1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_ARM64
6
7 #include "src/assembler.h"
8 #include "src/base/bits.h"
9 #include "src/base/division-by-constant.h"
10 #include "src/bootstrapper.h"
11 #include "src/callable.h"
12 #include "src/code-factory.h"
13 #include "src/code-stubs.h"
14 #include "src/debug/debug.h"
15 #include "src/external-reference-table.h"
16 #include "src/frame-constants.h"
17 #include "src/frames-inl.h"
18 #include "src/heap/heap-inl.h"
19 #include "src/instruction-stream.h"
20 #include "src/register-configuration.h"
21 #include "src/runtime/runtime.h"
22 #include "src/snapshot/snapshot.h"
23 #include "src/wasm/wasm-code-manager.h"
24
25 #include "src/arm64/macro-assembler-arm64-inl.h"
26 #include "src/arm64/macro-assembler-arm64.h" // Cannot be the first include
27
28 namespace v8 {
29 namespace internal {
30
MacroAssembler(Isolate * isolate,const AssemblerOptions & options,void * buffer,int size,CodeObjectRequired create_code_object)31 MacroAssembler::MacroAssembler(Isolate* isolate,
32 const AssemblerOptions& options, void* buffer,
33 int size, CodeObjectRequired create_code_object)
34 : TurboAssembler(isolate, options, buffer, size, create_code_object) {
35 if (create_code_object == CodeObjectRequired::kYes) {
36 // Unlike TurboAssembler, which can be used off the main thread and may not
37 // allocate, macro assembler creates its own copy of the self-reference
38 // marker in order to disambiguate between self-references during nested
39 // code generation (e.g.: codegen of the current object triggers stub
40 // compilation through CodeStub::GetCode()).
41 code_object_ = Handle<HeapObject>::New(
42 *isolate->factory()->NewSelfReferenceMarker(), isolate);
43 }
44 }
45
DefaultTmpList()46 CPURegList TurboAssembler::DefaultTmpList() { return CPURegList(ip0, ip1); }
47
DefaultFPTmpList()48 CPURegList TurboAssembler::DefaultFPTmpList() {
49 return CPURegList(fp_scratch1, fp_scratch2);
50 }
51
RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,Register exclusion) const52 int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
53 Register exclusion) const {
54 int bytes = 0;
55 auto list = kCallerSaved;
56 DCHECK_EQ(list.Count() % 2, 0);
57 // We only allow one exclusion register, so if the list is of even length
58 // before exclusions, it must still be afterwards, to maintain alignment.
59 // Therefore, we can ignore the exclusion register in the computation.
60 // However, we leave it in the argument list to mirror the prototype for
61 // Push/PopCallerSaved().
62 USE(exclusion);
63 bytes += list.Count() * kXRegSizeInBits / 8;
64
65 if (fp_mode == kSaveFPRegs) {
66 DCHECK_EQ(kCallerSavedV.Count() % 2, 0);
67 bytes += kCallerSavedV.Count() * kDRegSizeInBits / 8;
68 }
69 return bytes;
70 }
71
PushCallerSaved(SaveFPRegsMode fp_mode,Register exclusion)72 int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode,
73 Register exclusion) {
74 int bytes = 0;
75 auto list = kCallerSaved;
76 DCHECK_EQ(list.Count() % 2, 0);
77 if (!exclusion.Is(no_reg)) {
78 // Replace the excluded register with padding to maintain alignment.
79 list.Remove(exclusion);
80 list.Combine(padreg);
81 }
82 PushCPURegList(list);
83 bytes += list.Count() * kXRegSizeInBits / 8;
84
85 if (fp_mode == kSaveFPRegs) {
86 DCHECK_EQ(kCallerSavedV.Count() % 2, 0);
87 PushCPURegList(kCallerSavedV);
88 bytes += kCallerSavedV.Count() * kDRegSizeInBits / 8;
89 }
90 return bytes;
91 }
92
PopCallerSaved(SaveFPRegsMode fp_mode,Register exclusion)93 int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion) {
94 int bytes = 0;
95 if (fp_mode == kSaveFPRegs) {
96 DCHECK_EQ(kCallerSavedV.Count() % 2, 0);
97 PopCPURegList(kCallerSavedV);
98 bytes += kCallerSavedV.Count() * kDRegSizeInBits / 8;
99 }
100
101 auto list = kCallerSaved;
102 DCHECK_EQ(list.Count() % 2, 0);
103 if (!exclusion.Is(no_reg)) {
104 // Replace the excluded register with padding to maintain alignment.
105 list.Remove(exclusion);
106 list.Combine(padreg);
107 }
108 PopCPURegList(list);
109 bytes += list.Count() * kXRegSizeInBits / 8;
110
111 return bytes;
112 }
113
LogicalMacro(const Register & rd,const Register & rn,const Operand & operand,LogicalOp op)114 void TurboAssembler::LogicalMacro(const Register& rd, const Register& rn,
115 const Operand& operand, LogicalOp op) {
116 UseScratchRegisterScope temps(this);
117
118 if (operand.NeedsRelocation(this)) {
119 Register temp = temps.AcquireX();
120 Ldr(temp, operand.immediate());
121 Logical(rd, rn, temp, op);
122
123 } else if (operand.IsImmediate()) {
124 int64_t immediate = operand.ImmediateValue();
125 unsigned reg_size = rd.SizeInBits();
126
127 // If the operation is NOT, invert the operation and immediate.
128 if ((op & NOT) == NOT) {
129 op = static_cast<LogicalOp>(op & ~NOT);
130 immediate = ~immediate;
131 }
132
133 // Ignore the top 32 bits of an immediate if we're moving to a W register.
134 if (rd.Is32Bits()) {
135 // Check that the top 32 bits are consistent.
136 DCHECK(((immediate >> kWRegSizeInBits) == 0) ||
137 ((immediate >> kWRegSizeInBits) == -1));
138 immediate &= kWRegMask;
139 }
140
141 DCHECK(rd.Is64Bits() || is_uint32(immediate));
142
143 // Special cases for all set or all clear immediates.
144 if (immediate == 0) {
145 switch (op) {
146 case AND:
147 Mov(rd, 0);
148 return;
149 case ORR: // Fall through.
150 case EOR:
151 Mov(rd, rn);
152 return;
153 case ANDS: // Fall through.
154 case BICS:
155 break;
156 default:
157 UNREACHABLE();
158 }
159 } else if ((rd.Is64Bits() && (immediate == -1L)) ||
160 (rd.Is32Bits() && (immediate == 0xFFFFFFFFL))) {
161 switch (op) {
162 case AND:
163 Mov(rd, rn);
164 return;
165 case ORR:
166 Mov(rd, immediate);
167 return;
168 case EOR:
169 Mvn(rd, rn);
170 return;
171 case ANDS: // Fall through.
172 case BICS:
173 break;
174 default:
175 UNREACHABLE();
176 }
177 }
178
179 unsigned n, imm_s, imm_r;
180 if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
181 // Immediate can be encoded in the instruction.
182 LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
183 } else {
184 // Immediate can't be encoded: synthesize using move immediate.
185 Register temp = temps.AcquireSameSizeAs(rn);
186
187 // If the left-hand input is the stack pointer, we can't pre-shift the
188 // immediate, as the encoding won't allow the subsequent post shift.
189 PreShiftImmMode mode = rn.Is(sp) ? kNoShift : kAnyShift;
190 Operand imm_operand = MoveImmediateForShiftedOp(temp, immediate, mode);
191
192 if (rd.IsSP()) {
193 // If rd is the stack pointer we cannot use it as the destination
194 // register so we use the temp register as an intermediate again.
195 Logical(temp, rn, imm_operand, op);
196 Mov(sp, temp);
197 } else {
198 Logical(rd, rn, imm_operand, op);
199 }
200 }
201
202 } else if (operand.IsExtendedRegister()) {
203 DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits());
204 // Add/sub extended supports shift <= 4. We want to support exactly the
205 // same modes here.
206 DCHECK_LE(operand.shift_amount(), 4);
207 DCHECK(operand.reg().Is64Bits() ||
208 ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
209 Register temp = temps.AcquireSameSizeAs(rn);
210 EmitExtendShift(temp, operand.reg(), operand.extend(),
211 operand.shift_amount());
212 Logical(rd, rn, temp, op);
213
214 } else {
215 // The operand can be encoded in the instruction.
216 DCHECK(operand.IsShiftedRegister());
217 Logical(rd, rn, operand, op);
218 }
219 }
220
Mov(const Register & rd,uint64_t imm)221 void TurboAssembler::Mov(const Register& rd, uint64_t imm) {
222 DCHECK(allow_macro_instructions());
223 DCHECK(is_uint32(imm) || is_int32(imm) || rd.Is64Bits());
224 DCHECK(!rd.IsZero());
225
226 // TODO(all) extend to support more immediates.
227 //
228 // Immediates on Aarch64 can be produced using an initial value, and zero to
229 // three move keep operations.
230 //
231 // Initial values can be generated with:
232 // 1. 64-bit move zero (movz).
233 // 2. 32-bit move inverted (movn).
234 // 3. 64-bit move inverted.
235 // 4. 32-bit orr immediate.
236 // 5. 64-bit orr immediate.
237 // Move-keep may then be used to modify each of the 16-bit half-words.
238 //
239 // The code below supports all five initial value generators, and
240 // applying move-keep operations to move-zero and move-inverted initial
241 // values.
242
243 // Try to move the immediate in one instruction, and if that fails, switch to
244 // using multiple instructions.
245 if (!TryOneInstrMoveImmediate(rd, imm)) {
246 unsigned reg_size = rd.SizeInBits();
247
248 // Generic immediate case. Imm will be represented by
249 // [imm3, imm2, imm1, imm0], where each imm is 16 bits.
250 // A move-zero or move-inverted is generated for the first non-zero or
251 // non-0xFFFF immX, and a move-keep for subsequent non-zero immX.
252
253 uint64_t ignored_halfword = 0;
254 bool invert_move = false;
255 // If the number of 0xFFFF halfwords is greater than the number of 0x0000
256 // halfwords, it's more efficient to use move-inverted.
257 if (CountClearHalfWords(~imm, reg_size) >
258 CountClearHalfWords(imm, reg_size)) {
259 ignored_halfword = 0xFFFFL;
260 invert_move = true;
261 }
262
263 // Mov instructions can't move immediate values into the stack pointer, so
264 // set up a temporary register, if needed.
265 UseScratchRegisterScope temps(this);
266 Register temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd;
267
268 // Iterate through the halfwords. Use movn/movz for the first non-ignored
269 // halfword, and movk for subsequent halfwords.
270 DCHECK_EQ(reg_size % 16, 0);
271 bool first_mov_done = false;
272 for (int i = 0; i < (rd.SizeInBits() / 16); i++) {
273 uint64_t imm16 = (imm >> (16 * i)) & 0xFFFFL;
274 if (imm16 != ignored_halfword) {
275 if (!first_mov_done) {
276 if (invert_move) {
277 movn(temp, (~imm16) & 0xFFFFL, 16 * i);
278 } else {
279 movz(temp, imm16, 16 * i);
280 }
281 first_mov_done = true;
282 } else {
283 // Construct a wider constant.
284 movk(temp, imm16, 16 * i);
285 }
286 }
287 }
288 DCHECK(first_mov_done);
289
290 // Move the temporary if the original destination register was the stack
291 // pointer.
292 if (rd.IsSP()) {
293 mov(rd, temp);
294 }
295 }
296 }
297
Mov(const Register & rd,const Operand & operand,DiscardMoveMode discard_mode)298 void TurboAssembler::Mov(const Register& rd, const Operand& operand,
299 DiscardMoveMode discard_mode) {
300 DCHECK(allow_macro_instructions());
301 DCHECK(!rd.IsZero());
302
303 // Provide a swap register for instructions that need to write into the
304 // system stack pointer (and can't do this inherently).
305 UseScratchRegisterScope temps(this);
306 Register dst = (rd.IsSP()) ? temps.AcquireSameSizeAs(rd) : rd;
307
308 if (operand.NeedsRelocation(this)) {
309 if (FLAG_embedded_builtins) {
310 if (root_array_available_ && options().isolate_independent_code) {
311 if (operand.ImmediateRMode() == RelocInfo::EXTERNAL_REFERENCE) {
312 Address addr = static_cast<Address>(operand.ImmediateValue());
313 ExternalReference reference = bit_cast<ExternalReference>(addr);
314 IndirectLoadExternalReference(rd, reference);
315 return;
316 } else if (operand.ImmediateRMode() == RelocInfo::EMBEDDED_OBJECT) {
317 Handle<HeapObject> x(
318 reinterpret_cast<HeapObject**>(operand.ImmediateValue()));
319 IndirectLoadConstant(rd, x);
320 return;
321 }
322 }
323 }
324 Ldr(dst, operand);
325 } else if (operand.IsImmediate()) {
326 // Call the macro assembler for generic immediates.
327 Mov(dst, operand.ImmediateValue());
328 } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
329 // Emit a shift instruction if moving a shifted register. This operation
330 // could also be achieved using an orr instruction (like orn used by Mvn),
331 // but using a shift instruction makes the disassembly clearer.
332 EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount());
333 } else if (operand.IsExtendedRegister()) {
334 // Emit an extend instruction if moving an extended register. This handles
335 // extend with post-shift operations, too.
336 EmitExtendShift(dst, operand.reg(), operand.extend(),
337 operand.shift_amount());
338 } else {
339 // Otherwise, emit a register move only if the registers are distinct, or
340 // if they are not X registers.
341 //
342 // Note that mov(w0, w0) is not a no-op because it clears the top word of
343 // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W
344 // registers is not required to clear the top word of the X register. In
345 // this case, the instruction is discarded.
346 //
347 // If sp is an operand, add #0 is emitted, otherwise, orr #0.
348 if (!rd.Is(operand.reg()) || (rd.Is32Bits() &&
349 (discard_mode == kDontDiscardForSameWReg))) {
350 Assembler::mov(rd, operand.reg());
351 }
352 // This case can handle writes into the system stack pointer directly.
353 dst = rd;
354 }
355
356 // Copy the result to the system stack pointer.
357 if (!dst.Is(rd)) {
358 DCHECK(rd.IsSP());
359 Assembler::mov(rd, dst);
360 }
361 }
362
Movi16bitHelper(const VRegister & vd,uint64_t imm)363 void TurboAssembler::Movi16bitHelper(const VRegister& vd, uint64_t imm) {
364 DCHECK(is_uint16(imm));
365 int byte1 = (imm & 0xFF);
366 int byte2 = ((imm >> 8) & 0xFF);
367 if (byte1 == byte2) {
368 movi(vd.Is64Bits() ? vd.V8B() : vd.V16B(), byte1);
369 } else if (byte1 == 0) {
370 movi(vd, byte2, LSL, 8);
371 } else if (byte2 == 0) {
372 movi(vd, byte1);
373 } else if (byte1 == 0xFF) {
374 mvni(vd, ~byte2 & 0xFF, LSL, 8);
375 } else if (byte2 == 0xFF) {
376 mvni(vd, ~byte1 & 0xFF);
377 } else {
378 UseScratchRegisterScope temps(this);
379 Register temp = temps.AcquireW();
380 movz(temp, imm);
381 dup(vd, temp);
382 }
383 }
384
Movi32bitHelper(const VRegister & vd,uint64_t imm)385 void TurboAssembler::Movi32bitHelper(const VRegister& vd, uint64_t imm) {
386 DCHECK(is_uint32(imm));
387
388 uint8_t bytes[sizeof(imm)];
389 memcpy(bytes, &imm, sizeof(imm));
390
391 // All bytes are either 0x00 or 0xFF.
392 {
393 bool all0orff = true;
394 for (int i = 0; i < 4; ++i) {
395 if ((bytes[i] != 0) && (bytes[i] != 0xFF)) {
396 all0orff = false;
397 break;
398 }
399 }
400
401 if (all0orff == true) {
402 movi(vd.Is64Bits() ? vd.V1D() : vd.V2D(), ((imm << 32) | imm));
403 return;
404 }
405 }
406
407 // Of the 4 bytes, only one byte is non-zero.
408 for (int i = 0; i < 4; i++) {
409 if ((imm & (0xFF << (i * 8))) == imm) {
410 movi(vd, bytes[i], LSL, i * 8);
411 return;
412 }
413 }
414
415 // Of the 4 bytes, only one byte is not 0xFF.
416 for (int i = 0; i < 4; i++) {
417 uint32_t mask = ~(0xFF << (i * 8));
418 if ((imm & mask) == mask) {
419 mvni(vd, ~bytes[i] & 0xFF, LSL, i * 8);
420 return;
421 }
422 }
423
424 // Immediate is of the form 0x00MMFFFF.
425 if ((imm & 0xFF00FFFF) == 0x0000FFFF) {
426 movi(vd, bytes[2], MSL, 16);
427 return;
428 }
429
430 // Immediate is of the form 0x0000MMFF.
431 if ((imm & 0xFFFF00FF) == 0x000000FF) {
432 movi(vd, bytes[1], MSL, 8);
433 return;
434 }
435
436 // Immediate is of the form 0xFFMM0000.
437 if ((imm & 0xFF00FFFF) == 0xFF000000) {
438 mvni(vd, ~bytes[2] & 0xFF, MSL, 16);
439 return;
440 }
441 // Immediate is of the form 0xFFFFMM00.
442 if ((imm & 0xFFFF00FF) == 0xFFFF0000) {
443 mvni(vd, ~bytes[1] & 0xFF, MSL, 8);
444 return;
445 }
446
447 // Top and bottom 16-bits are equal.
