1 //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This pass exposes codegen information to IR-level passes. Every
11 /// transformation that uses codegen information is broken into three parts:
12 /// 1. The IR-level analysis pass.
13 /// 2. The IR-level transformation interface which provides the needed
14 /// information.
15 /// 3. Codegen-level implementation which uses target-specific hooks.
16 ///
17 /// This file defines #2, which is the interface that IR-level transformations
18 /// use for querying the codegen.
19 ///
20 //===----------------------------------------------------------------------===//
21
22 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
23 #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
24
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/IR/PassManager.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/AtomicOrdering.h"
30 #include "llvm/Support/DataTypes.h"
31 #include <functional>
32
33 namespace llvm {
34
35 namespace Intrinsic {
36 enum ID : unsigned;
37 }
38
39 class Function;
40 class GlobalValue;
41 class IntrinsicInst;
42 class LoadInst;
43 class Loop;
44 class SCEV;
45 class ScalarEvolution;
46 class StoreInst;
47 class SwitchInst;
48 class Type;
49 class User;
50 class Value;
51
52 /// Information about a load/store intrinsic defined by the target.
53 struct MemIntrinsicInfo {
54 /// This is the pointer that the intrinsic is loading from or storing to.
55 /// If this is non-null, then analysis/optimization passes can assume that
56 /// this intrinsic is functionally equivalent to a load/store from this
57 /// pointer.
58 Value *PtrVal = nullptr;
59
60 // Ordering for atomic operations.
61 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
62
63 // Same Id is set by the target for corresponding load/store intrinsics.
64 unsigned short MatchingId = 0;
65
66 bool ReadMem = false;
67 bool WriteMem = false;
68 bool IsVolatile = false;
69
isUnorderedMemIntrinsicInfo70 bool isUnordered() const {
71 return (Ordering == AtomicOrdering::NotAtomic ||
72 Ordering == AtomicOrdering::Unordered) && !IsVolatile;
73 }
74 };
75
76 /// This pass provides access to the codegen interfaces that are needed
77 /// for IR-level transformations.
78 class TargetTransformInfo {
79 public:
80 /// Construct a TTI object using a type implementing the \c Concept
81 /// API below.
82 ///
83 /// This is used by targets to construct a TTI wrapping their target-specific
84 /// implementaion that encodes appropriate costs for their target.
85 template <typename T> TargetTransformInfo(T Impl);
86
87 /// Construct a baseline TTI object using a minimal implementation of
88 /// the \c Concept API below.
89 ///
90 /// The TTI implementation will reflect the information in the DataLayout
91 /// provided if non-null.
92 explicit TargetTransformInfo(const DataLayout &DL);
93
94 // Provide move semantics.
95 TargetTransformInfo(TargetTransformInfo &&Arg);
96 TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
97
98 // We need to define the destructor out-of-line to define our sub-classes
99 // out-of-line.
100 ~TargetTransformInfo();
101
102 /// Handle the invalidation of this information.
103 ///
104 /// When used as a result of \c TargetIRAnalysis this method will be called
105 /// when the function this was computed for changes. When it returns false,
106 /// the information is preserved across those changes.
invalidate(Function &,const PreservedAnalyses &,FunctionAnalysisManager::Invalidator &)107 bool invalidate(Function &, const PreservedAnalyses &,
108 FunctionAnalysisManager::Invalidator &) {
109 // FIXME: We should probably in some way ensure that the subtarget
110 // information for a function hasn't changed.
111 return false;
112 }
113
114 /// \name Generic Target Information
115 /// @{
116
117 /// The kind of cost model.
118 ///
119 /// There are several different cost models that can be customized by the
120 /// target. The normalization of each cost model may be target specific.
121 enum TargetCostKind {
122 TCK_RecipThroughput, ///< Reciprocal throughput.
123 TCK_Latency, ///< The latency of instruction.
124 TCK_CodeSize ///< Instruction code size.
125 };
126
127 /// Query the cost of a specified instruction.
128 ///
129 /// Clients should use this interface to query the cost of an existing
130 /// instruction. The instruction must have a valid parent (basic block).
131 ///
132 /// Note, this method does not cache the cost calculation and it
133 /// can be expensive in some cases.
getInstructionCost(const Instruction * I,enum TargetCostKind kind)134 int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const {
135 switch (kind){
136 case TCK_RecipThroughput:
137 return getInstructionThroughput(I);
138
139 case TCK_Latency:
140 return getInstructionLatency(I);
141
142 case TCK_CodeSize:
143 return getUserCost(I);
144 }
145 llvm_unreachable("Unknown instruction cost kind");
146 }
147
148 /// Underlying constants for 'cost' values in this interface.
149 ///
150 /// Many APIs in this interface return a cost. This enum defines the
151 /// fundamental values that should be used to interpret (and produce) those
152 /// costs. The costs are returned as an int rather than a member of this
153 /// enumeration because it is expected that the cost of one IR instruction
154 /// may have a multiplicative factor to it or otherwise won't fit directly
155 /// into the enum. Moreover, it is common to sum or average costs which works
156 /// better as simple integral values. Thus this enum only provides constants.
157 /// Also note that the returned costs are signed integers to make it natural
158 /// to add, subtract, and test with zero (a common boundary condition). It is
159 /// not expected that 2^32 is a realistic cost to be modeling at any point.
160 ///
161 /// Note that these costs should usually reflect the intersection of code-size
162 /// cost and execution cost. A free instruction is typically one that folds
163 /// into another instruction. For example, reg-to-reg moves can often be
164 /// skipped by renaming the registers in the CPU, but they still are encoded
165 /// and thus wouldn't be considered 'free' here.
166 enum TargetCostConstants {
167 TCC_Free = 0, ///< Expected to fold away in lowering.
168 TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
169 TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
170 };
171
172 /// Estimate the cost of a specific operation when lowered.
173 ///
174 /// Note that this is designed to work on an arbitrary synthetic opcode, and
175 /// thus work for hypothetical queries before an instruction has even been
176 /// formed. However, this does *not* work for GEPs, and must not be called
177 /// for a GEP instruction. Instead, use the dedicated getGEPCost interface as
178 /// analyzing a GEP's cost required more information.
179 ///
180 /// Typically only the result type is required, and the operand type can be
181 /// omitted. However, if the opcode is one of the cast instructions, the
182 /// operand type is required.
183 ///
184 /// The returned cost is defined in terms of \c TargetCostConstants, see its
185 /// comments for a detailed explanation of the cost values.
186 int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy = nullptr) const;
187
188 /// Estimate the cost of a GEP operation when lowered.
189 ///
190 /// The contract for this function is the same as \c getOperationCost except
191 /// that it supports an interface that provides extra information specific to
192 /// the GEP operation.
193 int getGEPCost(Type *PointeeType, const Value *Ptr,
194 ArrayRef<const Value *> Operands) const;
195
196 /// Estimate the cost of a EXT operation when lowered.
197 ///
198 /// The contract for this function is the same as \c getOperationCost except
199 /// that it supports an interface that provides extra information specific to
200 /// the EXT operation.
201 int getExtCost(const Instruction *I, const Value *Src) const;
202
203 /// Estimate the cost of a function call when lowered.
204 ///
205 /// The contract for this is the same as \c getOperationCost except that it
206 /// supports an interface that provides extra information specific to call
207 /// instructions.
208 ///
209 /// This is the most basic query for estimating call cost: it only knows the
210 /// function type and (potentially) the number of arguments at the call site.
211 /// The latter is only interesting for varargs function types.
212 int getCallCost(FunctionType *FTy, int NumArgs = -1) const;
213
214 /// Estimate the cost of calling a specific function when lowered.
215 ///
216 /// This overload adds the ability to reason about the particular function
217 /// being called in the event it is a library call with special lowering.
218 int getCallCost(const Function *F, int NumArgs = -1) const;
219
220 /// Estimate the cost of calling a specific function when lowered.
221 ///
222 /// This overload allows specifying a set of candidate argument values.
223 int getCallCost(const Function *F, ArrayRef<const Value *> Arguments) const;
224
225 /// \returns A value by which our inlining threshold should be multiplied.
226 /// This is primarily used to bump up the inlining threshold wholesale on
227 /// targets where calls are unusually expensive.
228 ///
229 /// TODO: This is a rather blunt instrument. Perhaps altering the costs of
230 /// individual classes of instructions would be better.
231 unsigned getInliningThresholdMultiplier() const;
232
233 /// Estimate the cost of an intrinsic when lowered.
234 ///
235 /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
236 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
237 ArrayRef<Type *> ParamTys) const;
238
239 /// Estimate the cost of an intrinsic when lowered.
240 ///
241 /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
242 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
243 ArrayRef<const Value *> Arguments) const;
244
245 /// \return The estimated number of case clusters when lowering \p 'SI'.
246 /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
247 /// table.
248 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
249 unsigned &JTSize) const;
250
251 /// Estimate the cost of a given IR user when lowered.
252 ///
253 /// This can estimate the cost of either a ConstantExpr or Instruction when
254 /// lowered. It has two primary advantages over the \c getOperationCost and
255 /// \c getGEPCost above, and one significant disadvantage: it can only be
256 /// used when the IR construct has already been formed.
