1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitCall and visitInvoke functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Transforms/Utils/Local.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/Statepoint.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/IR/ValueHandle.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
61 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <cstring>
66 #include <utility>
67 #include <vector>
68
69 using namespace llvm;
70 using namespace PatternMatch;
71
72 #define DEBUG_TYPE "instcombine"
73
74 STATISTIC(NumSimplified, "Number of library calls simplified");
75
76 static cl::opt<unsigned> GuardWideningWindow(
77 "instcombine-guard-widening-window",
78 cl::init(3),
79 cl::desc("How wide an instruction window to bypass looking for "
80 "another guard"));
81
82 /// Return the specified type promoted as it would be to pass though a va_arg
83 /// area.
getPromotedType(Type * Ty)84 static Type *getPromotedType(Type *Ty) {
85 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
86 if (ITy->getBitWidth() < 32)
87 return Type::getInt32Ty(Ty->getContext());
88 }
89 return Ty;
90 }
91
92 /// Return a constant boolean vector that has true elements in all positions
93 /// where the input constant data vector has an element with the sign bit set.
getNegativeIsTrueBoolVec(ConstantDataVector * V)94 static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) {
95 SmallVector<Constant *, 32> BoolVec;
96 IntegerType *BoolTy = Type::getInt1Ty(V->getContext());
97 for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) {
98 Constant *Elt = V->getElementAsConstant(I);
99 assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) &&
100 "Unexpected constant data vector element type");
101 bool Sign = V->getElementType()->isIntegerTy()
102 ? cast<ConstantInt>(Elt)->isNegative()
103 : cast<ConstantFP>(Elt)->isNegative();
104 BoolVec.push_back(ConstantInt::get(BoolTy, Sign));
105 }
106 return ConstantVector::get(BoolVec);
107 }
108
SimplifyAnyMemTransfer(AnyMemTransferInst * MI)109 Instruction *InstCombiner::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
110 unsigned DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
111 unsigned CopyDstAlign = MI->getDestAlignment();
112 if (CopyDstAlign < DstAlign){
113 MI->setDestAlignment(DstAlign);
114 return MI;
115 }
116
117 unsigned SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
118 unsigned CopySrcAlign = MI->getSourceAlignment();
119 if (CopySrcAlign < SrcAlign) {
120 MI->setSourceAlignment(SrcAlign);
121 return MI;
122 }
123
124 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
125 // load/store.
126 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
127 if (!MemOpLength) return nullptr;
128
129 // Source and destination pointer types are always "i8*" for intrinsic. See
130 // if the size is something we can handle with a single primitive load/store.
131 // A single load+store correctly handles overlapping memory in the memmove
132 // case.
133 uint64_t Size = MemOpLength->getLimitedValue();
134 assert(Size && "0-sized memory transferring should be removed already.");
135
136 if (Size > 8 || (Size&(Size-1)))
137 return nullptr; // If not 1/2/4/8 bytes, exit.
138
139 // Use an integer load+store unless we can find something better.
140 unsigned SrcAddrSp =
141 cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
142 unsigned DstAddrSp =
143 cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
144
145 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
146 Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
147 Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
148
149 // If the memcpy has metadata describing the members, see if we can get the
150 // TBAA tag describing our copy.
151 MDNode *CopyMD = nullptr;
152 if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
153 CopyMD = M;
154 } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
155 if (M->getNumOperands() == 3 && M->getOperand(0) &&
156 mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
157 mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
158 M->getOperand(1) &&
159 mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
160 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
161 Size &&
162 M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
163 CopyMD = cast<MDNode>(M->getOperand(2));
164 }
165
166 Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
167 Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
168 LoadInst *L = Builder.CreateLoad(Src);
169 // Alignment from the mem intrinsic will be better, so use it.
170 L->setAlignment(CopySrcAlign);
171 if (CopyMD)
172 L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
173 MDNode *LoopMemParallelMD =
174 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
175 if (LoopMemParallelMD)
176 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
177
178 StoreInst *S = Builder.CreateStore(L, Dest);
179 // Alignment from the mem intrinsic will be better, so use it.
180 S->setAlignment(CopyDstAlign);
181 if (CopyMD)
182 S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
183 if (LoopMemParallelMD)
184 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
185
186 if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
187 // non-atomics can be volatile
188 L->setVolatile(MT->isVolatile());
189 S->setVolatile(MT->isVolatile());
190 }
191 if (isa<AtomicMemTransferInst>(MI)) {
192 // atomics have to be unordered
193 L->setOrdering(AtomicOrdering::Unordered);
194 S->setOrdering(AtomicOrdering::Unordered);
195 }
196
197 // Set the size of the copy to 0, it will be deleted on the next iteration.
198 MI->setLength(Constant::getNullValue(MemOpLength->getType()));
199 return MI;
200 }
201
SimplifyAnyMemSet(AnyMemSetInst * MI)202 Instruction *InstCombiner::SimplifyAnyMemSet(AnyMemSetInst *MI) {
203 unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
204 if (MI->getDestAlignment() < Alignment) {
205 MI->setDestAlignment(Alignment);
206 return MI;
207 }
208
209 // Extract the length and alignment and fill if they are constant.
210 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
211 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
212 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
213 return nullptr;
214 uint64_t Len = LenC->getLimitedValue();
215 Alignment = MI->getDestAlignment();
216 assert(Len && "0-sized memory setting should be removed already.");
217
218 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
219 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
220 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
221
222 Value *Dest = MI->getDest();
223 unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
224 Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
225 Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
226
227 // Alignment 0 is identity for alignment 1 for memset, but not store.
228 if (Alignment == 0) Alignment = 1;
229
230 // Extract the fill value and store.
231 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
232 StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest,
233 MI->isVolatile());
234 S->setAlignment(Alignment);
235 if (isa<AtomicMemSetInst>(MI))
236 S->setOrdering(AtomicOrdering::Unordered);
237
238 // Set the size of the copy to 0, it will be deleted on the next iteration.
239 MI->setLength(Constant::getNullValue(LenC->getType()));
240 return MI;
241 }
242
243 return nullptr;
244 }
245
simplifyX86immShift(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)246 static Value *simplifyX86immShift(const IntrinsicInst &II,
247 InstCombiner::BuilderTy &Builder) {
248 bool LogicalShift = false;
249 bool ShiftLeft = false;
250
251 switch (II.getIntrinsicID()) {
252 default: llvm_unreachable("Unexpected intrinsic!");
253 case Intrinsic::x86_sse2_psra_d:
254 case Intrinsic::x86_sse2_psra_w:
255 case Intrinsic::x86_sse2_psrai_d:
256 case Intrinsic::x86_sse2_psrai_w:
257 case Intrinsic::x86_avx2_psra_d:
258 case Intrinsic::x86_avx2_psra_w:
259 case Intrinsic::x86_avx2_psrai_d:
260 case Intrinsic::x86_avx2_psrai_w:
261 case Intrinsic::x86_avx512_psra_q_128:
262 case Intrinsic::x86_avx512_psrai_q_128:
263 case Intrinsic::x86_avx512_psra_q_256:
264 case Intrinsic::x86_avx512_psrai_q_256:
265 case Intrinsic::x86_avx512_psra_d_512:
266 case Intrinsic::x86_avx512_psra_q_512:
267 case Intrinsic::x86_avx512_psra_w_512:
268 case Intrinsic::x86_avx512_psrai_d_512:
269 case Intrinsic::x86_avx512_psrai_q_512:
270 case Intrinsic::x86_avx512_psrai_w_512:
271 LogicalShift = false; ShiftLeft = false;
272 break;
273 case Intrinsic::x86_sse2_psrl_d:
274 case Intrinsic::x86_sse2_psrl_q:
275 case Intrinsic::x86_sse2_psrl_w:
276 case Intrinsic::x86_sse2_psrli_d:
277 case Intrinsic::x86_sse2_psrli_q:
278 case Intrinsic::x86_sse2_psrli_w:
279 case Intrinsic::x86_avx2_psrl_d:
280 case Intrinsic::x86_avx2_psrl_q:
281 case Intrinsic::x86_avx2_psrl_w:
282 case Intrinsic::x86_avx2_psrli_d:
283 case Intrinsic::x86_avx2_psrli_q:
284 case Intrinsic::x86_avx2_psrli_w:
285 case Intrinsic::x86_avx512_psrl_d_512:
286 case Intrinsic::x86_avx512_psrl_q_512:
287 case Intrinsic::x86_avx512_psrl_w_512:
288 case Intrinsic::x86_avx512_psrli_d_512:
289 case Intrinsic::x86_avx512_psrli_q_512:
290 case Intrinsic::x86_avx512_psrli_w_512:
291 LogicalShift = true; ShiftLeft = false;
292 break;
293 case Intrinsic::x86_sse2_psll_d:
294 case Intrinsic::x86_sse2_psll_q:
295 case Intrinsic::x86_sse2_psll_w:
296 case Intrinsic::x86_sse2_pslli_d:
297 case Intrinsic::x86_sse2_pslli_q:
298 case Intrinsic::x86_sse2_pslli_w:
299 case Intrinsic::x86_avx2_psll_d:
300 case Intrinsic::x86_avx2_psll_q:
301 case Intrinsic::x86_avx2_psll_w:
302 case Intrinsic::x86_avx2_pslli_d:
303 case Intrinsic::x86_avx2_pslli_q:
304 case Intrinsic::x86_avx2_pslli_w:
305 case Intrinsic::x86_avx512_psll_d_512:
306 case Intrinsic::x86_avx512_psll_q_512:
307 case Intrinsic::x86_avx512_psll_w_512:
308 case Intrinsic::x86_avx512_pslli_d_512:
309 case Intrinsic::x86_avx512_pslli_q_512:
310 case Intrinsic::x86_avx512_pslli_w_512:
311 LogicalShift = true; ShiftLeft = true;
312 break;
313 }
314 assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
315
316 // Simplify if count is constant.
317 auto Arg1 = II.getArgOperand(1);
318 auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
319 auto CDV = dyn_cast<ConstantDataVector>(Arg1);
320 auto CInt = dyn_cast<ConstantInt>(Arg1);
321 if (!CAZ && !CDV && !CInt)
322 return nullptr;
323
324 APInt Count(64, 0);
325 if (CDV) {
326 // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
327 // operand to compute the shift amount.
328 auto VT = cast<VectorType>(CDV->getType());
329 unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
330 assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
331 unsigned NumSubElts = 64 / BitWidth;
332
333 // Concatenate the sub-elements to create the 64-bit value.
334 for (unsigned i = 0; i != NumSubElts; ++i) {
335 unsigned SubEltIdx = (NumSubElts - 1) - i;
336 auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
337 Count <<= BitWidth;
338 Count |= SubElt->getValue().zextOrTrunc(64);
339 }
340 }
341 else if (CInt)
342 Count = CInt->getValue();
343
344 auto Vec = II.getArgOperand(0);
345 auto VT = cast<VectorType>(Vec->getType());
346 auto SVT = VT->getElementType();
347 unsigned VWidth = VT->getNumElements();
348 unsigned BitWidth = SVT->getPrimitiveSizeInBits();
349
350 // If shift-by-zero then just return the original value.
351 if (Count.isNullValue())
352 return Vec;
353
354 // Handle cases when Shift >= BitWidth.
355 if (Count.uge(BitWidth)) {
356 // If LogicalShift - just return zero.
357 if (LogicalShift)
358 return ConstantAggregateZero::get(VT);
359
360 // If ArithmeticShift - clamp Shift to (BitWidth - 1).
361 Count = APInt(64, BitWidth - 1);
362 }
363
364 // Get a constant vector of the same type as the first operand.
365 auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
366 auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
367
368 if (ShiftLeft)
369 return Builder.CreateShl(Vec, ShiftVec);
370
371 if (LogicalShift)
372 return Builder.CreateLShr(Vec, ShiftVec);
373
374 return Builder.CreateAShr(Vec, ShiftVec);
375 }
376
377 // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
378 // Unlike the generic IR shifts, the intrinsics have defined behaviour for out
379 // of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
simplifyX86varShift(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)380 static Value *simplifyX86varShift(const IntrinsicInst &II,
381 InstCombiner::BuilderTy &Builder) {
382 bool LogicalShift = false;
383 bool ShiftLeft = false;
384
385 switch (II.getIntrinsicID()) {
386 default: llvm_unreachable("Unexpected intrinsic!");
387 case Intrinsic::x86_avx2_psrav_d:
388 case Intrinsic::x86_avx2_psrav_d_256:
389 case Intrinsic::x86_avx512_psrav_q_128:
390 case Intrinsic::x86_avx512_psrav_q_256:
391 case Intrinsic::x86_avx512_psrav_d_512:
392 case Intrinsic::x86_avx512_psrav_q_512:
393 case Intrinsic::x86_avx512_psrav_w_128:
394 case Intrinsic::x86_avx512_psrav_w_256:
395 case Intrinsic::x86_avx512_psrav_w_512:
396 LogicalShift = false;
397 ShiftLeft = false;
398 break;
399 case Intrinsic::x86_avx2_psrlv_d:
400 case Intrinsic::x86_avx2_psrlv_d_256:
401 case Intrinsic::x86_avx2_psrlv_q:
402 case Intrinsic::x86_avx2_psrlv_q_256:
403 case Intrinsic::x86_avx512_psrlv_d_512:
404 case Intrinsic::x86_avx512_psrlv_q_512:
405 case Intrinsic::x86_avx512_psrlv_w_128:
406 case Intrinsic::x86_avx512_psrlv_w_256:
407 case Intrinsic::x86_avx512_psrlv_w_512:
408 LogicalShift = true;
409 ShiftLeft = false;
410 break;
411 case Intrinsic::x86_avx2_psllv_d:
412 case Intrinsic::x86_avx2_psllv_d_256:
413 case Intrinsic::x86_avx2_psllv_q:
414 case Intrinsic::x86_avx2_psllv_q_256:
415 case Intrinsic::x86_avx512_psllv_d_512:
416 case Intrinsic::x86_avx512_psllv_q_512:
417 case Intrinsic::x86_avx512_psllv_w_128:
418 case Intrinsic::x86_avx512_psllv_w_256:
419 case Intrinsic::x86_avx512_psllv_w_512:
420 LogicalShift = true;
421 ShiftLeft = true;
422 break;
423 }
424 assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
425
426 // Simplify if all shift amounts are constant/undef.
427 auto *CShift = dyn_cast<Constant>(II.getArgOperand(1));
428 if (!CShift)
429 return nullptr;
430
431 auto Vec = II.getArgOperand(0);
432 auto VT = cast<VectorType>(II.getType());
433 auto SVT = VT->getVectorElementType();
434 int NumElts = VT->getNumElements();
435 int BitWidth = SVT->getIntegerBitWidth();
436
437 // Collect each element's shift amount.
438 // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
439 bool AnyOutOfRange = false;
440 SmallVector<int, 8> ShiftAmts;
441 for (int I = 0; I < NumElts; ++I) {
442 auto *CElt = CShift->getAggregateElement(I);
443 if (CElt && isa<UndefValue>(CElt)) {
444 ShiftAmts.push_back(-1);
445 continue;
446 }
447
448 auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
449 if (!COp)
450 return nullptr;
451
452 // Handle out of range shifts.
453 // If LogicalShift - set to BitWidth (special case).
454 // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
455 APInt ShiftVal = COp->getValue();
456 if (ShiftVal.uge(BitWidth)) {
457 AnyOutOfRange = LogicalShift;
458 ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
459 continue;
460 }
461
462 ShiftAmts.push_back((int)ShiftVal.getZExtValue());
463 }
464
465 // If all elements out of range or UNDEF, return vector of zeros/undefs.
466 // ArithmeticShift should only hit this if they are all UNDEF.
467 auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
468 if (llvm::all_of(ShiftAmts, OutOfRange)) {
469 SmallVector<Constant *, 8> ConstantVec;
470 for (int Idx : ShiftAmts) {
471 if (Idx < 0) {
472 ConstantVec.push_back(UndefValue::get(SVT));
473 } else {
474 assert(LogicalShift && "Logical shift expected");
475 ConstantVec.push_back(ConstantInt::getNullValue(SVT));
476 }
477 }
478 return ConstantVector::get(ConstantVec);
479 }
480
481 // We can't handle only some out of range values with generic logical shifts.
482 if (AnyOutOfRange)
483 return nullptr;
484
485 // Build the shift amount constant vector.
486 SmallVector<Constant *, 8> ShiftVecAmts;
487 for (int Idx : ShiftAmts) {
488 if (Idx < 0)
489 ShiftVecAmts.push_back(UndefValue::get(SVT));
490 else
491 ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
492 }
493 auto ShiftVec = ConstantVector::get(ShiftVecAmts);
494
495 if (ShiftLeft)
496 return Builder.CreateShl(Vec, ShiftVec);
497
498 if (LogicalShift)
499 return Builder.CreateLShr(Vec, ShiftVec);
500
501 return Builder.CreateAShr(Vec, ShiftVec);
502 }
503
simplifyX86pack(IntrinsicInst & II,bool IsSigned)504 static Value *simplifyX86pack(IntrinsicInst &II, bool IsSigned) {
505 Value *Arg0 = II.getArgOperand(0);
506 Value *Arg1 = II.getArgOperand(1);
507 Type *ResTy = II.getType();
508
509 // Fast all undef handling.
510 if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
511 return UndefValue::get(ResTy);
512
513 Type *ArgTy = Arg0->getType();
514 unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
515 unsigned NumDstElts = ResTy->getVectorNumElements();
516 unsigned NumSrcElts = ArgTy->getVectorNumElements();
517 assert(NumDstElts == (2 * NumSrcElts) && "Unexpected packing types");
518
519 unsigned NumDstEltsPerLane = NumDstElts / NumLanes;
520 unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
521 unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
522 assert(ArgTy->getScalarSizeInBits() == (2 * DstScalarSizeInBits) &&
523 "Unexpected packing types");
524
525 // Constant folding.
526 auto *Cst0 = dyn_cast<Constant>(Arg0);
527 auto *Cst1 = dyn_cast<Constant>(Arg1);
528 if (!Cst0 || !Cst1)
529 return nullptr;
530
531 SmallVector<Constant *, 32> Vals;
532 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
533 for (unsigned Elt = 0; Elt != NumDstEltsPerLane; ++Elt) {
534 unsigned SrcIdx = Lane * NumSrcEltsPerLane + Elt % NumSrcEltsPerLane;
535 auto *Cst = (Elt >= NumSrcEltsPerLane) ? Cst1 : Cst0;
536 auto *COp = Cst->getAggregateElement(SrcIdx);
537 if (COp && isa<UndefValue>(COp)) {
538 Vals.push_back(UndefValue::get(ResTy->getScalarType()));
539 continue;
540 }
541
542 auto *CInt = dyn_cast_or_null<ConstantInt>(COp);
543 if (!CInt)
544 return nullptr;
545
546 APInt Val = CInt->getValue();
547 assert(Val.getBitWidth() == ArgTy->getScalarSizeInBits() &&
548 "Unexpected constant bitwidth");
549
550 if (IsSigned) {
551 // PACKSS: Truncate signed value with signed saturation.
552 // Source values less than dst minint are saturated to minint.
553 // Source values greater than dst maxint are saturated to maxint.
554 if (Val.isSignedIntN(DstScalarSizeInBits))
555 Val = Val.trunc(DstScalarSizeInBits);
556 else if (Val.isNegative())
557 Val = APInt::getSignedMinValue(DstScalarSizeInBits);
558 else
559 Val = APInt::getSignedMaxValue(DstScalarSizeInBits);
560 } else {
561 // PACKUS: Truncate signed value with unsigned saturation.
562 // Source values less than zero are saturated to zero.
563 // Source values greater than dst maxuint are saturated to maxuint.