448 if (((imm >> 16) & 0xFFFF) == (imm & 0xFFFF)) {
449 Movi16bitHelper(vd.Is64Bits() ? vd.V4H() : vd.V8H(), imm & 0xFFFF);
450 return;
451 }
452
453 // Default case.
454 {
455 UseScratchRegisterScope temps(this);
456 Register temp = temps.AcquireW();
457 Mov(temp, imm);
458 dup(vd, temp);
459 }
460 }
461
Movi64bitHelper(const VRegister & vd,uint64_t imm)462 void TurboAssembler::Movi64bitHelper(const VRegister& vd, uint64_t imm) {
463 // All bytes are either 0x00 or 0xFF.
464 {
465 bool all0orff = true;
466 for (int i = 0; i < 8; ++i) {
467 int byteval = (imm >> (i * 8)) & 0xFF;
468 if (byteval != 0 && byteval != 0xFF) {
469 all0orff = false;
470 break;
471 }
472 }
473 if (all0orff == true) {
474 movi(vd, imm);
475 return;
476 }
477 }
478
479 // Top and bottom 32-bits are equal.
480 if (((imm >> 32) & 0xFFFFFFFF) == (imm & 0xFFFFFFFF)) {
481 Movi32bitHelper(vd.Is64Bits() ? vd.V2S() : vd.V4S(), imm & 0xFFFFFFFF);
482 return;
483 }
484
485 // Default case.
486 {
487 UseScratchRegisterScope temps(this);
488 Register temp = temps.AcquireX();
489 Mov(temp, imm);
490 if (vd.Is1D()) {
491 mov(vd.D(), 0, temp);
492 } else {
493 dup(vd.V2D(), temp);
494 }
495 }
496 }
497
Movi(const VRegister & vd,uint64_t imm,Shift shift,int shift_amount)498 void TurboAssembler::Movi(const VRegister& vd, uint64_t imm, Shift shift,
499 int shift_amount) {
500 DCHECK(allow_macro_instructions());
501 if (shift_amount != 0 || shift != LSL) {
502 movi(vd, imm, shift, shift_amount);
503 } else if (vd.Is8B() || vd.Is16B()) {
504 // 8-bit immediate.
505 DCHECK(is_uint8(imm));
506 movi(vd, imm);
507 } else if (vd.Is4H() || vd.Is8H()) {
508 // 16-bit immediate.
509 Movi16bitHelper(vd, imm);
510 } else if (vd.Is2S() || vd.Is4S()) {
511 // 32-bit immediate.
512 Movi32bitHelper(vd, imm);
513 } else {
514 // 64-bit immediate.
515 Movi64bitHelper(vd, imm);
516 }
517 }
518
Movi(const VRegister & vd,uint64_t hi,uint64_t lo)519 void TurboAssembler::Movi(const VRegister& vd, uint64_t hi, uint64_t lo) {
520 // TODO(all): Move 128-bit values in a more efficient way.
521 DCHECK(vd.Is128Bits());
522 UseScratchRegisterScope temps(this);
523 Movi(vd.V2D(), lo);
524 Register temp = temps.AcquireX();
525 Mov(temp, hi);
526 Ins(vd.V2D(), 1, temp);
527 }
528
Mvn(const Register & rd,const Operand & operand)529 void TurboAssembler::Mvn(const Register& rd, const Operand& operand) {
530 DCHECK(allow_macro_instructions());
531
532 if (operand.NeedsRelocation(this)) {
533 Ldr(rd, operand.immediate());
534 mvn(rd, rd);
535
536 } else if (operand.IsImmediate()) {
537 // Call the macro assembler for generic immediates.
538 Mov(rd, ~operand.ImmediateValue());
539
540 } else if (operand.IsExtendedRegister()) {
541 // Emit two instructions for the extend case. This differs from Mov, as
542 // the extend and invert can't be achieved in one instruction.
543 EmitExtendShift(rd, operand.reg(), operand.extend(),
544 operand.shift_amount());
545 mvn(rd, rd);
546
547 } else {
548 mvn(rd, operand);
549 }
550 }
551
CountClearHalfWords(uint64_t imm,unsigned reg_size)552 unsigned TurboAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) {
553 DCHECK_EQ(reg_size % 8, 0);
554 int count = 0;
555 for (unsigned i = 0; i < (reg_size / 16); i++) {
556 if ((imm & 0xFFFF) == 0) {
557 count++;
558 }
559 imm >>= 16;
560 }
561 return count;
562 }
563
564
565 // The movz instruction can generate immediates containing an arbitrary 16-bit
566 // half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
IsImmMovz(uint64_t imm,unsigned reg_size)567 bool TurboAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
568 DCHECK((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits));
569 return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
570 }
571
572 // The movn instruction can generate immediates containing an arbitrary 16-bit
573 // half-word, with remaining bits set, eg. 0xFFFF1234, 0xFFFF1234FFFFFFFF.
IsImmMovn(uint64_t imm,unsigned reg_size)574 bool TurboAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
575 return IsImmMovz(~imm, reg_size);
576 }
577
ConditionalCompareMacro(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond,ConditionalCompareOp op)578 void TurboAssembler::ConditionalCompareMacro(const Register& rn,
579 const Operand& operand,
580 StatusFlags nzcv, Condition cond,
581 ConditionalCompareOp op) {
582 DCHECK((cond != al) && (cond != nv));
583 if (operand.NeedsRelocation(this)) {
584 UseScratchRegisterScope temps(this);
585 Register temp = temps.AcquireX();
586 Ldr(temp, operand.immediate());
587 ConditionalCompareMacro(rn, temp, nzcv, cond, op);
588
589 } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
590 (operand.IsImmediate() &&
591 IsImmConditionalCompare(operand.ImmediateValue()))) {
592 // The immediate can be encoded in the instruction, or the operand is an
593 // unshifted register: call the assembler.
594 ConditionalCompare(rn, operand, nzcv, cond, op);
595
596 } else {
597 // The operand isn't directly supported by the instruction: perform the
598 // operation on a temporary register.
599 UseScratchRegisterScope temps(this);
600 Register temp = temps.AcquireSameSizeAs(rn);
601 Mov(temp, operand);
602 ConditionalCompare(rn, temp, nzcv, cond, op);
603 }
604 }
605
Csel(const Register & rd,const Register & rn,const Operand & operand,Condition cond)606 void TurboAssembler::Csel(const Register& rd, const Register& rn,
607 const Operand& operand, Condition cond) {
608 DCHECK(allow_macro_instructions());
609 DCHECK(!rd.IsZero());
610 DCHECK((cond != al) && (cond != nv));
611 if (operand.IsImmediate()) {
612 // Immediate argument. Handle special cases of 0, 1 and -1 using zero
613 // register.
614 int64_t imm = operand.ImmediateValue();
615 Register zr = AppropriateZeroRegFor(rn);
616 if (imm == 0) {
617 csel(rd, rn, zr, cond);
618 } else if (imm == 1) {
619 csinc(rd, rn, zr, cond);
620 } else if (imm == -1) {
621 csinv(rd, rn, zr, cond);
622 } else {
623 UseScratchRegisterScope temps(this);
624 Register temp = temps.AcquireSameSizeAs(rn);
625 Mov(temp, imm);
626 csel(rd, rn, temp, cond);
627 }
628 } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) {
629 // Unshifted register argument.
630 csel(rd, rn, operand.reg(), cond);
631 } else {
632 // All other arguments.
633 UseScratchRegisterScope temps(this);
634 Register temp = temps.AcquireSameSizeAs(rn);
635 Mov(temp, operand);
636 csel(rd, rn, temp, cond);
637 }
638 }
639
TryOneInstrMoveImmediate(const Register & dst,int64_t imm)640 bool TurboAssembler::TryOneInstrMoveImmediate(const Register& dst,
641 int64_t imm) {
642 unsigned n, imm_s, imm_r;
643 int reg_size = dst.SizeInBits();
644 if (IsImmMovz(imm, reg_size) && !dst.IsSP()) {
645 // Immediate can be represented in a move zero instruction. Movz can't write
646 // to the stack pointer.
647 movz(dst, imm);
648 return true;
649 } else if (IsImmMovn(imm, reg_size) && !dst.IsSP()) {
650 // Immediate can be represented in a move not instruction. Movn can't write
651 // to the stack pointer.
652 movn(dst, dst.Is64Bits() ? ~imm : (~imm & kWRegMask));
653 return true;
654 } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
655 // Immediate can be represented in a logical orr instruction.
656 LogicalImmediate(dst, AppropriateZeroRegFor(dst), n, imm_s, imm_r, ORR);
657 return true;
658 }
659 return false;
660 }
661
MoveImmediateForShiftedOp(const Register & dst,int64_t imm,PreShiftImmMode mode)662 Operand TurboAssembler::MoveImmediateForShiftedOp(const Register& dst,
663 int64_t imm,
664 PreShiftImmMode mode) {
665 int reg_size = dst.SizeInBits();
666 // Encode the immediate in a single move instruction, if possible.
667 if (TryOneInstrMoveImmediate(dst, imm)) {
668 // The move was successful; nothing to do here.
669 } else {
670 // Pre-shift the immediate to the least-significant bits of the register.
671 int shift_low = CountTrailingZeros(imm, reg_size);
672 if (mode == kLimitShiftForSP) {
673 // When applied to the stack pointer, the subsequent arithmetic operation
674 // can use the extend form to shift left by a maximum of four bits. Right
675 // shifts are not allowed, so we filter them out later before the new
676 // immediate is tested.
677 shift_low = std::min(shift_low, 4);
678 }
679 int64_t imm_low = imm >> shift_low;
680
681 // Pre-shift the immediate to the most-significant bits of the register. We
682 // insert set bits in the least-significant bits, as this creates a
683 // different immediate that may be encodable using movn or orr-immediate.
684 // If this new immediate is encodable, the set bits will be eliminated by
685 // the post shift on the following instruction.
686 int shift_high = CountLeadingZeros(imm, reg_size);
687 int64_t imm_high = (imm << shift_high) | ((INT64_C(1) << shift_high) - 1);
688
689 if ((mode != kNoShift) && TryOneInstrMoveImmediate(dst, imm_low)) {
690 // The new immediate has been moved into the destination's low bits:
691 // return a new leftward-shifting operand.
692 return Operand(dst, LSL, shift_low);
693 } else if ((mode == kAnyShift) && TryOneInstrMoveImmediate(dst, imm_high)) {
694 // The new immediate has been moved into the destination's high bits:
695 // return a new rightward-shifting operand.
696 return Operand(dst, LSR, shift_high);
697 } else {
698 // Use the generic move operation to set up the immediate.
699 Mov(dst, imm);
700 }
701 }
702 return Operand(dst);
703 }
704
AddSubMacro(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubOp op)705 void TurboAssembler::AddSubMacro(const Register& rd, const Register& rn,
706 const Operand& operand, FlagsUpdate S,
707 AddSubOp op) {
708 if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
709 !operand.NeedsRelocation(this) && (S == LeaveFlags)) {
710 // The instruction would be a nop. Avoid generating useless code.
711 return;
712 }
713
714 if (operand.NeedsRelocation(this)) {
715 UseScratchRegisterScope temps(this);
716 Register temp = temps.AcquireX();
717 Ldr(temp, operand.immediate());
718 AddSubMacro(rd, rn, temp, S, op);
719 } else if ((operand.IsImmediate() &&
720 !IsImmAddSub(operand.ImmediateValue())) ||
721 (rn.IsZero() && !operand.IsShiftedRegister()) ||
722 (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
723 UseScratchRegisterScope temps(this);
724 Register temp = temps.AcquireSameSizeAs(rn);
725 if (operand.IsImmediate()) {
726 PreShiftImmMode mode = kAnyShift;
727
728 // If the destination or source register is the stack pointer, we can
729 // only pre-shift the immediate right by values supported in the add/sub
730 // extend encoding.
731 if (rd.Is(sp)) {
732 // If the destination is SP and flags will be set, we can't pre-shift
733 // the immediate at all.
734 mode = (S == SetFlags) ? kNoShift : kLimitShiftForSP;
735 } else if (rn.Is(sp)) {
736 mode = kLimitShiftForSP;
737 }
738
739 Operand imm_operand =
740 MoveImmediateForShiftedOp(temp, operand.ImmediateValue(), mode);
741 AddSub(rd, rn, imm_operand, S, op);
742 } else {
743 Mov(temp, operand);
744 AddSub(rd, rn, temp, S, op);
745 }
746 } else {
747 AddSub(rd, rn, operand, S, op);
748 }
749 }
750
AddSubWithCarryMacro(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubWithCarryOp op)751 void TurboAssembler::AddSubWithCarryMacro(const Register& rd,
752 const Register& rn,
753 const Operand& operand, FlagsUpdate S,
754 AddSubWithCarryOp op) {
755 DCHECK(rd.SizeInBits() == rn.SizeInBits());
756 UseScratchRegisterScope temps(this);
757
758 if (operand.NeedsRelocation(this)) {
759 Register temp = temps.AcquireX();
760 Ldr(temp, operand.immediate());
761 AddSubWithCarryMacro(rd, rn, temp, S, op);
762
763 } else if (operand.IsImmediate() ||
764 (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
765 // Add/sub with carry (immediate or ROR shifted register.)
766 Register temp = temps.AcquireSameSizeAs(rn);
767 Mov(temp, operand);
768 AddSubWithCarry(rd, rn, temp, S, op);
769
770 } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
771 // Add/sub with carry (shifted register).
772 DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
773 DCHECK(operand.shift() != ROR);
774 DCHECK(is_uintn(operand.shift_amount(),
775 rd.SizeInBits() == kXRegSizeInBits ? kXRegSizeInBitsLog2
776 : kWRegSizeInBitsLog2));
777 Register temp = temps.AcquireSameSizeAs(rn);
778 EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
779 AddSubWithCarry(rd, rn, temp, S, op);
780
781 } else if (operand.IsExtendedRegister()) {
782 // Add/sub with carry (extended register).
783 DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits());
784 // Add/sub extended supports a shift <= 4. We want to support exactly the
785 // same modes.
786 DCHECK_LE(operand.shift_amount(), 4);
787 DCHECK(operand.reg().Is64Bits() ||
788 ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
789 Register temp = temps.AcquireSameSizeAs(rn);
790 EmitExtendShift(temp, operand.reg(), operand.extend(),
791 operand.shift_amount());
792 AddSubWithCarry(rd, rn, temp, S, op);
793
794 } else {
795 // The addressing mode is directly supported by the instruction.
796 AddSubWithCarry(rd, rn, operand, S, op);
797 }
798 }
799
LoadStoreMacro(const CPURegister & rt,const MemOperand & addr,LoadStoreOp op)800 void TurboAssembler::LoadStoreMacro(const CPURegister& rt,
801 const MemOperand& addr, LoadStoreOp op) {
802 int64_t offset = addr.offset();
803 unsigned size = CalcLSDataSize(op);
804
805 // Check if an immediate offset fits in the immediate field of the
806 // appropriate instruction. If not, emit two instructions to perform
807 // the operation.
808 if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) &&
809 !IsImmLSUnscaled(offset)) {
810 // Immediate offset that can't be encoded using unsigned or unscaled
811 // addressing modes.
812 UseScratchRegisterScope temps(this);
813 Register temp = temps.AcquireSameSizeAs(addr.base());
814 Mov(temp, addr.offset());
815 LoadStore(rt, MemOperand(addr.base(), temp), op);
816 } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
817 // Post-index beyond unscaled addressing range.
818 LoadStore(rt, MemOperand(addr.base()), op);
819 add(addr.base(), addr.base(), offset);
820 } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
821 // Pre-index beyond unscaled addressing range.
822 add(addr.base(), addr.base(), offset);
823 LoadStore(rt, MemOperand(addr.base()), op);
824 } else {
825 // Encodable in one load/store instruction.
826 LoadStore(rt, addr, op);
827 }
828 }
829
LoadStorePairMacro(const CPURegister & rt,const CPURegister & rt2,const MemOperand & addr,LoadStorePairOp op)830 void TurboAssembler::LoadStorePairMacro(const CPURegister& rt,
831 const CPURegister& rt2,
832 const MemOperand& addr,
833 LoadStorePairOp op) {
834 // TODO(all): Should we support register offset for load-store-pair?
835 DCHECK(!addr.IsRegisterOffset());
836
837 int64_t offset = addr.offset();
838 unsigned size = CalcLSPairDataSize(op);
839
840 // Check if the offset fits in the immediate field of the appropriate
841 // instruction. If not, emit two instructions to perform the operation.
842 if (IsImmLSPair(offset, size)) {
843 // Encodable in one load/store pair instruction.
844 LoadStorePair(rt, rt2, addr, op);
845 } else {
846 Register base = addr.base();
847 if (addr.IsImmediateOffset()) {
848 UseScratchRegisterScope temps(this);
849 Register temp = temps.AcquireSameSizeAs(base);
850 Add(temp, base, offset);
851 LoadStorePair(rt, rt2, MemOperand(temp), op);
852 } else if (addr.IsPostIndex()) {
853 LoadStorePair(rt, rt2, MemOperand(base), op);
854 Add(base, base, offset);
855 } else {
856 DCHECK(addr.IsPreIndex());
857 Add(base, base, offset);
858 LoadStorePair(rt, rt2, MemOperand(base), op);
859 }
860 }
861 }
862
NeedExtraInstructionsOrRegisterBranch(Label * label,ImmBranchType b_type)863 bool TurboAssembler::NeedExtraInstructionsOrRegisterBranch(
864 Label* label, ImmBranchType b_type) {
865 bool need_longer_range = false;
866 // There are two situations in which we care about the offset being out of
867 // range:
868 // - The label is bound but too far away.
