1 // Copyright 2008, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30
31 #include "gtest/internal/gtest-port.h"
32
33 #include <limits.h>
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <fstream>
38 #include <memory>
39
40 #if GTEST_OS_WINDOWS
41 # include <windows.h>
42 # include <io.h>
43 # include <sys/stat.h>
44 # include <map> // Used in ThreadLocal.
45 # ifdef _MSC_VER
46 # include <crtdbg.h>
47 # endif // _MSC_VER
48 #else
49 # include <unistd.h>
50 #endif // GTEST_OS_WINDOWS
51
52 #if GTEST_OS_MAC
53 # include <mach/mach_init.h>
54 # include <mach/task.h>
55 # include <mach/vm_map.h>
56 #endif // GTEST_OS_MAC
57
58 #if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \
59 GTEST_OS_NETBSD || GTEST_OS_OPENBSD
60 # include <sys/sysctl.h>
61 # if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD
62 # include <sys/user.h>
63 # endif
64 #endif
65
66 #if GTEST_OS_QNX
67 # include <devctl.h>
68 # include <fcntl.h>
69 # include <sys/procfs.h>
70 #endif // GTEST_OS_QNX
71
72 #if GTEST_OS_AIX
73 # include <procinfo.h>
74 # include <sys/types.h>
75 #endif // GTEST_OS_AIX
76
77 #if GTEST_OS_FUCHSIA
78 # include <zircon/process.h>
79 # include <zircon/syscalls.h>
80 #endif // GTEST_OS_FUCHSIA
81
82 #include "gtest/gtest-spi.h"
83 #include "gtest/gtest-message.h"
84 #include "gtest/internal/gtest-internal.h"
85 #include "gtest/internal/gtest-string.h"
86 #include "src/gtest-internal-inl.h"
87
88 namespace testing {
89 namespace internal {
90
91 #if defined(_MSC_VER) || defined(__BORLANDC__)
92 // MSVC and C++Builder do not provide a definition of STDERR_FILENO.
93 const int kStdOutFileno = 1;
94 const int kStdErrFileno = 2;
95 #else
96 const int kStdOutFileno = STDOUT_FILENO;
97 const int kStdErrFileno = STDERR_FILENO;
98 #endif // _MSC_VER
99
100 #if GTEST_OS_LINUX
101
102 namespace {
103 template <typename T>
ReadProcFileField(const std::string & filename,int field)104 T ReadProcFileField(const std::string& filename, int field) {
105 std::string dummy;
106 std::ifstream file(filename.c_str());
107 while (field-- > 0) {
108 file >> dummy;
109 }
110 T output = 0;
111 file >> output;
112 return output;
113 }
114 } // namespace
115
116 // Returns the number of active threads, or 0 when there is an error.
GetThreadCount()117 size_t GetThreadCount() {
118 const std::string filename =
119 (Message() << "/proc/" << getpid() << "/stat").GetString();
120 return ReadProcFileField<int>(filename, 19);
121 }
122
123 #elif GTEST_OS_MAC
124
GetThreadCount()125 size_t GetThreadCount() {
126 const task_t task = mach_task_self();
127 mach_msg_type_number_t thread_count;
128 thread_act_array_t thread_list;
129 const kern_return_t status = task_threads(task, &thread_list, &thread_count);
130 if (status == KERN_SUCCESS) {
131 // task_threads allocates resources in thread_list and we need to free them
132 // to avoid leaks.
133 vm_deallocate(task,
134 reinterpret_cast<vm_address_t>(thread_list),
135 sizeof(thread_t) * thread_count);
136 return static_cast<size_t>(thread_count);
137 } else {
138 return 0;
139 }
140 }
141
142 #elif GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \
143 GTEST_OS_NETBSD
144
145 #if GTEST_OS_NETBSD
146 #undef KERN_PROC
147 #define KERN_PROC KERN_PROC2
148 #define kinfo_proc kinfo_proc2
149 #endif
150
151 #if GTEST_OS_DRAGONFLY
152 #define KP_NLWP(kp) (kp.kp_nthreads)
153 #elif GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD
154 #define KP_NLWP(kp) (kp.ki_numthreads)
155 #elif GTEST_OS_NETBSD
156 #define KP_NLWP(kp) (kp.p_nlwps)
157 #endif
158
159 // Returns the number of threads running in the process, or 0 to indicate that
160 // we cannot detect it.
GetThreadCount()161 size_t GetThreadCount() {
162 int mib[] = {
163 CTL_KERN,
164 KERN_PROC,
165 KERN_PROC_PID,
166 getpid(),
167 #if GTEST_OS_NETBSD
168 sizeof(struct kinfo_proc),
169 1,
170 #endif
171 };
172 u_int miblen = sizeof(mib) / sizeof(mib[0]);
173 struct kinfo_proc info;
174 size_t size = sizeof(info);
175 if (sysctl(mib, miblen, &info, &size, NULL, 0)) {
176 return 0;
177 }
178 return KP_NLWP(info);
179 }
180 #elif GTEST_OS_OPENBSD
181
182 // Returns the number of threads running in the process, or 0 to indicate that
183 // we cannot detect it.
GetThreadCount()184 size_t GetThreadCount() {
185 int mib[] = {
186 CTL_KERN,
187 KERN_PROC,
188 KERN_PROC_PID | KERN_PROC_SHOW_THREADS,
189 getpid(),
190 sizeof(struct kinfo_proc),
191 0,
192 };
193 u_int miblen = sizeof(mib) / sizeof(mib[0]);
194
195 // get number of structs
196 size_t size;
197 if (sysctl(mib, miblen, NULL, &size, NULL, 0)) {
198 return 0;
199 }
200 mib[5] = size / mib[4];
201
202 // populate array of structs
203 struct kinfo_proc info[mib[5]];
204 if (sysctl(mib, miblen, &info, &size, NULL, 0)) {
205 return 0;
206 }
207
208 // exclude empty members
209 int nthreads = 0;
210 for (int i = 0; i < size / mib[4]; i++) {
211 if (info[i].p_tid != -1)
212 nthreads++;
213 }
214 return nthreads;
215 }
216
217 #elif GTEST_OS_QNX
218
219 // Returns the number of threads running in the process, or 0 to indicate that
220 // we cannot detect it.
