1 /** @file
2 *
3 * Copyright (c) 2016, Hisilicon Limited. All rights reserved.
4 * Copyright (c) 2016, Linaro Limited. All rights reserved.
5 *
6 * This program and the accompanying materials
7 * are licensed and made available under the terms and conditions of the BSD License
8 * which accompanies this distribution. The full text of the license may be found at
9 * http://opensource.org/licenses/bsd-license.php
10 *
11 * THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13 *
14 **/
15
16 #include <Uefi.h>
17 #include <Library/IoLib.h>
18 #include <Library/DebugLib.h>
19 #include <Library/TimerLib.h>
20 #include <Library/PcdLib.h>
21 #include <Library/UefiBootServicesTableLib.h>
22 #include <Protocol/HisiBoardNicProtocol.h>
23 #include <OemNicConfig.h>
24 #include <Library/CpldIoLib.h>
25
26 #include <Library/I2CLib.h>
27
28 #define EEPROM_I2C_PORT 6
29 #define EEPROM_PAGE_SIZE 0x40
30
31 EFI_STATUS
32 EFIAPI OemGetMac2P (IN OUT EFI_MAC_ADDRESS *Mac, IN UINTN Port);
33
34 EFI_STATUS
35 EFIAPI OemSetMac2P (IN EFI_MAC_ADDRESS *Mac, IN UINTN Port);
36
37 EFI_STATUS OemGetMacE2prom(IN UINT32 Port, OUT UINT8 *pucAddr);
38 EFI_STATUS OemSetMacE2prom(IN UINT32 Port, IN UINT8 *pucAddr);
39
40 volatile unsigned char g_2pserveraddr[4][6] =
41 {
42 {0x00, 0x18, 0x16, 0x29, 0x11, 0x00},
43 {0x00, 0x18, 0x16, 0x29, 0x11, 0x01},
44 {0x00, 0x18, 0x16, 0x29, 0x11, 0x02},
45 {0x00, 0x18, 0x16, 0x29, 0x11, 0x03}
46 };
47
48 UINT16 crc_tab[256] = {
49 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
50 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
51 0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
52 0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
53 0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
54 0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
55 0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
56 0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
57 0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
58 0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
59 0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
60 0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
61 0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
62 0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
63 0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
64 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
65 0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
66 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
67 0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
68 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
69 0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
70 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
71 0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
72 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
73 0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
74 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
75 0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
76 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
77 0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
78 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
79 0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
80 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0,
81 };
82
make_crc_checksum(UINT8 * buf,UINT32 len)83 UINT16 make_crc_checksum(UINT8 *buf, UINT32 len)
84 {
85 UINT16 StartCRC = 0;
86
87 if (len > (512 * 1024))
88 {
89 return 0;
90 }
91
92 if (NULL == buf)
93 {
94 return 0;
95 }
96
97 while (len)
98 {
99 StartCRC = crc_tab[((UINT8)((StartCRC >> 8) & 0xff)) ^ *(buf++)] ^ ((UINT16)(StartCRC << 8));
100 len--;
101 }
102
103 return StartCRC;
104 }
105
106
OemGetMacE2prom(IN UINT32 Port,OUT UINT8 * pucAddr)107 EFI_STATUS OemGetMacE2prom(IN UINT32 Port, OUT UINT8 *pucAddr)
108 {
109 I2C_DEVICE stI2cDev = {0};
110 EFI_STATUS Status;
111 UINT16 I2cOffset;
112 UINT16 crc16;
113 NIC_MAC_ADDRESS stMacDesc = {0};
114 UINT16 RemainderMacOffset;
115 UINT16 LessSizeOfPage;
116
117 Status = I2CInit(0, EEPROM_I2C_PORT, Normal);
118 if (EFI_ERROR(Status))
119 {
120 DEBUG((EFI_D_ERROR, "[%a]:[%dL] Call I2CInit failed! p1=0x%x.\n", __FUNCTION__, __LINE__, Status));
121 return Status;
122 }
123
124 I2cOffset = I2C_OFFSET_EEPROM_ETH0 + (Port * sizeof(NIC_MAC_ADDRESS));
125
126 stI2cDev.DeviceType = DEVICE_TYPE_E2PROM;
127 stI2cDev.Port = EEPROM_I2C_PORT;
128 stI2cDev.SlaveDeviceAddress = I2C_SLAVEADDR_EEPROM;
129 stI2cDev.Socket = 0;
130 RemainderMacOffset = I2cOffset % EEPROM_PAGE_SIZE;
131 LessSizeOfPage = EEPROM_PAGE_SIZE - RemainderMacOffset;
132 //The length of NIC_MAC_ADDRESS is 10 bytes long,
133 //It surly less than EEPROM page size, so we could
134 //code as bellow, check the address whether across the page boundary,
135 //and split the data when across page boundary.