869 // - The label is not bound but linked, and the previous branch
870 // instruction in the chain is too far away.
871 if (label->is_bound() || label->is_linked()) {
872 need_longer_range =
873 !Instruction::IsValidImmPCOffset(b_type, label->pos() - pc_offset());
874 }
875 if (!need_longer_range && !label->is_bound()) {
876 int max_reachable_pc = pc_offset() + Instruction::ImmBranchRange(b_type);
877 unresolved_branches_.insert(
878 std::pair<int, FarBranchInfo>(max_reachable_pc,
879 FarBranchInfo(pc_offset(), label)));
880 // Also maintain the next pool check.
881 next_veneer_pool_check_ =
882 Min(next_veneer_pool_check_,
883 max_reachable_pc - kVeneerDistanceCheckMargin);
884 }
885 return need_longer_range;
886 }
887
Adr(const Register & rd,Label * label,AdrHint hint)888 void TurboAssembler::Adr(const Register& rd, Label* label, AdrHint hint) {
889 DCHECK(allow_macro_instructions());
890 DCHECK(!rd.IsZero());
891
892 if (hint == kAdrNear) {
893 adr(rd, label);
894 return;
895 }
896
897 DCHECK_EQ(hint, kAdrFar);
898 if (label->is_bound()) {
899 int label_offset = label->pos() - pc_offset();
900 if (Instruction::IsValidPCRelOffset(label_offset)) {
901 adr(rd, label);
902 } else {
903 DCHECK_LE(label_offset, 0);
904 int min_adr_offset = -(1 << (Instruction::ImmPCRelRangeBitwidth - 1));
905 adr(rd, min_adr_offset);
906 Add(rd, rd, label_offset - min_adr_offset);
907 }
908 } else {
909 UseScratchRegisterScope temps(this);
910 Register scratch = temps.AcquireX();
911
912 InstructionAccurateScope scope(
913 this, PatchingAssembler::kAdrFarPatchableNInstrs);
914 adr(rd, label);
915 for (int i = 0; i < PatchingAssembler::kAdrFarPatchableNNops; ++i) {
916 nop(ADR_FAR_NOP);
917 }
918 movz(scratch, 0);
919 }
920 }
921
B(Label * label,BranchType type,Register reg,int bit)922 void TurboAssembler::B(Label* label, BranchType type, Register reg, int bit) {
923 DCHECK((reg.Is(NoReg) || type >= kBranchTypeFirstUsingReg) &&
924 (bit == -1 || type >= kBranchTypeFirstUsingBit));
925 if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
926 B(static_cast<Condition>(type), label);
927 } else {
928 switch (type) {
929 case always: B(label); break;
930 case never: break;
931 case reg_zero: Cbz(reg, label); break;
932 case reg_not_zero: Cbnz(reg, label); break;
933 case reg_bit_clear: Tbz(reg, bit, label); break;
934 case reg_bit_set: Tbnz(reg, bit, label); break;
935 default:
936 UNREACHABLE();
937 }
938 }
939 }
940
B(Label * label,Condition cond)941 void TurboAssembler::B(Label* label, Condition cond) {
942 DCHECK(allow_macro_instructions());
943 DCHECK((cond != al) && (cond != nv));
944
945 Label done;
946 bool need_extra_instructions =
947 NeedExtraInstructionsOrRegisterBranch(label, CondBranchType);
948
949 if (need_extra_instructions) {
950 b(&done, NegateCondition(cond));
951 B(label);
952 } else {
953 b(label, cond);
954 }
955 bind(&done);
956 }
957
Tbnz(const Register & rt,unsigned bit_pos,Label * label)958 void TurboAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) {
959 DCHECK(allow_macro_instructions());
960
961 Label done;
962 bool need_extra_instructions =
963 NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
964
965 if (need_extra_instructions) {
966 tbz(rt, bit_pos, &done);
967 B(label);
968 } else {
969 tbnz(rt, bit_pos, label);
970 }
971 bind(&done);
972 }
973
Tbz(const Register & rt,unsigned bit_pos,Label * label)974 void TurboAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) {
975 DCHECK(allow_macro_instructions());
976
977 Label done;
978 bool need_extra_instructions =
979 NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
980
981 if (need_extra_instructions) {
982 tbnz(rt, bit_pos, &done);
983 B(label);
984 } else {
985 tbz(rt, bit_pos, label);
986 }
987 bind(&done);
988 }
989
Cbnz(const Register & rt,Label * label)990 void TurboAssembler::Cbnz(const Register& rt, Label* label) {
991 DCHECK(allow_macro_instructions());
992
993 Label done;
994 bool need_extra_instructions =
995 NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
996
997 if (need_extra_instructions) {
998 cbz(rt, &done);
999 B(label);
1000 } else {
1001 cbnz(rt, label);
1002 }
1003 bind(&done);
1004 }
1005
Cbz(const Register & rt,Label * label)1006 void TurboAssembler::Cbz(const Register& rt, Label* label) {
1007 DCHECK(allow_macro_instructions());
1008
1009 Label done;
1010 bool need_extra_instructions =
1011 NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
1012
1013 if (need_extra_instructions) {
1014 cbnz(rt, &done);
1015 B(label);
1016 } else {
1017 cbz(rt, label);
1018 }
1019 bind(&done);
1020 }
1021
1022
1023 // Pseudo-instructions.
1024
Abs(const Register & rd,const Register & rm,Label * is_not_representable,Label * is_representable)1025 void TurboAssembler::Abs(const Register& rd, const Register& rm,
1026 Label* is_not_representable, Label* is_representable) {
1027 DCHECK(allow_macro_instructions());
1028 DCHECK(AreSameSizeAndType(rd, rm));
1029
1030 Cmp(rm, 1);
1031 Cneg(rd, rm, lt);
1032
1033 // If the comparison sets the v flag, the input was the smallest value
1034 // representable by rm, and the mathematical result of abs(rm) is not
1035 // representable using two's complement.
1036 if ((is_not_representable != nullptr) && (is_representable != nullptr)) {
1037 B(is_not_representable, vs);
1038 B(is_representable);
1039 } else if (is_not_representable != nullptr) {
1040 B(is_not_representable, vs);
1041 } else if (is_representable != nullptr) {
1042 B(is_representable, vc);
1043 }
1044 }
1045
1046
1047 // Abstracted stack operations.
1048
Push(const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3)1049 void TurboAssembler::Push(const CPURegister& src0, const CPURegister& src1,
1050 const CPURegister& src2, const CPURegister& src3) {
1051 DCHECK(AreSameSizeAndType(src0, src1, src2, src3));
1052
1053 int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
1054 int size = src0.SizeInBytes();
1055 DCHECK_EQ(0, (size * count) % 16);
1056
1057 PushHelper(count, size, src0, src1, src2, src3);
1058 }
1059
Push(const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3,const CPURegister & src4,const CPURegister & src5,const CPURegister & src6,const CPURegister & src7)1060 void TurboAssembler::Push(const CPURegister& src0, const CPURegister& src1,
1061 const CPURegister& src2, const CPURegister& src3,
1062 const CPURegister& src4, const CPURegister& src5,
1063 const CPURegister& src6, const CPURegister& src7) {
1064 DCHECK(AreSameSizeAndType(src0, src1, src2, src3, src4, src5, src6, src7));
1065
1066 int count = 5 + src5.IsValid() + src6.IsValid() + src6.IsValid();
1067 int size = src0.SizeInBytes();
1068 DCHECK_EQ(0, (size * count) % 16);
1069
1070 PushHelper(4, size, src0, src1, src2, src3);
1071 PushHelper(count - 4, size, src4, src5, src6, src7);
1072 }
1073
Pop(const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3)1074 void TurboAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
1075 const CPURegister& dst2, const CPURegister& dst3) {
1076 // It is not valid to pop into the same register more than once in one
1077 // instruction, not even into the zero register.
1078 DCHECK(!AreAliased(dst0, dst1, dst2, dst3));
1079 DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3));
1080 DCHECK(dst0.IsValid());
1081
1082 int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
1083 int size = dst0.SizeInBytes();
1084 DCHECK_EQ(0, (size * count) % 16);
1085
1086 PopHelper(count, size, dst0, dst1, dst2, dst3);
1087 }
1088
Pop(const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3,const CPURegister & dst4,const CPURegister & dst5,const CPURegister & dst6,const CPURegister & dst7)1089 void TurboAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
1090 const CPURegister& dst2, const CPURegister& dst3,
1091 const CPURegister& dst4, const CPURegister& dst5,
1092 const CPURegister& dst6, const CPURegister& dst7) {
1093 // It is not valid to pop into the same register more than once in one
1094 // instruction, not even into the zero register.
1095 DCHECK(!AreAliased(dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7));
1096 DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7));
1097 DCHECK(dst0.IsValid());
1098
1099 int count = 5 + dst5.IsValid() + dst6.IsValid() + dst7.IsValid();
1100 int size = dst0.SizeInBytes();
1101 DCHECK_EQ(0, (size * count) % 16);
1102
1103 PopHelper(4, size, dst0, dst1, dst2, dst3);
1104 PopHelper(count - 4, size, dst4, dst5, dst6, dst7);
1105 }
1106
Push(const Register & src0,const VRegister & src1)1107 void TurboAssembler::Push(const Register& src0, const VRegister& src1) {
1108 int size = src0.SizeInBytes() + src1.SizeInBytes();
1109 DCHECK_EQ(0, size % 16);
1110
1111 // Reserve room for src0 and push src1.
1112 str(src1, MemOperand(sp, -size, PreIndex));
1113 // Fill the gap with src0.
1114 str(src0, MemOperand(sp, src1.SizeInBytes()));
1115 }
1116
PushQueued()1117 void MacroAssembler::PushPopQueue::PushQueued() {
1118 DCHECK_EQ(0, size_ % 16);
1119 if (queued_.empty()) return;
1120
1121 size_t count = queued_.size();
1122 size_t index = 0;
1123 while (index < count) {
1124 // PushHelper can only handle registers with the same size and type, and it
1125 // can handle only four at a time. Batch them up accordingly.
1126 CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
1127 int batch_index = 0;
1128 do {
1129 batch[batch_index++] = queued_[index++];
1130 } while ((batch_index < 4) && (index < count) &&
1131 batch[0].IsSameSizeAndType(queued_[index]));
1132
1133 masm_->PushHelper(batch_index, batch[0].SizeInBytes(),
1134 batch[0], batch[1], batch[2], batch[3]);
1135 }
1136
1137 queued_.clear();
1138 }
1139
1140
PopQueued()1141 void MacroAssembler::PushPopQueue::PopQueued() {
1142 DCHECK_EQ(0, size_ % 16);
1143 if (queued_.empty()) return;
1144
1145 size_t count = queued_.size();
1146 size_t index = 0;
1147 while (index < count) {
1148 // PopHelper can only handle registers with the same size and type, and it
1149 // can handle only four at a time. Batch them up accordingly.
1150 CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
1151 int batch_index = 0;
1152 do {
1153 batch[batch_index++] = queued_[index++];
1154 } while ((batch_index < 4) && (index < count) &&
1155 batch[0].IsSameSizeAndType(queued_[index]));
1156
1157 masm_->PopHelper(batch_index, batch[0].SizeInBytes(),
1158 batch[0], batch[1], batch[2], batch[3]);
1159 }
1160
1161 queued_.clear();
1162 }
1163
PushCPURegList(CPURegList registers)1164 void TurboAssembler::PushCPURegList(CPURegList registers) {
1165 int size = registers.RegisterSizeInBytes();
1166 DCHECK_EQ(0, (size * registers.Count()) % 16);
1167
1168 // Push up to four registers at a time.
1169 while (!registers.IsEmpty()) {
1170 int count_before = registers.Count();
1171 const CPURegister& src0 = registers.PopHighestIndex();
1172 const CPURegister& src1 = registers.PopHighestIndex();
1173 const CPURegister& src2 = registers.PopHighestIndex();
1174 const CPURegister& src3 = registers.PopHighestIndex();
1175 int count = count_before - registers.Count();
1176 PushHelper(count, size, src0, src1, src2, src3);
1177 }
1178 }
1179
PopCPURegList(CPURegList registers)1180 void TurboAssembler::PopCPURegList(CPURegList registers) {
1181 int size = registers.RegisterSizeInBytes();
1182 DCHECK_EQ(0, (size * registers.Count()) % 16);
1183
1184 // Pop up to four registers at a time.
1185 while (!registers.IsEmpty()) {
1186 int count_before = registers.Count();
1187 const CPURegister& dst0 = registers.PopLowestIndex();
1188 const CPURegister& dst1 = registers.PopLowestIndex();
1189 const CPURegister& dst2 = registers.PopLowestIndex();
1190 const CPURegister& dst3 = registers.PopLowestIndex();
1191 int count = count_before - registers.Count();
1192 PopHelper(count, size, dst0, dst1, dst2, dst3);
1193 }
1194 }
1195
PushMultipleTimes(CPURegister src,Register count)1196 void MacroAssembler::PushMultipleTimes(CPURegister src, Register count) {
1197 UseScratchRegisterScope temps(this);
1198 Register temp = temps.AcquireSameSizeAs(count);
1199
1200 if (FLAG_optimize_for_size) {
1201 Label loop, done;
1202
1203 Subs(temp, count, 1);
1204 B(mi, &done);
1205
1206 // Push all registers individually, to save code size.
1207 Bind(&loop);
1208 Subs(temp, temp, 1);
1209 PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
1210 B(pl, &loop);
1211
1212 Bind(&done);
1213 } else {
1214 Label loop, leftover2, leftover1, done;
1215
1216 Subs(temp, count, 4);
1217 B(mi, &leftover2);
1218
1219 // Push groups of four first.
1220 Bind(&loop);
1221 Subs(temp, temp, 4);
1222 PushHelper(4, src.SizeInBytes(), src, src, src, src);
1223 B(pl, &loop);
1224
1225 // Push groups of two.
1226 Bind(&leftover2);
1227 Tbz(count, 1, &leftover1);
1228 PushHelper(2, src.SizeInBytes(), src, src, NoReg, NoReg);
1229
1230 // Push the last one (if required).
1231 Bind(&leftover1);
1232 Tbz(count, 0, &done);
1233 PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
1234
1235 Bind(&done);
1236 }
1237 }
1238
PushHelper(int count,int size,const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3)1239 void TurboAssembler::PushHelper(int count, int size, const CPURegister& src0,
1240 const CPURegister& src1,
1241 const CPURegister& src2,
1242 const CPURegister& src3) {
1243 // Ensure that we don't unintentially modify scratch or debug registers.
1244 InstructionAccurateScope scope(this);
1245
1246 DCHECK(AreSameSizeAndType(src0, src1, src2, src3));
1247 DCHECK(size == src0.SizeInBytes());
1248
1249 // When pushing multiple registers, the store order is chosen such that
1250 // Push(a, b) is equivalent to Push(a) followed by Push(b).
1251 switch (count) {
1252 case 1:
1253 DCHECK(src1.IsNone() && src2.IsNone() && src3.IsNone());
1254 str(src0, MemOperand(sp, -1 * size, PreIndex));
1255 break;
1256 case 2:
1257 DCHECK(src2.IsNone() && src3.IsNone());
1258 stp(src1, src0, MemOperand(sp, -2 * size, PreIndex));
1259 break;
1260 case 3:
1261 DCHECK(src3.IsNone());
1262 stp(src2, src1, MemOperand(sp, -3 * size, PreIndex));
1263 str(src0, MemOperand(sp, 2 * size));
1264 break;
1265 case 4:
1266 // Skip over 4 * size, then fill in the gap. This allows four W registers
1267 // to be pushed using sp, whilst maintaining 16-byte alignment for sp
1268 // at all times.
1269 stp(src3, src2, MemOperand(sp, -4 * size, PreIndex));
1270 stp(src1, src0, MemOperand(sp, 2 * size));
1271 break;
1272 default:
1273 UNREACHABLE();
1274 }
1275 }
1276
PopHelper(int count,int size,const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3)1277 void TurboAssembler::PopHelper(int count, int size, const CPURegister& dst0,
1278 const CPURegister& dst1, const CPURegister& dst2,
1279 const CPURegister& dst3) {
1280 // Ensure that we don't unintentially modify scratch or debug registers.
1281 InstructionAccurateScope scope(this);
1282
1283 DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3));
1284 DCHECK(size == dst0.SizeInBytes());
1285
1286 // When popping multiple registers, the load order is chosen such that
1287 // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
1288 switch (count) {
1289 case 1:
1290 DCHECK(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
1291 ldr(dst0, MemOperand(sp, 1 * size, PostIndex));
1292 break;
1293 case 2:
1294 DCHECK(dst2.IsNone() && dst3.IsNone());
1295 ldp(dst0, dst1, MemOperand(sp, 2 * size, PostIndex));
1296 break;
1297 case 3:
1298 DCHECK(dst3.IsNone());
1299 ldr(dst2, MemOperand(sp, 2 * size));
1300 ldp(dst0, dst1, MemOperand(sp, 3 * size, PostIndex));
1301 break;
1302 case 4:
1303 // Load the higher addresses first, then load the lower addresses and
1304 // skip the whole block in the second instruction. This allows four W
1305 // registers to be popped using sp, whilst maintaining 16-byte alignment
1306 // for sp at all times.
