1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/ast/scopes.h"
6
7 #include <set>
8
9 #include "src/accessors.h"
10 #include "src/ast/ast.h"
11 #include "src/base/optional.h"
12 #include "src/bootstrapper.h"
13 #include "src/counters.h"
14 #include "src/messages.h"
15 #include "src/objects-inl.h"
16 #include "src/objects/module-inl.h"
17 #include "src/objects/scope-info.h"
18 #include "src/parsing/parse-info.h"
19 #include "src/parsing/preparsed-scope-data.h"
20 #include "src/zone/zone-list-inl.h"
21
22 namespace v8 {
23 namespace internal {
24
25 namespace {
26 void* kDummyPreParserVariable = reinterpret_cast<void*>(0x1);
27 void* kDummyPreParserLexicalVariable = reinterpret_cast<void*>(0x2);
28
IsLexical(Variable * variable)29 bool IsLexical(Variable* variable) {
30 if (variable == kDummyPreParserLexicalVariable) return true;
31 if (variable == kDummyPreParserVariable) return false;
32 return IsLexicalVariableMode(variable->mode());
33 }
34
35 } // namespace
36
37 // ----------------------------------------------------------------------------
38 // Implementation of LocalsMap
39 //
40 // Note: We are storing the handle locations as key values in the hash map.
41 // When inserting a new variable via Declare(), we rely on the fact that
42 // the handle location remains alive for the duration of that variable
43 // use. Because a Variable holding a handle with the same location exists
44 // this is ensured.
45
VariableMap(Zone * zone)46 VariableMap::VariableMap(Zone* zone)
47 : ZoneHashMap(8, ZoneAllocationPolicy(zone)) {}
48
Declare(Zone * zone,Scope * scope,const AstRawString * name,VariableMode mode,VariableKind kind,InitializationFlag initialization_flag,MaybeAssignedFlag maybe_assigned_flag,bool * added)49 Variable* VariableMap::Declare(Zone* zone, Scope* scope,
50 const AstRawString* name, VariableMode mode,
51 VariableKind kind,
52 InitializationFlag initialization_flag,
53 MaybeAssignedFlag maybe_assigned_flag,
54 bool* added) {
55 // AstRawStrings are unambiguous, i.e., the same string is always represented
56 // by the same AstRawString*.
57 // FIXME(marja): fix the type of Lookup.
58 Entry* p =
59 ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->Hash(),
60 ZoneAllocationPolicy(zone));
61 if (added) *added = p->value == nullptr;
62 if (p->value == nullptr) {
63 // The variable has not been declared yet -> insert it.
64 DCHECK_EQ(name, p->key);
65 p->value = new (zone) Variable(scope, name, mode, kind, initialization_flag,
66 maybe_assigned_flag);
67 }
68 return reinterpret_cast<Variable*>(p->value);
69 }
70
DeclareName(Zone * zone,const AstRawString * name,VariableMode mode)71 Variable* VariableMap::DeclareName(Zone* zone, const AstRawString* name,
72 VariableMode mode) {
73 Entry* p =
74 ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->Hash(),
75 ZoneAllocationPolicy(zone));
76 if (p->value == nullptr) {
77 // The variable has not been declared yet -> insert it.
78 DCHECK_EQ(name, p->key);
79 p->value = mode == VariableMode::kVar ? kDummyPreParserVariable
80 : kDummyPreParserLexicalVariable;
81 }
82 return reinterpret_cast<Variable*>(p->value);
83 }
84
Remove(Variable * var)85 void VariableMap::Remove(Variable* var) {
86 const AstRawString* name = var->raw_name();
87 ZoneHashMap::Remove(const_cast<AstRawString*>(name), name->Hash());
88 }
89
Add(Zone * zone,Variable * var)90 void VariableMap::Add(Zone* zone, Variable* var) {
91 const AstRawString* name = var->raw_name();
92 Entry* p =
93 ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->Hash(),
94 ZoneAllocationPolicy(zone));
95 DCHECK_NULL(p->value);
96 DCHECK_EQ(name, p->key);
97 p->value = var;
98 }
99
Lookup(const AstRawString * name)100 Variable* VariableMap::Lookup(const AstRawString* name) {
101 Entry* p = ZoneHashMap::Lookup(const_cast<AstRawString*>(name), name->Hash());
102 if (p != nullptr) {
103 DCHECK(reinterpret_cast<const AstRawString*>(p->key) == name);
104 DCHECK_NOT_NULL(p->value);
105 return reinterpret_cast<Variable*>(p->value);
106 }
107 return nullptr;
108 }
109
set_statement(Statement * statement)110 void SloppyBlockFunctionMap::Delegate::set_statement(Statement* statement) {
111 if (statement_ != nullptr) {
112 statement_->set_statement(statement);
113 }
114 }
115
SloppyBlockFunctionMap(Zone * zone)116 SloppyBlockFunctionMap::SloppyBlockFunctionMap(Zone* zone)
117 : ZoneHashMap(8, ZoneAllocationPolicy(zone)), count_(0) {}
118
Declare(Zone * zone,const AstRawString * name,Scope * scope,SloppyBlockFunctionStatement * statement)119 void SloppyBlockFunctionMap::Declare(Zone* zone, const AstRawString* name,
120 Scope* scope,
121 SloppyBlockFunctionStatement* statement) {
122 auto* delegate = new (zone) Delegate(scope, statement, count_++);
123 // AstRawStrings are unambiguous, i.e., the same string is always represented
124 // by the same AstRawString*.
125 Entry* p =
126 ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->Hash(),
127 ZoneAllocationPolicy(zone));
128 delegate->set_next(static_cast<SloppyBlockFunctionMap::Delegate*>(p->value));
129 p->value = delegate;
130 }
131
132 // ----------------------------------------------------------------------------
133 // Implementation of Scope
134
Scope(Zone * zone)135 Scope::Scope(Zone* zone)
136 : zone_(zone),
137 outer_scope_(nullptr),
138 variables_(zone),
139 scope_type_(SCRIPT_SCOPE) {
140 SetDefaults();
141 }
142
Scope(Zone * zone,Scope * outer_scope,ScopeType scope_type)143 Scope::Scope(Zone* zone, Scope* outer_scope, ScopeType scope_type)
144 : zone_(zone),
145 outer_scope_(outer_scope),
146 variables_(zone),
147 scope_type_(scope_type) {
148 DCHECK_NE(SCRIPT_SCOPE, scope_type);
149 SetDefaults();
150 set_language_mode(outer_scope->language_mode());
151 outer_scope_->AddInnerScope(this);
152 }
153
Snapshot(Scope * scope)154 Scope::Snapshot::Snapshot(Scope* scope)
155 : outer_scope_(scope),
156 top_inner_scope_(scope->inner_scope_),
157 top_unresolved_(scope->unresolved_),
158 top_local_(scope->GetClosureScope()->locals_.end()),
159 top_decl_(scope->GetClosureScope()->decls_.end()),
160 outer_scope_calls_eval_(scope->scope_calls_eval_) {
161 // Reset in order to record eval calls during this Snapshot's lifetime.
162 outer_scope_->scope_calls_eval_ = false;
163 }
164
~Snapshot()165 Scope::Snapshot::~Snapshot() {
166 // Restore previous calls_eval bit if needed.
