• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""`LinearOperator` acting like the identity matrix."""
16
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21import numpy as np
22
23from tensorflow.python.framework import dtypes
24from tensorflow.python.framework import ops
25from tensorflow.python.framework import tensor_shape
26from tensorflow.python.framework import tensor_util
27from tensorflow.python.ops import array_ops
28from tensorflow.python.ops import check_ops
29from tensorflow.python.ops import control_flow_ops
30from tensorflow.python.ops import math_ops
31from tensorflow.python.ops.linalg import linalg_impl as linalg
32from tensorflow.python.ops.linalg import linear_operator
33from tensorflow.python.ops.linalg import linear_operator_util
34from tensorflow.python.util.tf_export import tf_export
35
36__all__ = [
37    "LinearOperatorIdentity",
38    "LinearOperatorScaledIdentity",
39]
40
41
42class BaseLinearOperatorIdentity(linear_operator.LinearOperator):
43  """Base class for Identity operators."""
44
45  def _check_num_rows_possibly_add_asserts(self):
46    """Static check of init arg `num_rows`, possibly add asserts."""
47    # Possibly add asserts.
48    if self._assert_proper_shapes:
49      self._num_rows = control_flow_ops.with_dependencies([
50          check_ops.assert_rank(
51              self._num_rows,
52              0,
53              message="Argument num_rows must be a 0-D Tensor."),
54          check_ops.assert_non_negative(
55              self._num_rows,
56              message="Argument num_rows must be non-negative."),
57      ], self._num_rows)
58
59    # Static checks.
60    if not self._num_rows.dtype.is_integer:
61      raise TypeError("Argument num_rows must be integer type.  Found:"
62                      " %s" % self._num_rows)
63
64    num_rows_static = self._num_rows_static
65
66    if num_rows_static is None:
67      return  # Cannot do any other static checks.
68
69    if num_rows_static.ndim != 0:
70      raise ValueError("Argument num_rows must be a 0-D Tensor.  Found:"
71                       " %s" % num_rows_static)
72
73    if num_rows_static < 0:
74      raise ValueError("Argument num_rows must be non-negative.  Found:"
75                       " %s" % num_rows_static)
76
77  def _min_matrix_dim(self):
78    """Minimum of domain/range dimension, if statically available, else None."""
79    domain_dim = tensor_shape.dimension_value(self.domain_dimension)
80    range_dim = tensor_shape.dimension_value(self.range_dimension)
81    if domain_dim is None or range_dim is None:
82      return None
83    return min(domain_dim, range_dim)
84
85  def _min_matrix_dim_tensor(self):
86    """Minimum of domain/range dimension, as a tensor."""
87    return math_ops.reduce_min(self.shape_tensor()[-2:])
88
89  def _ones_diag(self):
90    """Returns the diagonal of this operator as all ones."""
91    if self.shape.is_fully_defined():
92      d_shape = self.batch_shape.concatenate([self._min_matrix_dim()])
93    else:
94      d_shape = array_ops.concat(
95          [self.batch_shape_tensor(),
96           [self._min_matrix_dim_tensor()]], axis=0)
97
98    return array_ops.ones(shape=d_shape, dtype=self.dtype)
99
100
101@tf_export("linalg.LinearOperatorIdentity")
102class LinearOperatorIdentity(BaseLinearOperatorIdentity):
103  """`LinearOperator` acting like a [batch] square identity matrix.
104
105  This operator acts like a [batch] identity matrix `A` with shape
106  `[B1,...,Bb, N, N]` for some `b >= 0`.  The first `b` indices index a
107  batch member.  For every batch index `(i1,...,ib)`, `A[i1,...,ib, : :]` is
108  an `N x N` matrix.  This matrix `A` is not materialized, but for
109  purposes of broadcasting this shape will be relevant.
110
111  `LinearOperatorIdentity` is initialized with `num_rows`, and optionally
112  `batch_shape`, and `dtype` arguments.  If `batch_shape` is `None`, this
113  operator efficiently passes through all arguments.  If `batch_shape` is
114  provided, broadcasting may occur, which will require making copies.
115
116  ```python
117  # Create a 2 x 2 identity matrix.
118  operator = LinearOperatorIdentity(num_rows=2, dtype=tf.float32)
119
120  operator.to_dense()
121  ==> [[1., 0.]