564 if (Val.isIntN(DstScalarSizeInBits))
565 Val = Val.trunc(DstScalarSizeInBits);
566 else if (Val.isNegative())
567 Val = APInt::getNullValue(DstScalarSizeInBits);
568 else
569 Val = APInt::getAllOnesValue(DstScalarSizeInBits);
570 }
571
572 Vals.push_back(ConstantInt::get(ResTy->getScalarType(), Val));
573 }
574 }
575
576 return ConstantVector::get(Vals);
577 }
578
579 // Replace X86-specific intrinsics with generic floor-ceil where applicable.
simplifyX86round(IntrinsicInst & II,InstCombiner::BuilderTy & Builder)580 static Value *simplifyX86round(IntrinsicInst &II,
581 InstCombiner::BuilderTy &Builder) {
582 ConstantInt *Arg = nullptr;
583 Intrinsic::ID IntrinsicID = II.getIntrinsicID();
584
585 if (IntrinsicID == Intrinsic::x86_sse41_round_ss ||
586 IntrinsicID == Intrinsic::x86_sse41_round_sd)
587 Arg = dyn_cast<ConstantInt>(II.getArgOperand(2));
588 else if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
589 IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd)
590 Arg = dyn_cast<ConstantInt>(II.getArgOperand(4));
591 else
592 Arg = dyn_cast<ConstantInt>(II.getArgOperand(1));
593 if (!Arg)
594 return nullptr;
595 unsigned RoundControl = Arg->getZExtValue();
596
597 Arg = nullptr;
598 unsigned SAE = 0;
599 if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ps_512 ||
600 IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_pd_512)
601 Arg = dyn_cast<ConstantInt>(II.getArgOperand(4));
602 else if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
603 IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd)
604 Arg = dyn_cast<ConstantInt>(II.getArgOperand(5));
605 else
606 SAE = 4;
607 if (!SAE) {
608 if (!Arg)
609 return nullptr;
610 SAE = Arg->getZExtValue();
611 }
612
613 if (SAE != 4 || (RoundControl != 2 /*ceil*/ && RoundControl != 1 /*floor*/))
614 return nullptr;
615
616 Value *Src, *Dst, *Mask;
617 bool IsScalar = false;
618 if (IntrinsicID == Intrinsic::x86_sse41_round_ss ||
619 IntrinsicID == Intrinsic::x86_sse41_round_sd ||
620 IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
621 IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd) {
622 IsScalar = true;
623 if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
624 IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd) {
625 Mask = II.getArgOperand(3);
626 Value *Zero = Constant::getNullValue(Mask->getType());
627 Mask = Builder.CreateAnd(Mask, 1);
628 Mask = Builder.CreateICmp(ICmpInst::ICMP_NE, Mask, Zero);
629 Dst = II.getArgOperand(2);
630 } else
631 Dst = II.getArgOperand(0);
632 Src = Builder.CreateExtractElement(II.getArgOperand(1), (uint64_t)0);
633 } else {
634 Src = II.getArgOperand(0);
635 if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ps_128 ||
636 IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ps_256 ||
637 IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ps_512 ||
638 IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_pd_128 ||
639 IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_pd_256 ||
640 IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_pd_512) {
641 Dst = II.getArgOperand(2);
642 Mask = II.getArgOperand(3);
643 } else {
644 Dst = Src;
645 Mask = ConstantInt::getAllOnesValue(
646 Builder.getIntNTy(Src->getType()->getVectorNumElements()));
647 }
648 }
649
650 Intrinsic::ID ID = (RoundControl == 2) ? Intrinsic::ceil : Intrinsic::floor;
651 Value *Res = Builder.CreateIntrinsic(ID, {Src}, &II);
652 if (!IsScalar) {
653 if (auto *C = dyn_cast<Constant>(Mask))
654 if (C->isAllOnesValue())
655 return Res;
656 auto *MaskTy = VectorType::get(
657 Builder.getInt1Ty(), cast<IntegerType>(Mask->getType())->getBitWidth());
658 Mask = Builder.CreateBitCast(Mask, MaskTy);
659 unsigned Width = Src->getType()->getVectorNumElements();
660 if (MaskTy->getVectorNumElements() > Width) {
661 uint32_t Indices[4];
662 for (unsigned i = 0; i != Width; ++i)
663 Indices[i] = i;
664 Mask = Builder.CreateShuffleVector(Mask, Mask,
665 makeArrayRef(Indices, Width));
666 }
667 return Builder.CreateSelect(Mask, Res, Dst);
668 }
669 if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
670 IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd) {
671 Dst = Builder.CreateExtractElement(Dst, (uint64_t)0);
672 Res = Builder.CreateSelect(Mask, Res, Dst);
673 Dst = II.getArgOperand(0);
674 }
675 return Builder.CreateInsertElement(Dst, Res, (uint64_t)0);
676 }
677
simplifyX86movmsk(const IntrinsicInst & II)678 static Value *simplifyX86movmsk(const IntrinsicInst &II) {
679 Value *Arg = II.getArgOperand(0);
680 Type *ResTy = II.getType();
681 Type *ArgTy = Arg->getType();
682
683 // movmsk(undef) -> zero as we must ensure the upper bits are zero.
684 if (isa<UndefValue>(Arg))
685 return Constant::getNullValue(ResTy);
686
687 // We can't easily peek through x86_mmx types.
688 if (!ArgTy->isVectorTy())
689 return nullptr;
690
691 auto *C = dyn_cast<Constant>(Arg);
692 if (!C)
693 return nullptr;
694
695 // Extract signbits of the vector input and pack into integer result.
696 APInt Result(ResTy->getPrimitiveSizeInBits(), 0);
697 for (unsigned I = 0, E = ArgTy->getVectorNumElements(); I != E; ++I) {
698 auto *COp = C->getAggregateElement(I);
699 if (!COp)
700 return nullptr;
701 if (isa<UndefValue>(COp))
702 continue;
703
704 auto *CInt = dyn_cast<ConstantInt>(COp);
705 auto *CFp = dyn_cast<ConstantFP>(COp);
706 if (!CInt && !CFp)
707 return nullptr;
708
709 if ((CInt && CInt->isNegative()) || (CFp && CFp->isNegative()))
710 Result.setBit(I);
711 }
712
713 return Constant::getIntegerValue(ResTy, Result);
714 }
715
simplifyX86insertps(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)716 static Value *simplifyX86insertps(const IntrinsicInst &II,
717 InstCombiner::BuilderTy &Builder) {
718 auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
719 if (!CInt)
720 return nullptr;
721
722 VectorType *VecTy = cast<VectorType>(II.getType());
723 assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
724
725 // The immediate permute control byte looks like this:
726 // [3:0] - zero mask for each 32-bit lane
727 // [5:4] - select one 32-bit destination lane
728 // [7:6] - select one 32-bit source lane
729
730 uint8_t Imm = CInt->getZExtValue();
731 uint8_t ZMask = Imm & 0xf;
732 uint8_t DestLane = (Imm >> 4) & 0x3;
733 uint8_t SourceLane = (Imm >> 6) & 0x3;
734
735 ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
736
737 // If all zero mask bits are set, this was just a weird way to
738 // generate a zero vector.
739 if (ZMask == 0xf)
740 return ZeroVector;
741
742 // Initialize by passing all of the first source bits through.
743 uint32_t ShuffleMask[4] = { 0, 1, 2, 3 };
744
745 // We may replace the second operand with the zero vector.
746 Value *V1 = II.getArgOperand(1);
747
748 if (ZMask) {
749 // If the zero mask is being used with a single input or the zero mask
750 // overrides the destination lane, this is a shuffle with the zero vector.
751 if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
752 (ZMask & (1 << DestLane))) {
753 V1 = ZeroVector;
754 // We may still move 32-bits of the first source vector from one lane
755 // to another.
756 ShuffleMask[DestLane] = SourceLane;
757 // The zero mask may override the previous insert operation.
758 for (unsigned i = 0; i < 4; ++i)
759 if ((ZMask >> i) & 0x1)
760 ShuffleMask[i] = i + 4;
761 } else {
762 // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
763 return nullptr;
764 }
765 } else {
766 // Replace the selected destination lane with the selected source lane.
767 ShuffleMask[DestLane] = SourceLane + 4;
768 }
769
770 return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
771 }
772
773 /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
774 /// or conversion to a shuffle vector.
simplifyX86extrq(IntrinsicInst & II,Value * Op0,ConstantInt * CILength,ConstantInt * CIIndex,InstCombiner::BuilderTy & Builder)775 static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
776 ConstantInt *CILength, ConstantInt *CIIndex,
777 InstCombiner::BuilderTy &Builder) {
778 auto LowConstantHighUndef = [&](uint64_t Val) {
779 Type *IntTy64 = Type::getInt64Ty(II.getContext());
780 Constant *Args[] = {ConstantInt::get(IntTy64, Val),
781 UndefValue::get(IntTy64)};
782 return ConstantVector::get(Args);
783 };
784
785 // See if we're dealing with constant values.
786 Constant *C0 = dyn_cast<Constant>(Op0);
787 ConstantInt *CI0 =
788 C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
789 : nullptr;
790
791 // Attempt to constant fold.
792 if (CILength && CIIndex) {
793 // From AMD documentation: "The bit index and field length are each six
794 // bits in length other bits of the field are ignored."
795 APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
796 APInt APLength = CILength->getValue().zextOrTrunc(6);
797
798 unsigned Index = APIndex.getZExtValue();
799
800 // From AMD documentation: "a value of zero in the field length is
801 // defined as length of 64".
802 unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
803
804 // From AMD documentation: "If the sum of the bit index + length field
805 // is greater than 64, the results are undefined".
806 unsigned End = Index + Length;
807
808 // Note that both field index and field length are 8-bit quantities.
809 // Since variables 'Index' and 'Length' are unsigned values
810 // obtained from zero-extending field index and field length
811 // respectively, their sum should never wrap around.
812 if (End > 64)
813 return UndefValue::get(II.getType());
814
815 // If we are inserting whole bytes, we can convert this to a shuffle.
816 // Lowering can recognize EXTRQI shuffle masks.
817 if ((Length % 8) == 0 && (Index % 8) == 0) {
818 // Convert bit indices to byte indices.
819 Length /= 8;
820 Index /= 8;
821
822 Type *IntTy8 = Type::getInt8Ty(II.getContext());
823 Type *IntTy32 = Type::getInt32Ty(II.getContext());
824 VectorType *ShufTy = VectorType::get(IntTy8, 16);
825
826 SmallVector<Constant *, 16> ShuffleMask;
827 for (int i = 0; i != (int)Length; ++i)
828 ShuffleMask.push_back(
829 Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
830 for (int i = Length; i != 8; ++i)
831 ShuffleMask.push_back(
832 Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
833 for (int i = 8; i != 16; ++i)
834 ShuffleMask.push_back(UndefValue::get(IntTy32));
835
836 Value *SV = Builder.CreateShuffleVector(
837 Builder.CreateBitCast(Op0, ShufTy),
838 ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
839 return Builder.CreateBitCast(SV, II.getType());
840 }
841
842 // Constant Fold - shift Index'th bit to lowest position and mask off
843 // Length bits.
844 if (CI0) {
845 APInt Elt = CI0->getValue();
846 Elt.lshrInPlace(Index);
847 Elt = Elt.zextOrTrunc(Length);
848 return LowConstantHighUndef(Elt.getZExtValue());
849 }
850
851 // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
852 if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
853 Value *Args[] = {Op0, CILength, CIIndex};
854 Module *M = II.getModule();
855 Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
856 return Builder.CreateCall(F, Args);
857 }
858 }
859
860 // Constant Fold - extraction from zero is always {zero, undef}.
861 if (CI0 && CI0->isZero())
862 return LowConstantHighUndef(0);
863
864 return nullptr;
865 }
866
867 /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
868 /// folding or conversion to a shuffle vector.
simplifyX86insertq(IntrinsicInst & II,Value * Op0,Value * Op1,APInt APLength,APInt APIndex,InstCombiner::BuilderTy & Builder)869 static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
870 APInt APLength, APInt APIndex,
871 InstCombiner::BuilderTy &Builder) {
872 // From AMD documentation: "The bit index and field length are each six bits
873 // in length other bits of the field are ignored."
874 APIndex = APIndex.zextOrTrunc(6);
875 APLength = APLength.zextOrTrunc(6);
876
877 // Attempt to constant fold.
878 unsigned Index = APIndex.getZExtValue();
879
880 // From AMD documentation: "a value of zero in the field length is
881 // defined as length of 64".
882 unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
883
884 // From AMD documentation: "If the sum of the bit index + length field
885 // is greater than 64, the results are undefined".
886 unsigned End = Index + Length;
887
888 // Note that both field index and field length are 8-bit quantities.
889 // Since variables 'Index' and 'Length' are unsigned values
890 // obtained from zero-extending field index and field length
891 // respectively, their sum should never wrap around.
892 if (End > 64)
893 return UndefValue::get(II.getType());
894
895 // If we are inserting whole bytes, we can convert this to a shuffle.
896 // Lowering can recognize INSERTQI shuffle masks.
897 if ((Length % 8) == 0 && (Index % 8) == 0) {
898 // Convert bit indices to byte indices.
899 Length /= 8;
900 Index /= 8;
901
902 Type *IntTy8 = Type::getInt8Ty(II.getContext());
903 Type *IntTy32 = Type::getInt32Ty(II.getContext());
904 VectorType *ShufTy = VectorType::get(IntTy8, 16);
905
906 SmallVector<Constant *, 16> ShuffleMask;
907 for (int i = 0; i != (int)Index; ++i)
908 ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
909 for (int i = 0; i != (int)Length; ++i)
910 ShuffleMask.push_back(
911 Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
912 for (int i = Index + Length; i != 8; ++i)
913 ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
914 for (int i = 8; i != 16; ++i)
915 ShuffleMask.push_back(UndefValue::get(IntTy32));
916
917 Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
918 Builder.CreateBitCast(Op1, ShufTy),
919 ConstantVector::get(ShuffleMask));
920 return Builder.CreateBitCast(SV, II.getType());
921 }
922
923 // See if we're dealing with constant values.
924 Constant *C0 = dyn_cast<Constant>(Op0);
925 Constant *C1 = dyn_cast<Constant>(Op1);
926 ConstantInt *CI00 =
927 C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
928 : nullptr;
929 ConstantInt *CI10 =
930 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
931 : nullptr;
932
933 // Constant Fold - insert bottom Length bits starting at the Index'th bit.
934 if (CI00 && CI10) {
935 APInt V00 = CI00->getValue();
936 APInt V10 = CI10->getValue();
937 APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
938 V00 = V00 & ~Mask;
939 V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
940 APInt Val = V00 | V10;
941 Type *IntTy64 = Type::getInt64Ty(II.getContext());
942 Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
943 UndefValue::get(IntTy64)};
944 return ConstantVector::get(Args);
945 }
946
947 // If we were an INSERTQ call, we'll save demanded elements if we convert to
948 // INSERTQI.
949 if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
950 Type *IntTy8 = Type::getInt8Ty(II.getContext());
951 Constant *CILength = ConstantInt::get(IntTy8, Length, false);
952 Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
953
954 Value *Args[] = {Op0, Op1, CILength, CIIndex};
955 Module *M = II.getModule();
956 Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
957 return Builder.CreateCall(F, Args);
958 }
959
960 return nullptr;
961 }
962
963 /// Attempt to convert pshufb* to shufflevector if the mask is constant.
simplifyX86pshufb(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)964 static Value *simplifyX86pshufb(const IntrinsicInst &II,
965 InstCombiner::BuilderTy &Builder) {
966 Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
967 if (!V)
968 return nullptr;
969
970 auto *VecTy = cast<VectorType>(II.getType());
971 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
972 unsigned NumElts = VecTy->getNumElements();
973 assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
974 "Unexpected number of elements in shuffle mask!");
975
976 // Construct a shuffle mask from constant integers or UNDEFs.
977 Constant *Indexes[64] = {nullptr};
978
979 // Each byte in the shuffle control mask forms an index to permute the
980 // corresponding byte in the destination operand.
981 for (unsigned I = 0; I < NumElts; ++I) {
982 Constant *COp = V->getAggregateElement(I);
983 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
984 return nullptr;
985
986 if (isa<UndefValue>(COp)) {
987 Indexes[I] = UndefValue::get(MaskEltTy);
988 continue;
989 }
990
991 int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
992
993 // If the most significant bit (bit[7]) of each byte of the shuffle
994 // control mask is set, then zero is written in the result byte.
995 // The zero vector is in the right-hand side of the resulting
996 // shufflevector.
997
998 // The value of each index for the high 128-bit lane is the least
999 // significant 4 bits of the respective shuffle control byte.
1000 Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
1001 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
1002 }
1003
1004 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
1005 auto V1 = II.getArgOperand(0);
1006 auto V2 = Constant::getNullValue(VecTy);
1007 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1008 }
1009
1010 /// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
simplifyX86vpermilvar(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)1011 static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
1012 InstCombiner::BuilderTy &Builder) {
1013 Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
1014 if (!V)
1015 return nullptr;
1016
1017 auto *VecTy = cast<VectorType>(II.getType());
1018 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
1019 unsigned NumElts = VecTy->getVectorNumElements();
1020 bool IsPD = VecTy->getScalarType()->isDoubleTy();
1021 unsigned NumLaneElts = IsPD ? 2 : 4;
1022 assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);
1023
1024 // Construct a shuffle mask from constant integers or UNDEFs.
1025 Constant *Indexes[16] = {nullptr};
1026
1027 // The intrinsics only read one or two bits, clear the rest.
1028 for (unsigned I = 0; I < NumElts; ++I) {
1029 Constant *COp = V->getAggregateElement(I);
1030 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
1031 return nullptr;
1032
1033 if (isa<UndefValue>(COp)) {
1034 Indexes[I] = UndefValue::get(MaskEltTy);
1035 continue;
1036 }
1037
1038 APInt Index = cast<ConstantInt>(COp)->getValue();
1039 Index = Index.zextOrTrunc(32).getLoBits(2);
1040
1041 // The PD variants uses bit 1 to select per-lane element index, so
1042 // shift down to convert to generic shuffle mask index.
1043 if (IsPD)
1044 Index.lshrInPlace(1);
1045
1046 // The _256 variants are a bit trickier since the mask bits always index
1047 // into the corresponding 128 half. In order to convert to a generic
1048 // shuffle, we have to make that explicit.
1049 Index += APInt(32, (I / NumLaneElts) * NumLaneElts);
1050
1051 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
1052 }
1053
1054 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
1055 auto V1 = II.getArgOperand(0);
1056 auto V2 = UndefValue::get(V1->getType());
1057 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1058 }
1059
1060 /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
simplifyX86vpermv(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)1061 static Value *simplifyX86vpermv(const IntrinsicInst &II,
1062 InstCombiner::BuilderTy &Builder) {
1063 auto *V = dyn_cast<Constant>(II.getArgOperand(1));
1064 if (!V)
1065 return nullptr;
1066
1067 auto *VecTy = cast<VectorType>(II.getType());
1068 auto *MaskEltTy = Type::getInt32Ty(II.getContext());
1069 unsigned Size = VecTy->getNumElements();
1070 assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
1071 "Unexpected shuffle mask size");
1072
1073 // Construct a shuffle mask from constant integers or UNDEFs.
1074 Constant *Indexes[64] = {nullptr};
1075
1076 for (unsigned I = 0; I < Size; ++I) {
1077 Constant *COp = V->getAggregateElement(I);
1078 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
1079 return nullptr;
1080
1081 if (isa<UndefValue>(COp)) {
1082 Indexes[I] = UndefValue::get(MaskEltTy);
1083 continue;
1084 }
1085
1086 uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
1087 Index &= Size - 1;
1088 Indexes[I] = ConstantInt::get(MaskEltTy, Index);
1089 }
1090
1091 auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size));
1092 auto V1 = II.getArgOperand(0);
1093 auto V2 = UndefValue::get(VecTy);
1094 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1095 }
1096
1097 /// Decode XOP integer vector comparison intrinsics.
simplifyX86vpcom(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder,bool IsSigned)1098 static Value *simplifyX86vpcom(const IntrinsicInst &II,
1099 InstCombiner::BuilderTy &Builder,
1100 bool IsSigned) {
1101 if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
1102 uint64_t Imm = CInt->getZExtValue() & 0x7;
1103 VectorType *VecTy = cast<VectorType>(II.getType());
1104 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1105
1106 switch (Imm) {
1107 case 0x0:
1108 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1109 break;
1110 case 0x1:
1111 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1112 break;
1113 case 0x2:
1114 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1115 break;
1116 case 0x3:
1117 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1118 break;
1119 case 0x4:
1120 Pred = ICmpInst::ICMP_EQ; break;
1121 case 0x5:
1122 Pred = ICmpInst::ICMP_NE; break;
1123 case 0x6:
1124 return ConstantInt::getSigned(VecTy, 0); // FALSE
1125 case 0x7:
1126 return ConstantInt::getSigned(VecTy, -1); // TRUE
1127 }
1128
1129 if (Value *Cmp = Builder.CreateICmp(Pred, II.getArgOperand(0),
1130 II.getArgOperand(1)))
1131 return Builder.CreateSExtOrTrunc(Cmp, VecTy);
1132 }
1133 return nullptr;
1134 }
1135
simplifyMinnumMaxnum(const IntrinsicInst & II)1136 static Value *simplifyMinnumMaxnum(const IntrinsicInst &II) {
1137 Value *Arg0 = II.getArgOperand(0);
1138 Value *Arg1 = II.getArgOperand(1);
1139
1140 // fmin(x, x) -> x
1141 if (Arg0 == Arg1)
1142 return Arg0;
1143
1144 const auto *C1 = dyn_cast<ConstantFP>(Arg1);
1145
1146 // fmin(x, nan) -> x
1147 if (C1 && C1->isNaN())
1148 return Arg0;
1149
1150 // This is the value because if undef were NaN, we would return the other
1151 // value and cannot return a NaN unless both operands are.
1152 //
1153 // fmin(undef, x) -> x
1154 if (isa<UndefValue>(Arg0))
1155 return Arg1;
1156
1157 // fmin(x, undef) -> x
1158 if (isa<UndefValue>(Arg1))
1159 return Arg0;
1160
1161 Value *X = nullptr;
1162 Value *Y = nullptr;
1163 if (II.getIntrinsicID() == Intrinsic::minnum) {
1164 // fmin(x, fmin(x, y)) -> fmin(x, y)
1165 // fmin(y, fmin(x, y)) -> fmin(x, y)
1166 if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
1167 if (Arg0 == X || Arg0 == Y)
1168 return Arg1;
1169 }
1170
1171 // fmin(fmin(x, y), x) -> fmin(x, y)
1172 // fmin(fmin(x, y), y) -> fmin(x, y)
1173 if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
1174 if (Arg1 == X || Arg1 == Y)
1175 return Arg0;
1176 }
1177
1178 // TODO: fmin(nnan x, inf) -> x
1179 // TODO: fmin(nnan ninf x, flt_max) -> x
1180 if (C1 && C1->isInfinity()) {
1181 // fmin(x, -inf) -> -inf
1182 if (C1->isNegative())
1183 return Arg1;
1184 }
1185 } else {
1186 assert(II.getIntrinsicID() == Intrinsic::maxnum);
1187 // fmax(x, fmax(x, y)) -> fmax(x, y)
1188 // fmax(y, fmax(x, y)) -> fmax(x, y)
1189 if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
1190 if (Arg0 == X || Arg0 == Y)
1191 return Arg1;
1192 }
1193
1194 // fmax(fmax(x, y), x) -> fmax(x, y)
1195 // fmax(fmax(x, y), y) -> fmax(x, y)
1196 if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
1197 if (Arg1 == X || Arg1 == Y)
1198 return Arg0;
1199 }
1200
1201 // TODO: fmax(nnan x, -inf) -> x
1202 // TODO: fmax(nnan ninf x, -flt_max) -> x
1203 if (C1 && C1->isInfinity()) {
1204 // fmax(x, inf) -> inf
1205 if (!C1->isNegative())
1206 return Arg1;
1207 }
1208 }
1209 return nullptr;
1210 }
1211
maskIsAllOneOrUndef(Value * Mask)1212 static bool maskIsAllOneOrUndef(Value *Mask) {
1213 auto *ConstMask = dyn_cast<Constant>(Mask);
1214 if (!ConstMask)
1215 return false;
1216 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1217 return true;
1218 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
1219 ++I) {
1220 if (auto *MaskElt = ConstMask->getAggregateElement(I))
1221 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1222 continue;
1223 return false;
1224 }
1225 return true;
1226 }
1227
simplifyMaskedLoad(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)1228 static Value *simplifyMaskedLoad(const IntrinsicInst &II,
1229 InstCombiner::BuilderTy &Builder) {
1230 // If the mask is all ones or undefs, this is a plain vector load of the 1st
1231 // argument.