167 if (outer_scope_calls_eval_) {
168 outer_scope_->scope_calls_eval_ = true;
169 }
170 }
171
DeclarationScope(Zone * zone,AstValueFactory * ast_value_factory)172 DeclarationScope::DeclarationScope(Zone* zone,
173 AstValueFactory* ast_value_factory)
174 : Scope(zone), function_kind_(kNormalFunction), params_(4, zone) {
175 DCHECK_EQ(scope_type_, SCRIPT_SCOPE);
176 SetDefaults();
177
178 // Make sure that if we don't find the global 'this', it won't be declared as
179 // a regular dynamic global by predeclaring it with the right variable kind.
180 DeclareDynamicGlobal(ast_value_factory->this_string(), THIS_VARIABLE);
181 }
182
DeclarationScope(Zone * zone,Scope * outer_scope,ScopeType scope_type,FunctionKind function_kind)183 DeclarationScope::DeclarationScope(Zone* zone, Scope* outer_scope,
184 ScopeType scope_type,
185 FunctionKind function_kind)
186 : Scope(zone, outer_scope, scope_type),
187 function_kind_(function_kind),
188 params_(4, zone) {
189 DCHECK_NE(scope_type, SCRIPT_SCOPE);
190 SetDefaults();
191 }
192
IsDeclaredParameter(const AstRawString * name)193 bool DeclarationScope::IsDeclaredParameter(const AstRawString* name) {
194 // If IsSimpleParameterList is false, duplicate parameters are not allowed,
195 // however `arguments` may be allowed if function is not strict code. Thus,
196 // the assumptions explained above do not hold.
197 return params_.Contains(variables_.Lookup(name));
198 }
199
ModuleScope(DeclarationScope * script_scope,AstValueFactory * ast_value_factory)200 ModuleScope::ModuleScope(DeclarationScope* script_scope,
201 AstValueFactory* ast_value_factory)
202 : DeclarationScope(ast_value_factory->zone(), script_scope, MODULE_SCOPE,
203 kModule) {
204 Zone* zone = ast_value_factory->zone();
205 module_descriptor_ = new (zone) ModuleDescriptor(zone);
206 set_language_mode(LanguageMode::kStrict);
207 DeclareThis(ast_value_factory);
208 }
209
ModuleScope(Isolate * isolate,Handle<ScopeInfo> scope_info,AstValueFactory * avfactory)210 ModuleScope::ModuleScope(Isolate* isolate, Handle<ScopeInfo> scope_info,
211 AstValueFactory* avfactory)
212 : DeclarationScope(avfactory->zone(), MODULE_SCOPE, scope_info) {
213 Zone* zone = avfactory->zone();
214 Handle<ModuleInfo> module_info(scope_info->ModuleDescriptorInfo(), isolate);
215
216 set_language_mode(LanguageMode::kStrict);
217 module_descriptor_ = new (zone) ModuleDescriptor(zone);
218
219 // Deserialize special exports.
220 Handle<FixedArray> special_exports(module_info->special_exports(), isolate);
221 for (int i = 0, n = special_exports->length(); i < n; ++i) {
222 Handle<ModuleInfoEntry> serialized_entry(
223 ModuleInfoEntry::cast(special_exports->get(i)), isolate);
224 module_descriptor_->AddSpecialExport(
225 ModuleDescriptor::Entry::Deserialize(isolate, avfactory,
226 serialized_entry),
227 avfactory->zone());
228 }
229
230 // Deserialize regular exports.
231 module_descriptor_->DeserializeRegularExports(isolate, avfactory,
232 module_info);
233
234 // Deserialize namespace imports.
235 Handle<FixedArray> namespace_imports(module_info->namespace_imports(),
236 isolate);
237 for (int i = 0, n = namespace_imports->length(); i < n; ++i) {
238 Handle<ModuleInfoEntry> serialized_entry(
239 ModuleInfoEntry::cast(namespace_imports->get(i)), isolate);
240 module_descriptor_->AddNamespaceImport(
241 ModuleDescriptor::Entry::Deserialize(isolate, avfactory,
242 serialized_entry),
243 avfactory->zone());
244 }
245
246 // Deserialize regular imports.
247 Handle<FixedArray> regular_imports(module_info->regular_imports(), isolate);
248 for (int i = 0, n = regular_imports->length(); i < n; ++i) {
249 Handle<ModuleInfoEntry> serialized_entry(
250 ModuleInfoEntry::cast(regular_imports->get(i)), isolate);
251 module_descriptor_->AddRegularImport(ModuleDescriptor::Entry::Deserialize(
252 isolate, avfactory, serialized_entry));
253 }
254 }
255
Scope(Zone * zone,ScopeType scope_type,Handle<ScopeInfo> scope_info)256 Scope::Scope(Zone* zone, ScopeType scope_type, Handle<ScopeInfo> scope_info)
257 : zone_(zone),
258 outer_scope_(nullptr),
259 variables_(zone),
260 scope_info_(scope_info),
261 scope_type_(scope_type) {
262 DCHECK(!scope_info.is_null());
263 SetDefaults();
264 #ifdef DEBUG
265 already_resolved_ = true;
266 #endif
267 if (scope_info->CallsSloppyEval()) scope_calls_eval_ = true;
268 set_language_mode(scope_info->language_mode());
269 num_heap_slots_ = scope_info->ContextLength();
270 DCHECK_LE(Context::MIN_CONTEXT_SLOTS, num_heap_slots_);
271 // We don't really need to use the preparsed scope data; this is just to
272 // shorten the recursion in SetMustUsePreParsedScopeData.
273 must_use_preparsed_scope_data_ = true;
274 }
275
DeclarationScope(Zone * zone,ScopeType scope_type,Handle<ScopeInfo> scope_info)276 DeclarationScope::DeclarationScope(Zone* zone, ScopeType scope_type,
277 Handle<ScopeInfo> scope_info)
278 : Scope(zone, scope_type, scope_info),
279 function_kind_(scope_info->function_kind()),
280 params_(0, zone) {
281 DCHECK_NE(scope_type, SCRIPT_SCOPE);
282 SetDefaults();
283 }
284
Scope(Zone * zone,const AstRawString * catch_variable_name,MaybeAssignedFlag maybe_assigned,Handle<ScopeInfo> scope_info)285 Scope::Scope(Zone* zone, const AstRawString* catch_variable_name,
286 MaybeAssignedFlag maybe_assigned, Handle<ScopeInfo> scope_info)
287 : zone_(zone),
288 outer_scope_(nullptr),
289 variables_(zone),
290 scope_info_(scope_info),
291 scope_type_(CATCH_SCOPE) {
292 SetDefaults();
293 #ifdef DEBUG
294 already_resolved_ = true;
295 #endif
296 // Cache the catch variable, even though it's also available via the
297 // scope_info, as the parser expects that a catch scope always has the catch
298 // variable as first and only variable.