122       [0., 1.]]
123
124  operator.shape
125  ==> [2, 2]
126
127  operator.log_abs_determinant()
128  ==> 0.
129
130  x = ... Shape [2, 4] Tensor
131  operator.matmul(x)
132  ==> Shape [2, 4] Tensor, same as x.
133
134  y = tf.random_normal(shape=[3, 2, 4])
135  # Note that y.shape is compatible with operator.shape because operator.shape
136  # is broadcast to [3, 2, 2].
137  # This broadcast does NOT require copying data, since we can infer that y
138  # will be passed through without changing shape.  We are always able to infer
139  # this if the operator has no batch_shape.
140  x = operator.solve(y)
141  ==> Shape [3, 2, 4] Tensor, same as y.
142
143  # Create a 2-batch of 2x2 identity matrices
144  operator = LinearOperatorIdentity(num_rows=2, batch_shape=[2])
145  operator.to_dense()
146  ==> [[[1., 0.]
147        [0., 1.]],
148       [[1., 0.]
149        [0., 1.]]]
150
151  # Here, even though the operator has a batch shape, the input is the same as
152  # the output, so x can be passed through without a copy.  The operator is able
153  # to detect that no broadcast is necessary because both x and the operator
154  # have statically defined shape.
155  x = ... Shape [2, 2, 3]
156  operator.matmul(x)
157  ==> Shape [2, 2, 3] Tensor, same as x
158
159  # Here the operator and x have different batch_shape, and are broadcast.
160  # This requires a copy, since the output is different size than the input.
161  x = ... Shape [1, 2, 3]
162  operator.matmul(x)
163  ==> Shape [2, 2, 3] Tensor, equal to [x, x]
164  ```
165
166  ### Shape compatibility
167
168  This operator acts on [batch] matrix with compatible shape.
169  `x` is a batch matrix with compatible shape for `matmul` and `solve` if
170
171  ```
172  operator.shape = [B1,...,Bb] + [N, N],  with b >= 0
173  x.shape =   [C1,...,Cc] + [N, R],
174  and [C1,...,Cc] broadcasts with [B1,...,Bb] to [D1,...,Dd]
175  ```
176
177  ### Performance
178
179  If `batch_shape` initialization arg is `None`:
180
181  * `operator.matmul(x)` is `O(1)`
182  * `operator.solve(x)` is `O(1)`
183  * `operator.determinant()` is `O(1)`
184
185  If `batch_shape` initialization arg is provided, and static checks cannot
186  rule out the need to broadcast:
187
188  * `operator.matmul(x)` is `O(D1*...*Dd*N*R)`
189  * `operator.solve(x)` is `O(D1*...*Dd*N*R)`
190  * `operator.determinant()` is `O(B1*...*Bb)`
191
192  #### Matrix property hints
193
194  This `LinearOperator` is initialized with boolean flags of the form `is_X`,
195  for `X = non_singular, self_adjoint, positive_definite, square`.
196  These have the following meaning:
197
198  * If `is_X == True`, callers should expect the operator to have the
199    property `X`.  This is a promise that should be fulfilled, but is *not* a
200    runtime assert.  For example, finite floating point precision may result
201    in these promises being violated.
202  * If `is_X == False`, callers should expect the operator to not have `X`.
203  * If `is_X == None` (the default), callers should have no expectation either
204    way.
205  """
206
207  def __init__(self,
208               num_rows,
209               batch_shape=None,
210               dtype=None,
211               is_non_singular=True,
212               is_self_adjoint=True,
213               is_positive_definite=True,
214               is_square=True,
215               assert_proper_shapes=False,
216               name="LinearOperatorIdentity"):
217    r"""Initialize a `LinearOperatorIdentity`.
218
219    The `LinearOperatorIdentity` is initialized with arguments defining `dtype`
220    and shape.
221
222    This operator is able to broadcast the leading (batch) dimensions, which
223    sometimes requires copying data.  If `batch_shape` is `None`, the operator
224    can take arguments of any batch shape without copying.  See examples.
225
226    Args:
227      num_rows:  Scalar non-negative integer `Tensor`.  Number of rows in the
228        corresponding identity matrix.
229      batch_shape:  Optional `1-D` integer `Tensor`.  The shape of the leading
230        dimensions.  If `None`, this operator has no leading dimensions.