136 if (sizeof(NIC_MAC_ADDRESS) <= LessSizeOfPage) {
137 Status = I2CRead(&stI2cDev, I2cOffset, sizeof(NIC_MAC_ADDRESS), (UINT8 *)&stMacDesc);
138 } else {
139 Status = I2CRead(&stI2cDev, I2cOffset, LessSizeOfPage, (UINT8 *)&stMacDesc);
140 if (!(EFI_ERROR(Status))) {
141 Status |= I2CRead(
142 &stI2cDev,
143 I2cOffset + LessSizeOfPage,
144 sizeof(NIC_MAC_ADDRESS) - LessSizeOfPage,
145 (UINT8 *)&stMacDesc + LessSizeOfPage
146 );
147 }
148 }
149 if (EFI_ERROR(Status))
150 {
151 DEBUG((EFI_D_ERROR, "[%a]:[%dL] Call I2cRead failed! p1=0x%x.\n", __FUNCTION__, __LINE__, Status));
152 return Status;
153 }
154
155 crc16 = make_crc_checksum((UINT8 *)&(stMacDesc.MacLen), sizeof(stMacDesc.MacLen) + sizeof(stMacDesc.Mac));
156 if ((crc16 != stMacDesc.Crc16) || (0 == crc16))
157 {
158 return EFI_NOT_FOUND;
159 }
160
161 gBS->CopyMem((VOID *)(pucAddr), (VOID *)(stMacDesc.Mac), MAC_ADDR_LEN);
162
163
164 return EFI_SUCCESS;
165 }
166
167
OemSetMacE2prom(IN UINT32 Port,IN UINT8 * pucAddr)168 EFI_STATUS OemSetMacE2prom(IN UINT32 Port, IN UINT8 *pucAddr)
169 {
170 I2C_DEVICE stI2cDev = {0};
171 EFI_STATUS Status;
172 UINT16 I2cOffset;
173 NIC_MAC_ADDRESS stMacDesc = {0};
174
175
176 stMacDesc.MacLen = MAC_ADDR_LEN;
177 UINT16 RemainderMacOffset;
178 UINT16 LessSizeOfPage;
179 gBS->CopyMem((VOID *)(stMacDesc.Mac), (VOID *)pucAddr, MAC_ADDR_LEN);
180
181 stMacDesc.Crc16 = make_crc_checksum((UINT8 *)&(stMacDesc.MacLen), sizeof(stMacDesc.MacLen) + MAC_ADDR_LEN);
182
183 Status = I2CInit(0, EEPROM_I2C_PORT, Normal);
184 if (EFI_ERROR(Status))
185 {
186 DEBUG((EFI_D_ERROR, "[%a]:[%dL] Call I2CInit failed! p1=0x%x.\n", __FUNCTION__, __LINE__, Status));
187 return Status;
188 }
189
190 I2cOffset = I2C_OFFSET_EEPROM_ETH0 + (Port * sizeof(NIC_MAC_ADDRESS));
191
192 stI2cDev.DeviceType = DEVICE_TYPE_E2PROM;
193 stI2cDev.Port = EEPROM_I2C_PORT;
194 stI2cDev.SlaveDeviceAddress = I2C_SLAVEADDR_EEPROM;
195 stI2cDev.Socket = 0;
196 RemainderMacOffset = I2cOffset % EEPROM_PAGE_SIZE;
197 LessSizeOfPage = EEPROM_PAGE_SIZE - RemainderMacOffset;
198 //The length of NIC_MAC_ADDRESS is 10 bytes long,
199 //It surly less than EEPROM page size, so we could
200 //code as bellow, check the address whether across the page boundary,
201 //and split the data when across page boundary.