257 ///
258 /// The advantages are that it can inspect the SSA use graph to reason more
259 /// accurately about the cost. For example, all-constant-GEPs can often be
260 /// folded into a load or other instruction, but if they are used in some
261 /// other context they may not be folded. This routine can distinguish such
262 /// cases.
263 ///
264 /// \p Operands is a list of operands which can be a result of transformations
265 /// of the current operands. The number of the operands on the list must equal
266 /// to the number of the current operands the IR user has. Their order on the
267 /// list must be the same as the order of the current operands the IR user
268 /// has.
269 ///
270 /// The returned cost is defined in terms of \c TargetCostConstants, see its
271 /// comments for a detailed explanation of the cost values.
272 int getUserCost(const User *U, ArrayRef<const Value *> Operands) const;
273
274 /// This is a helper function which calls the two-argument getUserCost
275 /// with \p Operands which are the current operands U has.
getUserCost(const User * U)276 int getUserCost(const User *U) const {
277 SmallVector<const Value *, 4> Operands(U->value_op_begin(),
278 U->value_op_end());
279 return getUserCost(U, Operands);
280 }
281
282 /// Return true if branch divergence exists.
283 ///
284 /// Branch divergence has a significantly negative impact on GPU performance
285 /// when threads in the same wavefront take different paths due to conditional
286 /// branches.
287 bool hasBranchDivergence() const;
288
289 /// Returns whether V is a source of divergence.
290 ///
291 /// This function provides the target-dependent information for
292 /// the target-independent DivergenceAnalysis. DivergenceAnalysis first
293 /// builds the dependency graph, and then runs the reachability algorithm
294 /// starting with the sources of divergence.
295 bool isSourceOfDivergence(const Value *V) const;
296
297 // Returns true for the target specific
298 // set of operations which produce uniform result
299 // even taking non-unform arguments
300 bool isAlwaysUniform(const Value *V) const;
301
302 /// Returns the address space ID for a target's 'flat' address space. Note
303 /// this is not necessarily the same as addrspace(0), which LLVM sometimes
304 /// refers to as the generic address space. The flat address space is a
305 /// generic address space that can be used access multiple segments of memory
306 /// with different address spaces. Access of a memory location through a
307 /// pointer with this address space is expected to be legal but slower
308 /// compared to the same memory location accessed through a pointer with a
309 /// different address space.
310 //
311 /// This is for targets with different pointer representations which can
312 /// be converted with the addrspacecast instruction. If a pointer is converted
313 /// to this address space, optimizations should attempt to replace the access
314 /// with the source address space.
315 ///
316 /// \returns ~0u if the target does not have such a flat address space to
317 /// optimize away.
318 unsigned getFlatAddressSpace() const;
319
320 /// Test whether calls to a function lower to actual program function
321 /// calls.
322 ///
323 /// The idea is to test whether the program is likely to require a 'call'
324 /// instruction or equivalent in order to call the given function.
325 ///
326 /// FIXME: It's not clear that this is a good or useful query API. Client's
327 /// should probably move to simpler cost metrics using the above.
328 /// Alternatively, we could split the cost interface into distinct code-size
329 /// and execution-speed costs. This would allow modelling the core of this
330 /// query more accurately as a call is a single small instruction, but
331 /// incurs significant execution cost.
332 bool isLoweredToCall(const Function *F) const;
333
334 struct LSRCost {
335 /// TODO: Some of these could be merged. Also, a lexical ordering
336 /// isn't always optimal.
337 unsigned Insns;
338 unsigned NumRegs;
339 unsigned AddRecCost;
340 unsigned NumIVMuls;
341 unsigned NumBaseAdds;
342 unsigned ImmCost;
343 unsigned SetupCost;
344 unsigned ScaleCost;
345 };
346
347 /// Parameters that control the generic loop unrolling transformation.
348 struct UnrollingPreferences {
349 /// The cost threshold for the unrolled loop. Should be relative to the
350 /// getUserCost values returned by this API, and the expectation is that
351 /// the unrolled loop's instructions when run through that interface should
352 /// not exceed this cost. However, this is only an estimate. Also, specific
353 /// loops may be unrolled even with a cost above this threshold if deemed
354 /// profitable. Set this to UINT_MAX to disable the loop body cost
355 /// restriction.
356 unsigned Threshold;
357 /// If complete unrolling will reduce the cost of the loop, we will boost
358 /// the Threshold by a certain percent to allow more aggressive complete
359 /// unrolling. This value provides the maximum boost percentage that we
360 /// can apply to Threshold (The value should be no less than 100).
361 /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
362 /// MaxPercentThresholdBoost / 100)
363 /// E.g. if complete unrolling reduces the loop execution time by 50%
364 /// then we boost the threshold by the factor of 2x. If unrolling is not
365 /// expected to reduce the running time, then we do not increase the
366 /// threshold.
367 unsigned MaxPercentThresholdBoost;
368 /// The cost threshold for the unrolled loop when optimizing for size (set
369 /// to UINT_MAX to disable).
370 unsigned OptSizeThreshold;
371 /// The cost threshold for the unrolled loop, like Threshold, but used
372 /// for partial/runtime unrolling (set to UINT_MAX to disable).
373 unsigned PartialThreshold;
374 /// The cost threshold for the unrolled loop when optimizing for size, like
375 /// OptSizeThreshold, but used for partial/runtime unrolling (set to
376 /// UINT_MAX to disable).
377 unsigned PartialOptSizeThreshold;
378 /// A forced unrolling factor (the number of concatenated bodies of the
379 /// original loop in the unrolled loop body). When set to 0, the unrolling
380 /// transformation will select an unrolling factor based on the current cost
381 /// threshold and other factors.
382 unsigned Count;
383 /// A forced peeling factor (the number of bodied of the original loop
384 /// that should be peeled off before the loop body). When set to 0, the
385 /// unrolling transformation will select a peeling factor based on profile
386 /// information and other factors.
387 unsigned PeelCount;
388 /// Default unroll count for loops with run-time trip count.
389 unsigned DefaultUnrollRuntimeCount;
390 // Set the maximum unrolling factor. The unrolling factor may be selected
391 // using the appropriate cost threshold, but may not exceed this number
392 // (set to UINT_MAX to disable). This does not apply in cases where the
393 // loop is being fully unrolled.
394 unsigned MaxCount;
395 /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
396 /// applies even if full unrolling is selected. This allows a target to fall
397 /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
398 unsigned FullUnrollMaxCount;
399 // Represents number of instructions optimized when "back edge"
400 // becomes "fall through" in unrolled loop.
401 // For now we count a conditional branch on a backedge and a comparison
402 // feeding it.
403 unsigned BEInsns;
404 /// Allow partial unrolling (unrolling of loops to expand the size of the
405 /// loop body, not only to eliminate small constant-trip-count loops).
406 bool Partial;
407 /// Allow runtime unrolling (unrolling of loops to expand the size of the
408 /// loop body even when the number of loop iterations is not known at
409 /// compile time).
410 bool Runtime;
411 /// Allow generation of a loop remainder (extra iterations after unroll).
412 bool AllowRemainder;
413 /// Allow emitting expensive instructions (such as divisions) when computing
414 /// the trip count of a loop for runtime unrolling.
415 bool AllowExpensiveTripCount;
416 /// Apply loop unroll on any kind of loop
417 /// (mainly to loops that fail runtime unrolling).
418 bool Force;
419 /// Allow using trip count upper bound to unroll loops.
420 bool UpperBound;
421 /// Allow peeling off loop iterations for loops with low dynamic tripcount.
422 bool AllowPeeling;
423 /// Allow unrolling of all the iterations of the runtime loop remainder.
424 bool UnrollRemainder;
425 /// Allow unroll and jam. Used to enable unroll and jam for the target.
426 bool UnrollAndJam;
427 /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
428 /// value above is used during unroll and jam for the outer loop size.
429 /// This value is used in the same manner to limit the size of the inner
430 /// loop.
431 unsigned UnrollAndJamInnerLoopThreshold;
432 };
433
434 /// Get target-customized preferences for the generic loop unrolling
435 /// transformation. The caller will initialize UP with the current
436 /// target-independent defaults.
437 void getUnrollingPreferences(Loop *L, ScalarEvolution &,
438 UnrollingPreferences &UP) const;
439
440 /// @}
441
442 /// \name Scalar Target Information
443 /// @{
444
445 /// Flags indicating the kind of support for population count.
446 ///
447 /// Compared to the SW implementation, HW support is supposed to
448 /// significantly boost the performance when the population is dense, and it
449 /// may or may not degrade performance if the population is sparse. A HW
450 /// support is considered as "Fast" if it can outperform, or is on a par
451 /// with, SW implementation when the population is sparse; otherwise, it is
452 /// considered as "Slow".
453 enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
454
455 /// Return true if the specified immediate is legal add immediate, that
456 /// is the target has add instructions which can add a register with the
457 /// immediate without having to materialize the immediate into a register.
458 bool isLegalAddImmediate(int64_t Imm) const;
459
460 /// Return true if the specified immediate is legal icmp immediate,
461 /// that is the target has icmp instructions which can compare a register
462 /// against the immediate without having to materialize the immediate into a
463 /// register.