231      dtype:  Data type of the matrix that this operator represents.
232      is_non_singular:  Expect that this operator is non-singular.
233      is_self_adjoint:  Expect that this operator is equal to its hermitian
234        transpose.
235      is_positive_definite:  Expect that this operator is positive definite,
236        meaning the quadratic form `x^H A x` has positive real part for all
237        nonzero `x`.  Note that we do not require the operator to be
238        self-adjoint to be positive-definite.  See:
239        https://en.wikipedia.org/wiki/Positive-definite_matrix#Extension_for_non-symmetric_matrices
240      is_square:  Expect that this operator acts like square [batch] matrices.
241      assert_proper_shapes:  Python `bool`.  If `False`, only perform static
242        checks that initialization and method arguments have proper shape.
243        If `True`, and static checks are inconclusive, add asserts to the graph.
244      name: A name for this `LinearOperator`
245
246    Raises:
247      ValueError:  If `num_rows` is determined statically to be non-scalar, or
248        negative.
249      ValueError:  If `batch_shape` is determined statically to not be 1-D, or
250        negative.
251      ValueError:  If any of the following is not `True`:
252        `{is_self_adjoint, is_non_singular, is_positive_definite}`.
253    """
254    dtype = dtype or dtypes.float32
255    self._assert_proper_shapes = assert_proper_shapes
256
257    with ops.name_scope(name):
258      dtype = dtypes.as_dtype(dtype)
259      if not is_self_adjoint:
260        raise ValueError("An identity operator is always self adjoint.")
261      if not is_non_singular:
262        raise ValueError("An identity operator is always non-singular.")
263      if not is_positive_definite:
264        raise ValueError("An identity operator is always positive-definite.")
265      if not is_square:
266        raise ValueError("An identity operator is always square.")
267
268      super(LinearOperatorIdentity, self).__init__(
269          dtype=dtype,
270          is_non_singular=is_non_singular,
271          is_self_adjoint=is_self_adjoint,
272          is_positive_definite=is_positive_definite,
273          is_square=is_square,
274          name=name)
275
276      self._num_rows = linear_operator_util.shape_tensor(
277          num_rows, name="num_rows")
278      self._num_rows_static = tensor_util.constant_value(self._num_rows)
279      self._check_num_rows_possibly_add_asserts()
280
281      if batch_shape is None:
282        self._batch_shape_arg = None
283      else:
284        self._batch_shape_arg = linear_operator_util.shape_tensor(
285            batch_shape, name="batch_shape_arg")
286        self._batch_shape_static = tensor_util.constant_value(
287            self._batch_shape_arg)
288        self._check_batch_shape_possibly_add_asserts()
289
290  def _shape(self):
291    matrix_shape = tensor_shape.TensorShape((self._num_rows_static,
292                                             self._num_rows_static))
293    if self._batch_shape_arg is None:
294      return matrix_shape
295
296    batch_shape = tensor_shape.TensorShape(self._batch_shape_static)
297    return batch_shape.concatenate(matrix_shape)
298
299  def _shape_tensor(self):
300    matrix_shape = array_ops.stack((self._num_rows, self._num_rows), axis=0)
301    if self._batch_shape_arg is None:
302      return matrix_shape
303
304    return array_ops.concat((self._batch_shape_arg, matrix_shape), 0)
305
306  def _assert_non_singular(self):
307    return control_flow_ops.no_op("assert_non_singular")
308
309  def _assert_positive_definite(self):
310    return control_flow_ops.no_op("assert_positive_definite")
311
312  def _assert_self_adjoint(self):
313    return control_flow_ops.no_op("assert_self_adjoint")
314
315  def _possibly_broadcast_batch_shape(self, x):
316    """Return 'x', possibly after broadcasting the leading dimensions."""
317    # If we have no batch shape, our batch shape broadcasts with everything!
318    if self._batch_shape_arg is None:
319      return x
320
321    # Static attempt:
322    #   If we determine that no broadcast is necessary, pass x through
323    #   If we need a broadcast, add to an array of zeros.
324    #
325    # special_shape is the shape that, when broadcast with x's shape, will give
326    # the correct broadcast_shape.  Note that
327    #   We have already verified the second to last dimension of self.shape
328    #   matches x's shape in assert_compatible_matrix_dimensions.