1232 if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
1233 Value *LoadPtr = II.getArgOperand(0);
1234 unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue();
1235 return Builder.CreateAlignedLoad(LoadPtr, Alignment, "unmaskedload");
1236 }
1237
1238 return nullptr;
1239 }
1240
simplifyMaskedStore(IntrinsicInst & II,InstCombiner & IC)1241 static Instruction *simplifyMaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1242 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1243 if (!ConstMask)
1244 return nullptr;
1245
1246 // If the mask is all zeros, this instruction does nothing.
1247 if (ConstMask->isNullValue())
1248 return IC.eraseInstFromFunction(II);
1249
1250 // If the mask is all ones, this is a plain vector store of the 1st argument.
1251 if (ConstMask->isAllOnesValue()) {
1252 Value *StorePtr = II.getArgOperand(1);
1253 unsigned Alignment = cast<ConstantInt>(II.getArgOperand(2))->getZExtValue();
1254 return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
1255 }
1256
1257 return nullptr;
1258 }
1259
simplifyMaskedGather(IntrinsicInst & II,InstCombiner & IC)1260 static Instruction *simplifyMaskedGather(IntrinsicInst &II, InstCombiner &IC) {
1261 // If the mask is all zeros, return the "passthru" argument of the gather.
1262 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
1263 if (ConstMask && ConstMask->isNullValue())
1264 return IC.replaceInstUsesWith(II, II.getArgOperand(3));
1265
1266 return nullptr;
1267 }
1268
1269 /// This function transforms launder.invariant.group and strip.invariant.group
1270 /// like:
1271 /// launder(launder(%x)) -> launder(%x) (the result is not the argument)
1272 /// launder(strip(%x)) -> launder(%x)
1273 /// strip(strip(%x)) -> strip(%x) (the result is not the argument)
1274 /// strip(launder(%x)) -> strip(%x)
1275 /// This is legal because it preserves the most recent information about
1276 /// the presence or absence of invariant.group.
simplifyInvariantGroupIntrinsic(IntrinsicInst & II,InstCombiner & IC)1277 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
1278 InstCombiner &IC) {
1279 auto *Arg = II.getArgOperand(0);
1280 auto *StrippedArg = Arg->stripPointerCasts();
1281 auto *StrippedInvariantGroupsArg = Arg->stripPointerCastsAndInvariantGroups();
1282 if (StrippedArg == StrippedInvariantGroupsArg)
1283 return nullptr; // No launders/strips to remove.
1284
1285 Value *Result = nullptr;
1286
1287 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
1288 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
1289 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
1290 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
1291 else
1292 llvm_unreachable(
1293 "simplifyInvariantGroupIntrinsic only handles launder and strip");
1294 if (Result->getType()->getPointerAddressSpace() !=
1295 II.getType()->getPointerAddressSpace())
1296 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
1297 if (Result->getType() != II.getType())
1298 Result = IC.Builder.CreateBitCast(Result, II.getType());
1299
1300 return cast<Instruction>(Result);
1301 }
1302
simplifyMaskedScatter(IntrinsicInst & II,InstCombiner & IC)1303 static Instruction *simplifyMaskedScatter(IntrinsicInst &II, InstCombiner &IC) {
1304 // If the mask is all zeros, a scatter does nothing.
1305 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1306 if (ConstMask && ConstMask->isNullValue())
1307 return IC.eraseInstFromFunction(II);
1308
1309 return nullptr;
1310 }
1311
foldCttzCtlz(IntrinsicInst & II,InstCombiner & IC)1312 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) {
1313 assert((II.getIntrinsicID() == Intrinsic::cttz ||
1314 II.getIntrinsicID() == Intrinsic::ctlz) &&
1315 "Expected cttz or ctlz intrinsic");
1316 Value *Op0 = II.getArgOperand(0);
1317
1318 KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
1319
1320 // Create a mask for bits above (ctlz) or below (cttz) the first known one.
1321 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
1322 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
1323 : Known.countMaxLeadingZeros();
1324 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
1325 : Known.countMinLeadingZeros();
1326
1327 // If all bits above (ctlz) or below (cttz) the first known one are known
1328 // zero, this value is constant.
1329 // FIXME: This should be in InstSimplify because we're replacing an
1330 // instruction with a constant.
1331 if (PossibleZeros == DefiniteZeros) {
1332 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
1333 return IC.replaceInstUsesWith(II, C);
1334 }
1335
1336 // If the input to cttz/ctlz is known to be non-zero,
1337 // then change the 'ZeroIsUndef' parameter to 'true'
1338 // because we know the zero behavior can't affect the result.
1339 if (!Known.One.isNullValue() ||
1340 isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
1341 &IC.getDominatorTree())) {
1342 if (!match(II.getArgOperand(1), m_One())) {
1343 II.setOperand(1, IC.Builder.getTrue());
1344 return &II;
1345 }
1346 }
1347
1348 // Add range metadata since known bits can't completely reflect what we know.
1349 // TODO: Handle splat vectors.
1350 auto *IT = dyn_cast<IntegerType>(Op0->getType());
1351 if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
1352 Metadata *LowAndHigh[] = {
1353 ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
1354 ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
1355 II.setMetadata(LLVMContext::MD_range,
1356 MDNode::get(II.getContext(), LowAndHigh));
1357 return &II;
1358 }
1359
1360 return nullptr;
1361 }
1362
foldCtpop(IntrinsicInst & II,InstCombiner & IC)1363 static Instruction *foldCtpop(IntrinsicInst &II, InstCombiner &IC) {
1364 assert(II.getIntrinsicID() == Intrinsic::ctpop &&
1365 "Expected ctpop intrinsic");
1366 Value *Op0 = II.getArgOperand(0);
1367 // FIXME: Try to simplify vectors of integers.
1368 auto *IT = dyn_cast<IntegerType>(Op0->getType());
1369 if (!IT)
1370 return nullptr;
1371
1372 unsigned BitWidth = IT->getBitWidth();
1373 KnownBits Known(BitWidth);
1374 IC.computeKnownBits(Op0, Known, 0, &II);
1375
1376 unsigned MinCount = Known.countMinPopulation();
1377 unsigned MaxCount = Known.countMaxPopulation();
1378
1379 // Add range metadata since known bits can't completely reflect what we know.
1380 if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
1381 Metadata *LowAndHigh[] = {
1382 ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
1383 ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
1384 II.setMetadata(LLVMContext::MD_range,
1385 MDNode::get(II.getContext(), LowAndHigh));
1386 return &II;
1387 }
1388
1389 return nullptr;
1390 }
1391
1392 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1393 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1394 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
simplifyX86MaskedLoad(IntrinsicInst & II,InstCombiner & IC)1395 static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
1396 Value *Ptr = II.getOperand(0);
1397 Value *Mask = II.getOperand(1);
1398 Constant *ZeroVec = Constant::getNullValue(II.getType());
1399
1400 // Special case a zero mask since that's not a ConstantDataVector.
1401 // This masked load instruction creates a zero vector.
1402 if (isa<ConstantAggregateZero>(Mask))
1403 return IC.replaceInstUsesWith(II, ZeroVec);
1404
1405 auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1406 if (!ConstMask)
1407 return nullptr;
1408
1409 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1410 // to allow target-independent optimizations.
1411
1412 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1413 // the LLVM intrinsic definition for the pointer argument.
1414 unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1415 PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
1416 Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
1417
1418 // Second, convert the x86 XMM integer vector mask to a vector of bools based
1419 // on each element's most significant bit (the sign bit).
1420 Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1421
1422 // The pass-through vector for an x86 masked load is a zero vector.
1423 CallInst *NewMaskedLoad =
1424 IC.Builder.CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec);
1425 return IC.replaceInstUsesWith(II, NewMaskedLoad);
1426 }
1427
1428 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1429 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1430 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
simplifyX86MaskedStore(IntrinsicInst & II,InstCombiner & IC)1431 static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1432 Value *Ptr = II.getOperand(0);
1433 Value *Mask = II.getOperand(1);
1434 Value *Vec = II.getOperand(2);
1435
1436 // Special case a zero mask since that's not a ConstantDataVector:
1437 // this masked store instruction does nothing.
1438 if (isa<ConstantAggregateZero>(Mask)) {
1439 IC.eraseInstFromFunction(II);
1440 return true;
1441 }
1442
1443 // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
1444 // anything else at this level.
1445 if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
1446 return false;
1447
1448 auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1449 if (!ConstMask)
1450 return false;
1451
1452 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1453 // to allow target-independent optimizations.
1454
1455 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1456 // the LLVM intrinsic definition for the pointer argument.
1457 unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1458 PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
1459 Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
1460
1461 // Second, convert the x86 XMM integer vector mask to a vector of bools based
1462 // on each element's most significant bit (the sign bit).
1463 Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1464
1465 IC.Builder.CreateMaskedStore(Vec, PtrCast, 1, BoolMask);
1466
1467 // 'Replace uses' doesn't work for stores. Erase the original masked store.
1468 IC.eraseInstFromFunction(II);
1469 return true;
1470 }
1471
1472 // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
1473 //
1474 // A single NaN input is folded to minnum, so we rely on that folding for
1475 // handling NaNs.
fmed3AMDGCN(const APFloat & Src0,const APFloat & Src1,const APFloat & Src2)1476 static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
1477 const APFloat &Src2) {
1478 APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);
1479
1480 APFloat::cmpResult Cmp0 = Max3.compare(Src0);
1481 assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
1482 if (Cmp0 == APFloat::cmpEqual)
1483 return maxnum(Src1, Src2);
1484
1485 APFloat::cmpResult Cmp1 = Max3.compare(Src1);
1486 assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
1487 if (Cmp1 == APFloat::cmpEqual)
1488 return maxnum(Src0, Src2);
1489
1490 return maxnum(Src0, Src1);
1491 }
1492
1493 /// Convert a table lookup to shufflevector if the mask is constant.
1494 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
1495 /// which case we could lower the shufflevector with rev64 instructions
1496 /// as it's actually a byte reverse.
simplifyNeonTbl1(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)1497 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
1498 InstCombiner::BuilderTy &Builder) {
1499 // Bail out if the mask is not a constant.
1500 auto *C = dyn_cast<Constant>(II.getArgOperand(1));
1501 if (!C)
1502 return nullptr;
1503
1504 auto *VecTy = cast<VectorType>(II.getType());
1505 unsigned NumElts = VecTy->getNumElements();
1506
1507 // Only perform this transformation for <8 x i8> vector types.
1508 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
1509 return nullptr;
1510
1511 uint32_t Indexes[8];
1512
1513 for (unsigned I = 0; I < NumElts; ++I) {
1514 Constant *COp = C->getAggregateElement(I);
1515
1516 if (!COp || !isa<ConstantInt>(COp))
1517 return nullptr;
1518
1519 Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
1520
1521 // Make sure the mask indices are in range.
1522 if (Indexes[I] >= NumElts)
1523 return nullptr;
1524 }
1525
1526 auto *ShuffleMask = ConstantDataVector::get(II.getContext(),
1527 makeArrayRef(Indexes));
1528 auto *V1 = II.getArgOperand(0);
1529 auto *V2 = Constant::getNullValue(V1->getType());
1530 return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1531 }
1532
1533 /// Convert a vector load intrinsic into a simple llvm load instruction.
1534 /// This is beneficial when the underlying object being addressed comes
1535 /// from a constant, since we get constant-folding for free.
simplifyNeonVld1(const IntrinsicInst & II,unsigned MemAlign,InstCombiner::BuilderTy & Builder)1536 static Value *simplifyNeonVld1(const IntrinsicInst &II,
1537 unsigned MemAlign,
1538 InstCombiner::BuilderTy &Builder) {
1539 auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
1540
1541 if (!IntrAlign)
1542 return nullptr;
1543
1544 unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign ?
1545 MemAlign : IntrAlign->getLimitedValue();
1546
1547 if (!isPowerOf2_32(Alignment))
1548 return nullptr;
1549
1550 auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
1551 PointerType::get(II.getType(), 0));
1552 return Builder.CreateAlignedLoad(BCastInst, Alignment);
1553 }
1554
1555 // Returns true iff the 2 intrinsics have the same operands, limiting the
1556 // comparison to the first NumOperands.
haveSameOperands(const IntrinsicInst & I,const IntrinsicInst & E,unsigned NumOperands)1557 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
1558 unsigned NumOperands) {
1559 assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
1560 assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
1561 for (unsigned i = 0; i < NumOperands; i++)
1562 if (I.getArgOperand(i) != E.getArgOperand(i))
1563 return false;
1564 return true;
1565 }
1566
1567 // Remove trivially empty start/end intrinsic ranges, i.e. a start
1568 // immediately followed by an end (ignoring debuginfo or other
1569 // start/end intrinsics in between). As this handles only the most trivial
1570 // cases, tracking the nesting level is not needed:
1571 //
1572 // call @llvm.foo.start(i1 0) ; &I
1573 // call @llvm.foo.start(i1 0)
1574 // call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed
1575 // call @llvm.foo.end(i1 0)
removeTriviallyEmptyRange(IntrinsicInst & I,unsigned StartID,unsigned EndID,InstCombiner & IC)1576 static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID,
1577 unsigned EndID, InstCombiner &IC) {
1578 assert(I.getIntrinsicID() == StartID &&
1579 "Start intrinsic does not have expected ID");
1580 BasicBlock::iterator BI(I), BE(I.getParent()->end());
1581 for (++BI; BI != BE; ++BI) {
1582 if (auto *E = dyn_cast<IntrinsicInst>(BI)) {
1583 if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID)
1584 continue;
1585 if (E->getIntrinsicID() == EndID &&
1586 haveSameOperands(I, *E, E->getNumArgOperands())) {
1587 IC.eraseInstFromFunction(*E);
1588 IC.eraseInstFromFunction(I);
1589 return true;
1590 }
1591 }
1592 break;
1593 }
1594
1595 return false;
1596 }
1597
1598 // Convert NVVM intrinsics to target-generic LLVM code where possible.
SimplifyNVVMIntrinsic(IntrinsicInst * II,InstCombiner & IC)1599 static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
1600 // Each NVVM intrinsic we can simplify can be replaced with one of:
1601 //
1602 // * an LLVM intrinsic,
1603 // * an LLVM cast operation,
1604 // * an LLVM binary operation, or
1605 // * ad-hoc LLVM IR for the particular operation.
1606
1607 // Some transformations are only valid when the module's
1608 // flush-denormals-to-zero (ftz) setting is true/false, whereas other
1609 // transformations are valid regardless of the module's ftz setting.
1610 enum FtzRequirementTy {
1611 FTZ_Any, // Any ftz setting is ok.
1612 FTZ_MustBeOn, // Transformation is valid only if ftz is on.
1613 FTZ_MustBeOff, // Transformation is valid only if ftz is off.
1614 };
1615 // Classes of NVVM intrinsics that can't be replaced one-to-one with a
1616 // target-generic intrinsic, cast op, or binary op but that we can nonetheless
1617 // simplify.
1618 enum SpecialCase {
1619 SPC_Reciprocal,
1620 };
1621
1622 // SimplifyAction is a poor-man's variant (plus an additional flag) that
1623 // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
1624 struct SimplifyAction {
1625 // Invariant: At most one of these Optionals has a value.
1626 Optional<Intrinsic::ID> IID;
1627 Optional<Instruction::CastOps> CastOp;
1628 Optional<Instruction::BinaryOps> BinaryOp;
1629 Optional<SpecialCase> Special;
1630
1631 FtzRequirementTy FtzRequirement = FTZ_Any;
1632
1633 SimplifyAction() = default;
1634
1635 SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq)
1636 : IID(IID), FtzRequirement(FtzReq) {}
1637
1638 // Cast operations don't have anything to do with FTZ, so we skip that
1639 // argument.
1640 SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
1641
1642 SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
1643 : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
1644
1645 SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
1646 : Special(Special), FtzRequirement(FtzReq) {}
1647 };
1648
1649 // Try to generate a SimplifyAction describing how to replace our
1650 // IntrinsicInstr with target-generic LLVM IR.
1651 const SimplifyAction Action = [II]() -> SimplifyAction {
1652 switch (II->getIntrinsicID()) {
1653 // NVVM intrinsics that map directly to LLVM intrinsics.
1654 case Intrinsic::nvvm_ceil_d:
1655 return {Intrinsic::ceil, FTZ_Any};
1656 case Intrinsic::nvvm_ceil_f:
1657 return {Intrinsic::ceil, FTZ_MustBeOff};
1658 case Intrinsic::nvvm_ceil_ftz_f:
1659 return {Intrinsic::ceil, FTZ_MustBeOn};
1660 case Intrinsic::nvvm_fabs_d:
1661 return {Intrinsic::fabs, FTZ_Any};
1662 case Intrinsic::nvvm_fabs_f:
1663 return {Intrinsic::fabs, FTZ_MustBeOff};
1664 case Intrinsic::nvvm_fabs_ftz_f:
1665 return {Intrinsic::fabs, FTZ_MustBeOn};
1666 case Intrinsic::nvvm_floor_d:
1667 return {Intrinsic::floor, FTZ_Any};
1668 case Intrinsic::nvvm_floor_f:
1669 return {Intrinsic::floor, FTZ_MustBeOff};
1670 case Intrinsic::nvvm_floor_ftz_f:
1671 return {Intrinsic::floor, FTZ_MustBeOn};
1672 case Intrinsic::nvvm_fma_rn_d:
1673 return {Intrinsic::fma, FTZ_Any};
1674 case Intrinsic::nvvm_fma_rn_f:
1675 return {Intrinsic::fma, FTZ_MustBeOff};
1676 case Intrinsic::nvvm_fma_rn_ftz_f:
1677 return {Intrinsic::fma, FTZ_MustBeOn};
1678 case Intrinsic::nvvm_fmax_d:
1679 return {Intrinsic::maxnum, FTZ_Any};
1680 case Intrinsic::nvvm_fmax_f:
1681 return {Intrinsic::maxnum, FTZ_MustBeOff};
1682 case Intrinsic::nvvm_fmax_ftz_f:
1683 return {Intrinsic::maxnum, FTZ_MustBeOn};
1684 case Intrinsic::nvvm_fmin_d:
1685 return {Intrinsic::minnum, FTZ_Any};
1686 case Intrinsic::nvvm_fmin_f:
1687 return {Intrinsic::minnum, FTZ_MustBeOff};
1688 case Intrinsic::nvvm_fmin_ftz_f:
1689 return {Intrinsic::minnum, FTZ_MustBeOn};
1690 case Intrinsic::nvvm_round_d:
1691 return {Intrinsic::round, FTZ_Any};
1692 case Intrinsic::nvvm_round_f:
1693 return {Intrinsic::round, FTZ_MustBeOff};
1694 case Intrinsic::nvvm_round_ftz_f:
1695 return {Intrinsic::round, FTZ_MustBeOn};
1696 case Intrinsic::nvvm_sqrt_rn_d:
1697 return {Intrinsic::sqrt, FTZ_Any};
1698 case Intrinsic::nvvm_sqrt_f:
1699 // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the
1700 // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts
1701 // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are
1702 // the versions with explicit ftz-ness.
1703 return {Intrinsic::sqrt, FTZ_Any};
1704 case Intrinsic::nvvm_sqrt_rn_f:
1705 return {Intrinsic::sqrt, FTZ_MustBeOff};
1706 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1707 return {Intrinsic::sqrt, FTZ_MustBeOn};
1708 case Intrinsic::nvvm_trunc_d:
1709 return {Intrinsic::trunc, FTZ_Any};
1710 case Intrinsic::nvvm_trunc_f:
1711 return {Intrinsic::trunc, FTZ_MustBeOff};
1712 case Intrinsic::nvvm_trunc_ftz_f:
1713 return {Intrinsic::trunc, FTZ_MustBeOn};
1714
1715 // NVVM intrinsics that map to LLVM cast operations.
1716 //
1717 // Note that llvm's target-generic conversion operators correspond to the rz
1718 // (round to zero) versions of the nvvm conversion intrinsics, even though
1719 // most everything else here uses the rn (round to nearest even) nvvm ops.
1720 case Intrinsic::nvvm_d2i_rz:
1721 case Intrinsic::nvvm_f2i_rz:
1722 case Intrinsic::nvvm_d2ll_rz:
1723 case Intrinsic::nvvm_f2ll_rz:
1724 return {Instruction::FPToSI};
1725 case Intrinsic::nvvm_d2ui_rz:
1726 case Intrinsic::nvvm_f2ui_rz:
1727 case Intrinsic::nvvm_d2ull_rz:
1728 case Intrinsic::nvvm_f2ull_rz:
1729 return {Instruction::FPToUI};
1730 case Intrinsic::nvvm_i2d_rz:
1731 case Intrinsic::nvvm_i2f_rz:
1732 case Intrinsic::nvvm_ll2d_rz:
1733 case Intrinsic::nvvm_ll2f_rz:
1734 return {Instruction::SIToFP};
1735 case Intrinsic::nvvm_ui2d_rz:
1736 case Intrinsic::nvvm_ui2f_rz:
1737 case Intrinsic::nvvm_ull2d_rz:
1738 case Intrinsic::nvvm_ull2f_rz:
1739 return {Instruction::UIToFP};
1740
1741 // NVVM intrinsics that map to LLVM binary ops.