299 Variable* variable =
300 Declare(zone, catch_variable_name, VariableMode::kVar, NORMAL_VARIABLE,
301 kCreatedInitialized, maybe_assigned);
302 AllocateHeapSlot(variable);
303 }
304
SetDefaults()305 void DeclarationScope::SetDefaults() {
306 is_declaration_scope_ = true;
307 has_simple_parameters_ = true;
308 asm_module_ = false;
309 force_eager_compilation_ = false;
310 has_arguments_parameter_ = false;
311 scope_uses_super_property_ = false;
312 has_rest_ = false;
313 sloppy_block_function_map_ = nullptr;
314 receiver_ = nullptr;
315 new_target_ = nullptr;
316 function_ = nullptr;
317 arguments_ = nullptr;
318 rare_data_ = nullptr;
319 should_eager_compile_ = false;
320 was_lazily_parsed_ = false;
321 is_skipped_function_ = false;
322 produced_preparsed_scope_data_ = nullptr;
323 #ifdef DEBUG
324 DeclarationScope* outer_declaration_scope =
325 outer_scope_ ? outer_scope_->GetDeclarationScope() : nullptr;
326 is_being_lazily_parsed_ =
327 outer_declaration_scope ? outer_declaration_scope->is_being_lazily_parsed_
328 : false;
329 #endif
330 }
331
SetDefaults()332 void Scope::SetDefaults() {
333 #ifdef DEBUG
334 scope_name_ = nullptr;
335 already_resolved_ = false;
336 needs_migration_ = false;
337 #endif
338 inner_scope_ = nullptr;
339 sibling_ = nullptr;
340 unresolved_ = nullptr;
341
342 start_position_ = kNoSourcePosition;
343 end_position_ = kNoSourcePosition;
344
345 num_stack_slots_ = 0;
346 num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
347
348 set_language_mode(LanguageMode::kSloppy);
349
350 scope_calls_eval_ = false;
351 scope_nonlinear_ = false;
352 is_hidden_ = false;
353 is_debug_evaluate_scope_ = false;
354
355 inner_scope_calls_eval_ = false;
356 force_context_allocation_ = false;
357 force_context_allocation_for_parameters_ = false;
358
359 is_declaration_scope_ = false;
360
361 must_use_preparsed_scope_data_ = false;
362 }
363
HasSimpleParameters()364 bool Scope::HasSimpleParameters() {
365 DeclarationScope* scope = GetClosureScope();
366 return !scope->is_function_scope() || scope->has_simple_parameters();
367 }
368
ShouldEagerCompile() const369 bool DeclarationScope::ShouldEagerCompile() const {
370 return force_eager_compilation_ || should_eager_compile_;
371 }
372
set_should_eager_compile()373 void DeclarationScope::set_should_eager_compile() {
374 should_eager_compile_ = !was_lazily_parsed_;
375 }
376
set_asm_module()377 void DeclarationScope::set_asm_module() {
378 asm_module_ = true;
379 }
380
IsAsmModule() const381 bool Scope::IsAsmModule() const {
382 return is_function_scope() && AsDeclarationScope()->asm_module();
383 }
384
ContainsAsmModule() const385 bool Scope::ContainsAsmModule() const {
386 if (IsAsmModule()) return true;
387
388 // Check inner scopes recursively
389 for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
390 // Don't check inner functions which won't be eagerly compiled.
391 if (!scope->is_function_scope() ||
392 scope->AsDeclarationScope()->ShouldEagerCompile()) {
393 if (scope->ContainsAsmModule()) return true;
394 }
395 }
396
397 return false;
398 }
399
DeserializeScopeChain(Isolate * isolate,Zone * zone,ScopeInfo * scope_info,DeclarationScope * script_scope,AstValueFactory * ast_value_factory,DeserializationMode deserialization_mode)400 Scope* Scope::DeserializeScopeChain(Isolate* isolate, Zone* zone,
401 ScopeInfo* scope_info,
402 DeclarationScope* script_scope,
403 AstValueFactory* ast_value_factory,
404 DeserializationMode deserialization_mode) {
405 // Reconstruct the outer scope chain from a closure's context chain.
406 Scope* current_scope = nullptr;
407 Scope* innermost_scope = nullptr;
408 Scope* outer_scope = nullptr;
409 while (scope_info) {
410 if (scope_info->scope_type() == WITH_SCOPE) {
411 // For scope analysis, debug-evaluate is equivalent to a with scope.
412 outer_scope =
413 new (zone) Scope(zone, WITH_SCOPE, handle(scope_info, isolate));
414
415 // TODO(yangguo): Remove once debug-evaluate properly keeps track of the
416 // function scope in which we are evaluating.
417 if (scope_info->IsDebugEvaluateScope()) {
418 outer_scope->set_is_debug_evaluate_scope();
419 }
420 } else if (scope_info->scope_type() == SCRIPT_SCOPE) {
421 // If we reach a script scope, it's the outermost scope. Install the
422 // scope info of this script context onto the existing script scope to
423 // avoid nesting script scopes.
424 if (deserialization_mode == DeserializationMode::kIncludingVariables) {
425 script_scope->SetScriptScopeInfo(handle(scope_info, isolate));
426 }
427 DCHECK(!scope_info->HasOuterScopeInfo());
428 break;
429 } else if (scope_info->scope_type() == FUNCTION_SCOPE) {
430 outer_scope = new (zone)
431 DeclarationScope(zone, FUNCTION_SCOPE, handle(scope_info, isolate));
432 if (scope_info->IsAsmModule())
433 outer_scope->AsDeclarationScope()->set_asm_module();
434 } else if (scope_info->scope_type() == EVAL_SCOPE) {
435 outer_scope = new (zone)
436 DeclarationScope(zone, EVAL_SCOPE, handle(scope_info, isolate));
437 } else if (scope_info->scope_type() == BLOCK_SCOPE) {
438 if (scope_info->is_declaration_scope()) {
439 outer_scope = new (zone)
440 DeclarationScope(zone, BLOCK_SCOPE, handle(scope_info, isolate));
441 } else {
442 outer_scope =
443 new (zone) Scope(zone, BLOCK_SCOPE, handle(scope_info, isolate));
444 }
445 } else if (scope_info->scope_type() == MODULE_SCOPE) {
446 outer_scope = new (zone)
447 ModuleScope(isolate, handle(scope_info, isolate), ast_value_factory);
448 } else {
449 DCHECK_EQ(scope_info->scope_type(), CATCH_SCOPE);
450 DCHECK_EQ(scope_info->ContextLocalCount(), 1);
451 DCHECK_EQ(scope_info->ContextLocalMode(0), VariableMode::kVar);
452 DCHECK_EQ(scope_info->ContextLocalInitFlag(0), kCreatedInitialized);
453 String* name = scope_info->ContextLocalName(0);
454 MaybeAssignedFlag maybe_assigned =
455 scope_info->ContextLocalMaybeAssignedFlag(0);
456 outer_scope = new (zone)
457 Scope(zone, ast_value_factory->GetString(handle(name, isolate)),
458 maybe_assigned, handle(scope_info, isolate));
459 }
460 if (deserialization_mode == DeserializationMode::kScopesOnly) {
461 outer_scope->scope_info_ = Handle<ScopeInfo>::null();
462 }
463 if (current_scope != nullptr) {
464 outer_scope->AddInnerScope(current_scope);
465 }
466 current_scope = outer_scope;
467 if (innermost_scope == nullptr) innermost_scope = current_scope;
468 scope_info = scope_info->HasOuterScopeInfo() ? scope_info->OuterScopeInfo()
469 : nullptr;
470 }
471
472 if (innermost_scope == nullptr) return script_scope;
473 script_scope->AddInnerScope(current_scope);
474 return innermost_scope;
475 }
476