1307 ldp(dst2, dst3, MemOperand(sp, 2 * size));
1308 ldp(dst0, dst1, MemOperand(sp, 4 * size, PostIndex));
1309 break;
1310 default:
1311 UNREACHABLE();
1312 }
1313 }
1314
Poke(const CPURegister & src,const Operand & offset)1315 void TurboAssembler::Poke(const CPURegister& src, const Operand& offset) {
1316 if (offset.IsImmediate()) {
1317 DCHECK_GE(offset.ImmediateValue(), 0);
1318 } else if (emit_debug_code()) {
1319 Cmp(xzr, offset);
1320 Check(le, AbortReason::kStackAccessBelowStackPointer);
1321 }
1322
1323 Str(src, MemOperand(sp, offset));
1324 }
1325
Peek(const CPURegister & dst,const Operand & offset)1326 void TurboAssembler::Peek(const CPURegister& dst, const Operand& offset) {
1327 if (offset.IsImmediate()) {
1328 DCHECK_GE(offset.ImmediateValue(), 0);
1329 } else if (emit_debug_code()) {
1330 Cmp(xzr, offset);
1331 Check(le, AbortReason::kStackAccessBelowStackPointer);
1332 }
1333
1334 Ldr(dst, MemOperand(sp, offset));
1335 }
1336
PokePair(const CPURegister & src1,const CPURegister & src2,int offset)1337 void TurboAssembler::PokePair(const CPURegister& src1, const CPURegister& src2,
1338 int offset) {
1339 DCHECK(AreSameSizeAndType(src1, src2));
1340 DCHECK((offset >= 0) && ((offset % src1.SizeInBytes()) == 0));
1341 Stp(src1, src2, MemOperand(sp, offset));
1342 }
1343
1344
PeekPair(const CPURegister & dst1,const CPURegister & dst2,int offset)1345 void MacroAssembler::PeekPair(const CPURegister& dst1,
1346 const CPURegister& dst2,
1347 int offset) {
1348 DCHECK(AreSameSizeAndType(dst1, dst2));
1349 DCHECK((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0));
1350 Ldp(dst1, dst2, MemOperand(sp, offset));
1351 }
1352
1353
PushCalleeSavedRegisters()1354 void MacroAssembler::PushCalleeSavedRegisters() {
1355 // Ensure that the macro-assembler doesn't use any scratch registers.
1356 InstructionAccurateScope scope(this);
1357
1358 MemOperand tos(sp, -2 * static_cast<int>(kXRegSize), PreIndex);
1359
1360 stp(d14, d15, tos);
1361 stp(d12, d13, tos);
1362 stp(d10, d11, tos);
1363 stp(d8, d9, tos);
1364
1365 stp(x29, x30, tos);
1366 stp(x27, x28, tos);
1367 stp(x25, x26, tos);
1368 stp(x23, x24, tos);
1369 stp(x21, x22, tos);
1370 stp(x19, x20, tos);
1371 }
1372
1373
PopCalleeSavedRegisters()1374 void MacroAssembler::PopCalleeSavedRegisters() {
1375 // Ensure that the macro-assembler doesn't use any scratch registers.
1376 InstructionAccurateScope scope(this);
1377
1378 MemOperand tos(sp, 2 * kXRegSize, PostIndex);
1379
1380 ldp(x19, x20, tos);
1381 ldp(x21, x22, tos);
1382 ldp(x23, x24, tos);
1383 ldp(x25, x26, tos);
1384 ldp(x27, x28, tos);
1385 ldp(x29, x30, tos);
1386
1387 ldp(d8, d9, tos);
1388 ldp(d10, d11, tos);
1389 ldp(d12, d13, tos);
1390 ldp(d14, d15, tos);
1391 }
1392
AssertSpAligned()1393 void TurboAssembler::AssertSpAligned() {
1394 if (emit_debug_code()) {
1395 HardAbortScope hard_abort(this); // Avoid calls to Abort.
1396 // Arm64 requires the stack pointer to be 16-byte aligned prior to address
1397 // calculation.
1398 UseScratchRegisterScope scope(this);
1399 Register temp = scope.AcquireX();
1400 Mov(temp, sp);
1401 Tst(temp, 15);
1402 Check(eq, AbortReason::kUnexpectedStackPointer);
1403 }
1404 }
1405
CopySlots(int dst,Register src,Register slot_count)1406 void TurboAssembler::CopySlots(int dst, Register src, Register slot_count) {
1407 DCHECK(!src.IsZero());
1408 UseScratchRegisterScope scope(this);
1409 Register dst_reg = scope.AcquireX();
1410 SlotAddress(dst_reg, dst);
1411 SlotAddress(src, src);
1412 CopyDoubleWords(dst_reg, src, slot_count);
1413 }
1414
CopySlots(Register dst,Register src,Register slot_count)1415 void TurboAssembler::CopySlots(Register dst, Register src,
1416 Register slot_count) {
1417 DCHECK(!dst.IsZero() && !src.IsZero());
1418 SlotAddress(dst, dst);
1419 SlotAddress(src, src);
1420 CopyDoubleWords(dst, src, slot_count);
1421 }
1422
CopyDoubleWords(Register dst,Register src,Register count,CopyDoubleWordsMode mode)1423 void TurboAssembler::CopyDoubleWords(Register dst, Register src, Register count,
1424 CopyDoubleWordsMode mode) {
1425 DCHECK(!AreAliased(dst, src, count));
1426
1427 if (emit_debug_code()) {
1428 Register pointer1 = dst;
1429 Register pointer2 = src;
1430 if (mode == kSrcLessThanDst) {
1431 pointer1 = src;
1432 pointer2 = dst;
1433 }
1434 // Copy requires pointer1 < pointer2 || (pointer1 - pointer2) >= count.
1435 Label pointer1_below_pointer2;
1436 Subs(pointer1, pointer1, pointer2);
1437 B(lt, &pointer1_below_pointer2);
1438 Cmp(pointer1, count);
1439 Check(ge, AbortReason::kOffsetOutOfRange);
1440 Bind(&pointer1_below_pointer2);
1441 Add(pointer1, pointer1, pointer2);
1442 }
1443 static_assert(kPointerSize == kDRegSize,
1444 "pointers must be the same size as doubles");
1445
1446 int direction = (mode == kDstLessThanSrc) ? 1 : -1;
1447 UseScratchRegisterScope scope(this);
1448 VRegister temp0 = scope.AcquireD();
1449 VRegister temp1 = scope.AcquireD();
1450
1451 Label pairs, loop, done;
1452
1453 Tbz(count, 0, &pairs);
1454 Ldr(temp0, MemOperand(src, direction * kPointerSize, PostIndex));
1455 Sub(count, count, 1);
1456 Str(temp0, MemOperand(dst, direction * kPointerSize, PostIndex));
1457
1458 Bind(&pairs);
1459 if (mode == kSrcLessThanDst) {
1460 // Adjust pointers for post-index ldp/stp with negative offset:
1461 Sub(dst, dst, kPointerSize);
1462 Sub(src, src, kPointerSize);
1463 }
1464 Bind(&loop);
1465 Cbz(count, &done);
1466 Ldp(temp0, temp1, MemOperand(src, 2 * direction * kPointerSize, PostIndex));
1467 Sub(count, count, 2);
1468 Stp(temp0, temp1, MemOperand(dst, 2 * direction * kPointerSize, PostIndex));
1469 B(&loop);
1470
1471 // TODO(all): large copies may benefit from using temporary Q registers
1472 // to copy four double words per iteration.
1473
1474 Bind(&done);
1475 }
1476
SlotAddress(Register dst,int slot_offset)1477 void TurboAssembler::SlotAddress(Register dst, int slot_offset) {
1478 Add(dst, sp, slot_offset << kPointerSizeLog2);
1479 }
1480
SlotAddress(Register dst,Register slot_offset)1481 void TurboAssembler::SlotAddress(Register dst, Register slot_offset) {
1482 Add(dst, sp, Operand(slot_offset, LSL, kPointerSizeLog2));
1483 }
1484
AssertFPCRState(Register fpcr)1485 void TurboAssembler::AssertFPCRState(Register fpcr) {
1486 if (emit_debug_code()) {
1487 Label unexpected_mode, done;
1488 UseScratchRegisterScope temps(this);
1489 if (fpcr.IsNone()) {
1490 fpcr = temps.AcquireX();
1491 Mrs(fpcr, FPCR);
1492 }
1493
1494 // Settings left to their default values:
1495 // - Assert that flush-to-zero is not set.
1496 Tbnz(fpcr, FZ_offset, &unexpected_mode);
1497 // - Assert that the rounding mode is nearest-with-ties-to-even.
1498 STATIC_ASSERT(FPTieEven == 0);
1499 Tst(fpcr, RMode_mask);
1500 B(eq, &done);
1501
1502 Bind(&unexpected_mode);
1503 Abort(AbortReason::kUnexpectedFPCRMode);
1504
1505 Bind(&done);
1506 }
1507 }
1508
CanonicalizeNaN(const VRegister & dst,const VRegister & src)1509 void TurboAssembler::CanonicalizeNaN(const VRegister& dst,
1510 const VRegister& src) {
1511 AssertFPCRState();
1512
1513 // Subtracting 0.0 preserves all inputs except for signalling NaNs, which
1514 // become quiet NaNs. We use fsub rather than fadd because fsub preserves -0.0
1515 // inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0.
1516 Fsub(dst, src, fp_zero);
1517 }
1518
LoadRoot(Register destination,Heap::RootListIndex index)1519 void TurboAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
1520 // TODO(jbramley): Most root values are constants, and can be synthesized
1521 // without a load. Refer to the ARM back end for details.
1522 Ldr(destination, MemOperand(kRootRegister, RootRegisterOffset(index)));
1523 }
1524
1525
LoadObject(Register result,Handle<Object> object)1526 void MacroAssembler::LoadObject(Register result, Handle<Object> object) {
1527 AllowDeferredHandleDereference heap_object_check;
1528 if (object->IsHeapObject()) {
1529 Mov(result, Handle<HeapObject>::cast(object));
1530 } else {
1531 Mov(result, Operand(Smi::cast(*object)));
1532 }
1533 }
1534
Move(Register dst,Smi * src)1535 void TurboAssembler::Move(Register dst, Smi* src) { Mov(dst, src); }
1536
Swap(Register lhs,Register rhs)1537 void TurboAssembler::Swap(Register lhs, Register rhs) {
1538 DCHECK(lhs.IsSameSizeAndType(rhs));
1539 DCHECK(!lhs.Is(rhs));
1540 UseScratchRegisterScope temps(this);
1541 Register temp = temps.AcquireX();
1542 Mov(temp, rhs);
1543 Mov(rhs, lhs);
1544 Mov(lhs, temp);
1545 }
1546
Swap(VRegister lhs,VRegister rhs)1547 void TurboAssembler::Swap(VRegister lhs, VRegister rhs) {
1548 DCHECK(lhs.IsSameSizeAndType(rhs));
1549 DCHECK(!lhs.Is(rhs));
1550 UseScratchRegisterScope temps(this);
1551 VRegister temp = VRegister::no_reg();
1552 if (lhs.IsS()) {
1553 temp = temps.AcquireS();
1554 } else if (lhs.IsD()) {
1555 temp = temps.AcquireD();
1556 } else {
1557 DCHECK(lhs.IsQ());
1558 temp = temps.AcquireQ();
1559 }
1560 Mov(temp, rhs);
1561 Mov(rhs, lhs);
1562 Mov(lhs, temp);
1563 }
1564
AssertSmi(Register object,AbortReason reason)1565 void TurboAssembler::AssertSmi(Register object, AbortReason reason) {
1566 if (emit_debug_code()) {
1567 STATIC_ASSERT(kSmiTag == 0);
1568 Tst(object, kSmiTagMask);
1569 Check(eq, reason);
1570 }
1571 }
1572
AssertNotSmi(Register object,AbortReason reason)1573 void MacroAssembler::AssertNotSmi(Register object, AbortReason reason) {
1574 if (emit_debug_code()) {
1575 STATIC_ASSERT(kSmiTag == 0);
1576 Tst(object, kSmiTagMask);
1577 Check(ne, reason);
1578 }
1579 }
1580
AssertConstructor(Register object)1581 void MacroAssembler::AssertConstructor(Register object) {
1582 if (emit_debug_code()) {
1583 AssertNotSmi(object, AbortReason::kOperandIsASmiAndNotAConstructor);
1584
1585 UseScratchRegisterScope temps(this);
1586 Register temp = temps.AcquireX();
1587
1588 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1589 Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
1590 Tst(temp, Operand(Map::IsConstructorBit::kMask));
1591
1592 Check(ne, AbortReason::kOperandIsNotAConstructor);
1593 }
1594 }
1595
AssertFunction(Register object)1596 void MacroAssembler::AssertFunction(Register object) {
1597 if (emit_debug_code()) {
1598 AssertNotSmi(object, AbortReason::kOperandIsASmiAndNotAFunction);
1599
1600 UseScratchRegisterScope temps(this);
1601 Register temp = temps.AcquireX();
1602
1603 CompareObjectType(object, temp, temp, JS_FUNCTION_TYPE);
1604 Check(eq, AbortReason::kOperandIsNotAFunction);
1605 }
1606 }
1607
1608
AssertBoundFunction(Register object)1609 void MacroAssembler::AssertBoundFunction(Register object) {
1610 if (emit_debug_code()) {
1611 AssertNotSmi(object, AbortReason::kOperandIsASmiAndNotABoundFunction);
1612
1613 UseScratchRegisterScope temps(this);
1614 Register temp = temps.AcquireX();
1615
1616 CompareObjectType(object, temp, temp, JS_BOUND_FUNCTION_TYPE);
1617 Check(eq, AbortReason::kOperandIsNotABoundFunction);
1618 }
1619 }
1620
AssertGeneratorObject(Register object)1621 void MacroAssembler::AssertGeneratorObject(Register object) {
1622 if (!emit_debug_code()) return;
1623 AssertNotSmi(object, AbortReason::kOperandIsASmiAndNotAGeneratorObject);
1624
1625 // Load map
1626 UseScratchRegisterScope temps(this);
1627 Register temp = temps.AcquireX();
1628 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1629
1630 Label do_check;
1631 // Load instance type and check if JSGeneratorObject
1632 CompareInstanceType(temp, temp, JS_GENERATOR_OBJECT_TYPE);
1633 B(eq, &do_check);
1634
1635 // Check if JSAsyncGeneratorObject
1636 Cmp(temp, JS_ASYNC_GENERATOR_OBJECT_TYPE);
1637
1638 bind(&do_check);
1639 // Restore generator object to register and perform assertion
1640 Check(eq, AbortReason::kOperandIsNotAGeneratorObject);
1641 }
1642
AssertUndefinedOrAllocationSite(Register object)1643 void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) {
1644 if (emit_debug_code()) {
1645 UseScratchRegisterScope temps(this);
1646 Register scratch = temps.AcquireX();
1647 Label done_checking;
1648 AssertNotSmi(object);
1649 JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &done_checking);
1650 Ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1651 CompareInstanceType(scratch, scratch, ALLOCATION_SITE_TYPE);
1652 Assert(eq, AbortReason::kExpectedUndefinedOrCell);
1653 Bind(&done_checking);
1654 }
1655 }
1656
AssertPositiveOrZero(Register value)1657 void TurboAssembler::AssertPositiveOrZero(Register value) {
1658 if (emit_debug_code()) {
1659 Label done;
1660 int sign_bit = value.Is64Bits() ? kXSignBit : kWSignBit;
1661 Tbz(value, sign_bit, &done);
1662 Abort(AbortReason::kUnexpectedNegativeValue);
1663 Bind(&done);
1664 }
1665 }
1666
CallStubDelayed(CodeStub * stub)1667 void TurboAssembler::CallStubDelayed(CodeStub* stub) {
1668 DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
1669 BlockPoolsScope scope(this);
1670 #ifdef DEBUG
1671 Label start;
1672 Bind(&start);
1673 #endif
1674 Operand operand = Operand::EmbeddedCode(stub);
1675 near_call(operand.heap_object_request());
1676 DCHECK_EQ(kNearCallSize, SizeOfCodeGeneratedSince(&start));
1677 }
1678
CallStub(CodeStub * stub)1679 void MacroAssembler::CallStub(CodeStub* stub) {
1680 DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
1681 Call(stub->GetCode(), RelocInfo::CODE_TARGET);
1682 }
1683
TailCallStub(CodeStub * stub)1684 void MacroAssembler::TailCallStub(CodeStub* stub) {
1685 Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
1686 }
1687
CallRuntimeWithCEntry(Runtime::FunctionId fid,Register centry)1688 void TurboAssembler::CallRuntimeWithCEntry(Runtime::FunctionId fid,
1689 Register centry) {
1690 const Runtime::Function* f = Runtime::FunctionForId(fid);
1691 // TODO(1236192): Most runtime routines don't need the number of
1692 // arguments passed in because it is constant. At some point we
1693 // should remove this need and make the runtime routine entry code
1694 // smarter.
1695 Mov(x0, f->nargs);
1696 Mov(x1, ExternalReference::Create(f));
1697 DCHECK(!AreAliased(centry, x0, x1));
1698 Add(centry, centry, Operand(Code::kHeaderSize - kHeapObjectTag));
1699 Call(centry);
1700 }
1701
CallRuntime(const Runtime::Function * f,int num_arguments,SaveFPRegsMode save_doubles)1702 void MacroAssembler::CallRuntime(const Runtime::Function* f,
1703 int num_arguments,
1704 SaveFPRegsMode save_doubles) {
1705 // All arguments must be on the stack before this function is called.
1706 // x0 holds the return value after the call.
1707
1708 // Check that the number of arguments matches what the function expects.
1709 // If f->nargs is -1, the function can accept a variable number of arguments.
1710 CHECK(f->nargs < 0 || f->nargs == num_arguments);
1711
1712 // Place the necessary arguments.