1742 case Intrinsic::nvvm_add_rn_d:
1743 return {Instruction::FAdd, FTZ_Any};
1744 case Intrinsic::nvvm_add_rn_f:
1745 return {Instruction::FAdd, FTZ_MustBeOff};
1746 case Intrinsic::nvvm_add_rn_ftz_f:
1747 return {Instruction::FAdd, FTZ_MustBeOn};
1748 case Intrinsic::nvvm_mul_rn_d:
1749 return {Instruction::FMul, FTZ_Any};
1750 case Intrinsic::nvvm_mul_rn_f:
1751 return {Instruction::FMul, FTZ_MustBeOff};
1752 case Intrinsic::nvvm_mul_rn_ftz_f:
1753 return {Instruction::FMul, FTZ_MustBeOn};
1754 case Intrinsic::nvvm_div_rn_d:
1755 return {Instruction::FDiv, FTZ_Any};
1756 case Intrinsic::nvvm_div_rn_f:
1757 return {Instruction::FDiv, FTZ_MustBeOff};
1758 case Intrinsic::nvvm_div_rn_ftz_f:
1759 return {Instruction::FDiv, FTZ_MustBeOn};
1760
1761 // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
1762 // need special handling.
1763 //
1764 // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
1765 // as well.
1766 case Intrinsic::nvvm_rcp_rn_d:
1767 return {SPC_Reciprocal, FTZ_Any};
1768 case Intrinsic::nvvm_rcp_rn_f:
1769 return {SPC_Reciprocal, FTZ_MustBeOff};
1770 case Intrinsic::nvvm_rcp_rn_ftz_f:
1771 return {SPC_Reciprocal, FTZ_MustBeOn};
1772
1773 // We do not currently simplify intrinsics that give an approximate answer.
1774 // These include:
1775 //
1776 // - nvvm_cos_approx_{f,ftz_f}
1777 // - nvvm_ex2_approx_{d,f,ftz_f}
1778 // - nvvm_lg2_approx_{d,f,ftz_f}
1779 // - nvvm_sin_approx_{f,ftz_f}
1780 // - nvvm_sqrt_approx_{f,ftz_f}
1781 // - nvvm_rsqrt_approx_{d,f,ftz_f}
1782 // - nvvm_div_approx_{ftz_d,ftz_f,f}
1783 // - nvvm_rcp_approx_ftz_d
1784 //
1785 // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
1786 // means that fastmath is enabled in the intrinsic. Unfortunately only
1787 // binary operators (currently) have a fastmath bit in SelectionDAG, so this
1788 // information gets lost and we can't select on it.
1789 //
1790 // TODO: div and rcp are lowered to a binary op, so these we could in theory
1791 // lower them to "fast fdiv".
1792
1793 default:
1794 return {};
1795 }
1796 }();
1797
1798 // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
1799 // can bail out now. (Notice that in the case that IID is not an NVVM
1800 // intrinsic, we don't have to look up any module metadata, as
1801 // FtzRequirementTy will be FTZ_Any.)
1802 if (Action.FtzRequirement != FTZ_Any) {
1803 bool FtzEnabled =
1804 II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() ==
1805 "true";
1806
1807 if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
1808 return nullptr;
1809 }
1810
1811 // Simplify to target-generic intrinsic.
1812 if (Action.IID) {
1813 SmallVector<Value *, 4> Args(II->arg_operands());
1814 // All the target-generic intrinsics currently of interest to us have one
1815 // type argument, equal to that of the nvvm intrinsic's argument.
1816 Type *Tys[] = {II->getArgOperand(0)->getType()};
1817 return CallInst::Create(
1818 Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
1819 }
1820
1821 // Simplify to target-generic binary op.
1822 if (Action.BinaryOp)
1823 return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
1824 II->getArgOperand(1), II->getName());
1825
1826 // Simplify to target-generic cast op.
1827 if (Action.CastOp)
1828 return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
1829 II->getName());
1830
1831 // All that's left are the special cases.
1832 if (!Action.Special)
1833 return nullptr;
1834
1835 switch (*Action.Special) {
1836 case SPC_Reciprocal:
1837 // Simplify reciprocal.
1838 return BinaryOperator::Create(
1839 Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
1840 II->getArgOperand(0), II->getName());
1841 }
1842 llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
1843 }
1844
visitVAStartInst(VAStartInst & I)1845 Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) {
1846 removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this);
1847 return nullptr;
1848 }
1849
visitVACopyInst(VACopyInst & I)1850 Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) {
1851 removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this);
1852 return nullptr;
1853 }
1854
1855 /// CallInst simplification. This mostly only handles folding of intrinsic
1856 /// instructions. For normal calls, it allows visitCallSite to do the heavy
1857 /// lifting.
visitCallInst(CallInst & CI)1858 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
1859 if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI)))
1860 return replaceInstUsesWith(CI, V);
1861
1862 if (isFreeCall(&CI, &TLI))
1863 return visitFree(CI);
1864
1865 // If the caller function is nounwind, mark the call as nounwind, even if the
1866 // callee isn't.
1867 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1868 CI.setDoesNotThrow();
1869 return &CI;
1870 }
1871
1872 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1873 if (!II) return visitCallSite(&CI);
1874
1875 // Intrinsics cannot occur in an invoke, so handle them here instead of in
1876 // visitCallSite.
1877 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
1878 bool Changed = false;
1879
1880 // memmove/cpy/set of zero bytes is a noop.
1881 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
1882 if (NumBytes->isNullValue())
1883 return eraseInstFromFunction(CI);
1884
1885 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
1886 if (CI->getZExtValue() == 1) {
1887 // Replace the instruction with just byte operations. We would
1888 // transform other cases to loads/stores, but we don't know if
1889 // alignment is sufficient.
1890 }
1891 }
1892
1893 // No other transformations apply to volatile transfers.
1894 if (auto *M = dyn_cast<MemIntrinsic>(MI))
1895 if (M->isVolatile())
1896 return nullptr;
1897
1898 // If we have a memmove and the source operation is a constant global,
1899 // then the source and dest pointers can't alias, so we can change this
1900 // into a call to memcpy.
1901 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1902 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1903 if (GVSrc->isConstant()) {
1904 Module *M = CI.getModule();
1905 Intrinsic::ID MemCpyID =
1906 isa<AtomicMemMoveInst>(MMI)
1907 ? Intrinsic::memcpy_element_unordered_atomic
1908 : Intrinsic::memcpy;
1909 Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1910 CI.getArgOperand(1)->getType(),
1911 CI.getArgOperand(2)->getType() };
1912 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
1913 Changed = true;
1914 }
1915 }
1916
1917 if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1918 // memmove(x,x,size) -> noop.
1919 if (MTI->getSource() == MTI->getDest())
1920 return eraseInstFromFunction(CI);
1921 }
1922
1923 // If we can determine a pointer alignment that is bigger than currently
1924 // set, update the alignment.
1925 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1926 if (Instruction *I = SimplifyAnyMemTransfer(MTI))
1927 return I;
1928 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1929 if (Instruction *I = SimplifyAnyMemSet(MSI))
1930 return I;
1931 }
1932
1933 if (Changed) return II;
1934 }
1935
1936 if (Instruction *I = SimplifyNVVMIntrinsic(II, *this))
1937 return I;
1938
1939 auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width,
1940 unsigned DemandedWidth) {
1941 APInt UndefElts(Width, 0);
1942 APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
1943 return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
1944 };
1945
1946 switch (II->getIntrinsicID()) {
1947 default: break;
1948 case Intrinsic::objectsize:
1949 if (ConstantInt *N =
1950 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
1951 return replaceInstUsesWith(CI, N);
1952 return nullptr;
1953 case Intrinsic::bswap: {
1954 Value *IIOperand = II->getArgOperand(0);
1955 Value *X = nullptr;
1956
1957 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1958 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1959 unsigned C = X->getType()->getPrimitiveSizeInBits() -
1960 IIOperand->getType()->getPrimitiveSizeInBits();
1961 Value *CV = ConstantInt::get(X->getType(), C);
1962 Value *V = Builder.CreateLShr(X, CV);
1963 return new TruncInst(V, IIOperand->getType());
1964 }
1965 break;
1966 }
1967 case Intrinsic::masked_load:
1968 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II, Builder))
1969 return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1970 break;
1971 case Intrinsic::masked_store:
1972 return simplifyMaskedStore(*II, *this);
1973 case Intrinsic::masked_gather:
1974 return simplifyMaskedGather(*II, *this);
1975 case Intrinsic::masked_scatter:
1976 return simplifyMaskedScatter(*II, *this);
1977 case Intrinsic::launder_invariant_group:
1978 case Intrinsic::strip_invariant_group:
1979 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
1980 return replaceInstUsesWith(*II, SkippedBarrier);
1981 break;
1982 case Intrinsic::powi:
1983 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
1984 // 0 and 1 are handled in instsimplify
1985
1986 // powi(x, -1) -> 1/x
1987 if (Power->isMinusOne())
1988 return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
1989 II->getArgOperand(0));
1990 // powi(x, 2) -> x*x
1991 if (Power->equalsInt(2))
1992 return BinaryOperator::CreateFMul(II->getArgOperand(0),
1993 II->getArgOperand(0));
1994 }
1995 break;
1996
1997 case Intrinsic::cttz:
1998 case Intrinsic::ctlz:
1999 if (auto *I = foldCttzCtlz(*II, *this))
2000 return I;
2001 break;
2002
2003 case Intrinsic::ctpop:
2004 if (auto *I = foldCtpop(*II, *this))
2005 return I;
2006 break;
2007
2008 case Intrinsic::uadd_with_overflow:
2009 case Intrinsic::sadd_with_overflow:
2010 case Intrinsic::umul_with_overflow:
2011 case Intrinsic::smul_with_overflow:
2012 if (isa<Constant>(II->getArgOperand(0)) &&
2013 !isa<Constant>(II->getArgOperand(1))) {
2014 // Canonicalize constants into the RHS.
2015 Value *LHS = II->getArgOperand(0);
2016 II->setArgOperand(0, II->getArgOperand(1));
2017 II->setArgOperand(1, LHS);
2018 return II;
2019 }
2020 LLVM_FALLTHROUGH;
2021
2022 case Intrinsic::usub_with_overflow:
2023 case Intrinsic::ssub_with_overflow: {
2024 OverflowCheckFlavor OCF =
2025 IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
2026 assert(OCF != OCF_INVALID && "unexpected!");
2027
2028 Value *OperationResult = nullptr;
2029 Constant *OverflowResult = nullptr;
2030 if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
2031 *II, OperationResult, OverflowResult))
2032 return CreateOverflowTuple(II, OperationResult, OverflowResult);
2033
2034 break;
2035 }
2036
2037 case Intrinsic::minnum:
2038 case Intrinsic::maxnum: {
2039 Value *Arg0 = II->getArgOperand(0);
2040 Value *Arg1 = II->getArgOperand(1);
2041 // Canonicalize constants to the RHS.
2042 if (isa<ConstantFP>(Arg0) && !isa<ConstantFP>(Arg1)) {
2043 II->setArgOperand(0, Arg1);
2044 II->setArgOperand(1, Arg0);
2045 return II;
2046 }
2047
2048 // FIXME: Simplifications should be in instsimplify.
2049 if (Value *V = simplifyMinnumMaxnum(*II))
2050 return replaceInstUsesWith(*II, V);
2051
2052 Value *X, *Y;
2053 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
2054 (Arg0->hasOneUse() || Arg1->hasOneUse())) {
2055 // If both operands are negated, invert the call and negate the result:
2056 // minnum(-X, -Y) --> -(maxnum(X, Y))
2057 // maxnum(-X, -Y) --> -(minnum(X, Y))
2058 Intrinsic::ID NewIID = II->getIntrinsicID() == Intrinsic::maxnum ?
2059 Intrinsic::minnum : Intrinsic::maxnum;
2060 Value *NewCall = Builder.CreateIntrinsic(NewIID, { X, Y }, II);
2061 Instruction *FNeg = BinaryOperator::CreateFNeg(NewCall);
2062 FNeg->copyIRFlags(II);
2063 return FNeg;
2064 }
2065 break;
2066 }
2067 case Intrinsic::fmuladd: {
2068 // Canonicalize fast fmuladd to the separate fmul + fadd.
2069 if (II->isFast()) {
2070 BuilderTy::FastMathFlagGuard Guard(Builder);
2071 Builder.setFastMathFlags(II->getFastMathFlags());
2072 Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
2073 II->getArgOperand(1));
2074 Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
2075 Add->takeName(II);
2076 return replaceInstUsesWith(*II, Add);
2077 }
2078
2079 LLVM_FALLTHROUGH;
2080 }
2081 case Intrinsic::fma: {
2082 Value *Src0 = II->getArgOperand(0);
2083 Value *Src1 = II->getArgOperand(1);
2084
2085 // Canonicalize constant multiply operand to Src1.
2086 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
2087 II->setArgOperand(0, Src1);
2088 II->setArgOperand(1, Src0);
2089 std::swap(Src0, Src1);
2090 }
2091
2092 // fma fneg(x), fneg(y), z -> fma x, y, z
2093 Value *X, *Y;
2094 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
2095 II->setArgOperand(0, X);
2096 II->setArgOperand(1, Y);
2097 return II;
2098 }
2099
2100 // fma fabs(x), fabs(x), z -> fma x, x, z
2101 if (match(Src0, m_FAbs(m_Value(X))) &&
2102 match(Src1, m_FAbs(m_Specific(X)))) {
2103 II->setArgOperand(0, X);
2104 II->setArgOperand(1, X);
2105 return II;
2106 }
2107
2108 // fma x, 1, z -> fadd x, z
2109 if (match(Src1, m_FPOne())) {
2110 auto *FAdd = BinaryOperator::CreateFAdd(Src0, II->getArgOperand(2));
2111 FAdd->copyFastMathFlags(II);
2112 return FAdd;
2113 }
2114
2115 break;
2116 }
2117 case Intrinsic::fabs: {
2118 Value *Cond;
2119 Constant *LHS, *RHS;
2120 if (match(II->getArgOperand(0),
2121 m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) {
2122 CallInst *Call0 = Builder.CreateCall(II->getCalledFunction(), {LHS});
2123 CallInst *Call1 = Builder.CreateCall(II->getCalledFunction(), {RHS});
2124 return SelectInst::Create(Cond, Call0, Call1);
2125 }
2126
2127 LLVM_FALLTHROUGH;
2128 }
2129 case Intrinsic::ceil:
2130 case Intrinsic::floor:
2131 case Intrinsic::round:
2132 case Intrinsic::nearbyint:
2133 case Intrinsic::rint:
2134 case Intrinsic::trunc: {
2135 Value *ExtSrc;
2136 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
2137 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
2138 Value *NarrowII = Builder.CreateIntrinsic(II->getIntrinsicID(),
2139 { ExtSrc }, II);
2140 return new FPExtInst(NarrowII, II->getType());
2141 }
2142 break;
2143 }
2144 case Intrinsic::cos:
2145 case Intrinsic::amdgcn_cos: {
2146 Value *SrcSrc;
2147 Value *Src = II->getArgOperand(0);
2148 if (match(Src, m_FNeg(m_Value(SrcSrc))) ||
2149 match(Src, m_FAbs(m_Value(SrcSrc)))) {
2150 // cos(-x) -> cos(x)
2151 // cos(fabs(x)) -> cos(x)
2152 II->setArgOperand(0, SrcSrc);
2153 return II;
2154 }
2155
2156 break;
2157 }
2158 case Intrinsic::ppc_altivec_lvx:
2159 case Intrinsic::ppc_altivec_lvxl:
2160 // Turn PPC lvx -> load if the pointer is known aligned.
2161 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
2162 &DT) >= 16) {
2163 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2164 PointerType::getUnqual(II->getType()));
2165 return new LoadInst(Ptr);
2166 }
2167 break;
2168 case Intrinsic::ppc_vsx_lxvw4x:
2169 case Intrinsic::ppc_vsx_lxvd2x: {
2170 // Turn PPC VSX loads into normal loads.
2171 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2172 PointerType::getUnqual(II->getType()));
2173 return new LoadInst(Ptr, Twine(""), false, 1);
2174 }
2175 case Intrinsic::ppc_altivec_stvx:
2176 case Intrinsic::ppc_altivec_stvxl:
2177 // Turn stvx -> store if the pointer is known aligned.
2178 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
2179 &DT) >= 16) {
2180 Type *OpPtrTy =
2181 PointerType::getUnqual(II->getArgOperand(0)->getType());
2182 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2183 return new StoreInst(II->getArgOperand(0), Ptr);
2184 }
2185 break;
2186 case Intrinsic::ppc_vsx_stxvw4x:
2187 case Intrinsic::ppc_vsx_stxvd2x: {
2188 // Turn PPC VSX stores into normal stores.
2189 Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
2190 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2191 return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
2192 }
2193 case Intrinsic::ppc_qpx_qvlfs:
2194 // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
2195 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
2196 &DT) >= 16) {
2197 Type *VTy = VectorType::get(Builder.getFloatTy(),
2198 II->getType()->getVectorNumElements());
2199 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2200 PointerType::getUnqual(VTy));
2201 Value *Load = Builder.CreateLoad(Ptr);
2202 return new FPExtInst(Load, II->getType());
2203 }
2204 break;
2205 case Intrinsic::ppc_qpx_qvlfd:
2206 // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
2207 if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC,
2208 &DT) >= 32) {
2209 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2210 PointerType::getUnqual(II->getType()));
2211 return new LoadInst(Ptr);
2212 }
2213 break;
2214 case Intrinsic::ppc_qpx_qvstfs:
2215 // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
2216 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
2217 &DT) >= 16) {
2218 Type *VTy = VectorType::get(Builder.getFloatTy(),
2219 II->getArgOperand(0)->getType()->getVectorNumElements());
2220 Value *TOp = Builder.CreateFPTrunc(II->getArgOperand(0), VTy);
2221 Type *OpPtrTy = PointerType::getUnqual(VTy);
2222 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2223 return new StoreInst(TOp, Ptr);
2224 }
2225 break;
2226 case Intrinsic::ppc_qpx_qvstfd:
2227 // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
2228 if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC,
2229 &DT) >= 32) {
2230 Type *OpPtrTy =
2231 PointerType::getUnqual(II->getArgOperand(0)->getType());
2232 Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2233 return new StoreInst(II->getArgOperand(0), Ptr);
2234 }
2235 break;
2236
2237 case Intrinsic::x86_bmi_bextr_32:
2238 case Intrinsic::x86_bmi_bextr_64:
2239 case Intrinsic::x86_tbm_bextri_u32:
2240 case Intrinsic::x86_tbm_bextri_u64:
2241 // If the RHS is a constant we can try some simplifications.
2242 if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2243 uint64_t Shift = C->getZExtValue();
2244 uint64_t Length = (Shift >> 8) & 0xff;
2245 Shift &= 0xff;
2246 unsigned BitWidth = II->getType()->getIntegerBitWidth();
2247 // If the length is 0 or the shift is out of range, replace with zero.
2248 if (Length == 0 || Shift >= BitWidth)
2249 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
2250 // If the LHS is also a constant, we can completely constant fold this.
2251 if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
2252 uint64_t Result = InC->getZExtValue() >> Shift;
2253 if (Length > BitWidth)
2254 Length = BitWidth;
2255 Result &= maskTrailingOnes<uint64_t>(Length);
2256 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
2257 }
2258 // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we
2259 // are only masking bits that a shift already cleared?
2260 }
2261 break;
2262
2263 case Intrinsic::x86_bmi_bzhi_32:
2264 case Intrinsic::x86_bmi_bzhi_64:
2265 // If the RHS is a constant we can try some simplifications.
2266 if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2267 uint64_t Index = C->getZExtValue() & 0xff;
2268 unsigned BitWidth = II->getType()->getIntegerBitWidth();
2269 if (Index >= BitWidth)
2270 return replaceInstUsesWith(CI, II->getArgOperand(0));
2271 if (Index == 0)
2272 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
2273 // If the LHS is also a constant, we can completely constant fold this.
2274 if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
2275 uint64_t Result = InC->getZExtValue();
2276 Result &= maskTrailingOnes<uint64_t>(Index);
2277 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
2278 }
2279 // TODO should we convert this to an AND if the RHS is constant?
2280 }
2281 break;
2282
2283 case Intrinsic::x86_vcvtph2ps_128:
2284 case Intrinsic::x86_vcvtph2ps_256: {
2285 auto Arg = II->getArgOperand(0);
2286 auto ArgType = cast<VectorType>(Arg->getType());
2287 auto RetType = cast<VectorType>(II->getType());
2288 unsigned ArgWidth = ArgType->getNumElements();
2289 unsigned RetWidth = RetType->getNumElements();
2290 assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
2291 assert(ArgType->isIntOrIntVectorTy() &&
2292 ArgType->getScalarSizeInBits() == 16 &&
2293 "CVTPH2PS input type should be 16-bit integer vector");
2294 assert(RetType->getScalarType()->isFloatTy() &&
2295 "CVTPH2PS output type should be 32-bit float vector");
2296
2297 // Constant folding: Convert to generic half to single conversion.
2298 if (isa<ConstantAggregateZero>(Arg))
2299 return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
2300
2301 if (isa<ConstantDataVector>(Arg)) {
2302 auto VectorHalfAsShorts = Arg;
2303 if (RetWidth < ArgWidth) {
2304 SmallVector<uint32_t, 8> SubVecMask;
2305 for (unsigned i = 0; i != RetWidth; ++i)
2306 SubVecMask.push_back((int)i);
2307 VectorHalfAsShorts = Builder.CreateShuffleVector(
2308 Arg, UndefValue::get(ArgType), SubVecMask);
2309 }
2310
2311 auto VectorHalfType =
2312 VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
2313 auto VectorHalfs =
2314 Builder.CreateBitCast(VectorHalfAsShorts, VectorHalfType);
2315 auto VectorFloats = Builder.CreateFPExt(VectorHalfs, RetType);
2316 return replaceInstUsesWith(*II, VectorFloats);
2317 }
2318
2319 // We only use the lowest lanes of the argument.