GetThreadCount()221 size_t GetThreadCount() {
222 const int fd = open("/proc/self/as", O_RDONLY);
223 if (fd < 0) {
224 return 0;
225 }
226 procfs_info process_info;
227 const int status =
228 devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), nullptr);
229 close(fd);
230 if (status == EOK) {
231 return static_cast<size_t>(process_info.num_threads);
232 } else {
233 return 0;
234 }
235 }
236
237 #elif GTEST_OS_AIX
238
GetThreadCount()239 size_t GetThreadCount() {
240 struct procentry64 entry;
241 pid_t pid = getpid();
242 int status = getprocs64(&entry, sizeof(entry), nullptr, 0, &pid, 1);
243 if (status == 1) {
244 return entry.pi_thcount;
245 } else {
246 return 0;
247 }
248 }
249
250 #elif GTEST_OS_FUCHSIA
251
GetThreadCount()252 size_t GetThreadCount() {
253 int dummy_buffer;
254 size_t avail;
255 zx_status_t status = zx_object_get_info(
256 zx_process_self(),
257 ZX_INFO_PROCESS_THREADS,
258 &dummy_buffer,
259 0,
260 nullptr,
261 &avail);
262 if (status == ZX_OK) {
263 return avail;
264 } else {
265 return 0;
266 }
267 }
268
269 #else
270
GetThreadCount()271 size_t GetThreadCount() {
272 // There's no portable way to detect the number of threads, so we just
273 // return 0 to indicate that we cannot detect it.
274 return 0;
275 }
276
277 #endif // GTEST_OS_LINUX
278
279 #if GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
280
SleepMilliseconds(int n)281 void SleepMilliseconds(int n) {
282 ::Sleep(n);
283 }
284
AutoHandle()285 AutoHandle::AutoHandle()
286 : handle_(INVALID_HANDLE_VALUE) {}
287
AutoHandle(Handle handle)288 AutoHandle::AutoHandle(Handle handle)
289 : handle_(handle) {}
290
~AutoHandle()291 AutoHandle::~AutoHandle() {
292 Reset();
293 }
294
Get() const295 AutoHandle::Handle AutoHandle::Get() const {
296 return handle_;
297 }
298
Reset()299 void AutoHandle::Reset() {
300 Reset(INVALID_HANDLE_VALUE);
301 }
302
Reset(HANDLE handle)303 void AutoHandle::Reset(HANDLE handle) {
304 // Resetting with the same handle we already own is invalid.
305 if (handle_ != handle) {
306 if (IsCloseable()) {
307 ::CloseHandle(handle_);
308 }
309 handle_ = handle;
310 } else {
311 GTEST_CHECK_(!IsCloseable())
312 << "Resetting a valid handle to itself is likely a programmer error "
313 "and thus not allowed.";
314 }
315 }
316
IsCloseable() const317 bool AutoHandle::IsCloseable() const {
318 // Different Windows APIs may use either of these values to represent an
319 // invalid handle.
320 return handle_ != nullptr && handle_ != INVALID_HANDLE_VALUE;
321 }
322
Notification()323 Notification::Notification()
324 : event_(::CreateEvent(nullptr, // Default security attributes.
325 TRUE, // Do not reset automatically.
326 FALSE, // Initially unset.
327 nullptr)) { // Anonymous event.
328 GTEST_CHECK_(event_.Get() != nullptr);
329 }
330
Notify()331 void Notification::Notify() {
332 GTEST_CHECK_(::SetEvent(event_.Get()) != FALSE);
333 }
334
WaitForNotification()335 void Notification::WaitForNotification() {
336 GTEST_CHECK_(
337 ::WaitForSingleObject(event_.Get(), INFINITE) == WAIT_OBJECT_0);
338 }
339
Mutex()340 Mutex::Mutex()
341 : owner_thread_id_(0),
342 type_(kDynamic),
343 critical_section_init_phase_(0),
344 critical_section_(new CRITICAL_SECTION) {
345 ::InitializeCriticalSection(critical_section_);
346 }
347
~Mutex()348 Mutex::~Mutex() {
349 // Static mutexes are leaked intentionally. It is not thread-safe to try
350 // to clean them up.
351 if (type_ == kDynamic) {
352 ::DeleteCriticalSection(critical_section_);
353 delete critical_section_;
354 critical_section_ = nullptr;
355 }
356 }
357
Lock()358 void Mutex::Lock() {
359 ThreadSafeLazyInit();
360 ::EnterCriticalSection(critical_section_);
361 owner_thread_id_ = ::GetCurrentThreadId();
362 }
363
Unlock()364 void Mutex::Unlock() {
365 ThreadSafeLazyInit();
366 // We don't protect writing to owner_thread_id_ here, as it's the
367 // caller's responsibility to ensure that the current thread holds the
368 // mutex when this is called.
369 owner_thread_id_ = 0;
370 ::LeaveCriticalSection(critical_section_);
371 }
372
373 // Does nothing if the current thread holds the mutex. Otherwise, crashes
374 // with high probability.
AssertHeld()375 void Mutex::AssertHeld() {
376 ThreadSafeLazyInit();
377 GTEST_CHECK_(owner_thread_id_ == ::GetCurrentThreadId())
378 << "The current thread is not holding the mutex @" << this;
379 }
380
381 namespace {
382
383 // Use the RAII idiom to flag mem allocs that are intentionally never
384 // deallocated. The motivation is to silence the false positive mem leaks
385 // that are reported by the debug version of MS's CRT which can only detect
386 // if an alloc is missing a matching deallocation.
387 // Example:
388 // MemoryIsNotDeallocated memory_is_not_deallocated;
389 // critical_section_ = new CRITICAL_SECTION;
390 //
391 class MemoryIsNotDeallocated
392 {
393 public:
MemoryIsNotDeallocated()394 MemoryIsNotDeallocated() : old_crtdbg_flag_(0) {
395 #ifdef _MSC_VER
396 old_crtdbg_flag_ = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
397 // Set heap allocation block type to _IGNORE_BLOCK so that MS debug CRT
398 // doesn't report mem leak if there's no matching deallocation.
399 _CrtSetDbgFlag(old_crtdbg_flag_ & ~_CRTDBG_ALLOC_MEM_DF);
400 #endif // _MSC_VER
401 }
402
~MemoryIsNotDeallocated()403 ~MemoryIsNotDeallocated() {
404 #ifdef _MSC_VER
405 // Restore the original _CRTDBG_ALLOC_MEM_DF flag
406 _CrtSetDbgFlag(old_crtdbg_flag_);
407 #endif // _MSC_VER
408 }
409
410 private:
411 int old_crtdbg_flag_;
412
413 GTEST_DISALLOW_COPY_AND_ASSIGN_(MemoryIsNotDeallocated);
414 };
415
416 } // namespace
417
418 // Initializes owner_thread_id_ and critical_section_ in static mutexes.
ThreadSafeLazyInit()419 void Mutex::ThreadSafeLazyInit() {
420 // Dynamic mutexes are initialized in the constructor.
421 if (type_ == kStatic) {
422 switch (
423 ::InterlockedCompareExchange(&critical_section_init_phase_, 1L, 0L)) {
424 case 0:
425 // If critical_section_init_phase_ was 0 before the exchange, we
426 // are the first to test it and need to perform the initialization.
427 owner_thread_id_ = 0;
428 {
429 // Use RAII to flag that following mem alloc is never deallocated.