329    #   Also, the final dimension of 'x' can have any shape.
330    #   Therefore, the final two dimensions of special_shape are 1's.
331    special_shape = self.batch_shape.concatenate([1, 1])
332    bshape = array_ops.broadcast_static_shape(x.get_shape(), special_shape)
333    if special_shape.is_fully_defined():
334      # bshape.is_fully_defined iff special_shape.is_fully_defined.
335      if bshape == x.get_shape():
336        return x
337      # Use the built in broadcasting of addition.
338      zeros = array_ops.zeros(shape=special_shape, dtype=self.dtype)
339      return x + zeros
340
341    # Dynamic broadcast:
342    #   Always add to an array of zeros, rather than using a "cond", since a
343    #   cond would require copying data from GPU --> CPU.
344    special_shape = array_ops.concat((self.batch_shape_tensor(), [1, 1]), 0)
345    zeros = array_ops.zeros(shape=special_shape, dtype=self.dtype)
346    return x + zeros
347
348  def _matmul(self, x, adjoint=False, adjoint_arg=False):
349    # Note that adjoint has no effect since this matrix is self-adjoint.
350    x = linalg.adjoint(x) if adjoint_arg else x
351    if self._assert_proper_shapes:
352      aps = linear_operator_util.assert_compatible_matrix_dimensions(self, x)
353      x = control_flow_ops.with_dependencies([aps], x)
354    return self._possibly_broadcast_batch_shape(x)
355
356  def _determinant(self):
357    return array_ops.ones(shape=self.batch_shape_tensor(), dtype=self.dtype)
358
359  def _log_abs_determinant(self):
360    return array_ops.zeros(shape=self.batch_shape_tensor(), dtype=self.dtype)
361
362  def _solve(self, rhs, adjoint=False, adjoint_arg=False):
363    return self._matmul(rhs, adjoint_arg=adjoint_arg)
364
365  def _trace(self):
366    # Get Tensor of all ones of same shape as self.batch_shape.
367    if self.batch_shape.is_fully_defined():
368      batch_of_ones = array_ops.ones(shape=self.batch_shape, dtype=self.dtype)
369    else:
370      batch_of_ones = array_ops.ones(
371          shape=self.batch_shape_tensor(), dtype=self.dtype)
372
373    if self._min_matrix_dim() is not None:
374      return self._min_matrix_dim() * batch_of_ones
375    else:
376      return (math_ops.cast(self._min_matrix_dim_tensor(), self.dtype) *
377              batch_of_ones)
378
379  def _diag_part(self):
380    return self._ones_diag()
381
382  def add_to_tensor(self, mat, name="add_to_tensor"):
383    """Add matrix represented by this operator to `mat`.  Equiv to `I + mat`.
384
385    Args:
386      mat:  `Tensor` with same `dtype` and shape broadcastable to `self`.
387      name:  A name to give this `Op`.
388
389    Returns:
390      A `Tensor` with broadcast shape and same `dtype` as `self`.
391    """
392    with self._name_scope(name, values=[mat]):
393      mat = ops.convert_to_tensor(mat, name="mat")
394      mat_diag = array_ops.matrix_diag_part(mat)
395      new_diag = 1 + mat_diag
396      return array_ops.matrix_set_diag(mat, new_diag)
397
398  def _check_num_rows_possibly_add_asserts(self):
399    """Static check of init arg `num_rows`, possibly add asserts."""
400    # Possibly add asserts.
401    if self._assert_proper_shapes:
402      self._num_rows = control_flow_ops.with_dependencies([
403          check_ops.assert_rank(
404              self._num_rows,
405              0,
406              message="Argument num_rows must be a 0-D Tensor."),
407          check_ops.assert_non_negative(
408              self._num_rows,
409              message="Argument num_rows must be non-negative."),
410      ], self._num_rows)
411
412    # Static checks.
413    if not self._num_rows.dtype.is_integer:
414      raise TypeError("Argument num_rows must be integer type.  Found:"
415                      " %s" % self._num_rows)
416
417    num_rows_static = self._num_rows_static
418
419    if num_rows_static is None:
420      return  # Cannot do any other static checks.