2320 if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
2321 II->setArgOperand(0, V);
2322 return II;
2323 }
2324 break;
2325 }
2326
2327 case Intrinsic::x86_sse_cvtss2si:
2328 case Intrinsic::x86_sse_cvtss2si64:
2329 case Intrinsic::x86_sse_cvttss2si:
2330 case Intrinsic::x86_sse_cvttss2si64:
2331 case Intrinsic::x86_sse2_cvtsd2si:
2332 case Intrinsic::x86_sse2_cvtsd2si64:
2333 case Intrinsic::x86_sse2_cvttsd2si:
2334 case Intrinsic::x86_sse2_cvttsd2si64:
2335 case Intrinsic::x86_avx512_vcvtss2si32:
2336 case Intrinsic::x86_avx512_vcvtss2si64:
2337 case Intrinsic::x86_avx512_vcvtss2usi32:
2338 case Intrinsic::x86_avx512_vcvtss2usi64:
2339 case Intrinsic::x86_avx512_vcvtsd2si32:
2340 case Intrinsic::x86_avx512_vcvtsd2si64:
2341 case Intrinsic::x86_avx512_vcvtsd2usi32:
2342 case Intrinsic::x86_avx512_vcvtsd2usi64:
2343 case Intrinsic::x86_avx512_cvttss2si:
2344 case Intrinsic::x86_avx512_cvttss2si64:
2345 case Intrinsic::x86_avx512_cvttss2usi:
2346 case Intrinsic::x86_avx512_cvttss2usi64:
2347 case Intrinsic::x86_avx512_cvttsd2si:
2348 case Intrinsic::x86_avx512_cvttsd2si64:
2349 case Intrinsic::x86_avx512_cvttsd2usi:
2350 case Intrinsic::x86_avx512_cvttsd2usi64: {
2351 // These intrinsics only demand the 0th element of their input vectors. If
2352 // we can simplify the input based on that, do so now.
2353 Value *Arg = II->getArgOperand(0);
2354 unsigned VWidth = Arg->getType()->getVectorNumElements();
2355 if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
2356 II->setArgOperand(0, V);
2357 return II;
2358 }
2359 break;
2360 }
2361
2362 case Intrinsic::x86_sse41_round_ps:
2363 case Intrinsic::x86_sse41_round_pd:
2364 case Intrinsic::x86_avx_round_ps_256:
2365 case Intrinsic::x86_avx_round_pd_256:
2366 case Intrinsic::x86_avx512_mask_rndscale_ps_128:
2367 case Intrinsic::x86_avx512_mask_rndscale_ps_256:
2368 case Intrinsic::x86_avx512_mask_rndscale_ps_512:
2369 case Intrinsic::x86_avx512_mask_rndscale_pd_128:
2370 case Intrinsic::x86_avx512_mask_rndscale_pd_256:
2371 case Intrinsic::x86_avx512_mask_rndscale_pd_512:
2372 case Intrinsic::x86_avx512_mask_rndscale_ss:
2373 case Intrinsic::x86_avx512_mask_rndscale_sd:
2374 if (Value *V = simplifyX86round(*II, Builder))
2375 return replaceInstUsesWith(*II, V);
2376 break;
2377
2378 case Intrinsic::x86_mmx_pmovmskb:
2379 case Intrinsic::x86_sse_movmsk_ps:
2380 case Intrinsic::x86_sse2_movmsk_pd:
2381 case Intrinsic::x86_sse2_pmovmskb_128:
2382 case Intrinsic::x86_avx_movmsk_pd_256:
2383 case Intrinsic::x86_avx_movmsk_ps_256:
2384 case Intrinsic::x86_avx2_pmovmskb:
2385 if (Value *V = simplifyX86movmsk(*II))
2386 return replaceInstUsesWith(*II, V);
2387 break;
2388
2389 case Intrinsic::x86_sse_comieq_ss:
2390 case Intrinsic::x86_sse_comige_ss:
2391 case Intrinsic::x86_sse_comigt_ss:
2392 case Intrinsic::x86_sse_comile_ss:
2393 case Intrinsic::x86_sse_comilt_ss:
2394 case Intrinsic::x86_sse_comineq_ss:
2395 case Intrinsic::x86_sse_ucomieq_ss:
2396 case Intrinsic::x86_sse_ucomige_ss:
2397 case Intrinsic::x86_sse_ucomigt_ss:
2398 case Intrinsic::x86_sse_ucomile_ss:
2399 case Intrinsic::x86_sse_ucomilt_ss:
2400 case Intrinsic::x86_sse_ucomineq_ss:
2401 case Intrinsic::x86_sse2_comieq_sd:
2402 case Intrinsic::x86_sse2_comige_sd:
2403 case Intrinsic::x86_sse2_comigt_sd:
2404 case Intrinsic::x86_sse2_comile_sd:
2405 case Intrinsic::x86_sse2_comilt_sd:
2406 case Intrinsic::x86_sse2_comineq_sd:
2407 case Intrinsic::x86_sse2_ucomieq_sd:
2408 case Intrinsic::x86_sse2_ucomige_sd:
2409 case Intrinsic::x86_sse2_ucomigt_sd:
2410 case Intrinsic::x86_sse2_ucomile_sd:
2411 case Intrinsic::x86_sse2_ucomilt_sd:
2412 case Intrinsic::x86_sse2_ucomineq_sd:
2413 case Intrinsic::x86_avx512_vcomi_ss:
2414 case Intrinsic::x86_avx512_vcomi_sd:
2415 case Intrinsic::x86_avx512_mask_cmp_ss:
2416 case Intrinsic::x86_avx512_mask_cmp_sd: {
2417 // These intrinsics only demand the 0th element of their input vectors. If
2418 // we can simplify the input based on that, do so now.
2419 bool MadeChange = false;
2420 Value *Arg0 = II->getArgOperand(0);
2421 Value *Arg1 = II->getArgOperand(1);
2422 unsigned VWidth = Arg0->getType()->getVectorNumElements();
2423 if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
2424 II->setArgOperand(0, V);
2425 MadeChange = true;
2426 }
2427 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
2428 II->setArgOperand(1, V);
2429 MadeChange = true;
2430 }
2431 if (MadeChange)
2432 return II;
2433 break;
2434 }
2435 case Intrinsic::x86_avx512_cmp_pd_128:
2436 case Intrinsic::x86_avx512_cmp_pd_256:
2437 case Intrinsic::x86_avx512_cmp_pd_512:
2438 case Intrinsic::x86_avx512_cmp_ps_128:
2439 case Intrinsic::x86_avx512_cmp_ps_256:
2440 case Intrinsic::x86_avx512_cmp_ps_512: {
2441 // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a)
2442 Value *Arg0 = II->getArgOperand(0);
2443 Value *Arg1 = II->getArgOperand(1);
2444 bool Arg0IsZero = match(Arg0, m_PosZeroFP());
2445 if (Arg0IsZero)
2446 std::swap(Arg0, Arg1);
2447 Value *A, *B;
2448 // This fold requires only the NINF(not +/- inf) since inf minus
2449 // inf is nan.
2450 // NSZ(No Signed Zeros) is not needed because zeros of any sign are
2451 // equal for both compares.
2452 // NNAN is not needed because nans compare the same for both compares.
2453 // The compare intrinsic uses the above assumptions and therefore
2454 // doesn't require additional flags.
2455 if ((match(Arg0, m_OneUse(m_FSub(m_Value(A), m_Value(B)))) &&
2456 match(Arg1, m_PosZeroFP()) && isa<Instruction>(Arg0) &&
2457 cast<Instruction>(Arg0)->getFastMathFlags().noInfs())) {
2458 if (Arg0IsZero)
2459 std::swap(A, B);
2460 II->setArgOperand(0, A);
2461 II->setArgOperand(1, B);
2462 return II;
2463 }
2464 break;
2465 }
2466
2467 case Intrinsic::x86_avx512_add_ps_512:
2468 case Intrinsic::x86_avx512_div_ps_512:
2469 case Intrinsic::x86_avx512_mul_ps_512:
2470 case Intrinsic::x86_avx512_sub_ps_512:
2471 case Intrinsic::x86_avx512_add_pd_512:
2472 case Intrinsic::x86_avx512_div_pd_512:
2473 case Intrinsic::x86_avx512_mul_pd_512:
2474 case Intrinsic::x86_avx512_sub_pd_512:
2475 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2476 // IR operations.
2477 if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
2478 if (R->getValue() == 4) {
2479 Value *Arg0 = II->getArgOperand(0);
2480 Value *Arg1 = II->getArgOperand(1);
2481
2482 Value *V;
2483 switch (II->getIntrinsicID()) {
2484 default: llvm_unreachable("Case stmts out of sync!");
2485 case Intrinsic::x86_avx512_add_ps_512:
2486 case Intrinsic::x86_avx512_add_pd_512:
2487 V = Builder.CreateFAdd(Arg0, Arg1);
2488 break;
2489 case Intrinsic::x86_avx512_sub_ps_512:
2490 case Intrinsic::x86_avx512_sub_pd_512:
2491 V = Builder.CreateFSub(Arg0, Arg1);
2492 break;
2493 case Intrinsic::x86_avx512_mul_ps_512:
2494 case Intrinsic::x86_avx512_mul_pd_512:
2495 V = Builder.CreateFMul(Arg0, Arg1);
2496 break;
2497 case Intrinsic::x86_avx512_div_ps_512:
2498 case Intrinsic::x86_avx512_div_pd_512:
2499 V = Builder.CreateFDiv(Arg0, Arg1);
2500 break;
2501 }
2502
2503 return replaceInstUsesWith(*II, V);
2504 }
2505 }
2506 break;
2507
2508 case Intrinsic::x86_avx512_mask_add_ss_round:
2509 case Intrinsic::x86_avx512_mask_div_ss_round:
2510 case Intrinsic::x86_avx512_mask_mul_ss_round:
2511 case Intrinsic::x86_avx512_mask_sub_ss_round:
2512 case Intrinsic::x86_avx512_mask_add_sd_round:
2513 case Intrinsic::x86_avx512_mask_div_sd_round:
2514 case Intrinsic::x86_avx512_mask_mul_sd_round:
2515 case Intrinsic::x86_avx512_mask_sub_sd_round:
2516 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2517 // IR operations.
2518 if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
2519 if (R->getValue() == 4) {
2520 // Extract the element as scalars.
2521 Value *Arg0 = II->getArgOperand(0);
2522 Value *Arg1 = II->getArgOperand(1);
2523 Value *LHS = Builder.CreateExtractElement(Arg0, (uint64_t)0);
2524 Value *RHS = Builder.CreateExtractElement(Arg1, (uint64_t)0);
2525
2526 Value *V;
2527 switch (II->getIntrinsicID()) {
2528 default: llvm_unreachable("Case stmts out of sync!");
2529 case Intrinsic::x86_avx512_mask_add_ss_round:
2530 case Intrinsic::x86_avx512_mask_add_sd_round:
2531 V = Builder.CreateFAdd(LHS, RHS);
2532 break;
2533 case Intrinsic::x86_avx512_mask_sub_ss_round:
2534 case Intrinsic::x86_avx512_mask_sub_sd_round:
2535 V = Builder.CreateFSub(LHS, RHS);
2536 break;
2537 case Intrinsic::x86_avx512_mask_mul_ss_round:
2538 case Intrinsic::x86_avx512_mask_mul_sd_round:
2539 V = Builder.CreateFMul(LHS, RHS);
2540 break;
2541 case Intrinsic::x86_avx512_mask_div_ss_round:
2542 case Intrinsic::x86_avx512_mask_div_sd_round:
2543 V = Builder.CreateFDiv(LHS, RHS);
2544 break;
2545 }
2546
2547 // Handle the masking aspect of the intrinsic.
2548 Value *Mask = II->getArgOperand(3);
2549 auto *C = dyn_cast<ConstantInt>(Mask);
2550 // We don't need a select if we know the mask bit is a 1.
2551 if (!C || !C->getValue()[0]) {
2552 // Cast the mask to an i1 vector and then extract the lowest element.
2553 auto *MaskTy = VectorType::get(Builder.getInt1Ty(),
2554 cast<IntegerType>(Mask->getType())->getBitWidth());
2555 Mask = Builder.CreateBitCast(Mask, MaskTy);
2556 Mask = Builder.CreateExtractElement(Mask, (uint64_t)0);
2557 // Extract the lowest element from the passthru operand.
2558 Value *Passthru = Builder.CreateExtractElement(II->getArgOperand(2),
2559 (uint64_t)0);
2560 V = Builder.CreateSelect(Mask, V, Passthru);
2561 }
2562
2563 // Insert the result back into the original argument 0.
2564 V = Builder.CreateInsertElement(Arg0, V, (uint64_t)0);
2565
2566 return replaceInstUsesWith(*II, V);
2567 }
2568 }
2569 LLVM_FALLTHROUGH;
2570
2571 // X86 scalar intrinsics simplified with SimplifyDemandedVectorElts.
2572 case Intrinsic::x86_avx512_mask_max_ss_round:
2573 case Intrinsic::x86_avx512_mask_min_ss_round:
2574 case Intrinsic::x86_avx512_mask_max_sd_round:
2575 case Intrinsic::x86_avx512_mask_min_sd_round:
2576 case Intrinsic::x86_sse_cmp_ss:
2577 case Intrinsic::x86_sse_min_ss:
2578 case Intrinsic::x86_sse_max_ss:
2579 case Intrinsic::x86_sse2_cmp_sd:
2580 case Intrinsic::x86_sse2_min_sd:
2581 case Intrinsic::x86_sse2_max_sd:
2582 case Intrinsic::x86_xop_vfrcz_ss:
2583 case Intrinsic::x86_xop_vfrcz_sd: {
2584 unsigned VWidth = II->getType()->getVectorNumElements();
2585 APInt UndefElts(VWidth, 0);
2586 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2587 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
2588 if (V != II)
2589 return replaceInstUsesWith(*II, V);
2590 return II;
2591 }
2592 break;
2593 }
2594 case Intrinsic::x86_sse41_round_ss:
2595 case Intrinsic::x86_sse41_round_sd: {
2596 unsigned VWidth = II->getType()->getVectorNumElements();
2597 APInt UndefElts(VWidth, 0);
2598 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2599 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
2600 if (V != II)
2601 return replaceInstUsesWith(*II, V);
2602 return II;
2603 } else if (Value *V = simplifyX86round(*II, Builder))
2604 return replaceInstUsesWith(*II, V);
2605 break;
2606 }
2607
2608 // Constant fold ashr( <A x Bi>, Ci ).
2609 // Constant fold lshr( <A x Bi>, Ci ).
2610 // Constant fold shl( <A x Bi>, Ci ).
2611 case Intrinsic::x86_sse2_psrai_d:
2612 case Intrinsic::x86_sse2_psrai_w:
2613 case Intrinsic::x86_avx2_psrai_d:
2614 case Intrinsic::x86_avx2_psrai_w:
2615 case Intrinsic::x86_avx512_psrai_q_128:
2616 case Intrinsic::x86_avx512_psrai_q_256:
2617 case Intrinsic::x86_avx512_psrai_d_512:
2618 case Intrinsic::x86_avx512_psrai_q_512:
2619 case Intrinsic::x86_avx512_psrai_w_512:
2620 case Intrinsic::x86_sse2_psrli_d:
2621 case Intrinsic::x86_sse2_psrli_q:
2622 case Intrinsic::x86_sse2_psrli_w:
2623 case Intrinsic::x86_avx2_psrli_d:
2624 case Intrinsic::x86_avx2_psrli_q:
2625 case Intrinsic::x86_avx2_psrli_w:
2626 case Intrinsic::x86_avx512_psrli_d_512:
2627 case Intrinsic::x86_avx512_psrli_q_512:
2628 case Intrinsic::x86_avx512_psrli_w_512:
2629 case Intrinsic::x86_sse2_pslli_d:
2630 case Intrinsic::x86_sse2_pslli_q:
2631 case Intrinsic::x86_sse2_pslli_w:
2632 case Intrinsic::x86_avx2_pslli_d:
2633 case Intrinsic::x86_avx2_pslli_q:
2634 case Intrinsic::x86_avx2_pslli_w:
2635 case Intrinsic::x86_avx512_pslli_d_512:
2636 case Intrinsic::x86_avx512_pslli_q_512:
2637 case Intrinsic::x86_avx512_pslli_w_512:
2638 if (Value *V = simplifyX86immShift(*II, Builder))
2639 return replaceInstUsesWith(*II, V);
2640 break;
2641
2642 case Intrinsic::x86_sse2_psra_d:
2643 case Intrinsic::x86_sse2_psra_w:
2644 case Intrinsic::x86_avx2_psra_d:
2645 case Intrinsic::x86_avx2_psra_w:
2646 case Intrinsic::x86_avx512_psra_q_128:
2647 case Intrinsic::x86_avx512_psra_q_256:
2648 case Intrinsic::x86_avx512_psra_d_512:
2649 case Intrinsic::x86_avx512_psra_q_512:
2650 case Intrinsic::x86_avx512_psra_w_512:
2651 case Intrinsic::x86_sse2_psrl_d:
2652 case Intrinsic::x86_sse2_psrl_q:
2653 case Intrinsic::x86_sse2_psrl_w:
2654 case Intrinsic::x86_avx2_psrl_d:
2655 case Intrinsic::x86_avx2_psrl_q:
2656 case Intrinsic::x86_avx2_psrl_w:
2657 case Intrinsic::x86_avx512_psrl_d_512:
2658 case Intrinsic::x86_avx512_psrl_q_512:
2659 case Intrinsic::x86_avx512_psrl_w_512:
2660 case Intrinsic::x86_sse2_psll_d:
2661 case Intrinsic::x86_sse2_psll_q:
2662 case Intrinsic::x86_sse2_psll_w:
2663 case Intrinsic::x86_avx2_psll_d:
2664 case Intrinsic::x86_avx2_psll_q:
2665 case Intrinsic::x86_avx2_psll_w:
2666 case Intrinsic::x86_avx512_psll_d_512:
2667 case Intrinsic::x86_avx512_psll_q_512:
2668 case Intrinsic::x86_avx512_psll_w_512: {
2669 if (Value *V = simplifyX86immShift(*II, Builder))
2670 return replaceInstUsesWith(*II, V);
2671
2672 // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
2673 // operand to compute the shift amount.
2674 Value *Arg1 = II->getArgOperand(1);
2675 assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
2676 "Unexpected packed shift size");
2677 unsigned VWidth = Arg1->getType()->getVectorNumElements();
2678
2679 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
2680 II->setArgOperand(1, V);
2681 return II;
2682 }
2683 break;
2684 }
2685
2686 case Intrinsic::x86_avx2_psllv_d:
2687 case Intrinsic::x86_avx2_psllv_d_256:
2688 case Intrinsic::x86_avx2_psllv_q:
2689 case Intrinsic::x86_avx2_psllv_q_256:
2690 case Intrinsic::x86_avx512_psllv_d_512:
2691 case Intrinsic::x86_avx512_psllv_q_512:
2692 case Intrinsic::x86_avx512_psllv_w_128:
2693 case Intrinsic::x86_avx512_psllv_w_256:
2694 case Intrinsic::x86_avx512_psllv_w_512:
2695 case Intrinsic::x86_avx2_psrav_d:
2696 case Intrinsic::x86_avx2_psrav_d_256:
2697 case Intrinsic::x86_avx512_psrav_q_128:
2698 case Intrinsic::x86_avx512_psrav_q_256:
2699 case Intrinsic::x86_avx512_psrav_d_512:
2700 case Intrinsic::x86_avx512_psrav_q_512:
2701 case Intrinsic::x86_avx512_psrav_w_128:
2702 case Intrinsic::x86_avx512_psrav_w_256:
2703 case Intrinsic::x86_avx512_psrav_w_512:
2704 case Intrinsic::x86_avx2_psrlv_d:
2705 case Intrinsic::x86_avx2_psrlv_d_256:
2706 case Intrinsic::x86_avx2_psrlv_q:
2707 case Intrinsic::x86_avx2_psrlv_q_256:
2708 case Intrinsic::x86_avx512_psrlv_d_512:
2709 case Intrinsic::x86_avx512_psrlv_q_512:
2710 case Intrinsic::x86_avx512_psrlv_w_128:
2711 case Intrinsic::x86_avx512_psrlv_w_256:
2712 case Intrinsic::x86_avx512_psrlv_w_512:
2713 if (Value *V = simplifyX86varShift(*II, Builder))
2714 return replaceInstUsesWith(*II, V);
2715 break;
2716
2717 case Intrinsic::x86_sse2_packssdw_128:
2718 case Intrinsic::x86_sse2_packsswb_128:
2719 case Intrinsic::x86_avx2_packssdw:
2720 case Intrinsic::x86_avx2_packsswb:
2721 case Intrinsic::x86_avx512_packssdw_512:
2722 case Intrinsic::x86_avx512_packsswb_512:
2723 if (Value *V = simplifyX86pack(*II, true))
2724 return replaceInstUsesWith(*II, V);
2725 break;
2726
2727 case Intrinsic::x86_sse2_packuswb_128:
2728 case Intrinsic::x86_sse41_packusdw:
2729 case Intrinsic::x86_avx2_packusdw:
2730 case Intrinsic::x86_avx2_packuswb:
2731 case Intrinsic::x86_avx512_packusdw_512:
2732 case Intrinsic::x86_avx512_packuswb_512:
2733 if (Value *V = simplifyX86pack(*II, false))
2734 return replaceInstUsesWith(*II, V);
2735 break;
2736
2737 case Intrinsic::x86_pclmulqdq:
2738 case Intrinsic::x86_pclmulqdq_256:
2739 case Intrinsic::x86_pclmulqdq_512: {
2740 if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
2741 unsigned Imm = C->getZExtValue();
2742
2743 bool MadeChange = false;
2744 Value *Arg0 = II->getArgOperand(0);
2745 Value *Arg1 = II->getArgOperand(1);
2746 unsigned VWidth = Arg0->getType()->getVectorNumElements();
2747
2748 APInt UndefElts1(VWidth, 0);
2749 APInt DemandedElts1 = APInt::getSplat(VWidth,
2750 APInt(2, (Imm & 0x01) ? 2 : 1));
2751 if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts1,
2752 UndefElts1)) {
2753 II->setArgOperand(0, V);
2754 MadeChange = true;
2755 }
2756
2757 APInt UndefElts2(VWidth, 0);
2758 APInt DemandedElts2 = APInt::getSplat(VWidth,
2759 APInt(2, (Imm & 0x10) ? 2 : 1));
2760 if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts2,
2761 UndefElts2)) {
2762 II->setArgOperand(1, V);
2763 MadeChange = true;
2764 }
2765
2766 // If either input elements are undef, the result is zero.