430 MemoryIsNotDeallocated memory_is_not_deallocated;
431 critical_section_ = new CRITICAL_SECTION;
432 }
433 ::InitializeCriticalSection(critical_section_);
434 // Updates the critical_section_init_phase_ to 2 to signal
435 // initialization complete.
436 GTEST_CHECK_(::InterlockedCompareExchange(
437 &critical_section_init_phase_, 2L, 1L) ==
438 1L);
439 break;
440 case 1:
441 // Somebody else is already initializing the mutex; spin until they
442 // are done.
443 while (::InterlockedCompareExchange(&critical_section_init_phase_,
444 2L,
445 2L) != 2L) {
446 // Possibly yields the rest of the thread's time slice to other
447 // threads.
448 ::Sleep(0);
449 }
450 break;
451
452 case 2:
453 break; // The mutex is already initialized and ready for use.
454
455 default:
456 GTEST_CHECK_(false)
457 << "Unexpected value of critical_section_init_phase_ "
458 << "while initializing a static mutex.";
459 }
460 }
461 }
462
463 namespace {
464
465 class ThreadWithParamSupport : public ThreadWithParamBase {
466 public:
CreateThread(Runnable * runnable,Notification * thread_can_start)467 static HANDLE CreateThread(Runnable* runnable,
468 Notification* thread_can_start) {
469 ThreadMainParam* param = new ThreadMainParam(runnable, thread_can_start);
470 DWORD thread_id;
471 HANDLE thread_handle = ::CreateThread(
472 nullptr, // Default security.
473 0, // Default stack size.
474 &ThreadWithParamSupport::ThreadMain,
475 param, // Parameter to ThreadMainStatic
476 0x0, // Default creation flags.
477 &thread_id); // Need a valid pointer for the call to work under Win98.
478 GTEST_CHECK_(thread_handle != nullptr)
479 << "CreateThread failed with error " << ::GetLastError() << ".";
480 if (thread_handle == nullptr) {
481 delete param;
482 }
483 return thread_handle;
484 }
485
486 private:
487 struct ThreadMainParam {
ThreadMainParamtesting::internal::__anon55d4abf60311::ThreadWithParamSupport::ThreadMainParam488 ThreadMainParam(Runnable* runnable, Notification* thread_can_start)
489 : runnable_(runnable),
490 thread_can_start_(thread_can_start) {
491 }
492 std::unique_ptr<Runnable> runnable_;
493 // Does not own.
494 Notification* thread_can_start_;
495 };
496
ThreadMain(void * ptr)497 static DWORD WINAPI ThreadMain(void* ptr) {
498 // Transfers ownership.
499 std::unique_ptr<ThreadMainParam> param(static_cast<ThreadMainParam*>(ptr));
500 if (param->thread_can_start_ != nullptr)
501 param->thread_can_start_->WaitForNotification();
502 param->runnable_->Run();
503 return 0;
504 }
505
506 // Prohibit instantiation.
507 ThreadWithParamSupport();
508
509 GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParamSupport);
510 };
511
512 } // namespace
513
ThreadWithParamBase(Runnable * runnable,Notification * thread_can_start)514 ThreadWithParamBase::ThreadWithParamBase(Runnable *runnable,
515 Notification* thread_can_start)
516 : thread_(ThreadWithParamSupport::CreateThread(runnable,
517 thread_can_start)) {
518 }
519
~ThreadWithParamBase()520 ThreadWithParamBase::~ThreadWithParamBase() {
521 Join();
522 }
523
Join()524 void ThreadWithParamBase::Join() {
525 GTEST_CHECK_(::WaitForSingleObject(thread_.Get(), INFINITE) == WAIT_OBJECT_0)
526 << "Failed to join the thread with error " << ::GetLastError() << ".";
527 }
528
529 // Maps a thread to a set of ThreadIdToThreadLocals that have values
530 // instantiated on that thread and notifies them when the thread exits. A
531 // ThreadLocal instance is expected to persist until all threads it has
532 // values on have terminated.
533 class ThreadLocalRegistryImpl {
534 public:
535 // Registers thread_local_instance as having value on the current thread.
536 // Returns a value that can be used to identify the thread from other threads.
GetValueOnCurrentThread(const ThreadLocalBase * thread_local_instance)537 static ThreadLocalValueHolderBase* GetValueOnCurrentThread(
538 const ThreadLocalBase* thread_local_instance) {
539 DWORD current_thread = ::GetCurrentThreadId();
540 MutexLock lock(&mutex_);
541 ThreadIdToThreadLocals* const thread_to_thread_locals =
542 GetThreadLocalsMapLocked();
543 ThreadIdToThreadLocals::iterator thread_local_pos =
544 thread_to_thread_locals->find(current_thread);
545 if (thread_local_pos == thread_to_thread_locals->end()) {
546 thread_local_pos = thread_to_thread_locals->insert(
547 std::make_pair(current_thread, ThreadLocalValues())).first;
548 StartWatcherThreadFor(current_thread);
549 }
550 ThreadLocalValues& thread_local_values = thread_local_pos->second;
551 ThreadLocalValues::iterator value_pos =
552 thread_local_values.find(thread_local_instance);
553 if (value_pos == thread_local_values.end()) {
554 value_pos =
555 thread_local_values
556 .insert(std::make_pair(
557 thread_local_instance,
558 std::shared_ptr<ThreadLocalValueHolderBase>(
559 thread_local_instance->NewValueForCurrentThread())))
560 .first;
561 }
562 return value_pos->second.get();
563 }
564
OnThreadLocalDestroyed(const ThreadLocalBase * thread_local_instance)565 static void OnThreadLocalDestroyed(
566 const ThreadLocalBase* thread_local_instance) {
567 std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders;
568 // Clean up the ThreadLocalValues data structure while holding the lock, but
569 // defer the destruction of the ThreadLocalValueHolderBases.
570 {
571 MutexLock lock(&mutex_);
572 ThreadIdToThreadLocals* const thread_to_thread_locals =
573 GetThreadLocalsMapLocked();
574 for (ThreadIdToThreadLocals::iterator it =
575 thread_to_thread_locals->begin();
576 it != thread_to_thread_locals->end();
577 ++it) {
578 ThreadLocalValues& thread_local_values = it->second;
579 ThreadLocalValues::iterator value_pos =
580 thread_local_values.find(thread_local_instance);
581 if (value_pos != thread_local_values.end()) {
582 value_holders.push_back(value_pos->second);
583 thread_local_values.erase(value_pos);
584 // This 'if' can only be successful at most once, so theoretically we
585 // could break out of the loop here, but we don't bother doing so.
586 }
587 }
588 }
589 // Outside the lock, let the destructor for 'value_holders' deallocate the
590 // ThreadLocalValueHolderBases.