1713 Mov(x0, num_arguments);
1714 Mov(x1, ExternalReference::Create(f));
1715
1716 Handle<Code> code =
1717 CodeFactory::CEntry(isolate(), f->result_size, save_doubles);
1718 Call(code, RelocInfo::CODE_TARGET);
1719 }
1720
JumpToExternalReference(const ExternalReference & builtin,bool builtin_exit_frame)1721 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
1722 bool builtin_exit_frame) {
1723 Mov(x1, builtin);
1724 Handle<Code> code = CodeFactory::CEntry(isolate(), 1, kDontSaveFPRegs,
1725 kArgvOnStack, builtin_exit_frame);
1726 Jump(code, RelocInfo::CODE_TARGET);
1727 }
1728
JumpToInstructionStream(Address entry)1729 void MacroAssembler::JumpToInstructionStream(Address entry) {
1730 Mov(kOffHeapTrampolineRegister, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
1731 Br(kOffHeapTrampolineRegister);
1732 }
1733
TailCallRuntime(Runtime::FunctionId fid)1734 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
1735 const Runtime::Function* function = Runtime::FunctionForId(fid);
1736 DCHECK_EQ(1, function->result_size);
1737 if (function->nargs >= 0) {
1738 // TODO(1236192): Most runtime routines don't need the number of
1739 // arguments passed in because it is constant. At some point we
1740 // should remove this need and make the runtime routine entry code
1741 // smarter.
1742 Mov(x0, function->nargs);
1743 }
1744 JumpToExternalReference(ExternalReference::Create(fid));
1745 }
1746
ActivationFrameAlignment()1747 int TurboAssembler::ActivationFrameAlignment() {
1748 #if V8_HOST_ARCH_ARM64
1749 // Running on the real platform. Use the alignment as mandated by the local
1750 // environment.
1751 // Note: This will break if we ever start generating snapshots on one ARM
1752 // platform for another ARM platform with a different alignment.
1753 return base::OS::ActivationFrameAlignment();
1754 #else // V8_HOST_ARCH_ARM64
1755 // If we are using the simulator then we should always align to the expected
1756 // alignment. As the simulator is used to generate snapshots we do not know
1757 // if the target platform will need alignment, so this is controlled from a
1758 // flag.
1759 return FLAG_sim_stack_alignment;
1760 #endif // V8_HOST_ARCH_ARM64
1761 }
1762
CallCFunction(ExternalReference function,int num_of_reg_args)1763 void TurboAssembler::CallCFunction(ExternalReference function,
1764 int num_of_reg_args) {
1765 CallCFunction(function, num_of_reg_args, 0);
1766 }
1767
CallCFunction(ExternalReference function,int num_of_reg_args,int num_of_double_args)1768 void TurboAssembler::CallCFunction(ExternalReference function,
1769 int num_of_reg_args,
1770 int num_of_double_args) {
1771 UseScratchRegisterScope temps(this);
1772 Register temp = temps.AcquireX();
1773 Mov(temp, function);
1774 CallCFunction(temp, num_of_reg_args, num_of_double_args);
1775 }
1776
1777 static const int kRegisterPassedArguments = 8;
1778
CallCFunction(Register function,int num_of_reg_args,int num_of_double_args)1779 void TurboAssembler::CallCFunction(Register function, int num_of_reg_args,
1780 int num_of_double_args) {
1781 DCHECK_LE(num_of_reg_args + num_of_double_args, kMaxCParameters);
1782 DCHECK(has_frame());
1783
1784 // If we're passing doubles, we're limited to the following prototypes
1785 // (defined by ExternalReference::Type):
1786 // BUILTIN_COMPARE_CALL: int f(double, double)
1787 // BUILTIN_FP_FP_CALL: double f(double, double)
1788 // BUILTIN_FP_CALL: double f(double)
1789 // BUILTIN_FP_INT_CALL: double f(double, int)
1790 if (num_of_double_args > 0) {
1791 DCHECK_LE(num_of_reg_args, 1);
1792 DCHECK_LE(num_of_double_args + num_of_reg_args, 2);
1793 }
1794
1795 // Call directly. The function called cannot cause a GC, or allow preemption,
1796 // so the return address in the link register stays correct.
1797 Call(function);
1798
1799 if (num_of_reg_args > kRegisterPassedArguments) {
1800 // Drop the register passed arguments.
1801 int claim_slots = RoundUp(num_of_reg_args - kRegisterPassedArguments, 2);
1802 Drop(claim_slots);
1803 }
1804 }
1805
LoadFromConstantsTable(Register destination,int constant_index)1806 void TurboAssembler::LoadFromConstantsTable(Register destination,
1807 int constant_index) {
1808 DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(
1809 Heap::kBuiltinsConstantsTableRootIndex));
1810 LoadRoot(destination, Heap::kBuiltinsConstantsTableRootIndex);
1811 Ldr(destination,
1812 FieldMemOperand(destination,
1813 FixedArray::kHeaderSize + constant_index * kPointerSize));
1814 }
1815
LoadRootRelative(Register destination,int32_t offset)1816 void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) {
1817 Ldr(destination, MemOperand(kRootRegister, offset));
1818 }
1819
LoadRootRegisterOffset(Register destination,intptr_t offset)1820 void TurboAssembler::LoadRootRegisterOffset(Register destination,
1821 intptr_t offset) {
1822 if (offset == 0) {
1823 Mov(destination, kRootRegister);
1824 } else {
1825 Add(destination, kRootRegister, offset);
1826 }
1827 }
1828
Jump(Register target,Condition cond)1829 void TurboAssembler::Jump(Register target, Condition cond) {
1830 if (cond == nv) return;
1831 Label done;
1832 if (cond != al) B(NegateCondition(cond), &done);
1833 Br(target);
1834 Bind(&done);
1835 }
1836
JumpHelper(int64_t offset,RelocInfo::Mode rmode,Condition cond)1837 void TurboAssembler::JumpHelper(int64_t offset, RelocInfo::Mode rmode,
1838 Condition cond) {
1839 if (cond == nv) return;
1840 Label done;
1841 if (cond != al) B(NegateCondition(cond), &done);
1842 if (CanUseNearCallOrJump(rmode)) {
1843 DCHECK(IsNearCallOffset(offset));
1844 near_jump(static_cast<int>(offset), rmode);
1845 } else {
1846 UseScratchRegisterScope temps(this);
1847 Register temp = temps.AcquireX();
1848 uint64_t imm = reinterpret_cast<uint64_t>(pc_) + offset * kInstrSize;
1849 Mov(temp, Immediate(imm, rmode));
1850 Br(temp);
1851 }
1852 Bind(&done);
1853 }
1854
1855 namespace {
1856
1857 // The calculated offset is either:
1858 // * the 'target' input unmodified if this is a WASM call, or
1859 // * the offset of the target from the current PC, in instructions, for any
1860 // other type of call.
CalculateTargetOffset(Address target,RelocInfo::Mode rmode,byte * pc)1861 static int64_t CalculateTargetOffset(Address target, RelocInfo::Mode rmode,
1862 byte* pc) {
1863 int64_t offset = static_cast<int64_t>(target);
1864 // The target of WebAssembly calls is still an index instead of an actual
1865 // address at this point, and needs to be encoded as-is.
1866 if (rmode != RelocInfo::WASM_CALL && rmode != RelocInfo::WASM_STUB_CALL) {
1867 offset -= reinterpret_cast<int64_t>(pc);
1868 DCHECK_EQ(offset % kInstrSize, 0);
1869 offset = offset / static_cast<int>(kInstrSize);
1870 }
1871 return offset;
1872 }
1873 } // namespace
1874
Jump(Address target,RelocInfo::Mode rmode,Condition cond)1875 void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode,
1876 Condition cond) {
1877 JumpHelper(CalculateTargetOffset(target, rmode, pc_), rmode, cond);
1878 }
1879
Jump(Handle<Code> code,RelocInfo::Mode rmode,Condition cond)1880 void TurboAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
1881 Condition cond) {
1882 DCHECK(RelocInfo::IsCodeTarget(rmode));
1883 if (FLAG_embedded_builtins) {
1884 if (root_array_available_ && options().isolate_independent_code &&
1885 !Builtins::IsIsolateIndependentBuiltin(*code)) {
1886 // Calls to embedded targets are initially generated as standard
1887 // pc-relative calls below. When creating the embedded blob, call offsets
1888 // are patched up to point directly to the off-heap instruction start.
1889 // Note: It is safe to dereference {code} above since code generation
1890 // for builtins and code stubs happens on the main thread.
1891 UseScratchRegisterScope temps(this);
1892 Register scratch = temps.AcquireX();
1893 IndirectLoadConstant(scratch, code);
1894 Add(scratch, scratch, Operand(Code::kHeaderSize - kHeapObjectTag));
1895 Jump(scratch, cond);
1896 return;
1897 } else if (options().inline_offheap_trampolines) {
1898 int builtin_index = Builtins::kNoBuiltinId;
1899 if (isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) &&
1900 Builtins::IsIsolateIndependent(builtin_index)) {
1901 // Inline the trampoline.
1902 RecordCommentForOffHeapTrampoline(builtin_index);
1903 CHECK_NE(builtin_index, Builtins::kNoBuiltinId);
1904 UseScratchRegisterScope temps(this);
1905 Register scratch = temps.AcquireX();
1906 EmbeddedData d = EmbeddedData::FromBlob();
1907 Address entry = d.InstructionStartOfBuiltin(builtin_index);
1908 Mov(scratch, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
1909 Jump(scratch, cond);
1910 return;
1911 }
1912 }
1913 }
1914 if (CanUseNearCallOrJump(rmode)) {
1915 JumpHelper(static_cast<int64_t>(AddCodeTarget(code)), rmode, cond);
1916 } else {
1917 Jump(code.address(), rmode, cond);
1918 }
1919 }
1920
Call(Register target)1921 void TurboAssembler::Call(Register target) {
1922 BlockPoolsScope scope(this);
1923 Blr(target);
1924 }
1925
Call(Address target,RelocInfo::Mode rmode)1926 void TurboAssembler::Call(Address target, RelocInfo::Mode rmode) {
1927 BlockPoolsScope scope(this);
1928
1929 if (CanUseNearCallOrJump(rmode)) {
1930 int64_t offset = CalculateTargetOffset(target, rmode, pc_);
1931 DCHECK(IsNearCallOffset(offset));
1932 near_call(static_cast<int>(offset), rmode);
1933 } else {
1934 IndirectCall(target, rmode);
1935 }
1936 }
1937
Call(Handle<Code> code,RelocInfo::Mode rmode)1938 void TurboAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode) {
1939 BlockPoolsScope scope(this);
1940
1941 if (FLAG_embedded_builtins) {
1942 if (root_array_available_ && options().isolate_independent_code &&
1943 !Builtins::IsIsolateIndependentBuiltin(*code)) {
1944 // Calls to embedded targets are initially generated as standard
1945 // pc-relative calls below. When creating the embedded blob, call offsets
1946 // are patched up to point directly to the off-heap instruction start.
1947 // Note: It is safe to dereference {code} above since code generation
1948 // for builtins and code stubs happens on the main thread.
1949 UseScratchRegisterScope temps(this);
1950 Register scratch = temps.AcquireX();
1951 IndirectLoadConstant(scratch, code);
1952 Add(scratch, scratch, Operand(Code::kHeaderSize - kHeapObjectTag));
1953 Call(scratch);
1954 return;
1955 } else if (options().inline_offheap_trampolines) {
1956 int builtin_index = Builtins::kNoBuiltinId;
1957 if (isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) &&
1958 Builtins::IsIsolateIndependent(builtin_index)) {
1959 // Inline the trampoline.
1960 RecordCommentForOffHeapTrampoline(builtin_index);
1961 CHECK_NE(builtin_index, Builtins::kNoBuiltinId);
1962 UseScratchRegisterScope temps(this);
1963 Register scratch = temps.AcquireX();
1964 EmbeddedData d = EmbeddedData::FromBlob();
1965 Address entry = d.InstructionStartOfBuiltin(builtin_index);
1966 Mov(scratch, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
1967 Call(scratch);
1968 return;
1969 }
1970 }
1971 }
1972 if (CanUseNearCallOrJump(rmode)) {
1973 near_call(AddCodeTarget(code), rmode);
1974 } else {
1975 IndirectCall(code.address(), rmode);
1976 }
1977 }
1978
Call(ExternalReference target)1979 void TurboAssembler::Call(ExternalReference target) {
1980 UseScratchRegisterScope temps(this);
1981 Register temp = temps.AcquireX();
1982 Mov(temp, target);
1983 Call(temp);
1984 }
1985
IndirectCall(Address target,RelocInfo::Mode rmode)1986 void TurboAssembler::IndirectCall(Address target, RelocInfo::Mode rmode) {
1987 UseScratchRegisterScope temps(this);
1988 Register temp = temps.AcquireX();
1989 Mov(temp, Immediate(target, rmode));
1990 Blr(temp);
1991 }
1992
IsNearCallOffset(int64_t offset)1993 bool TurboAssembler::IsNearCallOffset(int64_t offset) {
1994 return is_int26(offset);
1995 }
1996
CallForDeoptimization(Address target,int deopt_id,RelocInfo::Mode rmode)1997 void TurboAssembler::CallForDeoptimization(Address target, int deopt_id,
1998 RelocInfo::Mode rmode) {
1999 DCHECK_EQ(rmode, RelocInfo::RUNTIME_ENTRY);
2000
2001 BlockPoolsScope scope(this);
2002 #ifdef DEBUG
2003 Label start;
2004 Bind(&start);
2005 #endif
2006 // The deoptimizer requires the deoptimization id to be in x16.
2007 UseScratchRegisterScope temps(this);
2008 Register temp = temps.AcquireX();
2009 DCHECK(temp.Is(x16));
2010 // Make sure that the deopt id can be encoded in 16 bits, so can be encoded
2011 // in a single movz instruction with a zero shift.
2012 DCHECK(is_uint16(deopt_id));
2013 movz(temp, deopt_id);
2014 int64_t offset = static_cast<int64_t>(target) -
2015 static_cast<int64_t>(options().code_range_start);
2016 DCHECK_EQ(offset % kInstrSize, 0);
2017 offset = offset / static_cast<int>(kInstrSize);
2018 DCHECK(IsNearCallOffset(offset));
2019 near_call(static_cast<int>(offset), RelocInfo::RUNTIME_ENTRY);
2020
2021 DCHECK_EQ(kNearCallSize + kInstrSize, SizeOfCodeGeneratedSince(&start));
2022 }
2023
TryRepresentDoubleAsInt(Register as_int,VRegister value,VRegister scratch_d,Label * on_successful_conversion,Label * on_failed_conversion)2024 void MacroAssembler::TryRepresentDoubleAsInt(Register as_int, VRegister value,
2025 VRegister scratch_d,
2026 Label* on_successful_conversion,
2027 Label* on_failed_conversion) {
2028 // Convert to an int and back again, then compare with the original value.
2029 Fcvtzs(as_int, value);
2030 Scvtf(scratch_d, as_int);
2031 Fcmp(value, scratch_d);
2032
2033 if (on_successful_conversion) {
2034 B(on_successful_conversion, eq);
2035 }
2036 if (on_failed_conversion) {
2037 B(on_failed_conversion, ne);
2038 }
2039 }
2040
PrepareForTailCall(const ParameterCount & callee_args_count,Register caller_args_count_reg,Register scratch0,Register scratch1)2041 void TurboAssembler::PrepareForTailCall(const ParameterCount& callee_args_count,
2042 Register caller_args_count_reg,
2043 Register scratch0, Register scratch1) {
2044 #if DEBUG
2045 if (callee_args_count.is_reg()) {
2046 DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0,
2047 scratch1));
2048 } else {
2049 DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1));
2050 }
2051 #endif
2052
2053 // Calculate the end of destination area where we will put the arguments
2054 // after we drop current frame. We add kPointerSize to count the receiver
2055 // argument which is not included into formal parameters count.
2056 Register dst_reg = scratch0;
2057 Add(dst_reg, fp, Operand(caller_args_count_reg, LSL, kPointerSizeLog2));
2058 Add(dst_reg, dst_reg, StandardFrameConstants::kCallerSPOffset + kPointerSize);
2059 // Round dst_reg up to a multiple of 16 bytes, so that we overwrite any
2060 // potential padding.
2061 Add(dst_reg, dst_reg, 15);
2062 Bic(dst_reg, dst_reg, 15);
2063
2064 Register src_reg = caller_args_count_reg;
2065 // Calculate the end of source area. +kPointerSize is for the receiver.
2066 if (callee_args_count.is_reg()) {
2067 Add(src_reg, sp, Operand(callee_args_count.reg(), LSL, kPointerSizeLog2));
2068 Add(src_reg, src_reg, kPointerSize);
2069 } else {
2070 Add(src_reg, sp, (callee_args_count.immediate() + 1) * kPointerSize);
2071 }
2072
2073 // Round src_reg up to a multiple of 16 bytes, so we include any potential
2074 // padding in the copy.
2075 Add(src_reg, src_reg, 15);
2076 Bic(src_reg, src_reg, 15);
2077
2078 if (FLAG_debug_code) {
2079 Cmp(src_reg, dst_reg);
2080 Check(lo, AbortReason::kStackAccessBelowStackPointer);
2081 }
2082
2083 // Restore caller's frame pointer and return address now as they will be
2084 // overwritten by the copying loop.
2085 Ldr(lr, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
2086 Ldr(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2087
2088 // Now copy callee arguments to the caller frame going backwards to avoid
2089 // callee arguments corruption (source and destination areas could overlap).
