> value,Zone * zone)825 Type Type::NewConstant(JSHeapBroker* js_heap_broker, Handle<i::Object> value,
826 Zone* zone) {
827 ObjectRef ref(js_heap_broker, value);
828 if (ref.IsSmi()) {
829 return NewConstant(static_cast<double>(ref.AsSmi()), zone);
830 }
831 if (ref.IsHeapNumber()) {
832 return NewConstant(ref.AsHeapNumber().value(), zone);
833 }
834 if (ref.IsString() && !ref.IsInternalizedString()) {
835 return Type::String();
836 }
837 return HeapConstant(ref.AsHeapObject(), zone);
838 }
839
Union(Type type1,Type type2,Zone * zone)840 Type Type::Union(Type type1, Type type2, Zone* zone) {
841 // Fast case: bit sets.
842 if (type1.IsBitset() && type2.IsBitset()) {
843 return NewBitset(type1.AsBitset() | type2.AsBitset());
844 }
845
846 // Fast case: top or bottom types.
847 if (type1.IsAny() || type2.IsNone()) return type1;
848 if (type2.IsAny() || type1.IsNone()) return type2;
849
850 // Semi-fast case.
851 if (type1.Is(type2)) return type2;
852 if (type2.Is(type1)) return type1;
853
854 // Slow case: create union.
855 int size1 = type1.IsUnion() ? type1.AsUnion()->Length() : 1;
856 int size2 = type2.IsUnion() ? type2.AsUnion()->Length() : 1;
857 int size;
858 if (base::bits::SignedAddOverflow32(size1, size2, &size)) return Any();
859 if (base::bits::SignedAddOverflow32(size, 2, &size)) return Any();
860 UnionType* result = UnionType::New(size, zone);
861 size = 0;
862
863 // Compute the new bitset.
864 bitset new_bitset = type1.BitsetGlb() | type2.BitsetGlb();
865
866 // Deal with ranges.
867 Type range = None();
868 Type range1 = type1.GetRange();
869 Type range2 = type2.GetRange();
870 if (range1 != nullptr && range2 != nullptr) {
871 RangeType::Limits lims =
872 RangeType::Limits::Union(RangeType::Limits(range1.AsRange()),
873 RangeType::Limits(range2.AsRange()));
874 Type union_range = Type::Range(lims, zone);
875 range = NormalizeRangeAndBitset(union_range, &new_bitset, zone);
876 } else if (range1 != nullptr) {
877 range = NormalizeRangeAndBitset(range1, &new_bitset, zone);
878 } else if (range2 != nullptr) {
879 range = NormalizeRangeAndBitset(range2, &new_bitset, zone);
880 }
881 Type bits = NewBitset(new_bitset);
882 result->Set(size++, bits);
883 if (!range.IsNone()) result->Set(size++, range);
884
885 size = AddToUnion(type1, result, size, zone);
886 size = AddToUnion(type2, result, size, zone);
887 return NormalizeUnion(result, size, zone);
888 }
889
890 // Add [type] to [result] unless [type] is bitset, range, or already subsumed.
891 // Return new size of [result].
AddToUnion(Type type,UnionType * result,int size,Zone * zone)892 int Type::AddToUnion(Type type, UnionType* result, int size, Zone* zone) {
893 if (type.IsBitset() || type.IsRange()) return size;
894 if (type.IsUnion()) {
895 for (int i = 0, n = type.AsUnion()->Length(); i < n; ++i) {
896 size = AddToUnion(type.AsUnion()->Get(i), result, size, zone);
897 }
898 return size;
899 }
900 for (int i = 0; i < size; ++i) {
901 if (type.Is(result->Get(i))) return size;
902 }
903 result->Set(size++, type);
904 return size;
905 }
906
NormalizeUnion(UnionType * unioned,int size,Zone * zone)907 Type Type::NormalizeUnion(UnionType* unioned, int size, Zone* zone) {
908 DCHECK_LE(1, size);
909 DCHECK(unioned->Get(0).IsBitset());
910 // If the union has just one element, return it.
911 if (size == 1) {
912 return unioned->Get(0);
913 }
914 bitset bits = unioned->Get(0).AsBitset();
915 // If the union only consists of a range, we can get rid of the union.