591 }
592
OnThreadExit(DWORD thread_id)593 static void OnThreadExit(DWORD thread_id) {
594 GTEST_CHECK_(thread_id != 0) << ::GetLastError();
595 std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders;
596 // Clean up the ThreadIdToThreadLocals data structure while holding the
597 // lock, but defer the destruction of the ThreadLocalValueHolderBases.
598 {
599 MutexLock lock(&mutex_);
600 ThreadIdToThreadLocals* const thread_to_thread_locals =
601 GetThreadLocalsMapLocked();
602 ThreadIdToThreadLocals::iterator thread_local_pos =
603 thread_to_thread_locals->find(thread_id);
604 if (thread_local_pos != thread_to_thread_locals->end()) {
605 ThreadLocalValues& thread_local_values = thread_local_pos->second;
606 for (ThreadLocalValues::iterator value_pos =
607 thread_local_values.begin();
608 value_pos != thread_local_values.end();
609 ++value_pos) {
610 value_holders.push_back(value_pos->second);
611 }
612 thread_to_thread_locals->erase(thread_local_pos);
613 }
614 }
615 // Outside the lock, let the destructor for 'value_holders' deallocate the
616 // ThreadLocalValueHolderBases.
617 }
618
619 private:
620 // In a particular thread, maps a ThreadLocal object to its value.
621 typedef std::map<const ThreadLocalBase*,
622 std::shared_ptr<ThreadLocalValueHolderBase> >
623 ThreadLocalValues;
624 // Stores all ThreadIdToThreadLocals having values in a thread, indexed by
625 // thread's ID.
626 typedef std::map<DWORD, ThreadLocalValues> ThreadIdToThreadLocals;
627
628 // Holds the thread id and thread handle that we pass from
629 // StartWatcherThreadFor to WatcherThreadFunc.
630 typedef std::pair<DWORD, HANDLE> ThreadIdAndHandle;
631
StartWatcherThreadFor(DWORD thread_id)632 static void StartWatcherThreadFor(DWORD thread_id) {
633 // The returned handle will be kept in thread_map and closed by
634 // watcher_thread in WatcherThreadFunc.
635 HANDLE thread = ::OpenThread(SYNCHRONIZE | THREAD_QUERY_INFORMATION,
636 FALSE,
637 thread_id);
638 GTEST_CHECK_(thread != nullptr);
639 // We need to pass a valid thread ID pointer into CreateThread for it
640 // to work correctly under Win98.
641 DWORD watcher_thread_id;
642 HANDLE watcher_thread = ::CreateThread(
643 nullptr, // Default security.
644 0, // Default stack size
645 &ThreadLocalRegistryImpl::WatcherThreadFunc,
646 reinterpret_cast<LPVOID>(new ThreadIdAndHandle(thread_id, thread)),
647 CREATE_SUSPENDED, &watcher_thread_id);
648 GTEST_CHECK_(watcher_thread != nullptr);
649 // Give the watcher thread the same priority as ours to avoid being
650 // blocked by it.
651 ::SetThreadPriority(watcher_thread,
652 ::GetThreadPriority(::GetCurrentThread()));
653 ::ResumeThread(watcher_thread);
654 ::CloseHandle(watcher_thread);
655 }
656
657 // Monitors exit from a given thread and notifies those
658 // ThreadIdToThreadLocals about thread termination.
WatcherThreadFunc(LPVOID param)659 static DWORD WINAPI WatcherThreadFunc(LPVOID param) {
660 const ThreadIdAndHandle* tah =
661 reinterpret_cast<const ThreadIdAndHandle*>(param);
662 GTEST_CHECK_(
663 ::WaitForSingleObject(tah->second, INFINITE) == WAIT_OBJECT_0);
664 OnThreadExit(tah->first);
665 ::CloseHandle(tah->second);
666 delete tah;
667 return 0;
668 }
669
670 // Returns map of thread local instances.
GetThreadLocalsMapLocked()671 static ThreadIdToThreadLocals* GetThreadLocalsMapLocked() {
672 mutex_.AssertHeld();
673 MemoryIsNotDeallocated memory_is_not_deallocated;
674 static ThreadIdToThreadLocals* map = new ThreadIdToThreadLocals();
675 return map;
676 }
677
678 // Protects access to GetThreadLocalsMapLocked() and its return value.
679 static Mutex mutex_;
680 // Protects access to GetThreadMapLocked() and its return value.
681 static Mutex thread_map_mutex_;
682 };
683
684 Mutex ThreadLocalRegistryImpl::mutex_(Mutex::kStaticMutex);
685 Mutex ThreadLocalRegistryImpl::thread_map_mutex_(Mutex::kStaticMutex);
686
GetValueOnCurrentThread(const ThreadLocalBase * thread_local_instance)687 ThreadLocalValueHolderBase* ThreadLocalRegistry::GetValueOnCurrentThread(
688 const ThreadLocalBase* thread_local_instance) {
689 return ThreadLocalRegistryImpl::GetValueOnCurrentThread(
690 thread_local_instance);
691 }
692
OnThreadLocalDestroyed(const ThreadLocalBase * thread_local_instance)693 void ThreadLocalRegistry::OnThreadLocalDestroyed(
694 const ThreadLocalBase* thread_local_instance) {
695 ThreadLocalRegistryImpl::OnThreadLocalDestroyed(thread_local_instance);
696 }
697
698 #endif // GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
699
700 #if GTEST_USES_POSIX_RE
701
702 // Implements RE. Currently only needed for death tests.
703
~RE()704 RE::~RE() {
705 if (is_valid_) {
706 // regfree'ing an invalid regex might crash because the content
707 // of the regex is undefined. Since the regex's are essentially
708 // the same, one cannot be valid (or invalid) without the other
709 // being so too.
710 regfree(&partial_regex_);
711 regfree(&full_regex_);
712 }
713 free(const_cast<char*>(pattern_));
714 }
715
716 // Returns true iff regular expression re matches the entire str.
FullMatch(const char * str,const RE & re)717 bool RE::FullMatch(const char* str, const RE& re) {
718 if (!re.is_valid_) return false;
719
720 regmatch_t match;
721 return regexec(&re.full_regex_, str, 1, &match, 0) == 0;
722 }
723
724 // Returns true iff regular expression re matches a substring of str
725 // (including str itself).
PartialMatch(const char * str,const RE & re)726 bool RE::PartialMatch(const char* str, const RE& re) {
727 if (!re.is_valid_) return false;
728
729 regmatch_t match;
730 return regexec(&re.partial_regex_, str, 1, &match, 0) == 0;
731 }
732
733 // Initializes an RE from its string representation.
Init(const char * regex)734 void RE::Init(const char* regex) {
735 pattern_ = posix::StrDup(regex);
736
737 // Reserves enough bytes to hold the regular expression used for a
738 // full match.