464 bool isLegalICmpImmediate(int64_t Imm) const;
465
466 /// Return true if the addressing mode represented by AM is legal for
467 /// this target, for a load/store of the specified type.
468 /// The type may be VoidTy, in which case only return true if the addressing
469 /// mode is legal for a load/store of any legal type.
470 /// If target returns true in LSRWithInstrQueries(), I may be valid.
471 /// TODO: Handle pre/postinc as well.
472 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
473 bool HasBaseReg, int64_t Scale,
474 unsigned AddrSpace = 0,
475 Instruction *I = nullptr) const;
476
477 /// Return true if LSR cost of C1 is lower than C1.
478 bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
479 TargetTransformInfo::LSRCost &C2) const;
480
481 /// Return true if the target can fuse a compare and branch.
482 /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
483 /// calculation for the instructions in a loop.
484 bool canMacroFuseCmp() const;
485
486 /// \return True is LSR should make efforts to create/preserve post-inc
487 /// addressing mode expressions.
488 bool shouldFavorPostInc() const;
489
490 /// Return true if the target supports masked load/store
491 /// AVX2 and AVX-512 targets allow masks for consecutive load and store
492 bool isLegalMaskedStore(Type *DataType) const;
493 bool isLegalMaskedLoad(Type *DataType) const;
494
495 /// Return true if the target supports masked gather/scatter
496 /// AVX-512 fully supports gather and scatter for vectors with 32 and 64
497 /// bits scalar type.
498 bool isLegalMaskedScatter(Type *DataType) const;
499 bool isLegalMaskedGather(Type *DataType) const;
500
501 /// Return true if the target has a unified operation to calculate division
502 /// and remainder. If so, the additional implicit multiplication and
503 /// subtraction required to calculate a remainder from division are free. This
504 /// can enable more aggressive transformations for division and remainder than
505 /// would typically be allowed using throughput or size cost models.
506 bool hasDivRemOp(Type *DataType, bool IsSigned) const;
507
508 /// Return true if the given instruction (assumed to be a memory access
509 /// instruction) has a volatile variant. If that's the case then we can avoid
510 /// addrspacecast to generic AS for volatile loads/stores. Default
511 /// implementation returns false, which prevents address space inference for
512 /// volatile loads/stores.
513 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
514
515 /// Return true if target doesn't mind addresses in vectors.
516 bool prefersVectorizedAddressing() const;
517
518 /// Return the cost of the scaling factor used in the addressing
519 /// mode represented by AM for this target, for a load/store
520 /// of the specified type.
521 /// If the AM is supported, the return value must be >= 0.
522 /// If the AM is not supported, it returns a negative value.
523 /// TODO: Handle pre/postinc as well.
524 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
525 bool HasBaseReg, int64_t Scale,
526 unsigned AddrSpace = 0) const;
527
528 /// Return true if the loop strength reduce pass should make
529 /// Instruction* based TTI queries to isLegalAddressingMode(). This is
530 /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
531 /// immediate offset and no index register.
532 bool LSRWithInstrQueries() const;
533
534 /// Return true if it's free to truncate a value of type Ty1 to type
535 /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
536 /// by referencing its sub-register AX.
537 bool isTruncateFree(Type *Ty1, Type *Ty2) const;
538
539 /// Return true if it is profitable to hoist instruction in the
540 /// then/else to before if.
541 bool isProfitableToHoist(Instruction *I) const;
542
543 bool useAA() const;
544
545 /// Return true if this type is legal.
546 bool isTypeLegal(Type *Ty) const;
547
548 /// Returns the target's jmp_buf alignment in bytes.
549 unsigned getJumpBufAlignment() const;
550
551 /// Returns the target's jmp_buf size in bytes.
552 unsigned getJumpBufSize() const;
553
554 /// Return true if switches should be turned into lookup tables for the
555 /// target.
556 bool shouldBuildLookupTables() const;
557
558 /// Return true if switches should be turned into lookup tables
559 /// containing this constant value for the target.
560 bool shouldBuildLookupTablesForConstant(Constant *C) const;
561
562 /// Return true if the input function which is cold at all call sites,
563 /// should use coldcc calling convention.
564 bool useColdCCForColdCall(Function &F) const;
565
566 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
567
568 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
569 unsigned VF) const;
570
571 /// If target has efficient vector element load/store instructions, it can
572 /// return true here so that insertion/extraction costs are not added to
573 /// the scalarization cost of a load/store.
574 bool supportsEfficientVectorElementLoadStore() const;
575
576 /// Don't restrict interleaved unrolling to small loops.
577 bool enableAggressiveInterleaving(bool LoopHasReductions) const;
578
579 /// If not nullptr, enable inline expansion of memcmp. IsZeroCmp is
580 /// true if this is the expansion of memcmp(p1, p2, s) == 0.
581 struct MemCmpExpansionOptions {
582 // The list of available load sizes (in bytes), sorted in decreasing order.
583 SmallVector<unsigned, 8> LoadSizes;
584 };
585 const MemCmpExpansionOptions *enableMemCmpExpansion(bool IsZeroCmp) const;
586
587 /// Enable matching of interleaved access groups.
588 bool enableInterleavedAccessVectorization() const;
589
590 /// Indicate that it is potentially unsafe to automatically vectorize
591 /// floating-point operations because the semantics of vector and scalar
592 /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
593 /// does not support IEEE-754 denormal numbers, while depending on the
594 /// platform, scalar floating-point math does.
595 /// This applies to floating-point math operations and calls, not memory
596 /// operations, shuffles, or casts.
597 bool isFPVectorizationPotentiallyUnsafe() const;
598
599 /// Determine if the target supports unaligned memory accesses.
600 bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
601 unsigned BitWidth, unsigned AddressSpace = 0,
602 unsigned Alignment = 1,
603 bool *Fast = nullptr) const;
604
605 /// Return hardware support for population count.
606 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
607
608 /// Return true if the hardware has a fast square-root instruction.
609 bool haveFastSqrt(Type *Ty) const;
610
611 /// Return true if it is faster to check if a floating-point value is NaN
612 /// (or not-NaN) versus a comparison against a constant FP zero value.
613 /// Targets should override this if materializing a 0.0 for comparison is
614 /// generally as cheap as checking for ordered/unordered.
615 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
616
617 /// Return the expected cost of supporting the floating point operation
618 /// of the specified type.
619 int getFPOpCost(Type *Ty) const;
620
621 /// Return the expected cost of materializing for the given integer
622 /// immediate of the specified type.
623 int getIntImmCost(const APInt &Imm, Type *Ty) const;
624
625 /// Return the expected cost of materialization for the given integer
626 /// immediate of the specified type for a given instruction. The cost can be
627 /// zero if the immediate can be folded into the specified instruction.
628 int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
629 Type *Ty) const;
630 int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
631 Type *Ty) const;
632
633 /// Return the expected cost for the given integer when optimising
634 /// for size. This is different than the other integer immediate cost
635 /// functions in that it is subtarget agnostic. This is useful when you e.g.
636 /// target one ISA such as Aarch32 but smaller encodings could be possible
637 /// with another such as Thumb. This return value is used as a penalty when
638 /// the total costs for a constant is calculated (the bigger the cost, the
639 /// more beneficial constant hoisting is).
640 int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
641 Type *Ty) const;
642 /// @}
643
644 /// \name Vector Target Information
645 /// @{
646
647 /// The various kinds of shuffle patterns for vector queries.
648 enum ShuffleKind {
649 SK_Broadcast, ///< Broadcast element 0 to all other elements.
650 SK_Reverse, ///< Reverse the order of the vector.
651 SK_Select, ///< Selects elements from the corresponding lane of
652 ///< either source operand. This is equivalent to a
653 ///< vector select with a constant condition operand.
654 SK_Transpose, ///< Transpose two vectors.
655 SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
656 SK_ExtractSubvector,///< ExtractSubvector Index indicates start offset.
657 SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one
658 ///< with any shuffle mask.
659 SK_PermuteSingleSrc ///< Shuffle elements of single source vector with any
660 ///< shuffle mask.
661 };
662
663 /// Additional information about an operand's possible values.
664 enum OperandValueKind {
665 OK_AnyValue, // Operand can have any value.
666 OK_UniformValue, // Operand is uniform (splat of a value).
667 OK_UniformConstantValue, // Operand is uniform constant.
668 OK_NonUniformConstantValue // Operand is a non uniform constant value.
669 };
670
671 /// Additional properties of an operand's values.
672 enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };
673
674 /// \return The number of scalar or vector registers that the target has.
675 /// If 'Vectors' is true, it returns the number of vector registers. If it is
676 /// set to false, it returns the number of scalar registers.
677 unsigned getNumberOfRegisters(bool Vector) const;
678
679 /// \return The width of the largest scalar or vector register type.
680 unsigned getRegisterBitWidth(bool Vector) const;
681
682 /// \return The width of the smallest vector register type.
683 unsigned getMinVectorRegisterBitWidth() const;
684
685 /// \return True if the vectorization factor should be chosen to
686 /// make the vector of the smallest element type match the size of a
687 /// vector register. For wider element types, this could result in
688 /// creating vectors that span multiple vector registers.