2767 if (DemandedElts1.isSubsetOf(UndefElts1) ||
2768 DemandedElts2.isSubsetOf(UndefElts2))
2769 return replaceInstUsesWith(*II,
2770 ConstantAggregateZero::get(II->getType()));
2771
2772 if (MadeChange)
2773 return II;
2774 }
2775 break;
2776 }
2777
2778 case Intrinsic::x86_sse41_insertps:
2779 if (Value *V = simplifyX86insertps(*II, Builder))
2780 return replaceInstUsesWith(*II, V);
2781 break;
2782
2783 case Intrinsic::x86_sse4a_extrq: {
2784 Value *Op0 = II->getArgOperand(0);
2785 Value *Op1 = II->getArgOperand(1);
2786 unsigned VWidth0 = Op0->getType()->getVectorNumElements();
2787 unsigned VWidth1 = Op1->getType()->getVectorNumElements();
2788 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2789 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2790 VWidth1 == 16 && "Unexpected operand sizes");
2791
2792 // See if we're dealing with constant values.
2793 Constant *C1 = dyn_cast<Constant>(Op1);
2794 ConstantInt *CILength =
2795 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
2796 : nullptr;
2797 ConstantInt *CIIndex =
2798 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
2799 : nullptr;
2800
2801 // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
2802 if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
2803 return replaceInstUsesWith(*II, V);
2804
2805 // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
2806 // operands and the lowest 16-bits of the second.
2807 bool MadeChange = false;
2808 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
2809 II->setArgOperand(0, V);
2810 MadeChange = true;
2811 }
2812 if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
2813 II->setArgOperand(1, V);
2814 MadeChange = true;
2815 }
2816 if (MadeChange)
2817 return II;
2818 break;
2819 }
2820
2821 case Intrinsic::x86_sse4a_extrqi: {
2822 // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
2823 // bits of the lower 64-bits. The upper 64-bits are undefined.
2824 Value *Op0 = II->getArgOperand(0);
2825 unsigned VWidth = Op0->getType()->getVectorNumElements();
2826 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2827 "Unexpected operand size");
2828
2829 // See if we're dealing with constant values.
2830 ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
2831 ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
2832
2833 // Attempt to simplify to a constant or shuffle vector.
2834 if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
2835 return replaceInstUsesWith(*II, V);
2836
2837 // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
2838 // operand.
2839 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
2840 II->setArgOperand(0, V);
2841 return II;
2842 }
2843 break;
2844 }
2845
2846 case Intrinsic::x86_sse4a_insertq: {
2847 Value *Op0 = II->getArgOperand(0);
2848 Value *Op1 = II->getArgOperand(1);
2849 unsigned VWidth = Op0->getType()->getVectorNumElements();
2850 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2851 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2852 Op1->getType()->getVectorNumElements() == 2 &&
2853 "Unexpected operand size");
2854
2855 // See if we're dealing with constant values.
2856 Constant *C1 = dyn_cast<Constant>(Op1);
2857 ConstantInt *CI11 =
2858 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
2859 : nullptr;
2860
2861 // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
2862 if (CI11) {
2863 const APInt &V11 = CI11->getValue();
2864 APInt Len = V11.zextOrTrunc(6);
2865 APInt Idx = V11.lshr(8).zextOrTrunc(6);
2866 if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
2867 return replaceInstUsesWith(*II, V);
2868 }
2869
2870 // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
2871 // operand.
2872 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
2873 II->setArgOperand(0, V);
2874 return II;
2875 }
2876 break;
2877 }
2878
2879 case Intrinsic::x86_sse4a_insertqi: {
2880 // INSERTQI: Extract lowest Length bits from lower half of second source and
2881 // insert over first source starting at Index bit. The upper 64-bits are
2882 // undefined.
2883 Value *Op0 = II->getArgOperand(0);
2884 Value *Op1 = II->getArgOperand(1);
2885 unsigned VWidth0 = Op0->getType()->getVectorNumElements();
2886 unsigned VWidth1 = Op1->getType()->getVectorNumElements();
2887 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2888 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2889 VWidth1 == 2 && "Unexpected operand sizes");
2890
2891 // See if we're dealing with constant values.
2892 ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
2893 ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
2894
2895 // Attempt to simplify to a constant or shuffle vector.
2896 if (CILength && CIIndex) {
2897 APInt Len = CILength->getValue().zextOrTrunc(6);
2898 APInt Idx = CIIndex->getValue().zextOrTrunc(6);
2899 if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
2900 return replaceInstUsesWith(*II, V);
2901 }
2902
2903 // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
2904 // operands.
2905 bool MadeChange = false;
2906 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
2907 II->setArgOperand(0, V);
2908 MadeChange = true;
2909 }
2910 if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
2911 II->setArgOperand(1, V);
2912 MadeChange = true;
2913 }
2914 if (MadeChange)
2915 return II;
2916 break;
2917 }
2918
2919 case Intrinsic::x86_sse41_pblendvb:
2920 case Intrinsic::x86_sse41_blendvps:
2921 case Intrinsic::x86_sse41_blendvpd:
2922 case Intrinsic::x86_avx_blendv_ps_256:
2923 case Intrinsic::x86_avx_blendv_pd_256:
2924 case Intrinsic::x86_avx2_pblendvb: {
2925 // Convert blendv* to vector selects if the mask is constant.
2926 // This optimization is convoluted because the intrinsic is defined as
2927 // getting a vector of floats or doubles for the ps and pd versions.
2928 // FIXME: That should be changed.
2929
2930 Value *Op0 = II->getArgOperand(0);
2931 Value *Op1 = II->getArgOperand(1);
2932 Value *Mask = II->getArgOperand(2);
2933
2934 // fold (blend A, A, Mask) -> A
2935 if (Op0 == Op1)
2936 return replaceInstUsesWith(CI, Op0);
2937
2938 // Zero Mask - select 1st argument.
2939 if (isa<ConstantAggregateZero>(Mask))
2940 return replaceInstUsesWith(CI, Op0);
2941
2942 // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
2943 if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
2944 Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
2945 return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
2946 }
2947 break;
2948 }
2949
2950 case Intrinsic::x86_ssse3_pshuf_b_128:
2951 case Intrinsic::x86_avx2_pshuf_b:
2952 case Intrinsic::x86_avx512_pshuf_b_512:
2953 if (Value *V = simplifyX86pshufb(*II, Builder))
2954 return replaceInstUsesWith(*II, V);
2955 break;
2956
2957 case Intrinsic::x86_avx_vpermilvar_ps:
2958 case Intrinsic::x86_avx_vpermilvar_ps_256:
2959 case Intrinsic::x86_avx512_vpermilvar_ps_512:
2960 case Intrinsic::x86_avx_vpermilvar_pd:
2961 case Intrinsic::x86_avx_vpermilvar_pd_256:
2962 case Intrinsic::x86_avx512_vpermilvar_pd_512:
2963 if (Value *V = simplifyX86vpermilvar(*II, Builder))
2964 return replaceInstUsesWith(*II, V);
2965 break;
2966
2967 case Intrinsic::x86_avx2_permd:
2968 case Intrinsic::x86_avx2_permps:
2969 case Intrinsic::x86_avx512_permvar_df_256:
2970 case Intrinsic::x86_avx512_permvar_df_512:
2971 case Intrinsic::x86_avx512_permvar_di_256:
2972 case Intrinsic::x86_avx512_permvar_di_512:
2973 case Intrinsic::x86_avx512_permvar_hi_128:
2974 case Intrinsic::x86_avx512_permvar_hi_256:
2975 case Intrinsic::x86_avx512_permvar_hi_512:
2976 case Intrinsic::x86_avx512_permvar_qi_128:
2977 case Intrinsic::x86_avx512_permvar_qi_256:
2978 case Intrinsic::x86_avx512_permvar_qi_512:
2979 case Intrinsic::x86_avx512_permvar_sf_512:
2980 case Intrinsic::x86_avx512_permvar_si_512:
2981 if (Value *V = simplifyX86vpermv(*II, Builder))
2982 return replaceInstUsesWith(*II, V);
2983 break;
2984
2985 case Intrinsic::x86_avx_maskload_ps:
2986 case Intrinsic::x86_avx_maskload_pd:
2987 case Intrinsic::x86_avx_maskload_ps_256:
2988 case Intrinsic::x86_avx_maskload_pd_256:
2989 case Intrinsic::x86_avx2_maskload_d:
2990 case Intrinsic::x86_avx2_maskload_q:
2991 case Intrinsic::x86_avx2_maskload_d_256:
2992 case Intrinsic::x86_avx2_maskload_q_256:
2993 if (Instruction *I = simplifyX86MaskedLoad(*II, *this))
2994 return I;
2995 break;
2996
2997 case Intrinsic::x86_sse2_maskmov_dqu:
2998 case Intrinsic::x86_avx_maskstore_ps:
2999 case Intrinsic::x86_avx_maskstore_pd:
3000 case Intrinsic::x86_avx_maskstore_ps_256:
3001 case Intrinsic::x86_avx_maskstore_pd_256:
3002 case Intrinsic::x86_avx2_maskstore_d:
3003 case Intrinsic::x86_avx2_maskstore_q:
3004 case Intrinsic::x86_avx2_maskstore_d_256:
3005 case Intrinsic::x86_avx2_maskstore_q_256:
3006 if (simplifyX86MaskedStore(*II, *this))
3007 return nullptr;
3008 break;
3009
3010 case Intrinsic::x86_xop_vpcomb:
3011 case Intrinsic::x86_xop_vpcomd:
3012 case Intrinsic::x86_xop_vpcomq:
3013 case Intrinsic::x86_xop_vpcomw:
3014 if (Value *V = simplifyX86vpcom(*II, Builder, true))
3015 return replaceInstUsesWith(*II, V);
3016 break;
3017
3018 case Intrinsic::x86_xop_vpcomub:
3019 case Intrinsic::x86_xop_vpcomud:
3020 case Intrinsic::x86_xop_vpcomuq:
3021 case Intrinsic::x86_xop_vpcomuw:
3022 if (Value *V = simplifyX86vpcom(*II, Builder, false))
3023 return replaceInstUsesWith(*II, V);
3024 break;
3025
3026 case Intrinsic::ppc_altivec_vperm:
3027 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
3028 // Note that ppc_altivec_vperm has a big-endian bias, so when creating
3029 // a vectorshuffle for little endian, we must undo the transformation
3030 // performed on vec_perm in altivec.h. That is, we must complement
3031 // the permutation mask with respect to 31 and reverse the order of
3032 // V1 and V2.
3033 if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
3034 assert(Mask->getType()->getVectorNumElements() == 16 &&
3035 "Bad type for intrinsic!");
3036
3037 // Check that all of the elements are integer constants or undefs.
3038 bool AllEltsOk = true;
3039 for (unsigned i = 0; i != 16; ++i) {
3040 Constant *Elt = Mask->getAggregateElement(i);
3041 if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
3042 AllEltsOk = false;
3043 break;
3044 }
3045 }
3046
3047 if (AllEltsOk) {
3048 // Cast the input vectors to byte vectors.
3049 Value *Op0 = Builder.CreateBitCast(II->getArgOperand(0),
3050 Mask->getType());
3051 Value *Op1 = Builder.CreateBitCast(II->getArgOperand(1),
3052 Mask->getType());
3053 Value *Result = UndefValue::get(Op0->getType());
3054
3055 // Only extract each element once.
3056 Value *ExtractedElts[32];
3057 memset(ExtractedElts, 0, sizeof(ExtractedElts));
3058
3059 for (unsigned i = 0; i != 16; ++i) {
3060 if (isa<UndefValue>(Mask->getAggregateElement(i)))
3061 continue;
3062 unsigned Idx =
3063 cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
3064 Idx &= 31; // Match the hardware behavior.
3065 if (DL.isLittleEndian())
3066 Idx = 31 - Idx;
3067
3068 if (!ExtractedElts[Idx]) {
3069 Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
3070 Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
3071 ExtractedElts[Idx] =
3072 Builder.CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
3073 Builder.getInt32(Idx&15));
3074 }
3075
3076 // Insert this value into the result vector.
3077 Result = Builder.CreateInsertElement(Result, ExtractedElts[Idx],
3078 Builder.getInt32(i));
3079 }
3080 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
3081 }
3082 }
3083 break;
3084
3085 case Intrinsic::arm_neon_vld1: {
3086 unsigned MemAlign = getKnownAlignment(II->getArgOperand(0),
3087 DL, II, &AC, &DT);
3088 if (Value *V = simplifyNeonVld1(*II, MemAlign, Builder))
3089 return replaceInstUsesWith(*II, V);
3090 break;
3091 }
3092
3093 case Intrinsic::arm_neon_vld2:
3094 case Intrinsic::arm_neon_vld3:
3095 case Intrinsic::arm_neon_vld4:
3096 case Intrinsic::arm_neon_vld2lane:
3097 case Intrinsic::arm_neon_vld3lane:
3098 case Intrinsic::arm_neon_vld4lane:
3099 case Intrinsic::arm_neon_vst1:
3100 case Intrinsic::arm_neon_vst2:
3101 case Intrinsic::arm_neon_vst3:
3102 case Intrinsic::arm_neon_vst4:
3103 case Intrinsic::arm_neon_vst2lane:
3104 case Intrinsic::arm_neon_vst3lane:
3105 case Intrinsic::arm_neon_vst4lane: {
3106 unsigned MemAlign =
3107 getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
3108 unsigned AlignArg = II->getNumArgOperands() - 1;
3109 ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
3110 if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
3111 II->setArgOperand(AlignArg,
3112 ConstantInt::get(Type::getInt32Ty(II->getContext()),
3113 MemAlign, false));
3114 return II;
3115 }
3116 break;
3117 }
3118
3119 case Intrinsic::arm_neon_vtbl1:
3120 case Intrinsic::aarch64_neon_tbl1:
3121 if (Value *V = simplifyNeonTbl1(*II, Builder))
3122 return replaceInstUsesWith(*II, V);
3123 break;
3124
3125 case Intrinsic::arm_neon_vmulls:
3126 case Intrinsic::arm_neon_vmullu:
3127 case Intrinsic::aarch64_neon_smull:
3128 case Intrinsic::aarch64_neon_umull: {
3129 Value *Arg0 = II->getArgOperand(0);
3130 Value *Arg1 = II->getArgOperand(1);
3131
3132 // Handle mul by zero first:
3133 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
3134 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
3135 }
3136
3137 // Check for constant LHS & RHS - in this case we just simplify.
3138 bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
3139 II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
3140 VectorType *NewVT = cast<VectorType>(II->getType());
3141 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
3142 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
3143 CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
3144 CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
3145
3146 return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
3147 }
3148
3149 // Couldn't simplify - canonicalize constant to the RHS.
3150 std::swap(Arg0, Arg1);
3151 }
3152
3153 // Handle mul by one:
3154 if (Constant *CV1 = dyn_cast<Constant>(Arg1))
3155 if (ConstantInt *Splat =
3156 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
3157 if (Splat->isOne())
3158 return CastInst::CreateIntegerCast(Arg0, II->getType(),
3159 /*isSigned=*/!Zext);
3160
3161 break;
3162 }
3163 case Intrinsic::arm_neon_aesd:
3164 case Intrinsic::arm_neon_aese:
3165 case Intrinsic::aarch64_crypto_aesd:
3166 case Intrinsic::aarch64_crypto_aese: {
3167 Value *DataArg = II->getArgOperand(0);
3168 Value *KeyArg = II->getArgOperand(1);
3169
3170 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
3171 Value *Data, *Key;
3172 if (match(KeyArg, m_ZeroInt()) &&
3173 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
3174 II->setArgOperand(0, Data);
3175 II->setArgOperand(1, Key);
3176 return II;
3177 }
3178 break;
3179 }
3180 case Intrinsic::amdgcn_rcp: {
3181 Value *Src = II->getArgOperand(0);
3182
3183 // TODO: Move to ConstantFolding/InstSimplify?
3184 if (isa<UndefValue>(Src))
3185 return replaceInstUsesWith(CI, Src);
3186
3187 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
3188 const APFloat &ArgVal = C->getValueAPF();
3189 APFloat Val(ArgVal.getSemantics(), 1.0);
3190 APFloat::opStatus Status = Val.divide(ArgVal,
3191 APFloat::rmNearestTiesToEven);
3192 // Only do this if it was exact and therefore not dependent on the
3193 // rounding mode.
3194 if (Status == APFloat::opOK)
3195 return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
3196 }
3197
3198 break;
3199 }
3200 case Intrinsic::amdgcn_rsq: {
3201 Value *Src = II->getArgOperand(0);
3202
3203 // TODO: Move to ConstantFolding/InstSimplify?
3204 if (isa<UndefValue>(Src))
3205 return replaceInstUsesWith(CI, Src);
3206 break;
3207 }
3208 case Intrinsic::amdgcn_frexp_mant:
3209 case Intrinsic::amdgcn_frexp_exp: {
3210 Value *Src = II->getArgOperand(0);
3211 if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
3212 int Exp;
3213 APFloat Significand = frexp(C->getValueAPF(), Exp,
3214 APFloat::rmNearestTiesToEven);
3215
3216 if (II->getIntrinsicID() == Intrinsic::amdgcn_frexp_mant) {
3217 return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(),
3218 Significand));
3219 }
3220
3221 // Match instruction special case behavior.
3222 if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
3223 Exp = 0;
3224
3225 return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp));
3226 }
3227
3228 if (isa<UndefValue>(Src))
3229 return replaceInstUsesWith(CI, UndefValue::get(II->getType()));
3230
3231 break;
3232 }
3233 case Intrinsic::amdgcn_class: {
3234 enum {
3235 S_NAN = 1 << 0, // Signaling NaN
3236 Q_NAN = 1 << 1, // Quiet NaN
3237 N_INFINITY = 1 << 2, // Negative infinity
3238 N_NORMAL = 1 << 3, // Negative normal
3239 N_SUBNORMAL = 1 << 4, // Negative subnormal
3240 N_ZERO = 1 << 5, // Negative zero
3241 P_ZERO = 1 << 6, // Positive zero
3242 P_SUBNORMAL = 1 << 7, // Positive subnormal
3243 P_NORMAL = 1 << 8, // Positive normal
3244 P_INFINITY = 1 << 9 // Positive infinity
3245 };
3246
3247 const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL |
3248 N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY;
3249
3250 Value *Src0 = II->getArgOperand(0);
3251 Value *Src1 = II->getArgOperand(1);
3252 const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
3253 if (!CMask) {
3254 if (isa<UndefValue>(Src0))
3255 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3256
3257 if (isa<UndefValue>(Src1))
3258 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3259 break;
3260 }
3261
3262 uint32_t Mask = CMask->getZExtValue();
3263
3264 // If all tests are made, it doesn't matter what the value is.
3265 if ((Mask & FullMask) == FullMask)
3266 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true));
3267
3268 if ((Mask & FullMask) == 0)
3269 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3270
3271 if (Mask == (S_NAN | Q_NAN)) {
3272 // Equivalent of isnan. Replace with standard fcmp.
3273 Value *FCmp = Builder.CreateFCmpUNO(Src0, Src0);
3274 FCmp->takeName(II);
3275 return replaceInstUsesWith(*II, FCmp);
3276 }
3277
3278 const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0);
3279 if (!CVal) {
3280 if (isa<UndefValue>(Src0))
3281 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3282
3283 // Clamp mask to used bits
3284 if ((Mask & FullMask) != Mask) {
3285 CallInst *NewCall = Builder.CreateCall(II->getCalledFunction(),
3286 { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) }
3287 );
3288
3289 NewCall->takeName(II);
3290 return replaceInstUsesWith(*II, NewCall);
3291 }
3292
3293 break;
3294 }
3295
3296 const APFloat &Val = CVal->getValueAPF();
3297
3298 bool Result =
3299 ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) ||
3300 ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) ||
3301 ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) ||
3302 ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) ||
3303 ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) ||
3304 ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) ||
3305 ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) ||
3306 ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) ||
3307 ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) ||
3308 ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative());
3309
3310 return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result));
3311 }
3312 case Intrinsic::amdgcn_cvt_pkrtz: {
3313 Value *Src0 = II->getArgOperand(0);
3314 Value *Src1 = II->getArgOperand(1);
3315 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3316 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3317 const fltSemantics &HalfSem
3318 = II->getType()->getScalarType()->getFltSemantics();
3319 bool LosesInfo;
3320 APFloat Val0 = C0->getValueAPF();
3321 APFloat Val1 = C1->getValueAPF();
3322 Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3323 Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3324
3325 Constant *Folded = ConstantVector::get({
3326 ConstantFP::get(II->getContext(), Val0),
3327 ConstantFP::get(II->getContext(), Val1) });
3328 return replaceInstUsesWith(*II, Folded);
3329 }
3330 }
3331
3332 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
3333 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3334
3335 break;
3336 }
3337 case Intrinsic::amdgcn_cvt_pknorm_i16:
3338 case Intrinsic::amdgcn_cvt_pknorm_u16:
3339 case Intrinsic::amdgcn_cvt_pk_i16:
3340 case Intrinsic::amdgcn_cvt_pk_u16: {
3341 Value *Src0 = II->getArgOperand(0);
3342 Value *Src1 = II->getArgOperand(1);
3343
3344 if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
3345 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3346
3347 break;
3348 }
3349 case Intrinsic::amdgcn_ubfe:
3350 case Intrinsic::amdgcn_sbfe: {
3351 // Decompose simple cases into standard shifts.