AsDeclarationScope()477 DeclarationScope* Scope::AsDeclarationScope() {
478 DCHECK(is_declaration_scope());
479 return static_cast<DeclarationScope*>(this);
480 }
481
AsDeclarationScope() const482 const DeclarationScope* Scope::AsDeclarationScope() const {
483 DCHECK(is_declaration_scope());
484 return static_cast<const DeclarationScope*>(this);
485 }
486
AsModuleScope()487 ModuleScope* Scope::AsModuleScope() {
488 DCHECK(is_module_scope());
489 return static_cast<ModuleScope*>(this);
490 }
491
AsModuleScope() const492 const ModuleScope* Scope::AsModuleScope() const {
493 DCHECK(is_module_scope());
494 return static_cast<const ModuleScope*>(this);
495 }
496
num_parameters() const497 int Scope::num_parameters() const {
498 return is_declaration_scope() ? AsDeclarationScope()->num_parameters() : 0;
499 }
500
DeclareSloppyBlockFunction(const AstRawString * name,Scope * scope,SloppyBlockFunctionStatement * statement)501 void DeclarationScope::DeclareSloppyBlockFunction(
502 const AstRawString* name, Scope* scope,
503 SloppyBlockFunctionStatement* statement) {
504 if (sloppy_block_function_map_ == nullptr) {
505 sloppy_block_function_map_ =
506 new (zone()->New(sizeof(SloppyBlockFunctionMap)))
507 SloppyBlockFunctionMap(zone());
508 }
509 sloppy_block_function_map_->Declare(zone(), name, scope, statement);
510 }
511
HoistSloppyBlockFunctions(AstNodeFactory * factory)512 void DeclarationScope::HoistSloppyBlockFunctions(AstNodeFactory* factory) {
513 DCHECK(is_sloppy(language_mode()));
514 DCHECK(is_function_scope() || is_eval_scope() || is_script_scope() ||
515 (is_block_scope() && outer_scope()->is_function_scope()));
516 DCHECK(HasSimpleParameters() || is_block_scope() || is_being_lazily_parsed_);
517 DCHECK_EQ(factory == nullptr, is_being_lazily_parsed_);
518
519 SloppyBlockFunctionMap* map = sloppy_block_function_map();
520 if (map == nullptr) return;
521
522 const bool has_simple_parameters = HasSimpleParameters();
523
524 // The declarations need to be added in the order they were seen,
525 // so accumulate declared names sorted by index.
526 ZoneMap<int, const AstRawString*> names_to_declare(zone());
527
528 // For each variable which is used as a function declaration in a sloppy
529 // block,
530 for (ZoneHashMap::Entry* p = map->Start(); p != nullptr; p = map->Next(p)) {
531 const AstRawString* name = static_cast<AstRawString*>(p->key);
532
533 // If the variable wouldn't conflict with a lexical declaration
534 // or parameter,
535
536 // Check if there's a conflict with a parameter.
537 // This depends on the fact that functions always have a scope solely to
538 // hold complex parameters, and the names local to that scope are
539 // precisely the names of the parameters. IsDeclaredParameter(name) does
540 // not hold for names declared by complex parameters, nor are those
541 // bindings necessarily declared lexically, so we have to check for them
542 // explicitly. On the other hand, if there are not complex parameters,
543 // it is sufficient to just check IsDeclaredParameter.
544 if (!has_simple_parameters) {
545 if (outer_scope_->LookupLocal(name) != nullptr) {
546 continue;
547 }
548 } else {
549 if (IsDeclaredParameter(name)) {
550 continue;
551 }
552 }
553
554 bool declaration_queued = false;
555
556 // Write in assignments to var for each block-scoped function declaration
557 auto delegates = static_cast<SloppyBlockFunctionMap::Delegate*>(p->value);
558
559 DeclarationScope* decl_scope = this;
560 while (decl_scope->is_eval_scope()) {
561 decl_scope = decl_scope->outer_scope()->GetDeclarationScope();
562 }
563 Scope* outer_scope = decl_scope->outer_scope();
564
565 for (SloppyBlockFunctionMap::Delegate* delegate = delegates;
566 delegate != nullptr; delegate = delegate->next()) {
567 // Check if there's a conflict with a lexical declaration
568 Scope* query_scope = delegate->scope()->outer_scope();
569 Variable* var = nullptr;
570 bool should_hoist = true;
571
572 // Note that we perform this loop for each delegate named 'name',
573 // which may duplicate work if those delegates share scopes.
574 // It is not sufficient to just do a Lookup on query_scope: for
575 // example, that does not prevent hoisting of the function in
576 // `{ let e; try {} catch (e) { function e(){} } }`
577 do {
578 var = query_scope->LookupLocal(name);
579 if (var != nullptr && IsLexical(var)) {
580 should_hoist = false;
581 break;
582 }
583 query_scope = query_scope->outer_scope();
584 } while (query_scope != outer_scope);
585
586 if (!should_hoist) continue;
587
588 if (!declaration_queued) {
589 declaration_queued = true;
590 names_to_declare.insert({delegate->index(), name});
591 }
592
593 if (factory) {
594 DCHECK(!is_being_lazily_parsed_);
595 Assignment* assignment = factory->NewAssignment(
596 Token::ASSIGN, NewUnresolved(factory, name),
597 delegate->scope()->NewUnresolved(factory, name), kNoSourcePosition);
598 assignment->set_lookup_hoisting_mode(LookupHoistingMode::kLegacySloppy);
599 Statement* statement =
600 factory->NewExpressionStatement(assignment, kNoSourcePosition);
601 delegate->set_statement(statement);
602 }
603 }
604 }
605
606 if (names_to_declare.empty()) return;
607
608 for (const auto& index_and_name : names_to_declare) {
609 const AstRawString* name = index_and_name.second;
610 if (factory) {
611 DCHECK(!is_being_lazily_parsed_);
612 VariableProxy* proxy = factory->NewVariableProxy(name, NORMAL_VARIABLE);
613 auto declaration =
614 factory->NewVariableDeclaration(proxy, kNoSourcePosition);
615 // Based on the preceding checks, it doesn't matter what we pass as
616 // sloppy_mode_block_scope_function_redefinition.
617 bool ok = true;
618 DeclareVariable(declaration, VariableMode::kVar,
619 Variable::DefaultInitializationFlag(VariableMode::kVar),
620 nullptr, &ok);
621 DCHECK(ok);
622 } else {
623 DCHECK(is_being_lazily_parsed_);
624 Variable* var = DeclareVariableName(name, VariableMode::kVar);
625 if (var != kDummyPreParserVariable &&
626 var != kDummyPreParserLexicalVariable) {
627 DCHECK(FLAG_preparser_scope_analysis);
628 var->set_maybe_assigned();
629 }
630 }
631 }
632 }
633
AttachOuterScopeInfo(ParseInfo * info,Isolate * isolate)634 void DeclarationScope::AttachOuterScopeInfo(ParseInfo* info, Isolate* isolate) {
635 DCHECK(scope_info_.is_null());
636 Handle<ScopeInfo> outer_scope_info;
637 if (info->maybe_outer_scope_info().ToHandle(&outer_scope_info)) {
638 // If we have a scope info we will potentially need to lookup variable names
639 // on the scope info as internalized strings, so make sure ast_value_factory
640 // is internalized.