421
422    if num_rows_static.ndim != 0:
423      raise ValueError("Argument num_rows must be a 0-D Tensor.  Found:"
424                       " %s" % num_rows_static)
425
426    if num_rows_static < 0:
427      raise ValueError("Argument num_rows must be non-negative.  Found:"
428                       " %s" % num_rows_static)
429
430  def _check_batch_shape_possibly_add_asserts(self):
431    """Static check of init arg `batch_shape`, possibly add asserts."""
432    if self._batch_shape_arg is None:
433      return
434
435    # Possibly add asserts
436    if self._assert_proper_shapes:
437      self._batch_shape_arg = control_flow_ops.with_dependencies([
438          check_ops.assert_rank(
439              self._batch_shape_arg,
440              1,
441              message="Argument batch_shape must be a 1-D Tensor."),
442          check_ops.assert_non_negative(
443              self._batch_shape_arg,
444              message="Argument batch_shape must be non-negative."),
445      ], self._batch_shape_arg)
446
447    # Static checks
448    if not self._batch_shape_arg.dtype.is_integer:
449      raise TypeError("Argument batch_shape must be integer type.  Found:"
450                      " %s" % self._batch_shape_arg)
451
452    if self._batch_shape_static is None:
453      return  # Cannot do any other static checks.
454
455    if self._batch_shape_static.ndim != 1:
456      raise ValueError("Argument batch_shape must be a 1-D Tensor.  Found:"
457                       " %s" % self._batch_shape_static)
458
459    if np.any(self._batch_shape_static < 0):
460      raise ValueError("Argument batch_shape must be non-negative.  Found:"
461                       "%s" % self._batch_shape_static)
462
463
464@tf_export("linalg.LinearOperatorScaledIdentity")
465class LinearOperatorScaledIdentity(BaseLinearOperatorIdentity):
466  """`LinearOperator` acting like a scaled [batch] identity matrix `A = c I`.
467
468  This operator acts like a scaled [batch] identity matrix `A` with shape
469  `[B1,...,Bb, N, N]` for some `b >= 0`.  The first `b` indices index a
470  batch member.  For every batch index `(i1,...,ib)`, `A[i1,...,ib, : :]` is
471  a scaled version of the `N x N` identity matrix.
472
473  `LinearOperatorIdentity` is initialized with `num_rows`, and a `multiplier`
474  (a `Tensor`) of shape `[B1,...,Bb]`.  `N` is set to `num_rows`, and the
475  `multiplier` determines the scale for each batch member.
476
477  ```python
478  # Create a 2 x 2 scaled identity matrix.
479  operator = LinearOperatorIdentity(num_rows=2, multiplier=3.)
480
481  operator.to_dense()
482  ==> [[3., 0.]
483       [0., 3.]]
484
485  operator.shape
486  ==> [2, 2]
487
488  operator.log_abs_determinant()
489  ==> 2 * Log[3]
490
491  x = ... Shape [2, 4] Tensor
492  operator.matmul(x)
493  ==> 3 * x
494
495  y = tf.random_normal(shape=[3, 2, 4])
496  # Note that y.shape is compatible with operator.shape because operator.shape
497  # is broadcast to [3, 2, 2].
498  x = operator.solve(y)
499  ==> 3 * x
500
501  # Create a 2-batch of 2x2 identity matrices
502  operator = LinearOperatorIdentity(num_rows=2, multiplier=5.)
503  operator.to_dense()
504  ==> [[[5., 0.]
505        [0., 5.]],
506       [[5., 0.]
507        [0., 5.]]]
508
509  x = ... Shape [2, 2, 3]
510  operator.matmul(x)
511  ==> 5 * x
512
513  # Here the operator and x have different batch_shape, and are broadcast.
514  x = ... Shape [1, 2, 3]
515  operator.matmul(x)
516  ==> 5 * x
517  ```
518
519  ### Shape compatibility
520
521  This operator acts on [batch] matrix with compatible shape.
522  `x` is a batch matrix with compatible shape for `matmul` and `solve` if
523
524  ```
525  operator.shape = [B1,...,Bb] + [N, N],  with b >= 0
526  x.shape =   [C1,...,Cc] + [N, R],
527  and [C1,...,Cc] broadcasts with [B1,...,Bb] to [D1,...,Dd]
528  ```
529
530  ### Performance
531
532  * `operator.matmul(x)` is `O(D1*...*Dd*N*R)`
533  * `operator.solve(x)` is `O(D1*...*Dd*N*R)`
534  * `operator.determinant()` is `O(D1*...*Dd)`
535
536  #### Matrix property hints
537
538  This `LinearOperator` is initialized with boolean flags of the form `is_X`,
539  for `X = non_singular, self_adjoint, positive_definite, square`.