739 const size_t full_regex_len = strlen(regex) + 10;
740 char* const full_pattern = new char[full_regex_len];
741
742 snprintf(full_pattern, full_regex_len, "^(%s)$", regex);
743 is_valid_ = regcomp(&full_regex_, full_pattern, REG_EXTENDED) == 0;
744 // We want to call regcomp(&partial_regex_, ...) even if the
745 // previous expression returns false. Otherwise partial_regex_ may
746 // not be properly initialized can may cause trouble when it's
747 // freed.
748 //
749 // Some implementation of POSIX regex (e.g. on at least some
750 // versions of Cygwin) doesn't accept the empty string as a valid
751 // regex. We change it to an equivalent form "()" to be safe.
752 if (is_valid_) {
753 const char* const partial_regex = (*regex == '\0') ? "()" : regex;
754 is_valid_ = regcomp(&partial_regex_, partial_regex, REG_EXTENDED) == 0;
755 }
756 EXPECT_TRUE(is_valid_)
757 << "Regular expression \"" << regex
758 << "\" is not a valid POSIX Extended regular expression.";
759
760 delete[] full_pattern;
761 }
762
763 #elif GTEST_USES_SIMPLE_RE
764
765 // Returns true iff ch appears anywhere in str (excluding the
766 // terminating '\0' character).
IsInSet(char ch,const char * str)767 bool IsInSet(char ch, const char* str) {
768 return ch != '\0' && strchr(str, ch) != nullptr;
769 }
770
771 // Returns true iff ch belongs to the given classification. Unlike
772 // similar functions in <ctype.h>, these aren't affected by the
773 // current locale.
IsAsciiDigit(char ch)774 bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; }
IsAsciiPunct(char ch)775 bool IsAsciiPunct(char ch) {
776 return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~");
777 }
IsRepeat(char ch)778 bool IsRepeat(char ch) { return IsInSet(ch, "?*+"); }
IsAsciiWhiteSpace(char ch)779 bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v"); }
IsAsciiWordChar(char ch)780 bool IsAsciiWordChar(char ch) {
781 return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') ||
782 ('0' <= ch && ch <= '9') || ch == '_';
783 }
784
785 // Returns true iff "\\c" is a supported escape sequence.
IsValidEscape(char c)786 bool IsValidEscape(char c) {
787 return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW"));
788 }
789
790 // Returns true iff the given atom (specified by escaped and pattern)
791 // matches ch. The result is undefined if the atom is invalid.
AtomMatchesChar(bool escaped,char pattern_char,char ch)792 bool AtomMatchesChar(bool escaped, char pattern_char, char ch) {
793 if (escaped) { // "\\p" where p is pattern_char.
794 switch (pattern_char) {
795 case 'd': return IsAsciiDigit(ch);
796 case 'D': return !IsAsciiDigit(ch);
797 case 'f': return ch == '\f';
798 case 'n': return ch == '\n';
799 case 'r': return ch == '\r';
800 case 's': return IsAsciiWhiteSpace(ch);
801 case 'S': return !IsAsciiWhiteSpace(ch);
802 case 't': return ch == '\t';
803 case 'v': return ch == '\v';
804 case 'w': return IsAsciiWordChar(ch);
805 case 'W': return !IsAsciiWordChar(ch);
806 }
807 return IsAsciiPunct(pattern_char) && pattern_char == ch;
808 }
809
810 return (pattern_char == '.' && ch != '\n') || pattern_char == ch;
811 }
812
813 // Helper function used by ValidateRegex() to format error messages.
FormatRegexSyntaxError(const char * regex,int index)814 static std::string FormatRegexSyntaxError(const char* regex, int index) {
815 return (Message() << "Syntax error at index " << index
816 << " in simple regular expression \"" << regex << "\": ").GetString();
817 }
818
819 // Generates non-fatal failures and returns false if regex is invalid;
820 // otherwise returns true.
ValidateRegex(const char * regex)821 bool ValidateRegex(const char* regex) {
822 if (regex == nullptr) {
823 ADD_FAILURE() << "NULL is not a valid simple regular expression.";
824 return false;
825 }
826
827 bool is_valid = true;
828
829 // True iff ?, *, or + can follow the previous atom.
830 bool prev_repeatable = false;
831 for (int i = 0; regex[i]; i++) {
832 if (regex[i] == '\\') { // An escape sequence
833 i++;
834 if (regex[i] == '\0') {
835 ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
836 << "'\\' cannot appear at the end.";
837 return false;
838 }
839
840 if (!IsValidEscape(regex[i])) {
841 ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
842 << "invalid escape sequence \"\\" << regex[i] << "\".";
843 is_valid = false;
844 }
845 prev_repeatable = true;
846 } else { // Not an escape sequence.
847 const char ch = regex[i];
848
849 if (ch == '^' && i > 0) {
850 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
851 << "'^' can only appear at the beginning.";
852 is_valid = false;
853 } else if (ch == '$' && regex[i + 1] != '\0') {
854 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
855 << "'$' can only appear at the end.";
856 is_valid = false;
857 } else if (IsInSet(ch, "()[]{}|")) {
858 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
859 << "'" << ch << "' is unsupported.";
860 is_valid = false;
861 } else if (IsRepeat(ch) && !prev_repeatable) {
862 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
863 << "'" << ch << "' can only follow a repeatable token.";
864 is_valid = false;
865 }
866
867 prev_repeatable = !IsInSet(ch, "^$?*+");
868 }
869 }
870
871 return is_valid;
872 }
873
874 // Matches a repeated regex atom followed by a valid simple regular
875 // expression. The regex atom is defined as c if escaped is false,
876 // or \c otherwise. repeat is the repetition meta character (?, *,
877 // or +). The behavior is undefined if str contains too many
878 // characters to be indexable by size_t, in which case the test will
879 // probably time out anyway. We are fine with this limitation as
880 // std::string has it too.
MatchRepetitionAndRegexAtHead(bool escaped,char c,char repeat,const char * regex,const char * str)881 bool MatchRepetitionAndRegexAtHead(
882 bool escaped, char c, char repeat, const char* regex,
883 const char* str) {
884 const size_t min_count = (repeat == '+') ? 1 : 0;
885 const size_t max_count = (repeat == '?') ? 1 :
886 static_cast<size_t>(-1) - 1;
887 // We cannot call numeric_limits::max() as it conflicts with the
888 // max() macro on Windows.
889
890 for (size_t i = 0; i <= max_count; ++i) {
891 // We know that the atom matches each of the first i characters in str.
892 if (i >= min_count && MatchRegexAtHead(regex, str + i)) {
893 // We have enough matches at the head, and the tail matches too.
894 // Since we only care about *whether* the pattern matches str
895 // (as opposed to *how* it matches), there is no need to find a
896 // greedy match.
897 return true;
898 }
899 if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i]))
900 return false;
901 }
902 return false;
903 }
904
905 // Returns true iff regex matches a prefix of str. regex must be a
906 // valid simple regular expression and not start with "^", or the
907 // result is undefined.