916 if (size == 2 && bits == BitsetType::kNone) {
917 if (unioned->Get(1).IsRange()) {
918 return Type::Range(unioned->Get(1).AsRange()->Min(),
919 unioned->Get(1).AsRange()->Max(), zone);
920 }
921 }
922 unioned->Shrink(size);
923 SLOW_DCHECK(unioned->Wellformed());
924 return Type(unioned);
925 }
926
NumConstants() const927 int Type::NumConstants() const {
928 DisallowHeapAllocation no_allocation;
929 if (this->IsHeapConstant() || this->IsOtherNumberConstant()) {
930 return 1;
931 } else if (this->IsUnion()) {
932 int result = 0;
933 for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
934 if (this->AsUnion()->Get(i).IsHeapConstant()) ++result;
935 }
936 return result;
937 } else {
938 return 0;
939 }
940 }
941
942 // -----------------------------------------------------------------------------
943 // Printing.
944
Name(bitset bits)945 const char* BitsetType::Name(bitset bits) {
946 switch (bits) {
947 #define RETURN_NAMED_TYPE(type, value) \
948 case k##type: \
949 return #type;
950 PROPER_BITSET_TYPE_LIST(RETURN_NAMED_TYPE)
951 INTERNAL_BITSET_TYPE_LIST(RETURN_NAMED_TYPE)
952 #undef RETURN_NAMED_TYPE
953
954 default:
955 return nullptr;
956 }
957 }
958
Print(std::ostream & os,bitset bits)959 void BitsetType::Print(std::ostream& os, // NOLINT
960 bitset bits) {
961 DisallowHeapAllocation no_allocation;
962 const char* name = Name(bits);
963 if (name != nullptr) {
964 os << name;
965 return;
966 }
967
968 // clang-format off
969 static const bitset named_bitsets[] = {
970 #define BITSET_CONSTANT(type, value) k##type,
971 INTERNAL_BITSET_TYPE_LIST(BITSET_CONSTANT)
972 PROPER_BITSET_TYPE_LIST(BITSET_CONSTANT)
973 #undef BITSET_CONSTANT
974 };
975 // clang-format on
976
977 bool is_first = true;
978 os << "(";
979 for (int i(arraysize(named_bitsets) - 1); bits != 0 && i >= 0; --i) {
980 bitset subset = named_bitsets[i];
981 if ((bits & subset) == subset) {
982 if (!is_first) os << " | ";
983 is_first = false;
984 os << Name(subset);
985 bits -= subset;
986 }
987 }
988 DCHECK_EQ(0, bits);
989 os << ")";
990 }
991
PrintTo(std::ostream & os) const992 void Type::PrintTo(std::ostream& os) const {
993 DisallowHeapAllocation no_allocation;
994 if (this->IsBitset()) {
995 BitsetType::Print(os, this->AsBitset());
996 } else if (this->IsHeapConstant()) {
997 os << "HeapConstant(" << Brief(*this->AsHeapConstant()->Value()) << ")";
998 } else if (this->IsOtherNumberConstant()) {
999 os << "OtherNumberConstant(" << this->AsOtherNumberConstant()->Value()
1000 << ")";
1001 } else if (this->IsRange()) {
1002 std::ostream::fmtflags saved_flags = os.setf(std::ios::fixed);
1003 std::streamsize saved_precision = os.precision(0);
1004 os << "Range(" << this->AsRange()->Min() << ", " << this->AsRange()->Max()
1005 << ")";
1006 os.flags(saved_flags);
1007 os.precision(saved_precision);
1008 } else if (this->IsUnion()) {
1009 os << "(";
1010 for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
1011 Type type_i = this->AsUnion()->Get(i);
1012 if (i > 0) os << " | " << type_i;
1013 }
1014 os << ")";
1015 } else if (this->IsTuple()) {
1016 os << "<";
1017 for (int i = 0, n = this->AsTuple()->Arity(); i < n; ++i) {
1018 Type type_i = this->AsTuple()->Element(i);
1019 if (i > 0) os << ", " << type_i;
1020 }
1021 os << ">";
1022 } else {
1023 UNREACHABLE();
1024 }
1025 }
1026