689 /// If false, the vectorization factor will be chosen based on the
690 /// size of the widest element type.
691 bool shouldMaximizeVectorBandwidth(bool OptSize) const;
692
693 /// \return The minimum vectorization factor for types of given element
694 /// bit width, or 0 if there is no mimimum VF. The returned value only
695 /// applies when shouldMaximizeVectorBandwidth returns true.
696 unsigned getMinimumVF(unsigned ElemWidth) const;
697
698 /// \return True if it should be considered for address type promotion.
699 /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
700 /// profitable without finding other extensions fed by the same input.
701 bool shouldConsiderAddressTypePromotion(
702 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
703
704 /// \return The size of a cache line in bytes.
705 unsigned getCacheLineSize() const;
706
707 /// The possible cache levels
708 enum class CacheLevel {
709 L1D, // The L1 data cache
710 L2D, // The L2 data cache
711
712 // We currently do not model L3 caches, as their sizes differ widely between
713 // microarchitectures. Also, we currently do not have a use for L3 cache
714 // size modeling yet.
715 };
716
717 /// \return The size of the cache level in bytes, if available.
718 llvm::Optional<unsigned> getCacheSize(CacheLevel Level) const;
719
720 /// \return The associativity of the cache level, if available.
721 llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
722
723 /// \return How much before a load we should place the prefetch instruction.
724 /// This is currently measured in number of instructions.
725 unsigned getPrefetchDistance() const;
726
727 /// \return Some HW prefetchers can handle accesses up to a certain constant
728 /// stride. This is the minimum stride in bytes where it makes sense to start
729 /// adding SW prefetches. The default is 1, i.e. prefetch with any stride.
730 unsigned getMinPrefetchStride() const;
731
732 /// \return The maximum number of iterations to prefetch ahead. If the
733 /// required number of iterations is more than this number, no prefetching is
734 /// performed.
735 unsigned getMaxPrefetchIterationsAhead() const;
736
737 /// \return The maximum interleave factor that any transform should try to
738 /// perform for this target. This number depends on the level of parallelism
739 /// and the number of execution units in the CPU.
740 unsigned getMaxInterleaveFactor(unsigned VF) const;
741
742 /// This is an approximation of reciprocal throughput of a math/logic op.
743 /// A higher cost indicates less expected throughput.
744 /// From Agner Fog's guides, reciprocal throughput is "the average number of
745 /// clock cycles per instruction when the instructions are not part of a
746 /// limiting dependency chain."
747 /// Therefore, costs should be scaled to account for multiple execution units
748 /// on the target that can process this type of instruction. For example, if
749 /// there are 5 scalar integer units and 2 vector integer units that can
750 /// calculate an 'add' in a single cycle, this model should indicate that the
751 /// cost of the vector add instruction is 2.5 times the cost of the scalar
752 /// add instruction.
753 /// \p Args is an optional argument which holds the instruction operands
754 /// values so the TTI can analyze those values searching for special
755 /// cases or optimizations based on those values.
756 int getArithmeticInstrCost(
757 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
758 OperandValueKind Opd2Info = OK_AnyValue,
759 OperandValueProperties Opd1PropInfo = OP_None,
760 OperandValueProperties Opd2PropInfo = OP_None,
761 ArrayRef<const Value *> Args = ArrayRef<const Value *>()) const;
762
763 /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
764 /// The index and subtype parameters are used by the subvector insertion and
765 /// extraction shuffle kinds.
766 int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0,
767 Type *SubTp = nullptr) const;
768
769 /// \return The expected cost of cast instructions, such as bitcast, trunc,
770 /// zext, etc. If there is an existing instruction that holds Opcode, it
771 /// may be passed in the 'I' parameter.
772 int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
773 const Instruction *I = nullptr) const;
774
775 /// \return The expected cost of a sign- or zero-extended vector extract. Use
776 /// -1 to indicate that there is no information about the index value.
777 int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
778 unsigned Index = -1) const;
779
780 /// \return The expected cost of control-flow related instructions such as
781 /// Phi, Ret, Br.
782 int getCFInstrCost(unsigned Opcode) const;
783
784 /// \returns The expected cost of compare and select instructions. If there
785 /// is an existing instruction that holds Opcode, it may be passed in the
786 /// 'I' parameter.
787 int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
788 Type *CondTy = nullptr, const Instruction *I = nullptr) const;
789
790 /// \return The expected cost of vector Insert and Extract.
791 /// Use -1 to indicate that there is no information on the index value.
792 int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const;
793
794 /// \return The cost of Load and Store instructions.
795 int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
796 unsigned AddressSpace, const Instruction *I = nullptr) const;
797
798 /// \return The cost of masked Load and Store instructions.
799 int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
800 unsigned AddressSpace) const;
801
802 /// \return The cost of Gather or Scatter operation
803 /// \p Opcode - is a type of memory access Load or Store
804 /// \p DataTy - a vector type of the data to be loaded or stored
805 /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
806 /// \p VariableMask - true when the memory access is predicated with a mask
807 /// that is not a compile-time constant
808 /// \p Alignment - alignment of single element
809 int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
810 bool VariableMask, unsigned Alignment) const;
811
812 /// \return The cost of the interleaved memory operation.
813 /// \p Opcode is the memory operation code
814 /// \p VecTy is the vector type of the interleaved access.
815 /// \p Factor is the interleave factor
816 /// \p Indices is the indices for interleaved load members (as interleaved
817 /// load allows gaps)
818 /// \p Alignment is the alignment of the memory operation
819 /// \p AddressSpace is address space of the pointer.
820 int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
821 ArrayRef<unsigned> Indices, unsigned Alignment,
822 unsigned AddressSpace) const;
823
824 /// Calculate the cost of performing a vector reduction.
825 ///
826 /// This is the cost of reducing the vector value of type \p Ty to a scalar
827 /// value using the operation denoted by \p Opcode. The form of the reduction
828 /// can either be a pairwise reduction or a reduction that splits the vector
829 /// at every reduction level.
830 ///
831 /// Pairwise:
832 /// (v0, v1, v2, v3)
833 /// ((v0+v1), (v2+v3), undef, undef)
834 /// Split:
835 /// (v0, v1, v2, v3)
836 /// ((v0+v2), (v1+v3), undef, undef)
837 int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
838 bool IsPairwiseForm) const;
839 int getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwiseForm,
840 bool IsUnsigned) const;
841
842 /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
843 /// Three cases are handled: 1. scalar instruction 2. vector instruction
844 /// 3. scalar instruction which is to be vectorized with VF.
845 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
846 ArrayRef<Value *> Args, FastMathFlags FMF,
847 unsigned VF = 1) const;
848
849 /// \returns The cost of Intrinsic instructions. Types analysis only.
850 /// If ScalarizationCostPassed is UINT_MAX, the cost of scalarizing the
851 /// arguments and the return value will be computed based on types.
852 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
853 ArrayRef<Type *> Tys, FastMathFlags FMF,
854 unsigned ScalarizationCostPassed = UINT_MAX) const;
855
856 /// \returns The cost of Call instructions.
857 int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) const;
858
859 /// \returns The number of pieces into which the provided type must be
860 /// split during legalization. Zero is returned when the answer is unknown.
861 unsigned getNumberOfParts(Type *Tp) const;
862
863 /// \returns The cost of the address computation. For most targets this can be
864 /// merged into the instruction indexing mode. Some targets might want to
865 /// distinguish between address computation for memory operations on vector
866 /// types and scalar types. Such targets should override this function.
867 /// The 'SE' parameter holds pointer for the scalar evolution object which
868 /// is used in order to get the Ptr step value in case of constant stride.
869 /// The 'Ptr' parameter holds SCEV of the access pointer.
870 int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr,
871 const SCEV *Ptr = nullptr) const;
872
873 /// \returns The cost, if any, of keeping values of the given types alive
874 /// over a callsite.
875 ///
876 /// Some types may require the use of register classes that do not have
877 /// any callee-saved registers, so would require a spill and fill.
878 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
879
880 /// \returns True if the intrinsic is a supported memory intrinsic. Info
881 /// will contain additional information - whether the intrinsic may write
882 /// or read to memory, volatility and the pointer. Info is undefined
883 /// if false is returned.
884 bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
885
886 /// \returns The maximum element size, in bytes, for an element
887 /// unordered-atomic memory intrinsic.
888 unsigned getAtomicMemIntrinsicMaxElementSize() const;
889
890 /// \returns A value which is the result of the given memory intrinsic. New
891 /// instructions may be created to extract the result from the given intrinsic
892 /// memory operation. Returns nullptr if the target cannot create a result
893 /// from the given intrinsic.
894 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
895 Type *ExpectedType) const;
896
897 /// \returns The type to use in a loop expansion of a memcpy call.
898 Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
899 unsigned SrcAlign, unsigned DestAlign) const;
900
901 /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
902 /// \param RemainingBytes The number of bytes to copy.
903 ///
904 /// Calculates the operand types to use when copying \p RemainingBytes of
905 /// memory, where source and destination alignments are \p SrcAlign and
906 /// \p DestAlign respectively.