MatchRegexAtHead(const char * regex,const char * str)908 bool MatchRegexAtHead(const char* regex, const char* str) {
909 if (*regex == '\0') // An empty regex matches a prefix of anything.
910 return true;
911
912 // "$" only matches the end of a string. Note that regex being
913 // valid guarantees that there's nothing after "$" in it.
914 if (*regex == '$')
915 return *str == '\0';
916
917 // Is the first thing in regex an escape sequence?
918 const bool escaped = *regex == '\\';
919 if (escaped)
920 ++regex;
921 if (IsRepeat(regex[1])) {
922 // MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so
923 // here's an indirect recursion. It terminates as the regex gets
924 // shorter in each recursion.
925 return MatchRepetitionAndRegexAtHead(
926 escaped, regex[0], regex[1], regex + 2, str);
927 } else {
928 // regex isn't empty, isn't "$", and doesn't start with a
929 // repetition. We match the first atom of regex with the first
930 // character of str and recurse.
931 return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) &&
932 MatchRegexAtHead(regex + 1, str + 1);
933 }
934 }
935
936 // Returns true iff regex matches any substring of str. regex must be
937 // a valid simple regular expression, or the result is undefined.
938 //
939 // The algorithm is recursive, but the recursion depth doesn't exceed
940 // the regex length, so we won't need to worry about running out of
941 // stack space normally. In rare cases the time complexity can be
942 // exponential with respect to the regex length + the string length,
943 // but usually it's must faster (often close to linear).
MatchRegexAnywhere(const char * regex,const char * str)944 bool MatchRegexAnywhere(const char* regex, const char* str) {
945 if (regex == nullptr || str == nullptr) return false;
946
947 if (*regex == '^')
948 return MatchRegexAtHead(regex + 1, str);
949
950 // A successful match can be anywhere in str.
951 do {
952 if (MatchRegexAtHead(regex, str))
953 return true;
954 } while (*str++ != '\0');
955 return false;
956 }
957
958 // Implements the RE class.
959
~RE()960 RE::~RE() {
961 free(const_cast<char*>(pattern_));
962 free(const_cast<char*>(full_pattern_));
963 }
964
965 // Returns true iff regular expression re matches the entire str.
FullMatch(const char * str,const RE & re)966 bool RE::FullMatch(const char* str, const RE& re) {
967 return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_, str);
968 }
969
970 // Returns true iff regular expression re matches a substring of str
971 // (including str itself).
PartialMatch(const char * str,const RE & re)972 bool RE::PartialMatch(const char* str, const RE& re) {
973 return re.is_valid_ && MatchRegexAnywhere(re.pattern_, str);
974 }
975
976 // Initializes an RE from its string representation.
Init(const char * regex)977 void RE::Init(const char* regex) {
978 pattern_ = full_pattern_ = nullptr;
979 if (regex != nullptr) {
980 pattern_ = posix::StrDup(regex);
981 }
982
983 is_valid_ = ValidateRegex(regex);
984 if (!is_valid_) {
985 // No need to calculate the full pattern when the regex is invalid.
986 return;
987 }
988
989 const size_t len = strlen(regex);
990 // Reserves enough bytes to hold the regular expression used for a
991 // full match: we need space to prepend a '^', append a '$', and
992 // terminate the string with '\0'.
993 char* buffer = static_cast<char*>(malloc(len + 3));
994 full_pattern_ = buffer;
995
996 if (*regex != '^')
997 *buffer++ = '^'; // Makes sure full_pattern_ starts with '^'.
998
999 // We don't use snprintf or strncpy, as they trigger a warning when
1000 // compiled with VC++ 8.0.
1001 memcpy(buffer, regex, len);
1002 buffer += len;
1003
1004 if (len == 0 || regex[len - 1] != '$')
1005 *buffer++ = '$'; // Makes sure full_pattern_ ends with '$'.
1006
1007 *buffer = '\0';
1008 }
1009
1010 #endif // GTEST_USES_POSIX_RE
1011
1012 const char kUnknownFile[] = "unknown file";
1013
1014 // Formats a source file path and a line number as they would appear
1015 // in an error message from the compiler used to compile this code.
FormatFileLocation(const char * file,int line)1016 GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) {
1017 const std::string file_name(file == nullptr ? kUnknownFile : file);
1018
1019 if (line < 0) {
1020 return file_name + ":";
1021 }
1022 #ifdef _MSC_VER
1023 return file_name + "(" + StreamableToString(line) + "):";
1024 #else
1025 return file_name + ":" + StreamableToString(line) + ":";
1026 #endif // _MSC_VER
1027 }
1028
1029 // Formats a file location for compiler-independent XML output.
1030 // Although this function is not platform dependent, we put it next to
1031 // FormatFileLocation in order to contrast the two functions.
1032 // Note that FormatCompilerIndependentFileLocation() does NOT append colon
1033 // to the file location it produces, unlike FormatFileLocation().
FormatCompilerIndependentFileLocation(const char * file,int line)1034 GTEST_API_ ::std::string FormatCompilerIndependentFileLocation(
1035 const char* file, int line) {
1036 const std::string file_name(file == nullptr ? kUnknownFile : file);
1037
1038 if (line < 0)
1039 return file_name;
1040 else
1041 return file_name + ":" + StreamableToString(line);
1042 }
1043
GTestLog(GTestLogSeverity severity,const char * file,int line)1044 GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line)
1045 : severity_(severity) {
1046 const char* const marker =
1047 severity == GTEST_INFO ? "[ INFO ]" :
1048 severity == GTEST_WARNING ? "[WARNING]" :
1049 severity == GTEST_ERROR ? "[ ERROR ]" : "[ FATAL ]";
1050 GetStream() << ::std::endl << marker << " "
1051 << FormatFileLocation(file, line).c_str() << ": ";
1052 }
1053
1054 // Flushes the buffers and, if severity is GTEST_FATAL, aborts the program.
~GTestLog()1055 GTestLog::~GTestLog() {
1056 GetStream() << ::std::endl;
1057 if (severity_ == GTEST_FATAL) {
1058 fflush(stderr);
1059 posix::Abort();
1060 }
1061 }
1062
1063 // Disable Microsoft deprecation warnings for POSIX functions called from
1064 // this class (creat, dup, dup2, and close)
1065 GTEST_DISABLE_MSC_DEPRECATED_PUSH_()
1066
1067 #if GTEST_HAS_STREAM_REDIRECTION
1068
1069 // Object that captures an output stream (stdout/stderr).
1070 class CapturedStream {
1071 public:
1072 // The ctor redirects the stream to a temporary file.