1027 #ifdef DEBUG
Print() const1028 void Type::Print() const {
1029 StdoutStream os;
1030 PrintTo(os);
1031 os << std::endl;
1032 }
Print(bitset bits)1033 void BitsetType::Print(bitset bits) {
1034 StdoutStream os;
1035 Print(os, bits);
1036 os << std::endl;
1037 }
1038 #endif
1039
SignedSmall()1040 BitsetType::bitset BitsetType::SignedSmall() {
1041 return SmiValuesAre31Bits() ? kSigned31 : kSigned32;
1042 }
1043
UnsignedSmall()1044 BitsetType::bitset BitsetType::UnsignedSmall() {
1045 return SmiValuesAre31Bits() ? kUnsigned30 : kUnsigned31;
1046 }
1047
1048 // static
Tuple(Type first,Type second,Type third,Zone * zone)1049 Type Type::Tuple(Type first, Type second, Type third, Zone* zone) {
1050 TupleType* tuple = TupleType::New(3, zone);
1051 tuple->InitElement(0, first);
1052 tuple->InitElement(1, second);
1053 tuple->InitElement(2, third);
1054 return FromTypeBase(tuple);
1055 }
1056
1057 // static
OtherNumberConstant(double value,Zone * zone)1058 Type Type::OtherNumberConstant(double value, Zone* zone) {
1059 return FromTypeBase(OtherNumberConstantType::New(value, zone));
1060 }
1061
1062 // static
HeapConstant(JSHeapBroker * js_heap_broker,Handle<i::Object> value,Zone * zone)1063 Type Type::HeapConstant(JSHeapBroker* js_heap_broker, Handle<i::Object> value,
1064 Zone* zone) {
1065 return FromTypeBase(
1066 HeapConstantType::New(HeapObjectRef(js_heap_broker, value), zone));
1067 }
1068
1069 // static
HeapConstant(const HeapObjectRef & value,Zone * zone)1070 Type Type::HeapConstant(const HeapObjectRef& value, Zone* zone) {
1071 return HeapConstantType::New(value, zone);
1072 }
1073
1074 // static
Range(double min,double max,Zone * zone)1075 Type Type::Range(double min, double max, Zone* zone) {
1076 return FromTypeBase(RangeType::New(min, max, zone));
1077 }
1078
1079 // static
Range(RangeType::Limits lims,Zone * zone)1080 Type Type::Range(RangeType::Limits lims, Zone* zone) {
1081 return FromTypeBase(RangeType::New(lims, zone));
1082 }
1083
1084 // static
Union(int length,Zone * zone)1085 Type Type::Union(int length, Zone* zone) {
1086 return FromTypeBase(UnionType::New(length, zone));
1087 }
1088
AsHeapConstant() const1089 const HeapConstantType* Type::AsHeapConstant() const {
1090 DCHECK(IsKind(TypeBase::kHeapConstant));
1091 return static_cast<const HeapConstantType*>(ToTypeBase());
1092 }
1093
AsOtherNumberConstant() const1094 const OtherNumberConstantType* Type::AsOtherNumberConstant() const {
1095 DCHECK(IsKind(TypeBase::kOtherNumberConstant));
1096 return static_cast<const OtherNumberConstantType*>(ToTypeBase());
1097 }
1098
AsRange() const1099 const RangeType* Type::AsRange() const {
1100 DCHECK(IsKind(TypeBase::kRange));
1101 return static_cast<const RangeType*>(ToTypeBase());
1102 }
1103
AsTuple() const1104 const TupleType* Type::AsTuple() const {
1105 DCHECK(IsKind(TypeBase::kTuple));
1106 return static_cast<const TupleType*>(ToTypeBase());
1107 }
1108
AsUnion() const1109 const UnionType* Type::AsUnion() const {
1110 DCHECK(IsKind(TypeBase::kUnion));
1111 return static_cast<const UnionType*>(ToTypeBase());
1112 }
1113
operator <<(std::ostream & os,Type type)1114 std::ostream& operator<<(std::ostream& os, Type type) {
1115 type.PrintTo(os);
1116 return os;
1117 }
1118
1119 } // namespace compiler
1120 } // namespace internal
1121 } // namespace v8
1122