202 if (sizeof(NIC_MAC_ADDRESS) <= LessSizeOfPage) {
203 Status = I2CWrite(&stI2cDev, I2cOffset, sizeof(NIC_MAC_ADDRESS), (UINT8 *)&stMacDesc);
204 } else {
205 Status = I2CWrite(&stI2cDev, I2cOffset, LessSizeOfPage, (UINT8 *)&stMacDesc);
206 if (!(EFI_ERROR(Status))) {
207 Status |= I2CWrite(
208 &stI2cDev,
209 I2cOffset + LessSizeOfPage,
210 sizeof(NIC_MAC_ADDRESS) - LessSizeOfPage,
211 (UINT8 *)&stMacDesc + LessSizeOfPage
212 );
213 }
214 }
215 if (EFI_ERROR(Status))
216 {
217 DEBUG((EFI_D_ERROR, "[%a]:[%dL] Call I2cWrite failed! p1=0x%x.\n", __FUNCTION__, __LINE__, Status));
218 return Status;
219 }
220 return EFI_SUCCESS;
221 }
222
223 EFI_STATUS
OemGetMac2P(IN OUT EFI_MAC_ADDRESS * Mac,IN UINTN Port)224 EFIAPI OemGetMac2P (
225 IN OUT EFI_MAC_ADDRESS *Mac,
226 IN UINTN Port
227 )
228 {
229 EFI_STATUS Status;
230
231 if (NULL == Mac)
232 {
233 DEBUG((EFI_D_ERROR, "[%a]:[%dL] Mac buffer is null!\n", __FUNCTION__, __LINE__));
234 return EFI_INVALID_PARAMETER;
235 }
236
237 Status = OemGetMacE2prom(Port, Mac->Addr);
238 if ((EFI_ERROR(Status)))
239 {
240 DEBUG((EFI_D_ERROR, "[%a]:[%dL] Get mac failed!\n", __FUNCTION__, __LINE__));
241
242 Mac->Addr[0] = 0x00;
243 Mac->Addr[1] = 0x18;
244 Mac->Addr[2] = 0x82;
245 Mac->Addr[3] = 0x2F;
246 Mac->Addr[4] = 0x02;
247 Mac->Addr[5] = Port;
248 return Status;
249 }
250
251 return EFI_SUCCESS;
252 }
253
254 EFI_STATUS
OemSetMac2P(IN EFI_MAC_ADDRESS * Mac,IN UINTN Port)255 EFIAPI OemSetMac2P (
256 IN EFI_MAC_ADDRESS *Mac,
257 IN UINTN Port
258 )
259 {
260 EFI_STATUS Status;
261
262 if (NULL == Mac)
263 {
264 DEBUG((EFI_D_ERROR, "[%a]:[%dL] Mac buffer is null!\n", __FUNCTION__, __LINE__));
265 return EFI_INVALID_PARAMETER;
266 }
267
268 Status = OemSetMacE2prom(Port, Mac->Addr);
269 if ((EFI_ERROR(Status)))
270 {
271 DEBUG((EFI_D_ERROR, "[%a]:[%dL] Set mac failed!\n", __FUNCTION__, __LINE__));
272 return Status;
273 }
274
275 return EFI_SUCCESS;
276 }
277
278 HISI_BOARD_NIC_PROTOCOL mHisiBoardNicProtocol2P = {
279 .GetMac = OemGetMac2P,
280 .SetMac = OemSetMac2P,
281 };
282
OemFeedbackXGeStatus(BOOLEAN IsLinkup,BOOLEAN IsActOK,UINT32 port)283 VOID OemFeedbackXGeStatus(BOOLEAN IsLinkup, BOOLEAN IsActOK, UINT32 port)
284 {
285 UINT8 CpldValue = 0;
286 UINTN RegOffset = 0x10 + (UINTN)port * 4;
287
288 if (port > 2)
289 {
290 return;
291 }
292
293 if (IsLinkup)
294 {
295 CpldValue = ReadCpldReg(RegOffset);
296 CpldValue |= BIT2;
297 WriteCpldReg(RegOffset, CpldValue);
298 }
299 else
300 {
301 CpldValue = ReadCpldReg(RegOffset);
302 CpldValue &= ~((UINT8)BIT2);
303 WriteCpldReg(RegOffset, CpldValue);
304 }
305
306 if (IsActOK)
307 {
308 CpldValue = ReadCpldReg(RegOffset);
309 CpldValue |= BIT4;
310 WriteCpldReg(RegOffset, CpldValue);
311 }
312 else
313 {
314 CpldValue = ReadCpldReg(RegOffset);
315 CpldValue &= ~((UINT8)BIT4);
316 WriteCpldReg(RegOffset, CpldValue);
317 }
318 }
319
320 HISI_BOARD_XGE_STATUS_PROTOCOL mHisiBoardXgeStatusProtocol2p = {
321 .FeedbackXgeStatus = OemFeedbackXGeStatus,
322 };
323
324
325 EFI_STATUS
326 EFIAPI
OemNicConfigEntry(IN EFI_HANDLE ImageHandle,IN EFI_SYSTEM_TABLE * SystemTable)327 OemNicConfigEntry (
328 IN EFI_HANDLE ImageHandle,
329 IN EFI_SYSTEM_TABLE *SystemTable
330 )
331 {
332 EFI_STATUS Status;
333
334 Status = gBS->InstallProtocolInterface(
335 &ImageHandle,
336 &gHisiBoardNicProtocolGuid,
337 EFI_NATIVE_INTERFACE,
338 &mHisiBoardNicProtocol2P
339 );
340
341 if(EFI_ERROR(Status))
342 {
343 DEBUG((EFI_D_ERROR, "[%a]:[%dL] Install Protocol failed %r\n", __FUNCTION__, __LINE__, Status));
344 return Status;
345 }
346
347 Status = gBS->InstallProtocolInterface(
348 &ImageHandle,
349 &gHisiBoardXgeStatusProtocolGuid,
350 EFI_NATIVE_INTERFACE,
351 &mHisiBoardXgeStatusProtocol2p
352 );
353
354 if(EFI_ERROR(Status))
355 {
356 DEBUG((EFI_D_ERROR, "[%a]:[%dL] Install Protocol failed %r\n", __FUNCTION__, __LINE__, Status));
357 return Status;
358 }
359
360 return EFI_SUCCESS;
361 }
362
363