3352 Value *Src = II->getArgOperand(0);
3353 if (isa<UndefValue>(Src))
3354 return replaceInstUsesWith(*II, Src);
3355
3356 unsigned Width;
3357 Type *Ty = II->getType();
3358 unsigned IntSize = Ty->getIntegerBitWidth();
3359
3360 ConstantInt *CWidth = dyn_cast<ConstantInt>(II->getArgOperand(2));
3361 if (CWidth) {
3362 Width = CWidth->getZExtValue();
3363 if ((Width & (IntSize - 1)) == 0)
3364 return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty));
3365
3366 if (Width >= IntSize) {
3367 // Hardware ignores high bits, so remove those.
3368 II->setArgOperand(2, ConstantInt::get(CWidth->getType(),
3369 Width & (IntSize - 1)));
3370 return II;
3371 }
3372 }
3373
3374 unsigned Offset;
3375 ConstantInt *COffset = dyn_cast<ConstantInt>(II->getArgOperand(1));
3376 if (COffset) {
3377 Offset = COffset->getZExtValue();
3378 if (Offset >= IntSize) {
3379 II->setArgOperand(1, ConstantInt::get(COffset->getType(),
3380 Offset & (IntSize - 1)));
3381 return II;
3382 }
3383 }
3384
3385 bool Signed = II->getIntrinsicID() == Intrinsic::amdgcn_sbfe;
3386
3387 // TODO: Also emit sub if only width is constant.
3388 if (!CWidth && COffset && Offset == 0) {
3389 Constant *KSize = ConstantInt::get(COffset->getType(), IntSize);
3390 Value *ShiftVal = Builder.CreateSub(KSize, II->getArgOperand(2));
3391 ShiftVal = Builder.CreateZExt(ShiftVal, II->getType());
3392
3393 Value *Shl = Builder.CreateShl(Src, ShiftVal);
3394 Value *RightShift = Signed ? Builder.CreateAShr(Shl, ShiftVal)
3395 : Builder.CreateLShr(Shl, ShiftVal);
3396 RightShift->takeName(II);
3397 return replaceInstUsesWith(*II, RightShift);
3398 }
3399
3400 if (!CWidth || !COffset)
3401 break;
3402
3403 // TODO: This allows folding to undef when the hardware has specific
3404 // behavior?
3405 if (Offset + Width < IntSize) {
3406 Value *Shl = Builder.CreateShl(Src, IntSize - Offset - Width);
3407 Value *RightShift = Signed ? Builder.CreateAShr(Shl, IntSize - Width)
3408 : Builder.CreateLShr(Shl, IntSize - Width);
3409 RightShift->takeName(II);
3410 return replaceInstUsesWith(*II, RightShift);
3411 }
3412
3413 Value *RightShift = Signed ? Builder.CreateAShr(Src, Offset)
3414 : Builder.CreateLShr(Src, Offset);
3415
3416 RightShift->takeName(II);
3417 return replaceInstUsesWith(*II, RightShift);
3418 }
3419 case Intrinsic::amdgcn_exp:
3420 case Intrinsic::amdgcn_exp_compr: {
3421 ConstantInt *En = dyn_cast<ConstantInt>(II->getArgOperand(1));
3422 if (!En) // Illegal.
3423 break;
3424
3425 unsigned EnBits = En->getZExtValue();
3426 if (EnBits == 0xf)
3427 break; // All inputs enabled.
3428
3429 bool IsCompr = II->getIntrinsicID() == Intrinsic::amdgcn_exp_compr;
3430 bool Changed = false;
3431 for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
3432 if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
3433 (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
3434 Value *Src = II->getArgOperand(I + 2);
3435 if (!isa<UndefValue>(Src)) {
3436 II->setArgOperand(I + 2, UndefValue::get(Src->getType()));
3437 Changed = true;
3438 }
3439 }
3440 }
3441
3442 if (Changed)
3443 return II;
3444
3445 break;
3446 }
3447 case Intrinsic::amdgcn_fmed3: {
3448 // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
3449 // for the shader.
3450
3451 Value *Src0 = II->getArgOperand(0);
3452 Value *Src1 = II->getArgOperand(1);
3453 Value *Src2 = II->getArgOperand(2);
3454
3455 // Checking for NaN before canonicalization provides better fidelity when
3456 // mapping other operations onto fmed3 since the order of operands is
3457 // unchanged.
3458 CallInst *NewCall = nullptr;
3459 if (match(Src0, m_NaN()) || isa<UndefValue>(Src0)) {
3460 NewCall = Builder.CreateMinNum(Src1, Src2);
3461 } else if (match(Src1, m_NaN()) || isa<UndefValue>(Src1)) {
3462 NewCall = Builder.CreateMinNum(Src0, Src2);
3463 } else if (match(Src2, m_NaN()) || isa<UndefValue>(Src2)) {
3464 NewCall = Builder.CreateMaxNum(Src0, Src1);
3465 }
3466
3467 if (NewCall) {
3468 NewCall->copyFastMathFlags(II);
3469 NewCall->takeName(II);
3470 return replaceInstUsesWith(*II, NewCall);
3471 }
3472
3473 bool Swap = false;
3474 // Canonicalize constants to RHS operands.
3475 //
3476 // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
3477 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3478 std::swap(Src0, Src1);
3479 Swap = true;
3480 }
3481
3482 if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
3483 std::swap(Src1, Src2);
3484 Swap = true;
3485 }
3486
3487 if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3488 std::swap(Src0, Src1);
3489 Swap = true;
3490 }
3491
3492 if (Swap) {
3493 II->setArgOperand(0, Src0);
3494 II->setArgOperand(1, Src1);
3495 II->setArgOperand(2, Src2);
3496 return II;
3497 }
3498
3499 if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3500 if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3501 if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
3502 APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
3503 C2->getValueAPF());
3504 return replaceInstUsesWith(*II,
3505 ConstantFP::get(Builder.getContext(), Result));
3506 }
3507 }
3508 }
3509
3510 break;
3511 }
3512 case Intrinsic::amdgcn_icmp:
3513 case Intrinsic::amdgcn_fcmp: {
3514 const ConstantInt *CC = dyn_cast<ConstantInt>(II->getArgOperand(2));
3515 if (!CC)
3516 break;
3517
3518 // Guard against invalid arguments.
3519 int64_t CCVal = CC->getZExtValue();
3520 bool IsInteger = II->getIntrinsicID() == Intrinsic::amdgcn_icmp;
3521 if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE ||
3522 CCVal > CmpInst::LAST_ICMP_PREDICATE)) ||
3523 (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE ||
3524 CCVal > CmpInst::LAST_FCMP_PREDICATE)))
3525 break;
3526
3527 Value *Src0 = II->getArgOperand(0);
3528 Value *Src1 = II->getArgOperand(1);
3529
3530 if (auto *CSrc0 = dyn_cast<Constant>(Src0)) {
3531 if (auto *CSrc1 = dyn_cast<Constant>(Src1)) {
3532 Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1);
3533 if (CCmp->isNullValue()) {
3534 return replaceInstUsesWith(
3535 *II, ConstantExpr::getSExt(CCmp, II->getType()));
3536 }
3537
3538 // The result of V_ICMP/V_FCMP assembly instructions (which this
3539 // intrinsic exposes) is one bit per thread, masked with the EXEC
3540 // register (which contains the bitmask of live threads). So a
3541 // comparison that always returns true is the same as a read of the
3542 // EXEC register.
3543 Value *NewF = Intrinsic::getDeclaration(
3544 II->getModule(), Intrinsic::read_register, II->getType());
3545 Metadata *MDArgs[] = {MDString::get(II->getContext(), "exec")};
3546 MDNode *MD = MDNode::get(II->getContext(), MDArgs);
3547 Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)};
3548 CallInst *NewCall = Builder.CreateCall(NewF, Args);
3549 NewCall->addAttribute(AttributeList::FunctionIndex,
3550 Attribute::Convergent);
3551 NewCall->takeName(II);
3552 return replaceInstUsesWith(*II, NewCall);
3553 }
3554
3555 // Canonicalize constants to RHS.
3556 CmpInst::Predicate SwapPred
3557 = CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal));
3558 II->setArgOperand(0, Src1);
3559 II->setArgOperand(1, Src0);
3560 II->setArgOperand(2, ConstantInt::get(CC->getType(),
3561 static_cast<int>(SwapPred)));
3562 return II;
3563 }
3564
3565 if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE)
3566 break;
3567
3568 // Canonicalize compare eq with true value to compare != 0
3569 // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
3570 // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
3571 // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
3572 // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
3573 Value *ExtSrc;
3574 if (CCVal == CmpInst::ICMP_EQ &&
3575 ((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) ||
3576 (match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) &&
3577 ExtSrc->getType()->isIntegerTy(1)) {
3578 II->setArgOperand(1, ConstantInt::getNullValue(Src1->getType()));
3579 II->setArgOperand(2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE));
3580 return II;
3581 }
3582
3583 CmpInst::Predicate SrcPred;
3584 Value *SrcLHS;
3585 Value *SrcRHS;
3586
3587 // Fold compare eq/ne with 0 from a compare result as the predicate to the
3588 // intrinsic. The typical use is a wave vote function in the library, which
3589 // will be fed from a user code condition compared with 0. Fold in the
3590 // redundant compare.
3591
3592 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
3593 // -> llvm.amdgcn.[if]cmp(a, b, pred)
3594 //
3595 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
3596 // -> llvm.amdgcn.[if]cmp(a, b, inv pred)
3597 if (match(Src1, m_Zero()) &&
3598 match(Src0,
3599 m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) {
3600 if (CCVal == CmpInst::ICMP_EQ)
3601 SrcPred = CmpInst::getInversePredicate(SrcPred);
3602
3603 Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ?
3604 Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp;
3605
3606 Value *NewF = Intrinsic::getDeclaration(II->getModule(), NewIID,
3607 SrcLHS->getType());
3608 Value *Args[] = { SrcLHS, SrcRHS,
3609 ConstantInt::get(CC->getType(), SrcPred) };
3610 CallInst *NewCall = Builder.CreateCall(NewF, Args);
3611 NewCall->takeName(II);
3612 return replaceInstUsesWith(*II, NewCall);
3613 }
3614
3615 break;
3616 }
3617 case Intrinsic::amdgcn_wqm_vote: {
3618 // wqm_vote is identity when the argument is constant.
3619 if (!isa<Constant>(II->getArgOperand(0)))
3620 break;
3621
3622 return replaceInstUsesWith(*II, II->getArgOperand(0));
3623 }
3624 case Intrinsic::amdgcn_kill: {
3625 const ConstantInt *C = dyn_cast<ConstantInt>(II->getArgOperand(0));
3626 if (!C || !C->getZExtValue())
3627 break;
3628
3629 // amdgcn.kill(i1 1) is a no-op
3630 return eraseInstFromFunction(CI);
3631 }
3632 case Intrinsic::amdgcn_update_dpp: {
3633 Value *Old = II->getArgOperand(0);
3634
3635 auto BC = dyn_cast<ConstantInt>(II->getArgOperand(5));
3636 auto RM = dyn_cast<ConstantInt>(II->getArgOperand(3));
3637 auto BM = dyn_cast<ConstantInt>(II->getArgOperand(4));
3638 if (!BC || !RM || !BM ||
3639 BC->isZeroValue() ||
3640 RM->getZExtValue() != 0xF ||
3641 BM->getZExtValue() != 0xF ||
3642 isa<UndefValue>(Old))
3643 break;
3644
3645 // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value.
3646 II->setOperand(0, UndefValue::get(Old->getType()));
3647 return II;
3648 }
3649 case Intrinsic::stackrestore: {
3650 // If the save is right next to the restore, remove the restore. This can
3651 // happen when variable allocas are DCE'd.
3652 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
3653 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
3654 // Skip over debug info.
3655 if (SS->getNextNonDebugInstruction() == II) {
3656 return eraseInstFromFunction(CI);
3657 }
3658 }
3659 }
3660
3661 // Scan down this block to see if there is another stack restore in the
3662 // same block without an intervening call/alloca.
3663 BasicBlock::iterator BI(II);
3664 TerminatorInst *TI = II->getParent()->getTerminator();
3665 bool CannotRemove = false;
3666 for (++BI; &*BI != TI; ++BI) {
3667 if (isa<AllocaInst>(BI)) {
3668 CannotRemove = true;
3669 break;
3670 }
3671 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
3672 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
3673 // If there is a stackrestore below this one, remove this one.
3674 if (II->getIntrinsicID() == Intrinsic::stackrestore)
3675 return eraseInstFromFunction(CI);
3676
3677 // Bail if we cross over an intrinsic with side effects, such as
3678 // llvm.stacksave, llvm.read_register, or llvm.setjmp.
3679 if (II->mayHaveSideEffects()) {
3680 CannotRemove = true;
3681 break;
3682 }
3683 } else {
3684 // If we found a non-intrinsic call, we can't remove the stack
3685 // restore.
3686 CannotRemove = true;
3687 break;
3688 }
3689 }
3690 }
3691
3692 // If the stack restore is in a return, resume, or unwind block and if there
3693 // are no allocas or calls between the restore and the return, nuke the
3694 // restore.
3695 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
3696 return eraseInstFromFunction(CI);
3697 break;
3698 }
3699 case Intrinsic::lifetime_start:
3700 // Asan needs to poison memory to detect invalid access which is possible
3701 // even for empty lifetime range.
3702 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3703 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3704 break;
3705
3706 if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start,
3707 Intrinsic::lifetime_end, *this))
3708 return nullptr;
3709 break;
3710 case Intrinsic::assume: {
3711 Value *IIOperand = II->getArgOperand(0);
3712 // Remove an assume if it is followed by an identical assume.
3713 // TODO: Do we need this? Unless there are conflicting assumptions, the
3714 // computeKnownBits(IIOperand) below here eliminates redundant assumes.
3715 Instruction *Next = II->getNextNonDebugInstruction();
3716 if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
3717 return eraseInstFromFunction(CI);
3718
3719 // Canonicalize assume(a && b) -> assume(a); assume(b);
3720 // Note: New assumption intrinsics created here are registered by
3721 // the InstCombineIRInserter object.
3722 Value *AssumeIntrinsic = II->getCalledValue(), *A, *B;
3723 if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
3724 Builder.CreateCall(AssumeIntrinsic, A, II->getName());
3725 Builder.CreateCall(AssumeIntrinsic, B, II->getName());
3726 return eraseInstFromFunction(*II);
3727 }
3728 // assume(!(a || b)) -> assume(!a); assume(!b);
3729 if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
3730 Builder.CreateCall(AssumeIntrinsic, Builder.CreateNot(A), II->getName());
3731 Builder.CreateCall(AssumeIntrinsic, Builder.CreateNot(B), II->getName());
3732 return eraseInstFromFunction(*II);
3733 }
3734
3735 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
3736 // (if assume is valid at the load)
3737 CmpInst::Predicate Pred;
3738 Instruction *LHS;
3739 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
3740 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
3741 LHS->getType()->isPointerTy() &&
3742 isValidAssumeForContext(II, LHS, &DT)) {
3743 MDNode *MD = MDNode::get(II->getContext(), None);
3744 LHS->setMetadata(LLVMContext::MD_nonnull, MD);
3745 return eraseInstFromFunction(*II);
3746
3747 // TODO: apply nonnull return attributes to calls and invokes
3748 // TODO: apply range metadata for range check patterns?
3749 }
3750
3751 // If there is a dominating assume with the same condition as this one,
3752 // then this one is redundant, and should be removed.
3753 KnownBits Known(1);
3754 computeKnownBits(IIOperand, Known, 0, II);
3755 if (Known.isAllOnes())
3756 return eraseInstFromFunction(*II);
3757
3758 // Update the cache of affected values for this assumption (we might be
3759 // here because we just simplified the condition).
3760 AC.updateAffectedValues(II);
3761 break;
3762 }
3763 case Intrinsic::experimental_gc_relocate: {
3764 // Translate facts known about a pointer before relocating into
3765 // facts about the relocate value, while being careful to
3766 // preserve relocation semantics.
3767 Value *DerivedPtr = cast<GCRelocateInst>(II)->getDerivedPtr();
3768
3769 // Remove the relocation if unused, note that this check is required
3770 // to prevent the cases below from looping forever.
3771 if (II->use_empty())
3772 return eraseInstFromFunction(*II);
3773
3774 // Undef is undef, even after relocation.
3775 // TODO: provide a hook for this in GCStrategy. This is clearly legal for
3776 // most practical collectors, but there was discussion in the review thread
3777 // about whether it was legal for all possible collectors.
3778 if (isa<UndefValue>(DerivedPtr))
3779 // Use undef of gc_relocate's type to replace it.
3780 return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3781
3782 if (auto *PT = dyn_cast<PointerType>(II->getType())) {
3783 // The relocation of null will be null for most any collector.
3784 // TODO: provide a hook for this in GCStrategy. There might be some
3785 // weird collector this property does not hold for.
3786 if (isa<ConstantPointerNull>(DerivedPtr))
3787 // Use null-pointer of gc_relocate's type to replace it.
3788 return replaceInstUsesWith(*II, ConstantPointerNull::get(PT));
3789
3790 // isKnownNonNull -> nonnull attribute
3791 if (isKnownNonZero(DerivedPtr, DL, 0, &AC, II, &DT))
3792 II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
3793 }
3794
3795 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
3796 // Canonicalize on the type from the uses to the defs
3797
3798 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
3799 break;
3800 }
3801
3802 case Intrinsic::experimental_guard: {
3803 // Is this guard followed by another guard? We scan forward over a small
3804 // fixed window of instructions to handle common cases with conditions
3805 // computed between guards.
3806 Instruction *NextInst = II->getNextNode();
3807 for (unsigned i = 0; i < GuardWideningWindow; i++) {
3808 // Note: Using context-free form to avoid compile time blow up
3809 if (!isSafeToSpeculativelyExecute(NextInst))
3810 break;
3811 NextInst = NextInst->getNextNode();
3812 }
3813 Value *NextCond = nullptr;
3814 if (match(NextInst,
3815 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
3816 Value *CurrCond = II->getArgOperand(0);
3817
3818 // Remove a guard that it is immediately preceded by an identical guard.
3819 if (CurrCond == NextCond)
3820 return eraseInstFromFunction(*NextInst);
3821
3822 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
3823 Instruction* MoveI = II->getNextNode();
3824 while (MoveI != NextInst) {
3825 auto *Temp = MoveI;
3826 MoveI = MoveI->getNextNode();
3827 Temp->moveBefore(II);
3828 }
3829 II->setArgOperand(0, Builder.CreateAnd(CurrCond, NextCond));
3830 return eraseInstFromFunction(*NextInst);
3831 }
3832 break;
3833 }
3834 }
3835 return visitCallSite(II);
3836 }
3837
3838 // Fence instruction simplification
visitFenceInst(FenceInst & FI)3839 Instruction *InstCombiner::visitFenceInst(FenceInst &FI) {
3840 // Remove identical consecutive fences.
3841 Instruction *Next = FI.getNextNonDebugInstruction();
3842 if (auto *NFI = dyn_cast<FenceInst>(Next))
3843 if (FI.isIdenticalTo(NFI))
3844 return eraseInstFromFunction(FI);
3845 return nullptr;
3846 }
3847
3848 // InvokeInst simplification
visitInvokeInst(InvokeInst & II)3849 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
3850 return visitCallSite(&II);
3851 }
3852
3853 /// If this cast does not affect the value passed through the varargs area, we
3854 /// can eliminate the use of the cast.
isSafeToEliminateVarargsCast(const CallSite CS,const DataLayout & DL,const CastInst * const CI,const int ix)3855 static bool isSafeToEliminateVarargsCast(const CallSite CS,
3856 const DataLayout &DL,
3857 const CastInst *const CI,
3858 const int ix) {
3859 if (!CI->isLosslessCast())
3860 return false;
3861
3862 // If this is a GC intrinsic, avoid munging types. We need types for
3863 // statepoint reconstruction in SelectionDAG.
3864 // TODO: This is probably something which should be expanded to all
3865 // intrinsics since the entire point of intrinsics is that
3866 // they are understandable by the optimizer.
3867 if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
3868 return false;
3869
3870 // The size of ByVal or InAlloca arguments is derived from the type, so we
3871 // can't change to a type with a different size. If the size were
3872 // passed explicitly we could avoid this check.
3873 if (!CS.isByValOrInAllocaArgument(ix))
3874 return true;
3875
3876 Type* SrcTy =
3877 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
3878 Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
3879 if (!SrcTy->isSized() || !DstTy->isSized())
3880 return false;
3881 if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
3882 return false;
3883 return true;
3884 }
3885
tryOptimizeCall(CallInst * CI)3886 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
3887 if (!CI->getCalledFunction()) return nullptr;
3888
3889 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
3890 replaceInstUsesWith(*From, With);
3891 };
3892 LibCallSimplifier Simplifier(DL, &TLI, ORE, InstCombineRAUW);
3893 if (Value *With = Simplifier.optimizeCall(CI)) {
3894 ++NumSimplified;
3895 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
3896 }
3897
3898 return nullptr;
3899 }
3900
findInitTrampolineFromAlloca(Value * TrampMem)3901 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
3902 // Strip off at most one level of pointer casts, looking for an alloca. This
3903 // is good enough in practice and simpler than handling any number of casts.
3904 Value *Underlying = TrampMem->stripPointerCasts();
3905 if (Underlying != TrampMem &&
3906 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
3907 return nullptr;
3908 if (!isa<AllocaInst>(Underlying))
3909 return nullptr;
3910
3911 IntrinsicInst *InitTrampoline = nullptr;
3912 for (User *U : TrampMem->users()) {
3913 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3914 if (!II)
3915 return nullptr;
3916 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
3917 if (InitTrampoline)
3918 // More than one init_trampoline writes to this value. Give up.
3919 return nullptr;
3920 InitTrampoline = II;
3921 continue;
3922 }
3923 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
3924 // Allow any number of calls to adjust.trampoline.
3925 continue;
3926 return nullptr;
3927 }
3928
3929 // No call to init.trampoline found.
3930 if (!InitTrampoline)
3931 return nullptr;
3932
3933 // Check that the alloca is being used in the expected way.