907 void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
908 LLVMContext &Context,
909 unsigned RemainingBytes,
910 unsigned SrcAlign,
911 unsigned DestAlign) const;
912
913 /// \returns True if the two functions have compatible attributes for inlining
914 /// purposes.
915 bool areInlineCompatible(const Function *Caller,
916 const Function *Callee) const;
917
918 /// The type of load/store indexing.
919 enum MemIndexedMode {
920 MIM_Unindexed, ///< No indexing.
921 MIM_PreInc, ///< Pre-incrementing.
922 MIM_PreDec, ///< Pre-decrementing.
923 MIM_PostInc, ///< Post-incrementing.
924 MIM_PostDec ///< Post-decrementing.
925 };
926
927 /// \returns True if the specified indexed load for the given type is legal.
928 bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
929
930 /// \returns True if the specified indexed store for the given type is legal.
931 bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
932
933 /// \returns The bitwidth of the largest vector type that should be used to
934 /// load/store in the given address space.
935 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
936
937 /// \returns True if the load instruction is legal to vectorize.
938 bool isLegalToVectorizeLoad(LoadInst *LI) const;
939
940 /// \returns True if the store instruction is legal to vectorize.
941 bool isLegalToVectorizeStore(StoreInst *SI) const;
942
943 /// \returns True if it is legal to vectorize the given load chain.
944 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
945 unsigned Alignment,
946 unsigned AddrSpace) const;
947
948 /// \returns True if it is legal to vectorize the given store chain.
949 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
950 unsigned Alignment,
951 unsigned AddrSpace) const;
952
953 /// \returns The new vector factor value if the target doesn't support \p
954 /// SizeInBytes loads or has a better vector factor.
955 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
956 unsigned ChainSizeInBytes,
957 VectorType *VecTy) const;
958
959 /// \returns The new vector factor value if the target doesn't support \p
960 /// SizeInBytes stores or has a better vector factor.
961 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
962 unsigned ChainSizeInBytes,
963 VectorType *VecTy) const;
964
965 /// Flags describing the kind of vector reduction.
966 struct ReductionFlags {
ReductionFlagsReductionFlags967 ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {}
968 bool IsMaxOp; ///< If the op a min/max kind, true if it's a max operation.
969 bool IsSigned; ///< Whether the operation is a signed int reduction.
970 bool NoNaN; ///< If op is an fp min/max, whether NaNs may be present.
971 };
972
973 /// \returns True if the target wants to handle the given reduction idiom in
974 /// the intrinsics form instead of the shuffle form.
975 bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
976 ReductionFlags Flags) const;
977
978 /// \returns True if the target wants to expand the given reduction intrinsic
979 /// into a shuffle sequence.
980 bool shouldExpandReduction(const IntrinsicInst *II) const;
981 /// @}
982
983 private:
984 /// Estimate the latency of specified instruction.
985 /// Returns 1 as the default value.
986 int getInstructionLatency(const Instruction *I) const;
987
988 /// Returns the expected throughput cost of the instruction.
989 /// Returns -1 if the cost is unknown.
990 int getInstructionThroughput(const Instruction *I) const;
991
992 /// The abstract base class used to type erase specific TTI
993 /// implementations.
994 class Concept;
995
996 /// The template model for the base class which wraps a concrete
997 /// implementation in a type erased interface.
998 template <typename T> class Model;
999
1000 std::unique_ptr<Concept> TTIImpl;
1001 };
1002
1003 class TargetTransformInfo::Concept {
1004 public:
1005 virtual ~Concept() = 0;
1006 virtual const DataLayout &getDataLayout() const = 0;
1007 virtual int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0;
1008 virtual int getGEPCost(Type *PointeeType, const Value *Ptr,
1009 ArrayRef<const Value *> Operands) = 0;
1010 virtual int getExtCost(const Instruction *I, const Value *Src) = 0;
1011 virtual int getCallCost(FunctionType *FTy, int NumArgs) = 0;
1012 virtual int getCallCost(const Function *F, int NumArgs) = 0;
1013 virtual int getCallCost(const Function *F,
1014 ArrayRef<const Value *> Arguments) = 0;
1015 virtual unsigned getInliningThresholdMultiplier() = 0;
1016 virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1017 ArrayRef<Type *> ParamTys) = 0;
1018 virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1019 ArrayRef<const Value *> Arguments) = 0;
1020 virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
1021 unsigned &JTSize) = 0;
1022 virtual int
1023 getUserCost(const User *U, ArrayRef<const Value *> Operands) = 0;
1024 virtual bool hasBranchDivergence() = 0;
1025 virtual bool isSourceOfDivergence(const Value *V) = 0;
1026 virtual bool isAlwaysUniform(const Value *V) = 0;
1027 virtual unsigned getFlatAddressSpace() = 0;
1028 virtual bool isLoweredToCall(const Function *F) = 0;
1029 virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
1030 UnrollingPreferences &UP) = 0;
1031 virtual bool isLegalAddImmediate(int64_t Imm) = 0;
1032 virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
1033 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
1034 int64_t BaseOffset, bool HasBaseReg,
1035 int64_t Scale,
1036 unsigned AddrSpace,
1037 Instruction *I) = 0;
1038 virtual bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1039 TargetTransformInfo::LSRCost &C2) = 0;
1040 virtual bool canMacroFuseCmp() = 0;
1041 virtual bool shouldFavorPostInc() const = 0;
1042 virtual bool isLegalMaskedStore(Type *DataType) = 0;
1043 virtual bool isLegalMaskedLoad(Type *DataType) = 0;
1044 virtual bool isLegalMaskedScatter(Type *DataType) = 0;
1045 virtual bool isLegalMaskedGather(Type *DataType) = 0;
1046 virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
1047 virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
1048 virtual bool prefersVectorizedAddressing() = 0;
1049 virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
1050 int64_t BaseOffset, bool HasBaseReg,
1051 int64_t Scale, unsigned AddrSpace) = 0;
1052 virtual bool LSRWithInstrQueries() = 0;
1053 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
1054 virtual bool isProfitableToHoist(Instruction *I) = 0;
1055 virtual bool useAA() = 0;
1056 virtual bool isTypeLegal(Type *Ty) = 0;
1057 virtual unsigned getJumpBufAlignment() = 0;
1058 virtual unsigned getJumpBufSize() = 0;
1059 virtual bool shouldBuildLookupTables() = 0;
1060 virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
1061 virtual bool useColdCCForColdCall(Function &F) = 0;
1062 virtual unsigned
1063 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) = 0;
1064 virtual unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1065 unsigned VF) = 0;
1066 virtual bool supportsEfficientVectorElementLoadStore() = 0;
1067 virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
1068 virtual const MemCmpExpansionOptions *enableMemCmpExpansion(
1069 bool IsZeroCmp) const = 0;
1070 virtual bool enableInterleavedAccessVectorization() = 0;
1071 virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
1072 virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
1073 unsigned BitWidth,
1074 unsigned AddressSpace,
1075 unsigned Alignment,
1076 bool *Fast) = 0;
1077 virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
1078 virtual bool haveFastSqrt(Type *Ty) = 0;
1079 virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
1080 virtual int getFPOpCost(Type *Ty) = 0;
1081 virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1082 Type *Ty) = 0;
1083 virtual int getIntImmCost(const APInt &Imm, Type *Ty) = 0;
1084 virtual int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1085 Type *Ty) = 0;
1086 virtual int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1087 Type *Ty) = 0;
1088 virtual unsigned getNumberOfRegisters(bool Vector) = 0;
1089 virtual unsigned getRegisterBitWidth(bool Vector) const = 0;
1090 virtual unsigned getMinVectorRegisterBitWidth() = 0;
1091 virtual bool shouldMaximizeVectorBandwidth(bool OptSize) const = 0;
1092 virtual unsigned getMinimumVF(unsigned ElemWidth) const = 0;
1093 virtual bool shouldConsiderAddressTypePromotion(
1094 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
1095 virtual unsigned getCacheLineSize() = 0;
1096 virtual llvm::Optional<unsigned> getCacheSize(CacheLevel Level) = 0;
1097 virtual llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) = 0;
1098 virtual unsigned getPrefetchDistance() = 0;
1099 virtual unsigned getMinPrefetchStride() = 0;
1100 virtual unsigned getMaxPrefetchIterationsAhead() = 0;
1101 virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
1102 virtual unsigned
1103 getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
1104 OperandValueKind Opd2Info,
1105 OperandValueProperties Opd1PropInfo,
1106 OperandValueProperties Opd2PropInfo,
1107 ArrayRef<const Value *> Args) = 0;
1108 virtual int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
1109 Type *SubTp) = 0;
1110 virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1111 const Instruction *I) = 0;
1112 virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst,
1113 VectorType *VecTy, unsigned Index) = 0;
1114 virtual int getCFInstrCost(unsigned Opcode) = 0;
1115 virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
1116 Type *CondTy, const Instruction *I) = 0;