2090
2091 // Both src_reg and dst_reg are pointing to the word after the one to copy,
2092 // so they must be pre-decremented in the loop.
2093 Register tmp_reg = scratch1;
2094 Label loop, entry;
2095 B(&entry);
2096 bind(&loop);
2097 Ldr(tmp_reg, MemOperand(src_reg, -kPointerSize, PreIndex));
2098 Str(tmp_reg, MemOperand(dst_reg, -kPointerSize, PreIndex));
2099 bind(&entry);
2100 Cmp(sp, src_reg);
2101 B(ne, &loop);
2102
2103 // Leave current frame.
2104 Mov(sp, dst_reg);
2105 }
2106
InvokePrologue(const ParameterCount & expected,const ParameterCount & actual,Label * done,InvokeFlag flag,bool * definitely_mismatches)2107 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
2108 const ParameterCount& actual, Label* done,
2109 InvokeFlag flag,
2110 bool* definitely_mismatches) {
2111 bool definitely_matches = false;
2112 *definitely_mismatches = false;
2113 Label regular_invoke;
2114
2115 // Check whether the expected and actual arguments count match. If not,
2116 // setup registers according to contract with ArgumentsAdaptorTrampoline:
2117 // x0: actual arguments count.
2118 // x1: function (passed through to callee).
2119 // x2: expected arguments count.
2120
2121 // The code below is made a lot easier because the calling code already sets
2122 // up actual and expected registers according to the contract if values are
2123 // passed in registers.
2124 DCHECK(actual.is_immediate() || actual.reg().is(x0));
2125 DCHECK(expected.is_immediate() || expected.reg().is(x2));
2126
2127 if (expected.is_immediate()) {
2128 DCHECK(actual.is_immediate());
2129 Mov(x0, actual.immediate());
2130 if (expected.immediate() == actual.immediate()) {
2131 definitely_matches = true;
2132
2133 } else {
2134 if (expected.immediate() ==
2135 SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
2136 // Don't worry about adapting arguments for builtins that
2137 // don't want that done. Skip adaption code by making it look
2138 // like we have a match between expected and actual number of
2139 // arguments.
2140 definitely_matches = true;
2141 } else {
2142 *definitely_mismatches = true;
2143 // Set up x2 for the argument adaptor.
2144 Mov(x2, expected.immediate());
2145 }
2146 }
2147
2148 } else { // expected is a register.
2149 Operand actual_op = actual.is_immediate() ? Operand(actual.immediate())
2150 : Operand(actual.reg());
2151 Mov(x0, actual_op);
2152 // If actual == expected perform a regular invocation.
2153 Cmp(expected.reg(), actual_op);
2154 B(eq, ®ular_invoke);
2155 }
2156
2157 // If the argument counts may mismatch, generate a call to the argument
2158 // adaptor.
2159 if (!definitely_matches) {
2160 Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline);
2161 if (flag == CALL_FUNCTION) {
2162 Call(adaptor);
2163 if (!*definitely_mismatches) {
2164 // If the arg counts don't match, no extra code is emitted by
2165 // MAsm::InvokeFunctionCode and we can just fall through.
2166 B(done);
2167 }
2168 } else {
2169 Jump(adaptor, RelocInfo::CODE_TARGET);
2170 }
2171 }
2172 Bind(®ular_invoke);
2173 }
2174
CheckDebugHook(Register fun,Register new_target,const ParameterCount & expected,const ParameterCount & actual)2175 void MacroAssembler::CheckDebugHook(Register fun, Register new_target,
2176 const ParameterCount& expected,
2177 const ParameterCount& actual) {
2178 Label skip_hook;
2179
2180 Mov(x4, ExternalReference::debug_hook_on_function_call_address(isolate()));
2181 Ldrsb(x4, MemOperand(x4));
2182 Cbz(x4, &skip_hook);
2183
2184 {
2185 // Load receiver to pass it later to DebugOnFunctionCall hook.
2186 Operand actual_op = actual.is_immediate() ? Operand(actual.immediate())
2187 : Operand(actual.reg());
2188 Mov(x4, actual_op);
2189 Ldr(x4, MemOperand(sp, x4, LSL, kPointerSizeLog2));
2190 FrameScope frame(this,
2191 has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
2192
2193 Register expected_reg = padreg;
2194 Register actual_reg = padreg;
2195 if (expected.is_reg()) expected_reg = expected.reg();
2196 if (actual.is_reg()) actual_reg = actual.reg();
2197 if (!new_target.is_valid()) new_target = padreg;
2198
2199 // Save values on stack.
2200 SmiTag(expected_reg);
2201 SmiTag(actual_reg);
2202 Push(expected_reg, actual_reg, new_target, fun);
2203 Push(fun, x4);
2204 CallRuntime(Runtime::kDebugOnFunctionCall);
2205
2206 // Restore values from stack.
2207 Pop(fun, new_target, actual_reg, expected_reg);
2208 SmiUntag(actual_reg);
2209 SmiUntag(expected_reg);
2210 }
2211 Bind(&skip_hook);
2212 }
2213
InvokeFunctionCode(Register function,Register new_target,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag)2214 void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
2215 const ParameterCount& expected,
2216 const ParameterCount& actual,
2217 InvokeFlag flag) {
2218 // You can't call a function without a valid frame.
2219 DCHECK(flag == JUMP_FUNCTION || has_frame());
2220 DCHECK(function.is(x1));
2221 DCHECK_IMPLIES(new_target.is_valid(), new_target.is(x3));
2222
2223 // On function call, call into the debugger if necessary.
2224 CheckDebugHook(function, new_target, expected, actual);
2225
2226 // Clear the new.target register if not given.
2227 if (!new_target.is_valid()) {
2228 LoadRoot(x3, Heap::kUndefinedValueRootIndex);
2229 }
2230
2231 Label done;
2232 bool definitely_mismatches = false;
2233 InvokePrologue(expected, actual, &done, flag, &definitely_mismatches);
2234
2235 // If we are certain that actual != expected, then we know InvokePrologue will
2236 // have handled the call through the argument adaptor mechanism.
2237 // The called function expects the call kind in x5.
2238 if (!definitely_mismatches) {
2239 // We call indirectly through the code field in the function to
2240 // allow recompilation to take effect without changing any of the
2241 // call sites.
2242 Register code = kJavaScriptCallCodeStartRegister;
2243 Ldr(code, FieldMemOperand(function, JSFunction::kCodeOffset));
2244 Add(code, code, Operand(Code::kHeaderSize - kHeapObjectTag));
2245 if (flag == CALL_FUNCTION) {
2246 Call(code);
2247 } else {
2248 DCHECK(flag == JUMP_FUNCTION);
2249 Jump(code);
2250 }
2251 }
2252
2253 // Continue here if InvokePrologue does handle the invocation due to
2254 // mismatched parameter counts.
2255 Bind(&done);
2256 }
2257
InvokeFunction(Register function,Register new_target,const ParameterCount & actual,InvokeFlag flag)2258 void MacroAssembler::InvokeFunction(Register function, Register new_target,
2259 const ParameterCount& actual,
2260 InvokeFlag flag) {
2261 // You can't call a function without a valid frame.
2262 DCHECK(flag == JUMP_FUNCTION || has_frame());
2263
2264 // Contract with called JS functions requires that function is passed in x1.
2265 // (See FullCodeGenerator::Generate().)
2266 DCHECK(function.is(x1));
2267
2268 Register expected_reg = x2;
2269
2270 Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2271 // The number of arguments is stored as an int32_t, and -1 is a marker
2272 // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
2273 // extension to correctly handle it.
2274 Ldr(expected_reg, FieldMemOperand(function,
2275 JSFunction::kSharedFunctionInfoOffset));
2276 Ldrh(expected_reg,
2277 FieldMemOperand(expected_reg,
2278 SharedFunctionInfo::kFormalParameterCountOffset));
2279
2280 ParameterCount expected(expected_reg);
2281 InvokeFunctionCode(function, new_target, expected, actual, flag);
2282 }
2283
InvokeFunction(Register function,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag)2284 void MacroAssembler::InvokeFunction(Register function,
2285 const ParameterCount& expected,
2286 const ParameterCount& actual,
2287 InvokeFlag flag) {
2288 // You can't call a function without a valid frame.
2289 DCHECK(flag == JUMP_FUNCTION || has_frame());
2290
2291 // Contract with called JS functions requires that function is passed in x1.
2292 // (See FullCodeGenerator::Generate().)
2293 DCHECK(function.Is(x1));
2294
2295 // Set up the context.
2296 Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2297
2298 InvokeFunctionCode(function, no_reg, expected, actual, flag);
2299 }
2300
TryConvertDoubleToInt64(Register result,DoubleRegister double_input,Label * done)2301 void TurboAssembler::TryConvertDoubleToInt64(Register result,
2302 DoubleRegister double_input,
2303 Label* done) {
2304 // Try to convert with an FPU convert instruction. It's trivial to compute
2305 // the modulo operation on an integer register so we convert to a 64-bit
2306 // integer.
2307 //
2308 // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7FF...FF)
2309 // when the double is out of range. NaNs and infinities will be converted to 0
2310 // (as ECMA-262 requires).
2311 Fcvtzs(result.X(), double_input);
2312
2313 // The values INT64_MIN (0x800...00) or INT64_MAX (0x7FF...FF) are not
2314 // representable using a double, so if the result is one of those then we know
2315 // that saturation occurred, and we need to manually handle the conversion.
2316 //
2317 // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting
2318 // 1 will cause signed overflow.
2319 Cmp(result.X(), 1);
2320 Ccmp(result.X(), -1, VFlag, vc);
2321
2322 B(vc, done);
2323 }
2324
TruncateDoubleToI(Isolate * isolate,Zone * zone,Register result,DoubleRegister double_input,StubCallMode stub_mode)2325 void TurboAssembler::TruncateDoubleToI(Isolate* isolate, Zone* zone,
2326 Register result,
2327 DoubleRegister double_input,
2328 StubCallMode stub_mode) {
2329 Label done;
2330
2331 // Try to convert the double to an int64. If successful, the bottom 32 bits
2332 // contain our truncated int32 result.
2333 TryConvertDoubleToInt64(result, double_input, &done);
2334
2335 // If we fell through then inline version didn't succeed - call stub instead.
2336 Push(lr, double_input);
2337
2338 // DoubleToI preserves any registers it needs to clobber.
2339 if (stub_mode == StubCallMode::kCallWasmRuntimeStub) {
2340 Call(wasm::WasmCode::kDoubleToI, RelocInfo::WASM_STUB_CALL);
2341 } else {
2342 Call(BUILTIN_CODE(isolate, DoubleToI), RelocInfo::CODE_TARGET);
2343 }
2344 Ldr(result, MemOperand(sp, 0));
2345
2346 DCHECK_EQ(xzr.SizeInBytes(), double_input.SizeInBytes());
2347 Pop(xzr, lr); // xzr to drop the double input on the stack.
2348
2349 Bind(&done);
2350 // Keep our invariant that the upper 32 bits are zero.
2351 Uxtw(result.W(), result.W());
2352 }
2353
Prologue()2354 void TurboAssembler::Prologue() {
2355 Push(lr, fp, cp, x1);
2356 Add(fp, sp, StandardFrameConstants::kFixedFrameSizeFromFp);
2357 }
2358
EnterFrame(StackFrame::Type type)2359 void TurboAssembler::EnterFrame(StackFrame::Type type) {
2360 UseScratchRegisterScope temps(this);
2361
2362 if (type == StackFrame::INTERNAL) {
2363 Register type_reg = temps.AcquireX();
2364 Mov(type_reg, StackFrame::TypeToMarker(type));
2365 // type_reg pushed twice for alignment.
2366 Push(lr, fp, type_reg, type_reg);
2367 const int kFrameSize =
2368 TypedFrameConstants::kFixedFrameSizeFromFp + kPointerSize;
2369 Add(fp, sp, kFrameSize);
2370 // sp[3] : lr
2371 // sp[2] : fp
2372 // sp[1] : type
2373 // sp[0] : for alignment
2374 } else if (type == StackFrame::WASM_COMPILED ||
2375 type == StackFrame::WASM_COMPILE_LAZY) {
2376 Register type_reg = temps.AcquireX();
2377 Mov(type_reg, StackFrame::TypeToMarker(type));
2378 Push(lr, fp);
2379 Mov(fp, sp);
2380 Push(type_reg, padreg);
2381 // sp[3] : lr
2382 // sp[2] : fp
2383 // sp[1] : type
2384 // sp[0] : for alignment
2385 } else {
2386 DCHECK_EQ(type, StackFrame::CONSTRUCT);
2387 Register type_reg = temps.AcquireX();
2388 Mov(type_reg, StackFrame::TypeToMarker(type));
2389
2390 // Users of this frame type push a context pointer after the type field,
2391 // so do it here to keep the stack pointer aligned.
2392 Push(lr, fp, type_reg, cp);
2393
2394 // The context pointer isn't part of the fixed frame, so add an extra slot
2395 // to account for it.
2396 Add(fp, sp, TypedFrameConstants::kFixedFrameSizeFromFp + kPointerSize);
2397 // sp[3] : lr
2398 // sp[2] : fp
2399 // sp[1] : type
2400 // sp[0] : cp
2401 }
2402 }
2403
LeaveFrame(StackFrame::Type type)2404 void TurboAssembler::LeaveFrame(StackFrame::Type type) {
2405 // Drop the execution stack down to the frame pointer and restore
2406 // the caller frame pointer and return address.
2407 Mov(sp, fp);
2408 Pop(fp, lr);
2409 }
2410
2411
ExitFramePreserveFPRegs()2412 void MacroAssembler::ExitFramePreserveFPRegs() {
2413 DCHECK_EQ(kCallerSavedV.Count() % 2, 0);
2414 PushCPURegList(kCallerSavedV);
2415 }
2416
2417
ExitFrameRestoreFPRegs()2418 void MacroAssembler::ExitFrameRestoreFPRegs() {
2419 // Read the registers from the stack without popping them. The stack pointer
2420 // will be reset as part of the unwinding process.
2421 CPURegList saved_fp_regs = kCallerSavedV;
2422 DCHECK_EQ(saved_fp_regs.Count() % 2, 0);
2423
2424 int offset = ExitFrameConstants::kLastExitFrameField;
2425 while (!saved_fp_regs.IsEmpty()) {
2426 const CPURegister& dst0 = saved_fp_regs.PopHighestIndex();
2427 const CPURegister& dst1 = saved_fp_regs.PopHighestIndex();
2428 offset -= 2 * kDRegSize;
2429 Ldp(dst1, dst0, MemOperand(fp, offset));
2430 }
2431 }
2432
EnterExitFrame(bool save_doubles,const Register & scratch,int extra_space,StackFrame::Type frame_type)2433 void MacroAssembler::EnterExitFrame(bool save_doubles, const Register& scratch,
2434 int extra_space,
2435 StackFrame::Type frame_type) {
2436 DCHECK(frame_type == StackFrame::EXIT ||
2437 frame_type == StackFrame::BUILTIN_EXIT);
2438
2439 // Set up the new stack frame.
2440 Push(lr, fp);
2441 Mov(fp, sp);
2442 Mov(scratch, StackFrame::TypeToMarker(frame_type));
2443 Push(scratch, xzr);
2444 Mov(scratch, CodeObject());
2445 Push(scratch, padreg);
2446 // fp[8]: CallerPC (lr)
2447 // fp -> fp[0]: CallerFP (old fp)
2448 // fp[-8]: STUB marker
2449 // fp[-16]: Space reserved for SPOffset.
2450 // fp[-24]: CodeObject()
2451 // sp -> fp[-32]: padding
2452 STATIC_ASSERT((2 * kPointerSize) == ExitFrameConstants::kCallerSPOffset);
2453 STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset);
2454 STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset);
2455 STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kSPOffset);
2456 STATIC_ASSERT((-3 * kPointerSize) == ExitFrameConstants::kCodeOffset);
2457 STATIC_ASSERT((-4 * kPointerSize) == ExitFrameConstants::kPaddingOffset);
2458
2459 // Save the frame pointer and context pointer in the top frame.
2460 Mov(scratch,
2461 ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate()));
2462 Str(fp, MemOperand(scratch));
2463 Mov(scratch,
2464 ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()));
2465 Str(cp, MemOperand(scratch));
2466
2467 STATIC_ASSERT((-4 * kPointerSize) == ExitFrameConstants::kLastExitFrameField);
2468 if (save_doubles) {
2469 ExitFramePreserveFPRegs();
2470 }
2471
2472 // Round the number of space we need to claim to a multiple of two.
2473 int slots_to_claim = RoundUp(extra_space + 1, 2);
2474
2475 // Reserve space for the return address and for user requested memory.
2476 // We do this before aligning to make sure that we end up correctly
2477 // aligned with the minimum of wasted space.
2478 Claim(slots_to_claim, kXRegSize);
2479 // fp[8]: CallerPC (lr)
2480 // fp -> fp[0]: CallerFP (old fp)
2481 // fp[-8]: STUB marker
2482 // fp[-16]: Space reserved for SPOffset.
2483 // fp[-24]: CodeObject()
2484 // fp[-24 - fp_size]: Saved doubles (if save_doubles is true).
2485 // sp[8]: Extra space reserved for caller (if extra_space != 0).
2486 // sp -> sp[0]: Space reserved for the return address.
2487
2488 // ExitFrame::GetStateForFramePointer expects to find the return address at
2489 // the memory address immediately below the pointer stored in SPOffset.
2490 // It is not safe to derive much else from SPOffset, because the size of the
2491 // padding can vary.
2492 Add(scratch, sp, kXRegSize);
2493 Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
2494 }
2495
2496
2497 // Leave the current exit frame.