540  These have the following meaning
541  * If `is_X == True`, callers should expect the operator to have the
542    property `X`.  This is a promise that should be fulfilled, but is *not* a
543    runtime assert.  For example, finite floating point precision may result
544    in these promises being violated.
545  * If `is_X == False`, callers should expect the operator to not have `X`.
546  * If `is_X == None` (the default), callers should have no expectation either
547    way.
548  """
549
550  def __init__(self,
551               num_rows,
552               multiplier,
553               is_non_singular=None,
554               is_self_adjoint=None,
555               is_positive_definite=None,
556               is_square=True,
557               assert_proper_shapes=False,
558               name="LinearOperatorScaledIdentity"):
559    r"""Initialize a `LinearOperatorScaledIdentity`.
560
561    The `LinearOperatorScaledIdentity` is initialized with `num_rows`, which
562    determines the size of each identity matrix, and a `multiplier`,
563    which defines `dtype`, batch shape, and scale of each matrix.
564
565    This operator is able to broadcast the leading (batch) dimensions.
566
567    Args:
568      num_rows:  Scalar non-negative integer `Tensor`.  Number of rows in the
569        corresponding identity matrix.
570      multiplier:  `Tensor` of shape `[B1,...,Bb]`, or `[]` (a scalar).
571      is_non_singular:  Expect that this operator is non-singular.
572      is_self_adjoint:  Expect that this operator is equal to its hermitian
573        transpose.
574      is_positive_definite:  Expect that this operator is positive definite,
575        meaning the quadratic form `x^H A x` has positive real part for all
576        nonzero `x`.  Note that we do not require the operator to be
577        self-adjoint to be positive-definite.  See:
578        https://en.wikipedia.org/wiki/Positive-definite_matrix#Extension_for_non-symmetric_matrices
579      is_square:  Expect that this operator acts like square [batch] matrices.
580      assert_proper_shapes:  Python `bool`.  If `False`, only perform static
581        checks that initialization and method arguments have proper shape.
582        If `True`, and static checks are inconclusive, add asserts to the graph.
583      name: A name for this `LinearOperator`
584
585    Raises:
586      ValueError:  If `num_rows` is determined statically to be non-scalar, or
587        negative.
588    """
589    self._assert_proper_shapes = assert_proper_shapes
590
591    with ops.name_scope(name, values=[multiplier, num_rows]):
592      self._multiplier = ops.convert_to_tensor(multiplier, name="multiplier")
593
594      # Check and auto-set hints.
595      if not self._multiplier.dtype.is_complex:
596        if is_self_adjoint is False:  # pylint: disable=g-bool-id-comparison
597          raise ValueError("A real diagonal operator is always self adjoint.")
598        else:
599          is_self_adjoint = True
600
601      if not is_square:
602        raise ValueError("A ScaledIdentity operator is always square.")
603
604      super(LinearOperatorScaledIdentity, self).__init__(
605          dtype=self._multiplier.dtype,
606          is_non_singular=is_non_singular,
607          is_self_adjoint=is_self_adjoint,
608          is_positive_definite=is_positive_definite,
609          is_square=is_square,
610          name=name)
611
612      # Shape [B1,...Bb, 1, 1]
613      self._multiplier_matrix = array_ops.expand_dims(
614          array_ops.expand_dims(self.multiplier, -1), -1)
615      self._multiplier_matrix_conj = math_ops.conj(self._multiplier_matrix)
616      self._abs_multiplier = math_ops.abs(self.multiplier)
617
618      self._num_rows = linear_operator_util.shape_tensor(
619          num_rows, name="num_rows")
620      self._num_rows_static = tensor_util.constant_value(self._num_rows)
621      self._check_num_rows_possibly_add_asserts()
622      self._num_rows_cast_to_dtype = math_ops.cast(self._num_rows, self.dtype)
623      self._num_rows_cast_to_real_dtype = math_ops.cast(self._num_rows,
624                                                        self.dtype.real_dtype)
625
626  def _shape(self):
627    matrix_shape = tensor_shape.TensorShape((self._num_rows_static,
628                                             self._num_rows_static))
629
630    batch_shape = self.multiplier.get_shape()
631    return batch_shape.concatenate(matrix_shape)
632
633  def _shape_tensor(self):
634    matrix_shape = array_ops.stack((self._num_rows, self._num_rows), axis=0)
635
636    batch_shape = array_ops.shape(self.multiplier)
637    return array_ops.concat((batch_shape, matrix_shape), 0)
638
639  def _assert_non_singular(self):
640    return check_ops.assert_positive(
641        math_ops.abs(self.multiplier), message="LinearOperator was singular")
642
643  def _assert_positive_definite(self):
644    return check_ops.assert_positive(
645        math_ops.real(self.multiplier),
646        message="LinearOperator was not positive definite.")