1117 virtual int getVectorInstrCost(unsigned Opcode, Type *Val,
1118 unsigned Index) = 0;
1119 virtual int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1120 unsigned AddressSpace, const Instruction *I) = 0;
1121 virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
1122 unsigned Alignment,
1123 unsigned AddressSpace) = 0;
1124 virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
1125 Value *Ptr, bool VariableMask,
1126 unsigned Alignment) = 0;
1127 virtual int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
1128 unsigned Factor,
1129 ArrayRef<unsigned> Indices,
1130 unsigned Alignment,
1131 unsigned AddressSpace) = 0;
1132 virtual int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
1133 bool IsPairwiseForm) = 0;
1134 virtual int getMinMaxReductionCost(Type *Ty, Type *CondTy,
1135 bool IsPairwiseForm, bool IsUnsigned) = 0;
1136 virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1137 ArrayRef<Type *> Tys, FastMathFlags FMF,
1138 unsigned ScalarizationCostPassed) = 0;
1139 virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1140 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) = 0;
1141 virtual int getCallInstrCost(Function *F, Type *RetTy,
1142 ArrayRef<Type *> Tys) = 0;
1143 virtual unsigned getNumberOfParts(Type *Tp) = 0;
1144 virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1145 const SCEV *Ptr) = 0;
1146 virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
1147 virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
1148 MemIntrinsicInfo &Info) = 0;
1149 virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
1150 virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1151 Type *ExpectedType) = 0;
1152 virtual Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
1153 unsigned SrcAlign,
1154 unsigned DestAlign) const = 0;
1155 virtual void getMemcpyLoopResidualLoweringType(
1156 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1157 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const = 0;
1158 virtual bool areInlineCompatible(const Function *Caller,
1159 const Function *Callee) const = 0;
1160 virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
1161 virtual bool isIndexedStoreLegal(MemIndexedMode Mode,Type *Ty) const = 0;
1162 virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
1163 virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
1164 virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
1165 virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1166 unsigned Alignment,
1167 unsigned AddrSpace) const = 0;
1168 virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1169 unsigned Alignment,
1170 unsigned AddrSpace) const = 0;
1171 virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1172 unsigned ChainSizeInBytes,
1173 VectorType *VecTy) const = 0;
1174 virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1175 unsigned ChainSizeInBytes,
1176 VectorType *VecTy) const = 0;
1177 virtual bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1178 ReductionFlags) const = 0;
1179 virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
1180 virtual int getInstructionLatency(const Instruction *I) = 0;
1181 };
1182
1183 template <typename T>
1184 class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
1185 T Impl;
1186
1187 public:
Model(T Impl)1188 Model(T Impl) : Impl(std::move(Impl)) {}
~Model()1189 ~Model() override {}
1190
getDataLayout()1191 const DataLayout &getDataLayout() const override {
1192 return Impl.getDataLayout();
1193 }
1194
getOperationCost(unsigned Opcode,Type * Ty,Type * OpTy)1195 int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) override {
1196 return Impl.getOperationCost(Opcode, Ty, OpTy);
1197 }
getGEPCost(Type * PointeeType,const Value * Ptr,ArrayRef<const Value * > Operands)1198 int getGEPCost(Type *PointeeType, const Value *Ptr,
1199 ArrayRef<const Value *> Operands) override {
1200 return Impl.getGEPCost(PointeeType, Ptr, Operands);
1201 }
getExtCost(const Instruction * I,const Value * Src)1202 int getExtCost(const Instruction *I, const Value *Src) override {
1203 return Impl.getExtCost(I, Src);
1204 }
getCallCost(FunctionType * FTy,int NumArgs)1205 int getCallCost(FunctionType *FTy, int NumArgs) override {
1206 return Impl.getCallCost(FTy, NumArgs);
1207 }
getCallCost(const Function * F,int NumArgs)1208 int getCallCost(const Function *F, int NumArgs) override {
1209 return Impl.getCallCost(F, NumArgs);
1210 }
getCallCost(const Function * F,ArrayRef<const Value * > Arguments)1211 int getCallCost(const Function *F,
1212 ArrayRef<const Value *> Arguments) override {
1213 return Impl.getCallCost(F, Arguments);
1214 }
getInliningThresholdMultiplier()1215 unsigned getInliningThresholdMultiplier() override {
1216 return Impl.getInliningThresholdMultiplier();
1217 }
getIntrinsicCost(Intrinsic::ID IID,Type * RetTy,ArrayRef<Type * > ParamTys)1218 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1219 ArrayRef<Type *> ParamTys) override {
1220 return Impl.getIntrinsicCost(IID, RetTy, ParamTys);
1221 }
getIntrinsicCost(Intrinsic::ID IID,Type * RetTy,ArrayRef<const Value * > Arguments)1222 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1223 ArrayRef<const Value *> Arguments) override {
1224 return Impl.getIntrinsicCost(IID, RetTy, Arguments);
1225 }
getUserCost(const User * U,ArrayRef<const Value * > Operands)1226 int getUserCost(const User *U, ArrayRef<const Value *> Operands) override {
1227 return Impl.getUserCost(U, Operands);
1228 }
hasBranchDivergence()1229 bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
isSourceOfDivergence(const Value * V)1230 bool isSourceOfDivergence(const Value *V) override {
1231 return Impl.isSourceOfDivergence(V);
1232 }
1233
isAlwaysUniform(const Value * V)1234 bool isAlwaysUniform(const Value *V) override {
1235 return Impl.isAlwaysUniform(V);
1236 }
1237
getFlatAddressSpace()1238 unsigned getFlatAddressSpace() override {
1239 return Impl.getFlatAddressSpace();
1240 }
1241
isLoweredToCall(const Function * F)1242 bool isLoweredToCall(const Function *F) override {
1243 return Impl.isLoweredToCall(F);
1244 }
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,UnrollingPreferences & UP)1245 void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1246 UnrollingPreferences &UP) override {
1247 return Impl.getUnrollingPreferences(L, SE, UP);
1248 }
isLegalAddImmediate(int64_t Imm)1249 bool isLegalAddImmediate(int64_t Imm) override {
1250 return Impl.isLegalAddImmediate(Imm);
1251 }
isLegalICmpImmediate(int64_t Imm)1252 bool isLegalICmpImmediate(int64_t Imm) override {
1253 return Impl.isLegalICmpImmediate(Imm);
1254 }
isLegalAddressingMode(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace,Instruction * I)1255 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
1256 bool HasBaseReg, int64_t Scale,
1257 unsigned AddrSpace,
1258 Instruction *I) override {
1259 return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
1260 Scale, AddrSpace, I);
1261 }
isLSRCostLess(TargetTransformInfo::LSRCost & C1,TargetTransformInfo::LSRCost & C2)1262 bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1263 TargetTransformInfo::LSRCost &C2) override {
1264 return Impl.isLSRCostLess(C1, C2);
1265 }
canMacroFuseCmp()1266 bool canMacroFuseCmp() override {
1267 return Impl.canMacroFuseCmp();
1268 }
shouldFavorPostInc()1269 bool shouldFavorPostInc() const override {
1270 return Impl.shouldFavorPostInc();
1271 }
isLegalMaskedStore(Type * DataType)1272 bool isLegalMaskedStore(Type *DataType) override {
1273 return Impl.isLegalMaskedStore(DataType);
1274 }
isLegalMaskedLoad(Type * DataType)1275 bool isLegalMaskedLoad(Type *DataType) override {
1276 return Impl.isLegalMaskedLoad(DataType);
1277 }
isLegalMaskedScatter(Type * DataType)1278 bool isLegalMaskedScatter(Type *DataType) override {
1279 return Impl.isLegalMaskedScatter(DataType);
1280 }
isLegalMaskedGather(Type * DataType)1281 bool isLegalMaskedGather(Type *DataType) override {
1282 return Impl.isLegalMaskedGather(DataType);
1283 }
hasDivRemOp(Type * DataType,bool IsSigned)1284 bool hasDivRemOp(Type *DataType, bool IsSigned) override {
1285 return Impl.hasDivRemOp(DataType, IsSigned);
1286 }
hasVolatileVariant(Instruction * I,unsigned AddrSpace)1287 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
1288 return Impl.hasVolatileVariant(I, AddrSpace);
1289 }
prefersVectorizedAddressing()1290 bool prefersVectorizedAddressing() override {
1291 return Impl.prefersVectorizedAddressing();
1292 }
getScalingFactorCost(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace)1293 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
1294 bool HasBaseReg, int64_t Scale,
1295 unsigned AddrSpace) override {
1296 return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
1297 Scale, AddrSpace);
1298 }
LSRWithInstrQueries()1299 bool LSRWithInstrQueries() override {
1300 return Impl.LSRWithInstrQueries();
1301 }
isTruncateFree(Type * Ty1,Type * Ty2)1302 bool isTruncateFree(Type *Ty1, Type *Ty2) override {
1303 return Impl.isTruncateFree(Ty1, Ty2);
1304 }
isProfitableToHoist(Instruction * I)1305 bool isProfitableToHoist(Instruction *I) override {
1306 return Impl.isProfitableToHoist(I);
1307 }
useAA()1308 bool useAA() override { return Impl.useAA(); }
isTypeLegal(Type * Ty)1309 bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
getJumpBufAlignment()1310 unsigned getJumpBufAlignment() override { return Impl.getJumpBufAlignment(); }
getJumpBufSize()1311 unsigned getJumpBufSize() override { return Impl.getJumpBufSize(); }