641 info->ast_value_factory()->Internalize(isolate);
642 if (outer_scope()) {
643 DeclarationScope* script_scope = new (info->zone())
644 DeclarationScope(info->zone(), info->ast_value_factory());
645 info->set_script_scope(script_scope);
646 ReplaceOuterScope(Scope::DeserializeScopeChain(
647 isolate, info->zone(), *outer_scope_info, script_scope,
648 info->ast_value_factory(),
649 Scope::DeserializationMode::kIncludingVariables));
650 } else {
651 DCHECK_EQ(outer_scope_info->scope_type(), SCRIPT_SCOPE);
652 SetScriptScopeInfo(outer_scope_info);
653 }
654 }
655 }
656
Analyze(ParseInfo * info)657 bool DeclarationScope::Analyze(ParseInfo* info) {
658 RuntimeCallTimerScope runtimeTimer(
659 info->runtime_call_stats(),
660 info->on_background_thread()
661 ? RuntimeCallCounterId::kCompileBackgroundScopeAnalysis
662 : RuntimeCallCounterId::kCompileScopeAnalysis);
663 DCHECK_NOT_NULL(info->literal());
664 DeclarationScope* scope = info->literal()->scope();
665
666 base::Optional<AllowHandleDereference> allow_deref;
667 if (!info->maybe_outer_scope_info().is_null()) {
668 // Allow dereferences to the scope info if there is one.
669 allow_deref.emplace();
670 }
671
672 if (scope->is_eval_scope() && is_sloppy(scope->language_mode())) {
673 AstNodeFactory factory(info->ast_value_factory(), info->zone());
674 scope->HoistSloppyBlockFunctions(&factory);
675 }
676
677 // We are compiling one of four cases:
678 // 1) top-level code,
679 // 2) a function/eval/module on the top-level
680 // 3) a function/eval in a scope that was already resolved.
681 DCHECK(scope->scope_type() == SCRIPT_SCOPE ||
682 scope->outer_scope()->scope_type() == SCRIPT_SCOPE ||
683 scope->outer_scope()->already_resolved_);
684
685 // The outer scope is never lazy.
686 scope->set_should_eager_compile();
687
688 if (scope->must_use_preparsed_scope_data_) {
689 DCHECK(FLAG_preparser_scope_analysis);
690 DCHECK_EQ(scope->scope_type_, ScopeType::FUNCTION_SCOPE);
691 allow_deref.emplace();
692 info->consumed_preparsed_scope_data()->RestoreScopeAllocationData(scope);
693 }
694
695 if (!scope->AllocateVariables(info)) return false;
696
697 #ifdef DEBUG
698 if (info->is_native() ? FLAG_print_builtin_scopes : FLAG_print_scopes) {
699 PrintF("Global scope:\n");
700 scope->Print();
701 }
702 scope->CheckScopePositions();
703 scope->CheckZones();
704 #endif
705
706 return true;
707 }
708
DeclareThis(AstValueFactory * ast_value_factory)709 void DeclarationScope::DeclareThis(AstValueFactory* ast_value_factory) {
710 DCHECK(!already_resolved_);
711 DCHECK(is_declaration_scope());
712 DCHECK(has_this_declaration());
713
714 bool derived_constructor = IsDerivedConstructor(function_kind_);
715 Variable* var =
716 Declare(zone(), ast_value_factory->this_string(),
717 derived_constructor ? VariableMode::kConst : VariableMode::kVar,
718 THIS_VARIABLE,
719 derived_constructor ? kNeedsInitialization : kCreatedInitialized);
720 receiver_ = var;
721 }
722
DeclareArguments(AstValueFactory * ast_value_factory)723 void DeclarationScope::DeclareArguments(AstValueFactory* ast_value_factory) {
724 DCHECK(is_function_scope());
725 DCHECK(!is_arrow_scope());
726
727 arguments_ = LookupLocal(ast_value_factory->arguments_string());
728 if (arguments_ == nullptr) {
729 // Declare 'arguments' variable which exists in all non arrow functions.
730 // Note that it might never be accessed, in which case it won't be
731 // allocated during variable allocation.
732 arguments_ = Declare(zone(), ast_value_factory->arguments_string(),
733 VariableMode::kVar);
734 } else if (IsLexical(arguments_)) {
735 // Check if there's lexically declared variable named arguments to avoid
736 // redeclaration. See ES#sec-functiondeclarationinstantiation, step 20.
737 arguments_ = nullptr;
738 }
739 }
740
DeclareDefaultFunctionVariables(AstValueFactory * ast_value_factory)741 void DeclarationScope::DeclareDefaultFunctionVariables(
742 AstValueFactory* ast_value_factory) {
743 DCHECK(is_function_scope());
744 DCHECK(!is_arrow_scope());
745
746 DeclareThis(ast_value_factory);
747 new_target_ = Declare(zone(), ast_value_factory->new_target_string(),
748 VariableMode::kConst);
749
750 if (IsConciseMethod(function_kind_) || IsClassConstructor(function_kind_) ||
751 IsAccessorFunction(function_kind_)) {
752 EnsureRareData()->this_function =
753 Declare(zone(), ast_value_factory->this_function_string(),
754 VariableMode::kConst);
755 }
756 }
757
DeclareFunctionVar(const AstRawString * name)758 Variable* DeclarationScope::DeclareFunctionVar(const AstRawString* name) {
759 DCHECK(is_function_scope());
760 DCHECK_NULL(function_);
761 DCHECK_NULL(variables_.Lookup(name));
762 VariableKind kind = is_sloppy(language_mode()) ? SLOPPY_FUNCTION_NAME_VARIABLE
763 : NORMAL_VARIABLE;
764 function_ = new (zone())
765 Variable(this, name, VariableMode::kConst, kind, kCreatedInitialized);
766 if (calls_sloppy_eval()) {
767 NonLocal(name, VariableMode::kDynamic);
768 } else {
769 variables_.Add(zone(), function_);
770 }
771 return function_;
772 }
773
DeclareGeneratorObjectVar(const AstRawString * name)774 Variable* DeclarationScope::DeclareGeneratorObjectVar(
775 const AstRawString* name) {
776 DCHECK(is_function_scope() || is_module_scope());
777 DCHECK_NULL(generator_object_var());
778
779 Variable* result = EnsureRareData()->generator_object =
780 NewTemporary(name, kNotAssigned);
781 result->set_is_used();
782 return result;
783 }
784
DeclarePromiseVar(const AstRawString * name)785 Variable* DeclarationScope::DeclarePromiseVar(const AstRawString* name) {
786 DCHECK(is_function_scope());
787 DCHECK_NULL(promise_var());
788 Variable* result = EnsureRareData()->promise = NewTemporary(name);
789 result->set_is_used();
790 return result;
791 }
792
HasBeenRemoved() const793 bool Scope::HasBeenRemoved() const {
794 if (sibling() == this) {
795 DCHECK_NULL(inner_scope_);
796 DCHECK(is_block_scope());
797 return true;
798 }
799 return false;
800 }
801
GetUnremovedScope()802 Scope* Scope::GetUnremovedScope() {
803 Scope* scope = this;
804 while (scope != nullptr && scope->HasBeenRemoved()) {
805 scope = scope->outer_scope();
806 }
807 DCHECK_NOT_NULL(scope);
808 return scope;
809 }
810
FinalizeBlockScope()811 Scope* Scope::FinalizeBlockScope() {
812 DCHECK(is_block_scope());
813 DCHECK(!HasBeenRemoved());
814
815 if (variables_.occupancy() > 0 ||
816 (is_declaration_scope() && AsDeclarationScope()->calls_sloppy_eval())) {
817 return this;
818 }
819
820 // Remove this scope from outer scope.