647
648  def _assert_self_adjoint(self):
649    imag_multiplier = math_ops.imag(self.multiplier)
650    return check_ops.assert_equal(
651        array_ops.zeros_like(imag_multiplier),
652        imag_multiplier,
653        message="LinearOperator was not self-adjoint")
654
655  def _matmul(self, x, adjoint=False, adjoint_arg=False):
656    x = linalg.adjoint(x) if adjoint_arg else x
657    if adjoint:
658      matrix = self._multiplier_matrix_conj
659    else:
660      matrix = self._multiplier_matrix
661    if self._assert_proper_shapes:
662      aps = linear_operator_util.assert_compatible_matrix_dimensions(self, x)
663      x = control_flow_ops.with_dependencies([aps], x)
664    return x * matrix
665
666  def _determinant(self):
667    return self.multiplier**self._num_rows_cast_to_dtype
668
669  def _log_abs_determinant(self):
670    return self._num_rows_cast_to_real_dtype * math_ops.log(
671        self._abs_multiplier)
672
673  def _solve(self, rhs, adjoint=False, adjoint_arg=False):
674    rhs = linalg.adjoint(rhs) if adjoint_arg else rhs
675    if adjoint:
676      matrix = self._multiplier_matrix_conj
677    else:
678      matrix = self._multiplier_matrix
679    if self._assert_proper_shapes:
680      aps = linear_operator_util.assert_compatible_matrix_dimensions(self, rhs)
681      rhs = control_flow_ops.with_dependencies([aps], rhs)
682    return rhs / matrix
683
684  def _trace(self):
685    # Get Tensor of all ones of same shape as self.batch_shape.
686    if self.batch_shape.is_fully_defined():
687      batch_of_ones = array_ops.ones(shape=self.batch_shape, dtype=self.dtype)
688    else:
689      batch_of_ones = array_ops.ones(
690          shape=self.batch_shape_tensor(), dtype=self.dtype)
691
692    if self._min_matrix_dim() is not None:
693      return self.multiplier * self._min_matrix_dim() * batch_of_ones
694    else:
695      return (self.multiplier * math_ops.cast(self._min_matrix_dim_tensor(),
696                                              self.dtype) * batch_of_ones)
697
698  def _diag_part(self):
699    return self._ones_diag() * self.multiplier[..., array_ops.newaxis]
700
701  def add_to_tensor(self, mat, name="add_to_tensor"):
702    """Add matrix represented by this operator to `mat`.  Equiv to `I + mat`.
703
704    Args:
705      mat:  `Tensor` with same `dtype` and shape broadcastable to `self`.
706      name:  A name to give this `Op`.
707
708    Returns:
709      A `Tensor` with broadcast shape and same `dtype` as `self`.
710    """
711    with self._name_scope(name, values=[mat]):
712      # Shape [B1,...,Bb, 1]
713      multiplier_vector = array_ops.expand_dims(self.multiplier, -1)
714
715      # Shape [C1,...,Cc, M, M]
716      mat = ops.convert_to_tensor(mat, name="mat")
717
718      # Shape [C1,...,Cc, M]
719      mat_diag = array_ops.matrix_diag_part(mat)
720
721      # multiplier_vector broadcasts here.
722      new_diag = multiplier_vector + mat_diag
723
724      return array_ops.matrix_set_diag(mat, new_diag)
725
726  @property
727  def multiplier(self):
728    """The [batch] scalar `Tensor`, `c` in `cI`."""
729    return self._multiplier
730