shouldBuildLookupTables()1312 bool shouldBuildLookupTables() override {
1313 return Impl.shouldBuildLookupTables();
1314 }
shouldBuildLookupTablesForConstant(Constant * C)1315 bool shouldBuildLookupTablesForConstant(Constant *C) override {
1316 return Impl.shouldBuildLookupTablesForConstant(C);
1317 }
useColdCCForColdCall(Function & F)1318 bool useColdCCForColdCall(Function &F) override {
1319 return Impl.useColdCCForColdCall(F);
1320 }
1321
getScalarizationOverhead(Type * Ty,bool Insert,bool Extract)1322 unsigned getScalarizationOverhead(Type *Ty, bool Insert,
1323 bool Extract) override {
1324 return Impl.getScalarizationOverhead(Ty, Insert, Extract);
1325 }
getOperandsScalarizationOverhead(ArrayRef<const Value * > Args,unsigned VF)1326 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1327 unsigned VF) override {
1328 return Impl.getOperandsScalarizationOverhead(Args, VF);
1329 }
1330
supportsEfficientVectorElementLoadStore()1331 bool supportsEfficientVectorElementLoadStore() override {
1332 return Impl.supportsEfficientVectorElementLoadStore();
1333 }
1334
enableAggressiveInterleaving(bool LoopHasReductions)1335 bool enableAggressiveInterleaving(bool LoopHasReductions) override {
1336 return Impl.enableAggressiveInterleaving(LoopHasReductions);
1337 }
enableMemCmpExpansion(bool IsZeroCmp)1338 const MemCmpExpansionOptions *enableMemCmpExpansion(
1339 bool IsZeroCmp) const override {
1340 return Impl.enableMemCmpExpansion(IsZeroCmp);
1341 }
enableInterleavedAccessVectorization()1342 bool enableInterleavedAccessVectorization() override {
1343 return Impl.enableInterleavedAccessVectorization();
1344 }
isFPVectorizationPotentiallyUnsafe()1345 bool isFPVectorizationPotentiallyUnsafe() override {
1346 return Impl.isFPVectorizationPotentiallyUnsafe();
1347 }
allowsMisalignedMemoryAccesses(LLVMContext & Context,unsigned BitWidth,unsigned AddressSpace,unsigned Alignment,bool * Fast)1348 bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
1349 unsigned BitWidth, unsigned AddressSpace,
1350 unsigned Alignment, bool *Fast) override {
1351 return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
1352 Alignment, Fast);
1353 }
getPopcntSupport(unsigned IntTyWidthInBit)1354 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
1355 return Impl.getPopcntSupport(IntTyWidthInBit);
1356 }
haveFastSqrt(Type * Ty)1357 bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
1358
isFCmpOrdCheaperThanFCmpZero(Type * Ty)1359 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
1360 return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
1361 }
1362
getFPOpCost(Type * Ty)1363 int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); }
1364
getIntImmCodeSizeCost(unsigned Opc,unsigned Idx,const APInt & Imm,Type * Ty)1365 int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1366 Type *Ty) override {
1367 return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
1368 }
getIntImmCost(const APInt & Imm,Type * Ty)1369 int getIntImmCost(const APInt &Imm, Type *Ty) override {
1370 return Impl.getIntImmCost(Imm, Ty);
1371 }
getIntImmCost(unsigned Opc,unsigned Idx,const APInt & Imm,Type * Ty)1372 int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1373 Type *Ty) override {
1374 return Impl.getIntImmCost(Opc, Idx, Imm, Ty);
1375 }
getIntImmCost(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty)1376 int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1377 Type *Ty) override {
1378 return Impl.getIntImmCost(IID, Idx, Imm, Ty);
1379 }
getNumberOfRegisters(bool Vector)1380 unsigned getNumberOfRegisters(bool Vector) override {
1381 return Impl.getNumberOfRegisters(Vector);
1382 }
getRegisterBitWidth(bool Vector)1383 unsigned getRegisterBitWidth(bool Vector) const override {
1384 return Impl.getRegisterBitWidth(Vector);
1385 }
getMinVectorRegisterBitWidth()1386 unsigned getMinVectorRegisterBitWidth() override {
1387 return Impl.getMinVectorRegisterBitWidth();
1388 }
shouldMaximizeVectorBandwidth(bool OptSize)1389 bool shouldMaximizeVectorBandwidth(bool OptSize) const override {
1390 return Impl.shouldMaximizeVectorBandwidth(OptSize);
1391 }
getMinimumVF(unsigned ElemWidth)1392 unsigned getMinimumVF(unsigned ElemWidth) const override {
1393 return Impl.getMinimumVF(ElemWidth);
1394 }
shouldConsiderAddressTypePromotion(const Instruction & I,bool & AllowPromotionWithoutCommonHeader)1395 bool shouldConsiderAddressTypePromotion(
1396 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
1397 return Impl.shouldConsiderAddressTypePromotion(
1398 I, AllowPromotionWithoutCommonHeader);
1399 }
getCacheLineSize()1400 unsigned getCacheLineSize() override {
1401 return Impl.getCacheLineSize();
1402 }
getCacheSize(CacheLevel Level)1403 llvm::Optional<unsigned> getCacheSize(CacheLevel Level) override {
1404 return Impl.getCacheSize(Level);
1405 }
getCacheAssociativity(CacheLevel Level)1406 llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) override {
1407 return Impl.getCacheAssociativity(Level);
1408 }
getPrefetchDistance()1409 unsigned getPrefetchDistance() override { return Impl.getPrefetchDistance(); }
getMinPrefetchStride()1410 unsigned getMinPrefetchStride() override {
1411 return Impl.getMinPrefetchStride();
1412 }
getMaxPrefetchIterationsAhead()1413 unsigned getMaxPrefetchIterationsAhead() override {
1414 return Impl.getMaxPrefetchIterationsAhead();
1415 }
getMaxInterleaveFactor(unsigned VF)1416 unsigned getMaxInterleaveFactor(unsigned VF) override {
1417 return Impl.getMaxInterleaveFactor(VF);
1418 }
getEstimatedNumberOfCaseClusters(const SwitchInst & SI,unsigned & JTSize)1419 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
1420 unsigned &JTSize) override {
1421 return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize);
1422 }
1423 unsigned
getArithmeticInstrCost(unsigned Opcode,Type * Ty,OperandValueKind Opd1Info,OperandValueKind Opd2Info,OperandValueProperties Opd1PropInfo,OperandValueProperties Opd2PropInfo,ArrayRef<const Value * > Args)1424 getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
1425 OperandValueKind Opd2Info,
1426 OperandValueProperties Opd1PropInfo,
1427 OperandValueProperties Opd2PropInfo,
1428 ArrayRef<const Value *> Args) override {
1429 return Impl.getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
1430 Opd1PropInfo, Opd2PropInfo, Args);
1431 }
getShuffleCost(ShuffleKind Kind,Type * Tp,int Index,Type * SubTp)1432 int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
1433 Type *SubTp) override {
1434 return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
1435 }
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,const Instruction * I)1436 int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1437 const Instruction *I) override {
1438 return Impl.getCastInstrCost(Opcode, Dst, Src, I);
1439 }
getExtractWithExtendCost(unsigned Opcode,Type * Dst,VectorType * VecTy,unsigned Index)1440 int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
1441 unsigned Index) override {
1442 return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
1443 }
getCFInstrCost(unsigned Opcode)1444 int getCFInstrCost(unsigned Opcode) override {
1445 return Impl.getCFInstrCost(Opcode);
1446 }
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,const Instruction * I)1447 int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1448 const Instruction *I) override {
1449 return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
1450 }
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index)1451 int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override {
1452 return Impl.getVectorInstrCost(Opcode, Val, Index);
1453 }
getMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace,const Instruction * I)1454 int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1455 unsigned AddressSpace, const Instruction *I) override {
1456 return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
1457 }
getMaskedMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace)1458 int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1459 unsigned AddressSpace) override {
1460 return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
1461 }
getGatherScatterOpCost(unsigned Opcode,Type * DataTy,Value * Ptr,bool VariableMask,unsigned Alignment)1462 int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
1463 Value *Ptr, bool VariableMask,
1464 unsigned Alignment) override {
1465 return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1466 Alignment);
1467 }
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,unsigned Alignment,unsigned AddressSpace)1468 int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
1469 ArrayRef<unsigned> Indices, unsigned Alignment,
1470 unsigned AddressSpace) override {
1471 return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1472 Alignment, AddressSpace);
1473 }
getArithmeticReductionCost(unsigned Opcode,Type * Ty,bool IsPairwiseForm)1474 int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
1475 bool IsPairwiseForm) override {
1476 return Impl.getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
1477 }
getMinMaxReductionCost(Type * Ty,Type * CondTy,bool IsPairwiseForm,bool IsUnsigned)1478 int getMinMaxReductionCost(Type *Ty, Type *CondTy,
1479 bool IsPairwiseForm, bool IsUnsigned) override {
1480 return Impl.getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
1481 }
getIntrinsicInstrCost(Intrinsic::ID ID,Type * RetTy,ArrayRef<Type * > Tys,FastMathFlags FMF,unsigned ScalarizationCostPassed)1482 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef<Type *> Tys,