821 outer_scope()->RemoveInnerScope(this);
822
823 // Reparent inner scopes.
824 if (inner_scope_ != nullptr) {
825 Scope* scope = inner_scope_;
826 scope->outer_scope_ = outer_scope();
827 while (scope->sibling_ != nullptr) {
828 scope = scope->sibling_;
829 scope->outer_scope_ = outer_scope();
830 }
831 scope->sibling_ = outer_scope()->inner_scope_;
832 outer_scope()->inner_scope_ = inner_scope_;
833 inner_scope_ = nullptr;
834 }
835
836 // Move unresolved variables
837 if (unresolved_ != nullptr) {
838 if (outer_scope()->unresolved_ != nullptr) {
839 VariableProxy* unresolved = unresolved_;
840 while (unresolved->next_unresolved() != nullptr) {
841 unresolved = unresolved->next_unresolved();
842 }
843 unresolved->set_next_unresolved(outer_scope()->unresolved_);
844 }
845 outer_scope()->unresolved_ = unresolved_;
846 unresolved_ = nullptr;
847 }
848
849 if (inner_scope_calls_eval_) outer_scope()->inner_scope_calls_eval_ = true;
850
851 // No need to propagate scope_calls_eval_, since if it was relevant to
852 // this scope we would have had to bail out at the top.
853 DCHECK(!scope_calls_eval_ || !is_declaration_scope() ||
854 !is_sloppy(language_mode()));
855
856 // This block does not need a context.
857 num_heap_slots_ = 0;
858
859 // Mark scope as removed by making it its own sibling.
860 sibling_ = this;
861 DCHECK(HasBeenRemoved());
862
863 return nullptr;
864 }
865
AddLocal(Variable * var)866 void DeclarationScope::AddLocal(Variable* var) {
867 DCHECK(!already_resolved_);
868 // Temporaries are only placed in ClosureScopes.
869 DCHECK_EQ(GetClosureScope(), this);
870 locals_.Add(var);
871 }
872
Declare(Zone * zone,const AstRawString * name,VariableMode mode,VariableKind kind,InitializationFlag initialization_flag,MaybeAssignedFlag maybe_assigned_flag)873 Variable* Scope::Declare(Zone* zone, const AstRawString* name,
874 VariableMode mode, VariableKind kind,
875 InitializationFlag initialization_flag,
876 MaybeAssignedFlag maybe_assigned_flag) {
877 bool added;
878 Variable* var =
879 variables_.Declare(zone, this, name, mode, kind, initialization_flag,
880 maybe_assigned_flag, &added);
881 if (added) locals_.Add(var);
882 return var;
883 }
884
Reparent(DeclarationScope * new_parent) const885 void Scope::Snapshot::Reparent(DeclarationScope* new_parent) const {
886 DCHECK_EQ(new_parent, outer_scope_->inner_scope_);
887 DCHECK_EQ(new_parent->outer_scope_, outer_scope_);
888 DCHECK_EQ(new_parent, new_parent->GetClosureScope());
889 DCHECK_NULL(new_parent->inner_scope_);
890 DCHECK_NULL(new_parent->unresolved_);
891 DCHECK(new_parent->locals_.is_empty());
892 Scope* inner_scope = new_parent->sibling_;
893 if (inner_scope != top_inner_scope_) {
894 for (; inner_scope->sibling() != top_inner_scope_;
895 inner_scope = inner_scope->sibling()) {
896 inner_scope->outer_scope_ = new_parent;
897 if (inner_scope->inner_scope_calls_eval_) {
898 new_parent->inner_scope_calls_eval_ = true;
899 }
900 DCHECK_NE(inner_scope, new_parent);
901 }
902 inner_scope->outer_scope_ = new_parent;
903 if (inner_scope->inner_scope_calls_eval_) {
904 new_parent->inner_scope_calls_eval_ = true;
905 }
906 new_parent->inner_scope_ = new_parent->sibling_;
907 inner_scope->sibling_ = nullptr;
908 // Reset the sibling rather than the inner_scope_ since we
909 // want to keep new_parent there.
910 new_parent->sibling_ = top_inner_scope_;
911 }
912
913 if (outer_scope_->unresolved_ != top_unresolved_) {
914 VariableProxy* last = outer_scope_->unresolved_;
915 while (last->next_unresolved() != top_unresolved_) {
916 last = last->next_unresolved();
917 }
918 last->set_next_unresolved(nullptr);
919 new_parent->unresolved_ = outer_scope_->unresolved_;
920 outer_scope_->unresolved_ = top_unresolved_;
921 }
922
923 // TODO(verwaest): This currently only moves do-expression declared variables
924 // in default arguments that weren't already previously declared with the same
925 // name in the closure-scope. See
926 // test/mjsunit/harmony/default-parameter-do-expression.js.
927 DeclarationScope* outer_closure = outer_scope_->GetClosureScope();
928
929 new_parent->locals_.MoveTail(outer_closure->locals(), top_local_);
930 for (Variable* local : new_parent->locals_) {
931 DCHECK(local->mode() == VariableMode::kTemporary ||
932 local->mode() == VariableMode::kVar);
933 DCHECK_EQ(local->scope(), local->scope()->GetClosureScope());
934 DCHECK_NE(local->scope(), new_parent);
935 local->set_scope(new_parent);
936 if (local->mode() == VariableMode::kVar) {
937 outer_closure->variables_.Remove(local);
938 new_parent->variables_.Add(new_parent->zone(), local);
939 }
940 }
941 outer_closure->locals_.Rewind(top_local_);
942 outer_closure->decls_.Rewind(top_decl_);
943
944 // Move eval calls since Snapshot's creation into new_parent.
945 if (outer_scope_->scope_calls_eval_) {
946 new_parent->scope_calls_eval_ = true;
947 new_parent->inner_scope_calls_eval_ = true;
948 }
949 // Reset the outer_scope's eval state. It will be restored to its
950 // original value as necessary in the destructor of this class.
951 outer_scope_->scope_calls_eval_ = false;
952 }
953
ReplaceOuterScope(Scope * outer)954 void Scope::ReplaceOuterScope(Scope* outer) {
955 DCHECK_NOT_NULL(outer);
956 DCHECK_NOT_NULL(outer_scope_);
957 DCHECK(!already_resolved_);
958 outer_scope_->RemoveInnerScope(this);
959 outer->AddInnerScope(this);
960 outer_scope_ = outer;
961 }
962
LookupInScopeInfo(const AstRawString * name)963 Variable* Scope::LookupInScopeInfo(const AstRawString* name) {
964 Handle<String> name_handle = name->string();
965 // The Scope is backed up by ScopeInfo. This means it cannot operate in a
966 // heap-independent mode, and all strings must be internalized immediately. So
967 // it's ok to get the Handle<String> here.