3934 if (InitTrampoline->getOperand(0) != TrampMem)
3935 return nullptr;
3936
3937 return InitTrampoline;
3938 }
3939
findInitTrampolineFromBB(IntrinsicInst * AdjustTramp,Value * TrampMem)3940 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
3941 Value *TrampMem) {
3942 // Visit all the previous instructions in the basic block, and try to find a
3943 // init.trampoline which has a direct path to the adjust.trampoline.
3944 for (BasicBlock::iterator I = AdjustTramp->getIterator(),
3945 E = AdjustTramp->getParent()->begin();
3946 I != E;) {
3947 Instruction *Inst = &*--I;
3948 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
3949 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
3950 II->getOperand(0) == TrampMem)
3951 return II;
3952 if (Inst->mayWriteToMemory())
3953 return nullptr;
3954 }
3955 return nullptr;
3956 }
3957
3958 // Given a call to llvm.adjust.trampoline, find and return the corresponding
3959 // call to llvm.init.trampoline if the call to the trampoline can be optimized
3960 // to a direct call to a function. Otherwise return NULL.
findInitTrampoline(Value * Callee)3961 static IntrinsicInst *findInitTrampoline(Value *Callee) {
3962 Callee = Callee->stripPointerCasts();
3963 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
3964 if (!AdjustTramp ||
3965 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
3966 return nullptr;
3967
3968 Value *TrampMem = AdjustTramp->getOperand(0);
3969
3970 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
3971 return IT;
3972 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
3973 return IT;
3974 return nullptr;
3975 }
3976
3977 /// Improvements for call and invoke instructions.
visitCallSite(CallSite CS)3978 Instruction *InstCombiner::visitCallSite(CallSite CS) {
3979 if (isAllocLikeFn(CS.getInstruction(), &TLI))
3980 return visitAllocSite(*CS.getInstruction());
3981
3982 bool Changed = false;
3983
3984 // Mark any parameters that are known to be non-null with the nonnull
3985 // attribute. This is helpful for inlining calls to functions with null
3986 // checks on their arguments.
3987 SmallVector<unsigned, 4> ArgNos;
3988 unsigned ArgNo = 0;
3989
3990 for (Value *V : CS.args()) {
3991 if (V->getType()->isPointerTy() &&
3992 !CS.paramHasAttr(ArgNo, Attribute::NonNull) &&
3993 isKnownNonZero(V, DL, 0, &AC, CS.getInstruction(), &DT))
3994 ArgNos.push_back(ArgNo);
3995 ArgNo++;
3996 }
3997
3998 assert(ArgNo == CS.arg_size() && "sanity check");
3999
4000 if (!ArgNos.empty()) {
4001 AttributeList AS = CS.getAttributes();
4002 LLVMContext &Ctx = CS.getInstruction()->getContext();
4003 AS = AS.addParamAttribute(Ctx, ArgNos,
4004 Attribute::get(Ctx, Attribute::NonNull));
4005 CS.setAttributes(AS);
4006 Changed = true;
4007 }
4008
4009 // If the callee is a pointer to a function, attempt to move any casts to the
4010 // arguments of the call/invoke.
4011 Value *Callee = CS.getCalledValue();
4012 if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
4013 return nullptr;
4014
4015 if (Function *CalleeF = dyn_cast<Function>(Callee)) {
4016 // Remove the convergent attr on calls when the callee is not convergent.
4017 if (CS.isConvergent() && !CalleeF->isConvergent() &&
4018 !CalleeF->isIntrinsic()) {
4019 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr "
4020 << CS.getInstruction() << "\n");
4021 CS.setNotConvergent();
4022 return CS.getInstruction();
4023 }
4024
4025 // If the call and callee calling conventions don't match, this call must
4026 // be unreachable, as the call is undefined.
4027 if (CalleeF->getCallingConv() != CS.getCallingConv() &&
4028 // Only do this for calls to a function with a body. A prototype may
4029 // not actually end up matching the implementation's calling conv for a
4030 // variety of reasons (e.g. it may be written in assembly).
4031 !CalleeF->isDeclaration()) {
4032 Instruction *OldCall = CS.getInstruction();
4033 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
4034 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
4035 OldCall);
4036 // If OldCall does not return void then replaceAllUsesWith undef.
4037 // This allows ValueHandlers and custom metadata to adjust itself.
4038 if (!OldCall->getType()->isVoidTy())
4039 replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
4040 if (isa<CallInst>(OldCall))
4041 return eraseInstFromFunction(*OldCall);
4042
4043 // We cannot remove an invoke, because it would change the CFG, just
4044 // change the callee to a null pointer.
4045 cast<InvokeInst>(OldCall)->setCalledFunction(
4046 Constant::getNullValue(CalleeF->getType()));
4047 return nullptr;
4048 }
4049 }
4050
4051 if ((isa<ConstantPointerNull>(Callee) &&
4052 !NullPointerIsDefined(CS.getInstruction()->getFunction())) ||
4053 isa<UndefValue>(Callee)) {
4054 // If CS does not return void then replaceAllUsesWith undef.
4055 // This allows ValueHandlers and custom metadata to adjust itself.
4056 if (!CS.getInstruction()->getType()->isVoidTy())
4057 replaceInstUsesWith(*CS.getInstruction(),
4058 UndefValue::get(CS.getInstruction()->getType()));
4059
4060 if (isa<InvokeInst>(CS.getInstruction())) {
4061 // Can't remove an invoke because we cannot change the CFG.
4062 return nullptr;
4063 }
4064
4065 // This instruction is not reachable, just remove it. We insert a store to
4066 // undef so that we know that this code is not reachable, despite the fact
4067 // that we can't modify the CFG here.
4068 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
4069 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
4070 CS.getInstruction());
4071
4072 return eraseInstFromFunction(*CS.getInstruction());
4073 }
4074
4075 if (IntrinsicInst *II = findInitTrampoline(Callee))
4076 return transformCallThroughTrampoline(CS, II);
4077
4078 PointerType *PTy = cast<PointerType>(Callee->getType());
4079 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
4080 if (FTy->isVarArg()) {
4081 int ix = FTy->getNumParams();
4082 // See if we can optimize any arguments passed through the varargs area of
4083 // the call.
4084 for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
4085 E = CS.arg_end(); I != E; ++I, ++ix) {
4086 CastInst *CI = dyn_cast<CastInst>(*I);
4087 if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
4088 *I = CI->getOperand(0);
4089 Changed = true;
4090 }
4091 }
4092 }
4093
4094 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
4095 // Inline asm calls cannot throw - mark them 'nounwind'.
4096 CS.setDoesNotThrow();
4097 Changed = true;
4098 }
4099
4100 // Try to optimize the call if possible, we require DataLayout for most of
4101 // this. None of these calls are seen as possibly dead so go ahead and
4102 // delete the instruction now.
4103 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
4104 Instruction *I = tryOptimizeCall(CI);
4105 // If we changed something return the result, etc. Otherwise let
4106 // the fallthrough check.
4107 if (I) return eraseInstFromFunction(*I);
4108 }
4109
4110 return Changed ? CS.getInstruction() : nullptr;
4111 }
4112
4113 /// If the callee is a constexpr cast of a function, attempt to move the cast to
4114 /// the arguments of the call/invoke.
transformConstExprCastCall(CallSite CS)4115 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
4116 auto *Callee = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
4117 if (!Callee)
4118 return false;
4119
4120 // If this is a call to a thunk function, don't remove the cast. Thunks are
4121 // used to transparently forward all incoming parameters and outgoing return
4122 // values, so it's important to leave the cast in place.
4123 if (Callee->hasFnAttribute("thunk"))
4124 return false;
4125
4126 // If this is a musttail call, the callee's prototype must match the caller's
4127 // prototype with the exception of pointee types. The code below doesn't
4128 // implement that, so we can't do this transform.
4129 // TODO: Do the transform if it only requires adding pointer casts.
4130 if (CS.isMustTailCall())
4131 return false;
4132
4133 Instruction *Caller = CS.getInstruction();
4134 const AttributeList &CallerPAL = CS.getAttributes();
4135
4136 // Okay, this is a cast from a function to a different type. Unless doing so
4137 // would cause a type conversion of one of our arguments, change this call to
4138 // be a direct call with arguments casted to the appropriate types.
4139 FunctionType *FT = Callee->getFunctionType();
4140 Type *OldRetTy = Caller->getType();
4141 Type *NewRetTy = FT->getReturnType();
4142
4143 // Check to see if we are changing the return type...
4144 if (OldRetTy != NewRetTy) {
4145
4146 if (NewRetTy->isStructTy())
4147 return false; // TODO: Handle multiple return values.
4148
4149 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
4150 if (Callee->isDeclaration())
4151 return false; // Cannot transform this return value.
4152
4153 if (!Caller->use_empty() &&
4154 // void -> non-void is handled specially
4155 !NewRetTy->isVoidTy())
4156 return false; // Cannot transform this return value.
4157 }
4158
4159 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
4160 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
4161 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
4162 return false; // Attribute not compatible with transformed value.
4163 }
4164
4165 // If the callsite is an invoke instruction, and the return value is used by
4166 // a PHI node in a successor, we cannot change the return type of the call
4167 // because there is no place to put the cast instruction (without breaking
4168 // the critical edge). Bail out in this case.
4169 if (!Caller->use_empty())
4170 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
4171 for (User *U : II->users())
4172 if (PHINode *PN = dyn_cast<PHINode>(U))
4173 if (PN->getParent() == II->getNormalDest() ||
4174 PN->getParent() == II->getUnwindDest())
4175 return false;
4176 }
4177
4178 unsigned NumActualArgs = CS.arg_size();
4179 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
4180
4181 // Prevent us turning:
4182 // declare void @takes_i32_inalloca(i32* inalloca)
4183 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
4184 //
4185 // into:
4186 // call void @takes_i32_inalloca(i32* null)
4187 //
4188 // Similarly, avoid folding away bitcasts of byval calls.
4189 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4190 Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
4191 return false;
4192
4193 CallSite::arg_iterator AI = CS.arg_begin();
4194 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
4195 Type *ParamTy = FT->getParamType(i);
4196 Type *ActTy = (*AI)->getType();
4197
4198 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
4199 return false; // Cannot transform this parameter value.
4200
4201 if (AttrBuilder(CallerPAL.getParamAttributes(i))
4202 .overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
4203 return false; // Attribute not compatible with transformed value.
4204
4205 if (CS.isInAllocaArgument(i))
4206 return false; // Cannot transform to and from inalloca.
4207
4208 // If the parameter is passed as a byval argument, then we have to have a
4209 // sized type and the sized type has to have the same size as the old type.
4210 if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
4211 PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
4212 if (!ParamPTy || !ParamPTy->getElementType()->isSized())
4213 return false;
4214
4215 Type *CurElTy = ActTy->getPointerElementType();
4216 if (DL.getTypeAllocSize(CurElTy) !=
4217 DL.getTypeAllocSize(ParamPTy->getElementType()))
4218 return false;
4219 }
4220 }
4221
4222 if (Callee->isDeclaration()) {
4223 // Do not delete arguments unless we have a function body.
4224 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
4225 return false;
4226
4227 // If the callee is just a declaration, don't change the varargsness of the
4228 // call. We don't want to introduce a varargs call where one doesn't
4229 // already exist.
4230 PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
4231 if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
4232 return false;
4233
4234 // If both the callee and the cast type are varargs, we still have to make
4235 // sure the number of fixed parameters are the same or we have the same
4236 // ABI issues as if we introduce a varargs call.
4237 if (FT->isVarArg() &&
4238 cast<FunctionType>(APTy->getElementType())->isVarArg() &&
4239 FT->getNumParams() !=
4240 cast<FunctionType>(APTy->getElementType())->getNumParams())
4241 return false;
4242 }
4243
4244 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
4245 !CallerPAL.isEmpty()) {
4246 // In this case we have more arguments than the new function type, but we
4247 // won't be dropping them. Check that these extra arguments have attributes
4248 // that are compatible with being a vararg call argument.
4249 unsigned SRetIdx;
4250 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
4251 SRetIdx > FT->getNumParams())
4252 return false;
4253 }
4254
4255 // Okay, we decided that this is a safe thing to do: go ahead and start
4256 // inserting cast instructions as necessary.
4257 SmallVector<Value *, 8> Args;
4258 SmallVector<AttributeSet, 8> ArgAttrs;
4259 Args.reserve(NumActualArgs);
4260 ArgAttrs.reserve(NumActualArgs);
4261
4262 // Get any return attributes.
4263 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
4264
4265 // If the return value is not being used, the type may not be compatible
4266 // with the existing attributes. Wipe out any problematic attributes.
4267 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
4268
4269 AI = CS.arg_begin();
4270 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
4271 Type *ParamTy = FT->getParamType(i);
4272
4273 Value *NewArg = *AI;
4274 if ((*AI)->getType() != ParamTy)
4275 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
4276 Args.push_back(NewArg);
4277
4278 // Add any parameter attributes.
4279 ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
4280 }
4281
4282 // If the function takes more arguments than the call was taking, add them
4283 // now.
4284 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
4285 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
4286 ArgAttrs.push_back(AttributeSet());
4287 }
4288
4289 // If we are removing arguments to the function, emit an obnoxious warning.
4290 if (FT->getNumParams() < NumActualArgs) {
4291 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
4292 if (FT->isVarArg()) {
4293 // Add all of the arguments in their promoted form to the arg list.
4294 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
4295 Type *PTy = getPromotedType((*AI)->getType());
4296 Value *NewArg = *AI;
4297 if (PTy != (*AI)->getType()) {
4298 // Must promote to pass through va_arg area!
4299 Instruction::CastOps opcode =
4300 CastInst::getCastOpcode(*AI, false, PTy, false);
4301 NewArg = Builder.CreateCast(opcode, *AI, PTy);
4302 }
4303 Args.push_back(NewArg);
4304
4305 // Add any parameter attributes.
4306 ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
4307 }
4308 }
4309 }
4310
4311 AttributeSet FnAttrs = CallerPAL.getFnAttributes();
4312
4313 if (NewRetTy->isVoidTy())
4314 Caller->setName(""); // Void type should not have a name.
4315
4316 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
4317 "missing argument attributes");
4318 LLVMContext &Ctx = Callee->getContext();
4319 AttributeList NewCallerPAL = AttributeList::get(
4320 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
4321
4322 SmallVector<OperandBundleDef, 1> OpBundles;
4323 CS.getOperandBundlesAsDefs(OpBundles);
4324
4325 CallSite NewCS;
4326 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4327 NewCS = Builder.CreateInvoke(Callee, II->getNormalDest(),
4328 II->getUnwindDest(), Args, OpBundles);
4329 } else {
4330 NewCS = Builder.CreateCall(Callee, Args, OpBundles);
4331 cast<CallInst>(NewCS.getInstruction())
4332 ->setTailCallKind(cast<CallInst>(Caller)->getTailCallKind());
4333 }
4334 NewCS->takeName(Caller);
4335 NewCS.setCallingConv(CS.getCallingConv());
4336 NewCS.setAttributes(NewCallerPAL);
4337
4338 // Preserve the weight metadata for the new call instruction. The metadata
4339 // is used by SamplePGO to check callsite's hotness.
4340 uint64_t W;
4341 if (Caller->extractProfTotalWeight(W))
4342 NewCS->setProfWeight(W);
4343
4344 // Insert a cast of the return type as necessary.
4345 Instruction *NC = NewCS.getInstruction();
4346 Value *NV = NC;
4347 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
4348 if (!NV->getType()->isVoidTy()) {
4349 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
4350 NC->setDebugLoc(Caller->getDebugLoc());
4351
4352 // If this is an invoke instruction, we should insert it after the first
4353 // non-phi, instruction in the normal successor block.
4354 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4355 BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
4356 InsertNewInstBefore(NC, *I);
4357 } else {
4358 // Otherwise, it's a call, just insert cast right after the call.
4359 InsertNewInstBefore(NC, *Caller);
4360 }
4361 Worklist.AddUsersToWorkList(*Caller);
4362 } else {
4363 NV = UndefValue::get(Caller->getType());
4364 }
4365 }
4366
4367 if (!Caller->use_empty())
4368 replaceInstUsesWith(*Caller, NV);
4369 else if (Caller->hasValueHandle()) {
4370 if (OldRetTy == NV->getType())
4371 ValueHandleBase::ValueIsRAUWd(Caller, NV);
4372 else
4373 // We cannot call ValueIsRAUWd with a different type, and the
4374 // actual tracked value will disappear.
4375 ValueHandleBase::ValueIsDeleted(Caller);
4376 }
4377
4378 eraseInstFromFunction(*Caller);
4379 return true;
4380 }
4381
4382 /// Turn a call to a function created by init_trampoline / adjust_trampoline
4383 /// intrinsic pair into a direct call to the underlying function.
4384 Instruction *
transformCallThroughTrampoline(CallSite CS,IntrinsicInst * Tramp)4385 InstCombiner::transformCallThroughTrampoline(CallSite CS,
4386 IntrinsicInst *Tramp) {
4387 Value *Callee = CS.getCalledValue();
4388 PointerType *PTy = cast<PointerType>(Callee->getType());
4389 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
4390 AttributeList Attrs = CS.getAttributes();
4391
4392 // If the call already has the 'nest' attribute somewhere then give up -
4393 // otherwise 'nest' would occur twice after splicing in the chain.
4394 if (Attrs.hasAttrSomewhere(Attribute::Nest))
4395 return nullptr;
4396
4397 assert(Tramp &&
4398 "transformCallThroughTrampoline called with incorrect CallSite.");
4399
4400 Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
4401 FunctionType *NestFTy = cast<FunctionType>(NestF->getValueType());
4402
4403 AttributeList NestAttrs = NestF->getAttributes();
4404 if (!NestAttrs.isEmpty()) {
4405 unsigned NestArgNo = 0;
4406 Type *NestTy = nullptr;
4407 AttributeSet NestAttr;
4408
4409 // Look for a parameter marked with the 'nest' attribute.
4410 for (FunctionType::param_iterator I = NestFTy->param_begin(),
4411 E = NestFTy->param_end();
4412 I != E; ++NestArgNo, ++I) {
4413 AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo);
4414 if (AS.hasAttribute(Attribute::Nest)) {
4415 // Record the parameter type and any other attributes.
4416 NestTy = *I;
4417 NestAttr = AS;
4418 break;
4419 }
4420 }
4421
4422 if (NestTy) {
4423 Instruction *Caller = CS.getInstruction();
4424 std::vector<Value*> NewArgs;
4425 std::vector<AttributeSet> NewArgAttrs;
4426 NewArgs.reserve(CS.arg_size() + 1);
4427 NewArgAttrs.reserve(CS.arg_size());
4428
4429 // Insert the nest argument into the call argument list, which may
4430 // mean appending it. Likewise for attributes.
4431
4432 {
4433 unsigned ArgNo = 0;
4434 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
4435 do {
4436 if (ArgNo == NestArgNo) {
4437 // Add the chain argument and attributes.
4438 Value *NestVal = Tramp->getArgOperand(2);
4439 if (NestVal->getType() != NestTy)
4440 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
4441 NewArgs.push_back(NestVal);
4442 NewArgAttrs.push_back(NestAttr);
4443 }
4444
4445 if (I == E)
4446 break;
4447
4448 // Add the original argument and attributes.
4449 NewArgs.push_back(*I);
4450 NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
4451
4452 ++ArgNo;
4453 ++I;
4454 } while (true);
4455 }
4456
4457 // The trampoline may have been bitcast to a bogus type (FTy).
4458 // Handle this by synthesizing a new function type, equal to FTy
4459 // with the chain parameter inserted.
4460
4461 std::vector<Type*> NewTypes;
4462 NewTypes.reserve(FTy->getNumParams()+1);
4463
4464 // Insert the chain's type into the list of parameter types, which may
4465 // mean appending it.
4466 {
4467 unsigned ArgNo = 0;
4468 FunctionType::param_iterator I = FTy->param_begin(),
4469 E = FTy->param_end();
4470
4471 do {
4472 if (ArgNo == NestArgNo)
4473 // Add the chain's type.
4474 NewTypes.push_back(NestTy);
4475
4476 if (I == E)
4477 break;
4478
4479 // Add the original type.
4480 NewTypes.push_back(*I);
4481
4482 ++ArgNo;
4483 ++I;
4484 } while (true);
4485 }
4486
4487 // Replace the trampoline call with a direct call. Let the generic
4488 // code sort out any function type mismatches.
4489 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
4490 FTy->isVarArg());
4491 Constant *NewCallee =
4492 NestF->getType() == PointerType::getUnqual(NewFTy) ?
4493 NestF : ConstantExpr::getBitCast(NestF,
4494 PointerType::getUnqual(NewFTy));
4495 AttributeList NewPAL =
4496 AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(),
4497 Attrs.getRetAttributes(), NewArgAttrs);
4498
4499 SmallVector<OperandBundleDef, 1> OpBundles;
4500 CS.getOperandBundlesAsDefs(OpBundles);
4501
4502 Instruction *NewCaller;
4503 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4504 NewCaller = InvokeInst::Create(NewCallee,
4505 II->getNormalDest(), II->getUnwindDest(),
4506 NewArgs, OpBundles);
4507 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
4508 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
4509 } else {
4510 NewCaller = CallInst::Create(NewCallee, NewArgs, OpBundles);
4511 cast<CallInst>(NewCaller)->setTailCallKind(
4512 cast<CallInst>(Caller)->getTailCallKind());
4513 cast<CallInst>(NewCaller)->setCallingConv(
4514 cast<CallInst>(Caller)->getCallingConv());
4515 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
4516 }
4517 NewCaller->setDebugLoc(Caller->getDebugLoc());
4518
4519 return NewCaller;
4520 }
4521 }
4522
4523 // Replace the trampoline call with a direct call. Since there is no 'nest'
4524 // parameter, there is no need to adjust the argument list. Let the generic
4525 // code sort out any function type mismatches.
4526 Constant *NewCallee =
4527 NestF->getType() == PTy ? NestF :
4528 ConstantExpr::getBitCast(NestF, PTy);
4529 CS.setCalledFunction(NewCallee);
4530 return CS.getInstruction();
4531 }
4532