1483 FastMathFlags FMF, unsigned ScalarizationCostPassed) override {
1484 return Impl.getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
1485 ScalarizationCostPassed);
1486 }
getIntrinsicInstrCost(Intrinsic::ID ID,Type * RetTy,ArrayRef<Value * > Args,FastMathFlags FMF,unsigned VF)1487 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1488 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) override {
1489 return Impl.getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
1490 }
getCallInstrCost(Function * F,Type * RetTy,ArrayRef<Type * > Tys)1491 int getCallInstrCost(Function *F, Type *RetTy,
1492 ArrayRef<Type *> Tys) override {
1493 return Impl.getCallInstrCost(F, RetTy, Tys);
1494 }
getNumberOfParts(Type * Tp)1495 unsigned getNumberOfParts(Type *Tp) override {
1496 return Impl.getNumberOfParts(Tp);
1497 }
getAddressComputationCost(Type * Ty,ScalarEvolution * SE,const SCEV * Ptr)1498 int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1499 const SCEV *Ptr) override {
1500 return Impl.getAddressComputationCost(Ty, SE, Ptr);
1501 }
getCostOfKeepingLiveOverCall(ArrayRef<Type * > Tys)1502 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
1503 return Impl.getCostOfKeepingLiveOverCall(Tys);
1504 }
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info)1505 bool getTgtMemIntrinsic(IntrinsicInst *Inst,
1506 MemIntrinsicInfo &Info) override {
1507 return Impl.getTgtMemIntrinsic(Inst, Info);
1508 }
getAtomicMemIntrinsicMaxElementSize()1509 unsigned getAtomicMemIntrinsicMaxElementSize() const override {
1510 return Impl.getAtomicMemIntrinsicMaxElementSize();
1511 }
getOrCreateResultFromMemIntrinsic(IntrinsicInst * Inst,Type * ExpectedType)1512 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1513 Type *ExpectedType) override {
1514 return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
1515 }
getMemcpyLoopLoweringType(LLVMContext & Context,Value * Length,unsigned SrcAlign,unsigned DestAlign)1516 Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
1517 unsigned SrcAlign,
1518 unsigned DestAlign) const override {
1519 return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAlign, DestAlign);
1520 }
getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type * > & OpsOut,LLVMContext & Context,unsigned RemainingBytes,unsigned SrcAlign,unsigned DestAlign)1521 void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
1522 LLVMContext &Context,
1523 unsigned RemainingBytes,
1524 unsigned SrcAlign,
1525 unsigned DestAlign) const override {
1526 Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
1527 SrcAlign, DestAlign);
1528 }
areInlineCompatible(const Function * Caller,const Function * Callee)1529 bool areInlineCompatible(const Function *Caller,
1530 const Function *Callee) const override {
1531 return Impl.areInlineCompatible(Caller, Callee);
1532 }
isIndexedLoadLegal(MemIndexedMode Mode,Type * Ty)1533 bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
1534 return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
1535 }
isIndexedStoreLegal(MemIndexedMode Mode,Type * Ty)1536 bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
1537 return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
1538 }
getLoadStoreVecRegBitWidth(unsigned AddrSpace)1539 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
1540 return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
1541 }
isLegalToVectorizeLoad(LoadInst * LI)1542 bool isLegalToVectorizeLoad(LoadInst *LI) const override {
1543 return Impl.isLegalToVectorizeLoad(LI);
1544 }
isLegalToVectorizeStore(StoreInst * SI)1545 bool isLegalToVectorizeStore(StoreInst *SI) const override {
1546 return Impl.isLegalToVectorizeStore(SI);
1547 }
isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,unsigned Alignment,unsigned AddrSpace)1548 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1549 unsigned Alignment,
1550 unsigned AddrSpace) const override {
1551 return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
1552 AddrSpace);
1553 }
isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,unsigned Alignment,unsigned AddrSpace)1554 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1555 unsigned Alignment,
1556 unsigned AddrSpace) const override {
1557 return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1558 AddrSpace);
1559 }
getLoadVectorFactor(unsigned VF,unsigned LoadSize,unsigned ChainSizeInBytes,VectorType * VecTy)1560 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1561 unsigned ChainSizeInBytes,
1562 VectorType *VecTy) const override {
1563 return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1564 }
getStoreVectorFactor(unsigned VF,unsigned StoreSize,unsigned ChainSizeInBytes,VectorType * VecTy)1565 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1566 unsigned ChainSizeInBytes,
1567 VectorType *VecTy) const override {
1568 return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1569 }
useReductionIntrinsic(unsigned Opcode,Type * Ty,ReductionFlags Flags)1570 bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1571 ReductionFlags Flags) const override {
1572 return Impl.useReductionIntrinsic(Opcode, Ty, Flags);
1573 }
shouldExpandReduction(const IntrinsicInst * II)1574 bool shouldExpandReduction(const IntrinsicInst *II) const override {
1575 return Impl.shouldExpandReduction(II);
1576 }
getInstructionLatency(const Instruction * I)1577 int getInstructionLatency(const Instruction *I) override {
1578 return Impl.getInstructionLatency(I);
1579 }
1580 };
1581
1582 template <typename T>
TargetTransformInfo(T Impl)1583 TargetTransformInfo::TargetTransformInfo(T Impl)
1584 : TTIImpl(new Model<T>(Impl)) {}
1585
1586 /// Analysis pass providing the \c TargetTransformInfo.
1587 ///
1588 /// The core idea of the TargetIRAnalysis is to expose an interface through
1589 /// which LLVM targets can analyze and provide information about the middle
1590 /// end's target-independent IR. This supports use cases such as target-aware
1591 /// cost modeling of IR constructs.
1592 ///
1593 /// This is a function analysis because much of the cost modeling for targets
1594 /// is done in a subtarget specific way and LLVM supports compiling different
1595 /// functions targeting different subtargets in order to support runtime
1596 /// dispatch according to the observed subtarget.
1597 class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
1598 public:
1599 typedef TargetTransformInfo Result;
1600
1601 /// Default construct a target IR analysis.
1602 ///
1603 /// This will use the module's datalayout to construct a baseline
1604 /// conservative TTI result.
1605 TargetIRAnalysis();
1606
1607 /// Construct an IR analysis pass around a target-provide callback.
1608 ///
1609 /// The callback will be called with a particular function for which the TTI
1610 /// is needed and must return a TTI object for that function.
1611 TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
1612
1613 // Value semantics. We spell out the constructors for MSVC.
TargetIRAnalysis(const TargetIRAnalysis & Arg)1614 TargetIRAnalysis(const TargetIRAnalysis &Arg)
1615 : TTICallback(Arg.TTICallback) {}
TargetIRAnalysis(TargetIRAnalysis && Arg)1616 TargetIRAnalysis(TargetIRAnalysis &&Arg)
1617 : TTICallback(std::move(Arg.TTICallback)) {}
1618 TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
1619 TTICallback = RHS.TTICallback;
1620 return *this;
1621 }
1622 TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
1623 TTICallback = std::move(RHS.TTICallback);
1624 return *this;
1625 }
1626
1627 Result run(const Function &F, FunctionAnalysisManager &);
1628
1629 private:
1630 friend AnalysisInfoMixin<TargetIRAnalysis>;
1631 static AnalysisKey Key;
1632
1633 /// The callback used to produce a result.
1634 ///
1635 /// We use a completely opaque callback so that targets can provide whatever
1636 /// mechanism they desire for constructing the TTI for a given function.
1637 ///
1638 /// FIXME: Should we really use std::function? It's relatively inefficient.
1639 /// It might be possible to arrange for even stateful callbacks to outlive
1640 /// the analysis and thus use a function_ref which would be lighter weight.
1641 /// This may also be less error prone as the callback is likely to reference
1642 /// the external TargetMachine, and that reference needs to never dangle.
1643 std::function<Result(const Function &)> TTICallback;
1644
1645 /// Helper function used as the callback in the default constructor.
1646 static Result getDefaultTTI(const Function &F);
1647 };
1648
1649 /// Wrapper pass for TargetTransformInfo.
1650 ///
1651 /// This pass can be constructed from a TTI object which it stores internally
1652 /// and is queried by passes.
1653 class TargetTransformInfoWrapperPass : public ImmutablePass {
1654 TargetIRAnalysis TIRA;
1655 Optional<TargetTransformInfo> TTI;
1656
1657 virtual void anchor();
1658
1659 public:
1660 static char ID;
1661
1662 /// We must provide a default constructor for the pass but it should
1663 /// never be used.
1664 ///
1665 /// Use the constructor below or call one of the creation routines.
1666 TargetTransformInfoWrapperPass();
1667
1668 explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
1669
1670 TargetTransformInfo &getTTI(const Function &F);
1671 };
1672
1673 /// Create an analysis pass wrapper around a TTI object.
1674 ///
1675 /// This analysis pass just holds the TTI instance and makes it available to
1676 /// clients.
1677 ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
1678
1679 } // End llvm namespace
1680
1681 #endif
1682