968 bool found = false;
969
970 VariableLocation location;
971 int index;
972 VariableMode mode;
973 InitializationFlag init_flag;
974 MaybeAssignedFlag maybe_assigned_flag;
975
976 {
977 location = VariableLocation::CONTEXT;
978 index = ScopeInfo::ContextSlotIndex(scope_info_, name_handle, &mode,
979 &init_flag, &maybe_assigned_flag);
980 found = index >= 0;
981 }
982
983 if (!found && scope_type() == MODULE_SCOPE) {
984 location = VariableLocation::MODULE;
985 index = scope_info_->ModuleIndex(name_handle, &mode, &init_flag,
986 &maybe_assigned_flag);
987 found = index != 0;
988 }
989
990 if (!found) {
991 index = scope_info_->FunctionContextSlotIndex(*name_handle);
992 if (index < 0) return nullptr; // Nowhere found.
993 Variable* var = AsDeclarationScope()->DeclareFunctionVar(name);
994 DCHECK_EQ(VariableMode::kConst, var->mode());
995 var->AllocateTo(VariableLocation::CONTEXT, index);
996 return variables_.Lookup(name);
997 }
998
999 VariableKind kind = NORMAL_VARIABLE;
1000 if (location == VariableLocation::CONTEXT &&
1001 index == scope_info_->ReceiverContextSlotIndex()) {
1002 kind = THIS_VARIABLE;
1003 }
1004 // TODO(marja, rossberg): Correctly declare FUNCTION, CLASS, NEW_TARGET, and
1005 // ARGUMENTS bindings as their corresponding VariableKind.
1006
1007 Variable* var = variables_.Declare(zone(), this, name, mode, kind, init_flag,
1008 maybe_assigned_flag);
1009 var->AllocateTo(location, index);
1010 return var;
1011 }
1012
Lookup(const AstRawString * name)1013 Variable* Scope::Lookup(const AstRawString* name) {
1014 for (Scope* scope = this; scope != nullptr; scope = scope->outer_scope()) {
1015 Variable* var = scope->LookupLocal(name);
1016 if (var != nullptr) return var;
1017 }
1018 return nullptr;
1019 }
1020
DeclareParameter(const AstRawString * name,VariableMode mode,bool is_optional,bool is_rest,bool * is_duplicate,AstValueFactory * ast_value_factory,int position)1021 Variable* DeclarationScope::DeclareParameter(
1022 const AstRawString* name, VariableMode mode, bool is_optional, bool is_rest,
1023 bool* is_duplicate, AstValueFactory* ast_value_factory, int position) {
1024 DCHECK(!already_resolved_);
1025 DCHECK(is_function_scope() || is_module_scope());
1026 DCHECK(!has_rest_);
1027 DCHECK(!is_optional || !is_rest);
1028 DCHECK(!is_being_lazily_parsed_);
1029 DCHECK(!was_lazily_parsed_);
1030 Variable* var;
1031 if (mode == VariableMode::kTemporary) {
1032 var = NewTemporary(name);
1033 } else {
1034 DCHECK_EQ(mode, VariableMode::kVar);
1035 var = Declare(zone(), name, mode);
1036 // TODO(wingo): Avoid O(n^2) check.
1037 if (is_duplicate != nullptr) {
1038 *is_duplicate = *is_duplicate || IsDeclaredParameter(name);
1039 }
1040 }
1041 has_rest_ = is_rest;
1042 var->set_initializer_position(position);
1043 params_.Add(var, zone());
1044 if (name == ast_value_factory->arguments_string()) {
1045 has_arguments_parameter_ = true;
1046 }
1047 return var;
1048 }
1049
DeclareParameterName(const AstRawString * name,bool is_rest,AstValueFactory * ast_value_factory,bool declare_as_local,bool add_parameter)1050 Variable* DeclarationScope::DeclareParameterName(
1051 const AstRawString* name, bool is_rest, AstValueFactory* ast_value_factory,
1052 bool declare_as_local, bool add_parameter) {
1053 DCHECK(!already_resolved_);
1054 DCHECK(is_function_scope() || is_module_scope());
1055 DCHECK(!has_rest_ || is_rest);
1056 DCHECK(is_being_lazily_parsed_);
1057 has_rest_ = is_rest;
1058 if (name == ast_value_factory->arguments_string()) {
1059 has_arguments_parameter_ = true;
1060 }
1061 if (FLAG_preparser_scope_analysis) {
1062 Variable* var;
1063 if (declare_as_local) {
1064 var = Declare(zone(), name, VariableMode::kVar);
1065 } else {
1066 var = new (zone()) Variable(this, name, VariableMode::kTemporary,
1067 NORMAL_VARIABLE, kCreatedInitialized);
1068 }
1069 if (add_parameter) {
1070 params_.Add(var, zone());
1071 }
1072 return var;
1073 }
1074 DeclareVariableName(name, VariableMode::kVar);
1075 return nullptr;
1076 }
1077
DeclareLocal(const AstRawString * name,VariableMode mode,InitializationFlag init_flag,VariableKind kind,MaybeAssignedFlag maybe_assigned_flag)1078 Variable* Scope::DeclareLocal(const AstRawString* name, VariableMode mode,
1079 InitializationFlag init_flag, VariableKind kind,
1080 MaybeAssignedFlag maybe_assigned_flag) {
1081 DCHECK(!already_resolved_);
1082 // This function handles VariableMode::kVar, VariableMode::kLet, and
1083 // VariableMode::kConst modes. VariableMode::kDynamic variables are
1084 // introduced during variable allocation, and VariableMode::kTemporary
1085 // variables are allocated via NewTemporary().
1086 DCHECK(IsDeclaredVariableMode(mode));
1087 DCHECK_IMPLIES(GetDeclarationScope()->is_being_lazily_parsed(),
1088 mode == VariableMode::kVar || mode == VariableMode::kLet ||
1089 mode == VariableMode::kConst);
1090 DCHECK(!GetDeclarationScope()->was_lazily_parsed());
1091 return Declare(zone(), name, mode, kind, init_flag, maybe_assigned_flag);
1092 }
1093
DeclareVariable(Declaration * declaration,VariableMode mode,InitializationFlag init,bool * sloppy_mode_block_scope_function_redefinition,bool * ok)1094 Variable* Scope::DeclareVariable(
1095 Declaration* declaration, VariableMode mode, InitializationFlag init,
1096 bool* sloppy_mode_block_scope_function_redefinition, bool* ok) {
1097 DCHECK(IsDeclaredVariableMode(mode));
1098 DCHECK(!already_resolved_);
1099 DCHECK(!GetDeclarationScope()->is_being_lazily_parsed());
1100 DCHECK(!GetDeclarationScope()->was_lazily_parsed());
1101
1102 if (mode == VariableMode::kVar && !is_declaration_scope()) {
1103 return GetDeclarationScope()->DeclareVariable(
1104 declaration, mode, init, sloppy_mode_block_scope_function_redefinition,
1105 ok);
1106 }
1107 DCHECK(!is_catch_scope());
1108 DCHECK(!is_with_scope());
1109 DCHECK(is_declaration_scope() ||
1110 (IsLexicalVariableMode(mode) && is_block_scope()));
1111
1112 VariableProxy* proxy = declaration->proxy();
1113 DCHECK_NOT_NULL(proxy->raw_name());
1114 const AstRawString* name = proxy->raw_name();
1115 bool is_function_declaration = declaration->IsFunctionDeclaration();
1116
1117 // Pessimistically assume that top-level variables will be assigned.