CapturedStream(int fd)1073 explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) {
1074 # if GTEST_OS_WINDOWS
1075 char temp_dir_path[MAX_PATH + 1] = { '\0' }; // NOLINT
1076 char temp_file_path[MAX_PATH + 1] = { '\0' }; // NOLINT
1077
1078 ::GetTempPathA(sizeof(temp_dir_path), temp_dir_path);
1079 const UINT success = ::GetTempFileNameA(temp_dir_path,
1080 "gtest_redir",
1081 0, // Generate unique file name.
1082 temp_file_path);
1083 GTEST_CHECK_(success != 0)
1084 << "Unable to create a temporary file in " << temp_dir_path;
1085 const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE);
1086 GTEST_CHECK_(captured_fd != -1) << "Unable to open temporary file "
1087 << temp_file_path;
1088 filename_ = temp_file_path;
1089 # else
1090 // There's no guarantee that a test has write access to the current
1091 // directory, so we create the temporary file in the /tmp directory
1092 // instead.
1093 # if GTEST_OS_LINUX_ANDROID
1094 ::std::string name_template_buf = TempDir() + "gtest_captured_stream.XXXXXX";
1095 char* name_template = &name_template_buf[0];
1096 # else
1097 char name_template[] = "/tmp/captured_stream.XXXXXX";
1098 # endif // GTEST_OS_LINUX_ANDROID
1099 const int captured_fd = mkstemp(name_template);
1100 filename_ = name_template;
1101 # endif // GTEST_OS_WINDOWS
1102 fflush(nullptr);
1103 dup2(captured_fd, fd_);
1104 close(captured_fd);
1105 }
1106
~CapturedStream()1107 ~CapturedStream() {
1108 remove(filename_.c_str());
1109 }
1110
GetCapturedString()1111 std::string GetCapturedString() {
1112 if (uncaptured_fd_ != -1) {
1113 // Restores the original stream.
1114 fflush(nullptr);
1115 dup2(uncaptured_fd_, fd_);
1116 close(uncaptured_fd_);
1117 uncaptured_fd_ = -1;
1118 }
1119
1120 FILE* const file = posix::FOpen(filename_.c_str(), "r");
1121 const std::string content = ReadEntireFile(file);
1122 posix::FClose(file);
1123 return content;
1124 }
1125
1126 private:
1127 const int fd_; // A stream to capture.
1128 int uncaptured_fd_;
1129 // Name of the temporary file holding the stderr output.
1130 ::std::string filename_;
1131
1132 GTEST_DISALLOW_COPY_AND_ASSIGN_(CapturedStream);
1133 };
1134
1135 GTEST_DISABLE_MSC_DEPRECATED_POP_()
1136
1137 static CapturedStream* g_captured_stderr = nullptr;
1138 static CapturedStream* g_captured_stdout = nullptr;
1139
1140 // Starts capturing an output stream (stdout/stderr).
CaptureStream(int fd,const char * stream_name,CapturedStream ** stream)1141 static void CaptureStream(int fd, const char* stream_name,
1142 CapturedStream** stream) {
1143 if (*stream != nullptr) {
1144 GTEST_LOG_(FATAL) << "Only one " << stream_name
1145 << " capturer can exist at a time.";
1146 }
1147 *stream = new CapturedStream(fd);
1148 }
1149
1150 // Stops capturing the output stream and returns the captured string.
GetCapturedStream(CapturedStream ** captured_stream)1151 static std::string GetCapturedStream(CapturedStream** captured_stream) {
1152 const std::string content = (*captured_stream)->GetCapturedString();
1153
1154 delete *captured_stream;
1155 *captured_stream = nullptr;
1156
1157 return content;
1158 }
1159
1160 // Starts capturing stdout.
CaptureStdout()1161 void CaptureStdout() {
1162 CaptureStream(kStdOutFileno, "stdout", &g_captured_stdout);
1163 }
1164
1165 // Starts capturing stderr.
CaptureStderr()1166 void CaptureStderr() {
1167 CaptureStream(kStdErrFileno, "stderr", &g_captured_stderr);
1168 }
1169
1170 // Stops capturing stdout and returns the captured string.
GetCapturedStdout()1171 std::string GetCapturedStdout() {
1172 return GetCapturedStream(&g_captured_stdout);
1173 }
1174
1175 // Stops capturing stderr and returns the captured string.
GetCapturedStderr()1176 std::string GetCapturedStderr() {
1177 return GetCapturedStream(&g_captured_stderr);
1178 }
1179
1180 #endif // GTEST_HAS_STREAM_REDIRECTION
1181
1182
1183
1184
1185
GetFileSize(FILE * file)1186 size_t GetFileSize(FILE* file) {
1187 fseek(file, 0, SEEK_END);
1188 return static_cast<size_t>(ftell(file));
1189 }
1190
ReadEntireFile(FILE * file)1191 std::string ReadEntireFile(FILE* file) {
1192 const size_t file_size = GetFileSize(file);
1193 char* const buffer = new char[file_size];
1194
1195 size_t bytes_last_read = 0; // # of bytes read in the last fread()
1196 size_t bytes_read = 0; // # of bytes read so far
1197
1198 fseek(file, 0, SEEK_SET);
1199
1200 // Keeps reading the file until we cannot read further or the
1201 // pre-determined file size is reached.
1202 do {
1203 bytes_last_read = fread(buffer+bytes_read, 1, file_size-bytes_read, file);
1204 bytes_read += bytes_last_read;
1205 } while (bytes_last_read > 0 && bytes_read < file_size);
1206
1207 const std::string content(buffer, bytes_read);
1208 delete[] buffer;
1209
1210 return content;
1211 }
1212
1213 #if GTEST_HAS_DEATH_TEST
1214 static const std::vector<std::string>* g_injected_test_argvs =
1215 nullptr; // Owned.
1216
GetInjectableArgvs()1217 std::vector<std::string> GetInjectableArgvs() {
1218 if (g_injected_test_argvs != nullptr) {
1219 return *g_injected_test_argvs;
1220 }
1221 return GetArgvs();
1222 }
1223
SetInjectableArgvs(const std::vector<std::string> * new_argvs)1224 void SetInjectableArgvs(const std::vector<std::string>* new_argvs) {
1225 if (g_injected_test_argvs != new_argvs) delete g_injected_test_argvs;
1226 g_injected_test_argvs = new_argvs;
1227 }
1228
SetInjectableArgvs(const std::vector<std::string> & new_argvs)1229 void SetInjectableArgvs(const std::vector<std::string>& new_argvs) {
1230 SetInjectableArgvs(
1231 new std::vector<std::string>(new_argvs.begin(), new_argvs.end()));
1232 }
1233
1234 #if GTEST_HAS_GLOBAL_STRING
SetInjectableArgvs(const std::vector<::string> & new_argvs)1235 void SetInjectableArgvs(const std::vector< ::string>& new_argvs) {
1236 SetInjectableArgvs(
1237 new std::vector<std::string>(new_argvs.begin(), new_argvs.end()));
1238 }
1239 #endif // GTEST_HAS_GLOBAL_STRING
1240
ClearInjectableArgvs()1241 void ClearInjectableArgvs() {
1242 delete g_injected_test_argvs;
1243 g_injected_test_argvs = nullptr;
1244 }
1245 #endif // GTEST_HAS_DEATH_TEST
1246
1247 #if GTEST_OS_WINDOWS_MOBILE
1248 namespace posix {
Abort()1249 void Abort() {
1250 DebugBreak();
1251 TerminateProcess(GetCurrentProcess(), 1);
1252 }
1253 } // namespace posix
1254 #endif // GTEST_OS_WINDOWS_MOBILE
1255
1256 // Returns the name of the environment variable corresponding to the
1257 // given flag. For example, FlagToEnvVar("foo") will return
1258 // "GTEST_FOO" in the open-source version.