LeaveExitFrame(bool restore_doubles,const Register & scratch,const Register & scratch2)2498 void MacroAssembler::LeaveExitFrame(bool restore_doubles,
2499 const Register& scratch,
2500 const Register& scratch2) {
2501 if (restore_doubles) {
2502 ExitFrameRestoreFPRegs();
2503 }
2504
2505 // Restore the context pointer from the top frame.
2506 Mov(scratch,
2507 ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()));
2508 Ldr(cp, MemOperand(scratch));
2509
2510 if (emit_debug_code()) {
2511 // Also emit debug code to clear the cp in the top frame.
2512 Mov(scratch2, Operand(Context::kInvalidContext));
2513 Mov(scratch, ExternalReference::Create(IsolateAddressId::kContextAddress,
2514 isolate()));
2515 Str(scratch2, MemOperand(scratch));
2516 }
2517 // Clear the frame pointer from the top frame.
2518 Mov(scratch,
2519 ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate()));
2520 Str(xzr, MemOperand(scratch));
2521
2522 // Pop the exit frame.
2523 // fp[8]: CallerPC (lr)
2524 // fp -> fp[0]: CallerFP (old fp)
2525 // fp[...]: The rest of the frame.
2526 Mov(sp, fp);
2527 Pop(fp, lr);
2528 }
2529
LoadWeakValue(Register out,Register in,Label * target_if_cleared)2530 void MacroAssembler::LoadWeakValue(Register out, Register in,
2531 Label* target_if_cleared) {
2532 CompareAndBranch(in, Operand(kClearedWeakHeapObject), eq, target_if_cleared);
2533
2534 and_(out, in, Operand(~kWeakHeapObjectMask));
2535 }
2536
IncrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)2537 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
2538 Register scratch1, Register scratch2) {
2539 DCHECK_NE(value, 0);
2540 if (FLAG_native_code_counters && counter->Enabled()) {
2541 Mov(scratch2, ExternalReference::Create(counter));
2542 Ldr(scratch1.W(), MemOperand(scratch2));
2543 Add(scratch1.W(), scratch1.W(), value);
2544 Str(scratch1.W(), MemOperand(scratch2));
2545 }
2546 }
2547
2548
DecrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)2549 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
2550 Register scratch1, Register scratch2) {
2551 IncrementCounter(counter, -value, scratch1, scratch2);
2552 }
2553
MaybeDropFrames()2554 void MacroAssembler::MaybeDropFrames() {
2555 // Check whether we need to drop frames to restart a function on the stack.
2556 Mov(x1, ExternalReference::debug_restart_fp_address(isolate()));
2557 Ldr(x1, MemOperand(x1));
2558 Tst(x1, x1);
2559 Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET,
2560 ne);
2561 }
2562
JumpIfObjectType(Register object,Register map,Register type_reg,InstanceType type,Label * if_cond_pass,Condition cond)2563 void MacroAssembler::JumpIfObjectType(Register object,
2564 Register map,
2565 Register type_reg,
2566 InstanceType type,
2567 Label* if_cond_pass,
2568 Condition cond) {
2569 CompareObjectType(object, map, type_reg, type);
2570 B(cond, if_cond_pass);
2571 }
2572
2573
2574 // Sets condition flags based on comparison, and returns type in type_reg.
CompareObjectType(Register object,Register map,Register type_reg,InstanceType type)2575 void MacroAssembler::CompareObjectType(Register object,
2576 Register map,
2577 Register type_reg,
2578 InstanceType type) {
2579 Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
2580 CompareInstanceType(map, type_reg, type);
2581 }
2582
2583
2584 // Sets condition flags based on comparison, and returns type in type_reg.
CompareInstanceType(Register map,Register type_reg,InstanceType type)2585 void MacroAssembler::CompareInstanceType(Register map,
2586 Register type_reg,
2587 InstanceType type) {
2588 Ldrh(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
2589 Cmp(type_reg, type);
2590 }
2591
2592
LoadElementsKindFromMap(Register result,Register map)2593 void MacroAssembler::LoadElementsKindFromMap(Register result, Register map) {
2594 // Load the map's "bit field 2".
2595 Ldrb(result, FieldMemOperand(map, Map::kBitField2Offset));
2596 // Retrieve elements_kind from bit field 2.
2597 DecodeField<Map::ElementsKindBits>(result);
2598 }
2599
CompareRoot(const Register & obj,Heap::RootListIndex index)2600 void MacroAssembler::CompareRoot(const Register& obj,
2601 Heap::RootListIndex index) {
2602 UseScratchRegisterScope temps(this);
2603 Register temp = temps.AcquireX();
2604 DCHECK(!AreAliased(obj, temp));
2605 LoadRoot(temp, index);
2606 Cmp(obj, temp);
2607 }
2608
2609
JumpIfRoot(const Register & obj,Heap::RootListIndex index,Label * if_equal)2610 void MacroAssembler::JumpIfRoot(const Register& obj,
2611 Heap::RootListIndex index,
2612 Label* if_equal) {
2613 CompareRoot(obj, index);
2614 B(eq, if_equal);
2615 }
2616
2617
JumpIfNotRoot(const Register & obj,Heap::RootListIndex index,Label * if_not_equal)2618 void MacroAssembler::JumpIfNotRoot(const Register& obj,
2619 Heap::RootListIndex index,
2620 Label* if_not_equal) {
2621 CompareRoot(obj, index);
2622 B(ne, if_not_equal);
2623 }
2624
2625
CompareAndSplit(const Register & lhs,const Operand & rhs,Condition cond,Label * if_true,Label * if_false,Label * fall_through)2626 void MacroAssembler::CompareAndSplit(const Register& lhs,
2627 const Operand& rhs,
2628 Condition cond,
2629 Label* if_true,
2630 Label* if_false,
2631 Label* fall_through) {
2632 if ((if_true == if_false) && (if_false == fall_through)) {
2633 // Fall through.
2634 } else if (if_true == if_false) {
2635 B(if_true);
2636 } else if (if_false == fall_through) {
2637 CompareAndBranch(lhs, rhs, cond, if_true);
2638 } else if (if_true == fall_through) {
2639 CompareAndBranch(lhs, rhs, NegateCondition(cond), if_false);
2640 } else {
2641 CompareAndBranch(lhs, rhs, cond, if_true);
2642 B(if_false);
2643 }
2644 }
2645
2646
TestAndSplit(const Register & reg,uint64_t bit_pattern,Label * if_all_clear,Label * if_any_set,Label * fall_through)2647 void MacroAssembler::TestAndSplit(const Register& reg,
2648 uint64_t bit_pattern,
2649 Label* if_all_clear,
2650 Label* if_any_set,
2651 Label* fall_through) {
2652 if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) {
2653 // Fall through.
2654 } else if (if_all_clear == if_any_set) {
2655 B(if_all_clear);
2656 } else if (if_all_clear == fall_through) {
2657 TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
2658 } else if (if_any_set == fall_through) {
2659 TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear);
2660 } else {
2661 TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
2662 B(if_all_clear);
2663 }
2664 }
2665
AllowThisStubCall(CodeStub * stub)2666 bool TurboAssembler::AllowThisStubCall(CodeStub* stub) {
2667 return has_frame() || !stub->SometimesSetsUpAFrame();
2668 }
2669
PopSafepointRegisters()2670 void MacroAssembler::PopSafepointRegisters() {
2671 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
2672 DCHECK_GE(num_unsaved, 0);
2673 DCHECK_EQ(num_unsaved % 2, 0);
2674 DCHECK_EQ(kSafepointSavedRegisters % 2, 0);
2675 PopXRegList(kSafepointSavedRegisters);
2676 Drop(num_unsaved);
2677 }
2678
2679
PushSafepointRegisters()2680 void MacroAssembler::PushSafepointRegisters() {
2681 // Safepoints expect a block of kNumSafepointRegisters values on the stack, so
2682 // adjust the stack for unsaved registers.
2683 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
2684 DCHECK_GE(num_unsaved, 0);
2685 DCHECK_EQ(num_unsaved % 2, 0);
2686 DCHECK_EQ(kSafepointSavedRegisters % 2, 0);
2687 Claim(num_unsaved);
2688 PushXRegList(kSafepointSavedRegisters);
2689 }
2690
SafepointRegisterStackIndex(int reg_code)2691 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
2692 // Make sure the safepoint registers list is what we expect.
2693 DCHECK_EQ(CPURegList::GetSafepointSavedRegisters().list(), 0x6FFCFFFF);
2694
2695 // Safepoint registers are stored contiguously on the stack, but not all the
2696 // registers are saved. The following registers are excluded:
2697 // - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of
2698 // the macro assembler.
2699 // - x31 (sp) because the system stack pointer doesn't need to be included
2700 // in safepoint registers.
2701 //
2702 // This function implements the mapping of register code to index into the
2703 // safepoint register slots.
2704 if ((reg_code >= 0) && (reg_code <= 15)) {
2705 return reg_code;
2706 } else if ((reg_code >= 18) && (reg_code <= 30)) {
2707 // Skip ip0 and ip1.
2708 return reg_code - 2;
2709 } else {
2710 // This register has no safepoint register slot.
2711 UNREACHABLE();
2712 }
2713 }
2714
CheckPageFlag(const Register & object,const Register & scratch,int mask,Condition cc,Label * condition_met)2715 void MacroAssembler::CheckPageFlag(const Register& object,
2716 const Register& scratch, int mask,
2717 Condition cc, Label* condition_met) {
2718 And(scratch, object, ~kPageAlignmentMask);
2719 Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
2720 if (cc == eq) {
2721 TestAndBranchIfAnySet(scratch, mask, condition_met);
2722 } else {
2723 TestAndBranchIfAllClear(scratch, mask, condition_met);
2724 }
2725 }
2726
CheckPageFlagSet(const Register & object,const Register & scratch,int mask,Label * if_any_set)2727 void TurboAssembler::CheckPageFlagSet(const Register& object,
2728 const Register& scratch, int mask,
2729 Label* if_any_set) {
2730 And(scratch, object, ~kPageAlignmentMask);
2731 Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
2732 TestAndBranchIfAnySet(scratch, mask, if_any_set);
2733 }
2734
CheckPageFlagClear(const Register & object,const Register & scratch,int mask,Label * if_all_clear)2735 void TurboAssembler::CheckPageFlagClear(const Register& object,
2736 const Register& scratch, int mask,
2737 Label* if_all_clear) {
2738 And(scratch, object, ~kPageAlignmentMask);
2739 Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
2740 TestAndBranchIfAllClear(scratch, mask, if_all_clear);
2741 }
2742
RecordWriteField(Register object,int offset,Register value,Register scratch,LinkRegisterStatus lr_status,SaveFPRegsMode save_fp,RememberedSetAction remembered_set_action,SmiCheck smi_check)2743 void MacroAssembler::RecordWriteField(Register object, int offset,
2744 Register value, Register scratch,
2745 LinkRegisterStatus lr_status,
2746 SaveFPRegsMode save_fp,
2747 RememberedSetAction remembered_set_action,
2748 SmiCheck smi_check) {
2749 // First, check if a write barrier is even needed. The tests below
2750 // catch stores of Smis.
2751 Label done;
2752
2753 // Skip the barrier if writing a smi.
2754 if (smi_check == INLINE_SMI_CHECK) {
2755 JumpIfSmi(value, &done);
2756 }
2757
2758 // Although the object register is tagged, the offset is relative to the start
2759 // of the object, so offset must be a multiple of kPointerSize.
2760 DCHECK(IsAligned(offset, kPointerSize));
2761
2762 Add(scratch, object, offset - kHeapObjectTag);
2763 if (emit_debug_code()) {
2764 Label ok;
2765 Tst(scratch, kPointerSize - 1);
2766 B(eq, &ok);
2767 Abort(AbortReason::kUnalignedCellInWriteBarrier);
2768 Bind(&ok);
2769 }
2770
2771 RecordWrite(object, scratch, value, lr_status, save_fp, remembered_set_action,
2772 OMIT_SMI_CHECK);
2773
2774 Bind(&done);
2775
2776 // Clobber clobbered input registers when running with the debug-code flag
2777 // turned on to provoke errors.
2778 if (emit_debug_code()) {
2779 Mov(value, Operand(bit_cast<int64_t>(kZapValue + 4)));
2780 Mov(scratch, Operand(bit_cast<int64_t>(kZapValue + 8)));
2781 }
2782 }
2783
SaveRegisters(RegList registers)2784 void TurboAssembler::SaveRegisters(RegList registers) {
2785 DCHECK_GT(NumRegs(registers), 0);
2786 CPURegList regs(lr);
2787 for (int i = 0; i < Register::kNumRegisters; ++i) {
2788 if ((registers >> i) & 1u) {
2789 regs.Combine(Register::XRegFromCode(i));
2790 }
2791 }
2792
2793 PushCPURegList(regs);
2794 }
2795
RestoreRegisters(RegList registers)2796 void TurboAssembler::RestoreRegisters(RegList registers) {
2797 DCHECK_GT(NumRegs(registers), 0);
2798 CPURegList regs(lr);
2799 for (int i = 0; i < Register::kNumRegisters; ++i) {
2800 if ((registers >> i) & 1u) {
2801 regs.Combine(Register::XRegFromCode(i));
2802 }
2803 }
2804
2805 PopCPURegList(regs);
2806 }
2807
CallRecordWriteStub(Register object,Register address,RememberedSetAction remembered_set_action,SaveFPRegsMode fp_mode)2808 void TurboAssembler::CallRecordWriteStub(
2809 Register object, Register address,
2810 RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) {
2811 // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode,
2812 // i.e. always emit remember set and save FP registers in RecordWriteStub. If
2813 // large performance regression is observed, we should use these values to
2814 // avoid unnecessary work.
2815
2816 Callable const callable =
2817 Builtins::CallableFor(isolate(), Builtins::kRecordWrite);
2818 RegList registers = callable.descriptor().allocatable_registers();
2819
2820 SaveRegisters(registers);
2821
2822 Register object_parameter(callable.descriptor().GetRegisterParameter(
2823 RecordWriteDescriptor::kObject));
2824 Register slot_parameter(
2825 callable.descriptor().GetRegisterParameter(RecordWriteDescriptor::kSlot));
2826 Register isolate_parameter(callable.descriptor().GetRegisterParameter(
2827 RecordWriteDescriptor::kIsolate));
2828 Register remembered_set_parameter(callable.descriptor().GetRegisterParameter(
2829 RecordWriteDescriptor::kRememberedSet));
2830 Register fp_mode_parameter(callable.descriptor().GetRegisterParameter(
2831 RecordWriteDescriptor::kFPMode));
2832
2833 Push(object, address);
2834
2835 Pop(slot_parameter, object_parameter);
2836
2837 Mov(isolate_parameter, ExternalReference::isolate_address(isolate()));
2838 Mov(remembered_set_parameter, Smi::FromEnum(remembered_set_action));
2839 Mov(fp_mode_parameter, Smi::FromEnum(fp_mode));
2840 Call(callable.code(), RelocInfo::CODE_TARGET);
2841
2842 RestoreRegisters(registers);
2843 }
2844
2845 // Will clobber: object, address, value.
2846 // If lr_status is kLRHasBeenSaved, lr will also be clobbered.
2847 //
2848 // The register 'object' contains a heap object pointer. The heap object tag is
2849 // shifted away.
RecordWrite(Register object,Register address,Register value,LinkRegisterStatus lr_status,SaveFPRegsMode fp_mode,RememberedSetAction remembered_set_action,SmiCheck smi_check)2850 void MacroAssembler::RecordWrite(Register object, Register address,
2851 Register value, LinkRegisterStatus lr_status,
2852 SaveFPRegsMode fp_mode,
2853 RememberedSetAction remembered_set_action,
2854 SmiCheck smi_check) {
2855 ASM_LOCATION_IN_ASSEMBLER("MacroAssembler::RecordWrite");
2856 DCHECK(!AreAliased(object, value));
2857
2858 if (emit_debug_code()) {
2859 UseScratchRegisterScope temps(this);
2860 Register temp = temps.AcquireX();
2861
2862 Ldr(temp, MemOperand(address));
2863 Cmp(temp, value);
2864 Check(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite);
2865 }
2866
2867 // First, check if a write barrier is even needed. The tests below
2868 // catch stores of smis and stores into the young generation.
2869 Label done;
2870
2871 if (smi_check == INLINE_SMI_CHECK) {
2872 DCHECK_EQ(0, kSmiTag);
2873 JumpIfSmi(value, &done);
2874 }
2875
2876 CheckPageFlagClear(value,
2877 value, // Used as scratch.
2878 MemoryChunk::kPointersToHereAreInterestingMask, &done);
2879 CheckPageFlagClear(object,
2880 value, // Used as scratch.
2881 MemoryChunk::kPointersFromHereAreInterestingMask,
2882 &done);
2883
2884 // Record the actual write.
2885 if (lr_status == kLRHasNotBeenSaved) {
2886 Push(padreg, lr);
2887 }
2888 CallRecordWriteStub(object, address, remembered_set_action, fp_mode);
2889 if (lr_status == kLRHasNotBeenSaved) {
2890 Pop(lr, padreg);
2891 }
2892
2893 Bind(&done);
2894
2895 // Count number of write barriers in generated code.
2896 isolate()->counters()->write_barriers_static()->Increment();
2897 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, address,
2898 value);
2899
2900 // Clobber clobbered registers when running with the debug-code flag
2901 // turned on to provoke errors.