FlagToEnvVar(const char * flag)1259 static std::string FlagToEnvVar(const char* flag) {
1260 const std::string full_flag =
1261 (Message() << GTEST_FLAG_PREFIX_ << flag).GetString();
1262
1263 Message env_var;
1264 for (size_t i = 0; i != full_flag.length(); i++) {
1265 env_var << ToUpper(full_flag.c_str()[i]);
1266 }
1267
1268 return env_var.GetString();
1269 }
1270
1271 // Parses 'str' for a 32-bit signed integer. If successful, writes
1272 // the result to *value and returns true; otherwise leaves *value
1273 // unchanged and returns false.
ParseInt32(const Message & src_text,const char * str,Int32 * value)1274 bool ParseInt32(const Message& src_text, const char* str, Int32* value) {
1275 // Parses the environment variable as a decimal integer.
1276 char* end = nullptr;
1277 const long long_value = strtol(str, &end, 10); // NOLINT
1278
1279 // Has strtol() consumed all characters in the string?
1280 if (*end != '\0') {
1281 // No - an invalid character was encountered.
1282 Message msg;
1283 msg << "WARNING: " << src_text
1284 << " is expected to be a 32-bit integer, but actually"
1285 << " has value \"" << str << "\".\n";
1286 printf("%s", msg.GetString().c_str());
1287 fflush(stdout);
1288 return false;
1289 }
1290
1291 // Is the parsed value in the range of an Int32?
1292 const Int32 result = static_cast<Int32>(long_value);
1293 if (long_value == LONG_MAX || long_value == LONG_MIN ||
1294 // The parsed value overflows as a long. (strtol() returns
1295 // LONG_MAX or LONG_MIN when the input overflows.)
1296 result != long_value
1297 // The parsed value overflows as an Int32.
1298 ) {
1299 Message msg;
1300 msg << "WARNING: " << src_text
1301 << " is expected to be a 32-bit integer, but actually"
1302 << " has value " << str << ", which overflows.\n";
1303 printf("%s", msg.GetString().c_str());
1304 fflush(stdout);
1305 return false;
1306 }
1307
1308 *value = result;
1309 return true;
1310 }
1311
1312 // Reads and returns the Boolean environment variable corresponding to
1313 // the given flag; if it's not set, returns default_value.
1314 //
1315 // The value is considered true iff it's not "0".
BoolFromGTestEnv(const char * flag,bool default_value)1316 bool BoolFromGTestEnv(const char* flag, bool default_value) {
1317 #if defined(GTEST_GET_BOOL_FROM_ENV_)
1318 return GTEST_GET_BOOL_FROM_ENV_(flag, default_value);
1319 #else
1320 const std::string env_var = FlagToEnvVar(flag);
1321 const char* const string_value = posix::GetEnv(env_var.c_str());
1322 return string_value == nullptr ? default_value
1323 : strcmp(string_value, "0") != 0;
1324 #endif // defined(GTEST_GET_BOOL_FROM_ENV_)
1325 }
1326
1327 // Reads and returns a 32-bit integer stored in the environment
1328 // variable corresponding to the given flag; if it isn't set or
1329 // doesn't represent a valid 32-bit integer, returns default_value.
Int32FromGTestEnv(const char * flag,Int32 default_value)1330 Int32 Int32FromGTestEnv(const char* flag, Int32 default_value) {
1331 #if defined(GTEST_GET_INT32_FROM_ENV_)
1332 return GTEST_GET_INT32_FROM_ENV_(flag, default_value);
1333 #else
1334 const std::string env_var = FlagToEnvVar(flag);
1335 const char* const string_value = posix::GetEnv(env_var.c_str());
1336 if (string_value == nullptr) {
1337 // The environment variable is not set.
1338 return default_value;
1339 }
1340
1341 Int32 result = default_value;
1342 if (!ParseInt32(Message() << "Environment variable " << env_var,
1343 string_value, &result)) {
1344 printf("The default value %s is used.\n",
1345 (Message() << default_value).GetString().c_str());
1346 fflush(stdout);
1347 return default_value;
1348 }
1349
1350 return result;
1351 #endif // defined(GTEST_GET_INT32_FROM_ENV_)
1352 }
1353
1354 // As a special case for the 'output' flag, if GTEST_OUTPUT is not
1355 // set, we look for XML_OUTPUT_FILE, which is set by the Bazel build
1356 // system. The value of XML_OUTPUT_FILE is a filename without the
1357 // "xml:" prefix of GTEST_OUTPUT.
1358 // Note that this is meant to be called at the call site so it does
1359 // not check that the flag is 'output'
1360 // In essence this checks an env variable called XML_OUTPUT_FILE
1361 // and if it is set we prepend "xml:" to its value, if it not set we return ""
OutputFlagAlsoCheckEnvVar()1362 std::string OutputFlagAlsoCheckEnvVar(){
1363 std::string default_value_for_output_flag = "";
1364 const char* xml_output_file_env = posix::GetEnv("XML_OUTPUT_FILE");
1365 if (nullptr != xml_output_file_env) {
1366 default_value_for_output_flag = std::string("xml:") + xml_output_file_env;
1367 }
1368 return default_value_for_output_flag;
1369 }
1370
1371 // Reads and returns the string environment variable corresponding to
1372 // the given flag; if it's not set, returns default_value.
StringFromGTestEnv(const char * flag,const char * default_value)1373 const char* StringFromGTestEnv(const char* flag, const char* default_value) {
1374 #if defined(GTEST_GET_STRING_FROM_ENV_)
1375 return GTEST_GET_STRING_FROM_ENV_(flag, default_value);
1376 #else
1377 const std::string env_var = FlagToEnvVar(flag);
1378 const char* const value = posix::GetEnv(env_var.c_str());
1379 return value == nullptr ? default_value : value;
1380 #endif // defined(GTEST_GET_STRING_FROM_ENV_)
1381 }
1382
1383 } // namespace internal
1384 } // namespace testing
1385