2902 if (emit_debug_code()) {
2903 Mov(address, Operand(bit_cast<int64_t>(kZapValue + 12)));
2904 Mov(value, Operand(bit_cast<int64_t>(kZapValue + 16)));
2905 }
2906 }
2907
Assert(Condition cond,AbortReason reason)2908 void TurboAssembler::Assert(Condition cond, AbortReason reason) {
2909 if (emit_debug_code()) {
2910 Check(cond, reason);
2911 }
2912 }
2913
AssertUnreachable(AbortReason reason)2914 void TurboAssembler::AssertUnreachable(AbortReason reason) {
2915 if (emit_debug_code()) Abort(reason);
2916 }
2917
AssertRegisterIsRoot(Register reg,Heap::RootListIndex index,AbortReason reason)2918 void MacroAssembler::AssertRegisterIsRoot(Register reg,
2919 Heap::RootListIndex index,
2920 AbortReason reason) {
2921 if (emit_debug_code()) {
2922 CompareRoot(reg, index);
2923 Check(eq, reason);
2924 }
2925 }
2926
Check(Condition cond,AbortReason reason)2927 void TurboAssembler::Check(Condition cond, AbortReason reason) {
2928 Label ok;
2929 B(cond, &ok);
2930 Abort(reason);
2931 // Will not return here.
2932 Bind(&ok);
2933 }
2934
Abort(AbortReason reason)2935 void TurboAssembler::Abort(AbortReason reason) {
2936 #ifdef DEBUG
2937 RecordComment("Abort message: ");
2938 RecordComment(GetAbortReason(reason));
2939 #endif
2940
2941 // Avoid emitting call to builtin if requested.
2942 if (trap_on_abort()) {
2943 Brk(0);
2944 return;
2945 }
2946
2947 // We need some scratch registers for the MacroAssembler, so make sure we have
2948 // some. This is safe here because Abort never returns.
2949 RegList old_tmp_list = TmpList()->list();
2950 TmpList()->Combine(MacroAssembler::DefaultTmpList());
2951
2952 if (should_abort_hard()) {
2953 // We don't care if we constructed a frame. Just pretend we did.
2954 FrameScope assume_frame(this, StackFrame::NONE);
2955 Mov(w0, static_cast<int>(reason));
2956 Call(ExternalReference::abort_with_reason());
2957 return;
2958 }
2959
2960 // Avoid infinite recursion; Push contains some assertions that use Abort.
2961 HardAbortScope hard_aborts(this);
2962
2963 Mov(x1, Smi::FromInt(static_cast<int>(reason)));
2964
2965 if (!has_frame_) {
2966 // We don't actually want to generate a pile of code for this, so just
2967 // claim there is a stack frame, without generating one.
2968 FrameScope scope(this, StackFrame::NONE);
2969 Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET);
2970 } else {
2971 Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET);
2972 }
2973
2974 TmpList()->set_list(old_tmp_list);
2975 }
2976
LoadNativeContextSlot(int index,Register dst)2977 void MacroAssembler::LoadNativeContextSlot(int index, Register dst) {
2978 Ldr(dst, NativeContextMemOperand());
2979 Ldr(dst, ContextMemOperand(dst, index));
2980 }
2981
2982
2983 // This is the main Printf implementation. All other Printf variants call
2984 // PrintfNoPreserve after setting up one or more PreserveRegisterScopes.
PrintfNoPreserve(const char * format,const CPURegister & arg0,const CPURegister & arg1,const CPURegister & arg2,const CPURegister & arg3)2985 void MacroAssembler::PrintfNoPreserve(const char * format,
2986 const CPURegister& arg0,
2987 const CPURegister& arg1,
2988 const CPURegister& arg2,
2989 const CPURegister& arg3) {
2990 // We cannot handle a caller-saved stack pointer. It doesn't make much sense
2991 // in most cases anyway, so this restriction shouldn't be too serious.
2992 DCHECK(!kCallerSaved.IncludesAliasOf(sp));
2993
2994 // The provided arguments, and their proper procedure-call standard registers.
2995 CPURegister args[kPrintfMaxArgCount] = {arg0, arg1, arg2, arg3};
2996 CPURegister pcs[kPrintfMaxArgCount] = {NoReg, NoReg, NoReg, NoReg};
2997
2998 int arg_count = kPrintfMaxArgCount;
2999
3000 // The PCS varargs registers for printf. Note that x0 is used for the printf
3001 // format string.
3002 static const CPURegList kPCSVarargs =
3003 CPURegList(CPURegister::kRegister, kXRegSizeInBits, 1, arg_count);
3004 static const CPURegList kPCSVarargsFP =
3005 CPURegList(CPURegister::kVRegister, kDRegSizeInBits, 0, arg_count - 1);
3006
3007 // We can use caller-saved registers as scratch values, except for the
3008 // arguments and the PCS registers where they might need to go.
3009 CPURegList tmp_list = kCallerSaved;
3010 tmp_list.Remove(x0); // Used to pass the format string.
3011 tmp_list.Remove(kPCSVarargs);
3012 tmp_list.Remove(arg0, arg1, arg2, arg3);
3013
3014 CPURegList fp_tmp_list = kCallerSavedV;
3015 fp_tmp_list.Remove(kPCSVarargsFP);
3016 fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
3017
3018 // Override the MacroAssembler's scratch register list. The lists will be
3019 // reset automatically at the end of the UseScratchRegisterScope.
3020 UseScratchRegisterScope temps(this);
3021 TmpList()->set_list(tmp_list.list());
3022 FPTmpList()->set_list(fp_tmp_list.list());
3023
3024 // Copies of the printf vararg registers that we can pop from.
3025 CPURegList pcs_varargs = kPCSVarargs;
3026 CPURegList pcs_varargs_fp = kPCSVarargsFP;
3027
3028 // Place the arguments. There are lots of clever tricks and optimizations we
3029 // could use here, but Printf is a debug tool so instead we just try to keep
3030 // it simple: Move each input that isn't already in the right place to a
3031 // scratch register, then move everything back.
3032 for (unsigned i = 0; i < kPrintfMaxArgCount; i++) {
3033 // Work out the proper PCS register for this argument.
3034 if (args[i].IsRegister()) {
3035 pcs[i] = pcs_varargs.PopLowestIndex().X();
3036 // We might only need a W register here. We need to know the size of the
3037 // argument so we can properly encode it for the simulator call.
3038 if (args[i].Is32Bits()) pcs[i] = pcs[i].W();
3039 } else if (args[i].IsVRegister()) {
3040 // In C, floats are always cast to doubles for varargs calls.
3041 pcs[i] = pcs_varargs_fp.PopLowestIndex().D();
3042 } else {
3043 DCHECK(args[i].IsNone());
3044 arg_count = i;
3045 break;
3046 }
3047
3048 // If the argument is already in the right place, leave it where it is.
3049 if (args[i].Aliases(pcs[i])) continue;
3050
3051 // Otherwise, if the argument is in a PCS argument register, allocate an
3052 // appropriate scratch register and then move it out of the way.
3053 if (kPCSVarargs.IncludesAliasOf(args[i]) ||
3054 kPCSVarargsFP.IncludesAliasOf(args[i])) {
3055 if (args[i].IsRegister()) {
3056 Register old_arg = args[i].Reg();
3057 Register new_arg = temps.AcquireSameSizeAs(old_arg);
3058 Mov(new_arg, old_arg);
3059 args[i] = new_arg;
3060 } else {
3061 VRegister old_arg = args[i].VReg();
3062 VRegister new_arg = temps.AcquireSameSizeAs(old_arg);
3063 Fmov(new_arg, old_arg);
3064 args[i] = new_arg;
3065 }
3066 }
3067 }
3068
3069 // Do a second pass to move values into their final positions and perform any
3070 // conversions that may be required.
3071 for (int i = 0; i < arg_count; i++) {
3072 DCHECK(pcs[i].type() == args[i].type());
3073 if (pcs[i].IsRegister()) {
3074 Mov(pcs[i].Reg(), args[i].Reg(), kDiscardForSameWReg);
3075 } else {
3076 DCHECK(pcs[i].IsVRegister());
3077 if (pcs[i].SizeInBytes() == args[i].SizeInBytes()) {
3078 Fmov(pcs[i].VReg(), args[i].VReg());
3079 } else {
3080 Fcvt(pcs[i].VReg(), args[i].VReg());
3081 }
3082 }
3083 }
3084
3085 // Load the format string into x0, as per the procedure-call standard.
3086 //
3087 // To make the code as portable as possible, the format string is encoded
3088 // directly in the instruction stream. It might be cleaner to encode it in a
3089 // literal pool, but since Printf is usually used for debugging, it is
3090 // beneficial for it to be minimally dependent on other features.
3091 Label format_address;
3092 Adr(x0, &format_address);
3093
3094 // Emit the format string directly in the instruction stream.
3095 { BlockPoolsScope scope(this);
3096 Label after_data;
3097 B(&after_data);
3098 Bind(&format_address);
3099 EmitStringData(format);
3100 Unreachable();
3101 Bind(&after_data);
3102 }
3103
3104 CallPrintf(arg_count, pcs);
3105 }
3106
CallPrintf(int arg_count,const CPURegister * args)3107 void TurboAssembler::CallPrintf(int arg_count, const CPURegister* args) {
3108 // A call to printf needs special handling for the simulator, since the system
3109 // printf function will use a different instruction set and the procedure-call
3110 // standard will not be compatible.
3111 #ifdef USE_SIMULATOR
3112 {
3113 InstructionAccurateScope scope(this, kPrintfLength / kInstrSize);
3114 hlt(kImmExceptionIsPrintf);
3115 dc32(arg_count); // kPrintfArgCountOffset
3116
3117 // Determine the argument pattern.
3118 uint32_t arg_pattern_list = 0;
3119 for (int i = 0; i < arg_count; i++) {
3120 uint32_t arg_pattern;
3121 if (args[i].IsRegister()) {
3122 arg_pattern = args[i].Is32Bits() ? kPrintfArgW : kPrintfArgX;
3123 } else {
3124 DCHECK(args[i].Is64Bits());
3125 arg_pattern = kPrintfArgD;
3126 }
3127 DCHECK(arg_pattern < (1 << kPrintfArgPatternBits));
3128 arg_pattern_list |= (arg_pattern << (kPrintfArgPatternBits * i));
3129 }
3130 dc32(arg_pattern_list); // kPrintfArgPatternListOffset
3131 }
3132 #else
3133 Call(ExternalReference::printf_function());
3134 #endif
3135 }
3136
3137
Printf(const char * format,CPURegister arg0,CPURegister arg1,CPURegister arg2,CPURegister arg3)3138 void MacroAssembler::Printf(const char * format,
3139 CPURegister arg0,
3140 CPURegister arg1,
3141 CPURegister arg2,
3142 CPURegister arg3) {
3143 // Printf is expected to preserve all registers, so make sure that none are
3144 // available as scratch registers until we've preserved them.
3145 RegList old_tmp_list = TmpList()->list();
3146 RegList old_fp_tmp_list = FPTmpList()->list();
3147 TmpList()->set_list(0);
3148 FPTmpList()->set_list(0);
3149
3150 // Preserve all caller-saved registers as well as NZCV.
3151 // PushCPURegList asserts that the size of each list is a multiple of 16
3152 // bytes.
3153 PushCPURegList(kCallerSaved);
3154 PushCPURegList(kCallerSavedV);
3155
3156 // We can use caller-saved registers as scratch values (except for argN).
3157 CPURegList tmp_list = kCallerSaved;
3158 CPURegList fp_tmp_list = kCallerSavedV;
3159 tmp_list.Remove(arg0, arg1, arg2, arg3);
3160 fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
3161 TmpList()->set_list(tmp_list.list());
3162 FPTmpList()->set_list(fp_tmp_list.list());
3163
3164 { UseScratchRegisterScope temps(this);
3165 // If any of the arguments are the current stack pointer, allocate a new
3166 // register for them, and adjust the value to compensate for pushing the
3167 // caller-saved registers.
3168 bool arg0_sp = sp.Aliases(arg0);
3169 bool arg1_sp = sp.Aliases(arg1);
3170 bool arg2_sp = sp.Aliases(arg2);
3171 bool arg3_sp = sp.Aliases(arg3);
3172 if (arg0_sp || arg1_sp || arg2_sp || arg3_sp) {
3173 // Allocate a register to hold the original stack pointer value, to pass
3174 // to PrintfNoPreserve as an argument.
3175 Register arg_sp = temps.AcquireX();
3176 Add(arg_sp, sp,
3177 kCallerSaved.TotalSizeInBytes() + kCallerSavedV.TotalSizeInBytes());
3178 if (arg0_sp) arg0 = Register::Create(arg_sp.code(), arg0.SizeInBits());
3179 if (arg1_sp) arg1 = Register::Create(arg_sp.code(), arg1.SizeInBits());
3180 if (arg2_sp) arg2 = Register::Create(arg_sp.code(), arg2.SizeInBits());
3181 if (arg3_sp) arg3 = Register::Create(arg_sp.code(), arg3.SizeInBits());
3182 }
3183
3184 // Preserve NZCV.
3185 { UseScratchRegisterScope temps(this);
3186 Register tmp = temps.AcquireX();
3187 Mrs(tmp, NZCV);
3188 Push(tmp, xzr);
3189 }
3190
3191 PrintfNoPreserve(format, arg0, arg1, arg2, arg3);
3192
3193 // Restore NZCV.
3194 { UseScratchRegisterScope temps(this);
3195 Register tmp = temps.AcquireX();
3196 Pop(xzr, tmp);
3197 Msr(NZCV, tmp);
3198 }
3199 }
3200
3201 PopCPURegList(kCallerSavedV);
3202 PopCPURegList(kCallerSaved);
3203
3204 TmpList()->set_list(old_tmp_list);
3205 FPTmpList()->set_list(old_fp_tmp_list);
3206 }
3207
~UseScratchRegisterScope()3208 UseScratchRegisterScope::~UseScratchRegisterScope() {
3209 available_->set_list(old_available_);
3210 availablefp_->set_list(old_availablefp_);
3211 }
3212
3213
AcquireSameSizeAs(const Register & reg)3214 Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) {
3215 int code = AcquireNextAvailable(available_).code();
3216 return Register::Create(code, reg.SizeInBits());
3217 }
3218
AcquireSameSizeAs(const VRegister & reg)3219 VRegister UseScratchRegisterScope::AcquireSameSizeAs(const VRegister& reg) {
3220 int code = AcquireNextAvailable(availablefp_).code();
3221 return VRegister::Create(code, reg.SizeInBits());
3222 }
3223
3224
AcquireNextAvailable(CPURegList * available)3225 CPURegister UseScratchRegisterScope::AcquireNextAvailable(
3226 CPURegList* available) {
3227 CHECK(!available->IsEmpty());
3228 CPURegister result = available->PopLowestIndex();
3229 DCHECK(!AreAliased(result, xzr, sp));
3230 return result;
3231 }
3232
3233
ContextMemOperand(Register context,int index)3234 MemOperand ContextMemOperand(Register context, int index) {
3235 return MemOperand(context, Context::SlotOffset(index));
3236 }
3237
NativeContextMemOperand()3238 MemOperand NativeContextMemOperand() {
3239 return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
3240 }
3241
3242 #define __ masm->
3243
Emit(MacroAssembler * masm,const Register & reg,const Label * smi_check)3244 void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg,
3245 const Label* smi_check) {
3246 Assembler::BlockPoolsScope scope(masm);
3247 if (reg.IsValid()) {
3248 DCHECK(smi_check->is_bound());
3249 DCHECK(reg.Is64Bits());
3250
3251 // Encode the register (x0-x30) in the lowest 5 bits, then the offset to
3252 // 'check' in the other bits. The possible offset is limited in that we
3253 // use BitField to pack the data, and the underlying data type is a
3254 // uint32_t.
3255 uint32_t delta =
3256 static_cast<uint32_t>(__ InstructionsGeneratedSince(smi_check));
3257 __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta));
3258 } else {
3259 DCHECK(!smi_check->is_bound());
3260
3261 // An offset of 0 indicates that there is no patch site.
3262 __ InlineData(0);
3263 }
3264 }
3265
InlineSmiCheckInfo(Address info)3266 InlineSmiCheckInfo::InlineSmiCheckInfo(Address info)
3267 : reg_(NoReg), smi_check_delta_(0), smi_check_(nullptr) {
3268 InstructionSequence* inline_data = InstructionSequence::At(info);
3269 DCHECK(inline_data->IsInlineData());
3270 if (inline_data->IsInlineData()) {
3271 uint64_t payload = inline_data->InlineData();
3272 // We use BitField to decode the payload, and BitField can only handle
3273 // 32-bit values.
3274 DCHECK(is_uint32(payload));
3275 if (payload != 0) {
3276 uint32_t payload32 = static_cast<uint32_t>(payload);
3277 int reg_code = RegisterBits::decode(payload32);
3278 reg_ = Register::XRegFromCode(reg_code);
3279 smi_check_delta_ = DeltaBits::decode(payload32);
3280 DCHECK_NE(0, smi_check_delta_);
3281 smi_check_ = inline_data->preceding(smi_check_delta_);
3282 }
3283 }
3284 }
3285
ComputeCodeStartAddress(const Register & rd)3286 void TurboAssembler::ComputeCodeStartAddress(const Register& rd) {
3287 // We can use adr to load a pc relative location.
3288 adr(rd, -pc_offset());
3289 }
3290
ResetSpeculationPoisonRegister()3291 void TurboAssembler::ResetSpeculationPoisonRegister() {
3292 Mov(kSpeculationPoisonRegister, -1);
3293 }
3294
3295 #undef __
3296
3297
3298 } // namespace internal
3299 } // namespace v8
3300
3301 #endif // V8_TARGET_ARCH_ARM64
3302