1118 //
1119 // Top-level variables in a script can be accessed by other scripts or even
1120 // become global properties. While this does not apply to top-level variables
1121 // in a module (assuming they are not exported), we must still mark these as
1122 // assigned because they might be accessed by a lazily parsed top-level
1123 // function, which, for efficiency, we preparse without variable tracking.
1124 if (is_script_scope() || is_module_scope()) {
1125 if (mode != VariableMode::kConst) proxy->set_is_assigned();
1126 }
1127
1128 Variable* var = nullptr;
1129 if (is_eval_scope() && is_sloppy(language_mode()) &&
1130 mode == VariableMode::kVar) {
1131 // In a var binding in a sloppy direct eval, pollute the enclosing scope
1132 // with this new binding by doing the following:
1133 // The proxy is bound to a lookup variable to force a dynamic declaration
1134 // using the DeclareEvalVar or DeclareEvalFunction runtime functions.
1135 var = new (zone())
1136 Variable(this, name, mode, NORMAL_VARIABLE, init, kMaybeAssigned);
1137 var->AllocateTo(VariableLocation::LOOKUP, -1);
1138 } else {
1139 // Declare the variable in the declaration scope.
1140 var = LookupLocal(name);
1141 if (var == nullptr) {
1142 // Declare the name.
1143 VariableKind kind = NORMAL_VARIABLE;
1144 if (is_function_declaration) {
1145 kind = FUNCTION_VARIABLE;
1146 }
1147 var = DeclareLocal(name, mode, init, kind, kNotAssigned);
1148 } else if (IsLexicalVariableMode(mode) ||
1149 IsLexicalVariableMode(var->mode())) {
1150 // Allow duplicate function decls for web compat, see bug 4693.
1151 bool duplicate_allowed = false;
1152 if (is_sloppy(language_mode()) && is_function_declaration &&
1153 var->is_function()) {
1154 DCHECK(IsLexicalVariableMode(mode) &&
1155 IsLexicalVariableMode(var->mode()));
1156 // If the duplication is allowed, then the var will show up
1157 // in the SloppyBlockFunctionMap and the new FunctionKind
1158 // will be a permitted duplicate.
1159 FunctionKind function_kind =
1160 declaration->AsFunctionDeclaration()->fun()->kind();
1161 SloppyBlockFunctionMap* map =
1162 GetDeclarationScope()->sloppy_block_function_map();
1163 duplicate_allowed = map != nullptr &&
1164 map->Lookup(const_cast<AstRawString*>(name),
1165 name->Hash()) != nullptr &&
1166 !IsAsyncFunction(function_kind) &&
1167 !IsGeneratorFunction(function_kind);
1168 }
1169 if (duplicate_allowed) {
1170 *sloppy_mode_block_scope_function_redefinition = true;
1171 } else {
1172 // The name was declared in this scope before; check for conflicting
1173 // re-declarations. We have a conflict if either of the declarations
1174 // is not a var (in script scope, we also have to ignore legacy const
1175 // for compatibility). There is similar code in runtime.cc in the
1176 // Declare functions. The function CheckConflictingVarDeclarations
1177 // checks for var and let bindings from different scopes whereas this
1178 // is a check for conflicting declarations within the same scope. This
1179 // check also covers the special case
1180 //
1181 // function () { let x; { var x; } }
1182 //
1183 // because the var declaration is hoisted to the function scope where
1184 // 'x' is already bound.
1185 DCHECK(IsDeclaredVariableMode(var->mode()));
1186 // In harmony we treat re-declarations as early errors. See
1187 // ES5 16 for a definition of early errors.
1188 *ok = false;
1189 return nullptr;
1190 }
1191 } else if (mode == VariableMode::kVar) {
1192 var->set_maybe_assigned();
1193 }
1194 }
1195 DCHECK_NOT_NULL(var);
1196
1197 // We add a declaration node for every declaration. The compiler
1198 // will only generate code if necessary. In particular, declarations
1199 // for inner local variables that do not represent functions won't
1200 // result in any generated code.
1201 //
1202 // This will lead to multiple declaration nodes for the
1203 // same variable if it is declared several times. This is not a
1204 // semantic issue, but it may be a performance issue since it may
1205 // lead to repeated DeclareEvalVar or DeclareEvalFunction calls.
1206 decls_.Add(declaration);
1207 proxy->BindTo(var);
1208 return var;
1209 }
1210
DeclareVariableName(const AstRawString * name,VariableMode mode)1211 Variable* Scope::DeclareVariableName(const AstRawString* name,
1212 VariableMode mode) {
1213 DCHECK(IsDeclaredVariableMode(mode));
1214 DCHECK(!already_resolved_);
1215 DCHECK(GetDeclarationScope()->is_being_lazily_parsed());
1216
1217 if (mode == VariableMode::kVar && !is_declaration_scope()) {
1218 return GetDeclarationScope()->DeclareVariableName(name, mode);
1219 }
1220 DCHECK(!is_with_scope());
1221 DCHECK(!is_eval_scope());
1222 DCHECK(is_declaration_scope() || IsLexicalVariableMode(mode));
1223 DCHECK(scope_info_.is_null());
1224
1225 // Declare the variable in the declaration scope.
1226 if (FLAG_preparser_scope_analysis) {
1227 Variable* var = LookupLocal(name);
1228 DCHECK_NE(var, kDummyPreParserLexicalVariable);
1229 DCHECK_NE(var, kDummyPreParserVariable);
1230 if (var == nullptr) {
1231 var = DeclareLocal(name, mode);
1232 } else if (IsLexicalVariableMode(mode) ||
1233 IsLexicalVariableMode(var->mode())) {
1234 // Duplicate functions are allowed in the sloppy mode, but if this is not
1235 // a function declaration, it's an error. This is an error PreParser
1236 // hasn't previously detected. TODO(marja): Investigate whether we can now
1237 // start returning this error.
1238 } else if (mode == VariableMode::kVar) {
1239 var->set_maybe_assigned();
1240 }
1241 var->set_is_used();
1242 return var;
1243 } else {
1244 return variables_.DeclareName(zone(), name, mode);
1245 }
1246 }
1247
DeclareCatchVariableName(const AstRawString * name)1248 void Scope::DeclareCatchVariableName(const AstRawString* name) {
1249 DCHECK(!already_resolved_);
1250 DCHECK(GetDeclarationScope()->is_being_lazily_parsed());
1251 DCHECK(is_catch_scope());
1252 DCHECK(scope_info_.is_null());
1253
1254 if (FLAG_preparser_scope_analysis) {
1255 Declare(zone(), name, VariableMode::kVar);
1256 } else {
1257 variables_.DeclareName(zone(), name, VariableMode::kVar);
1258 }
1259 }
1260
AddUnresolved(VariableProxy * proxy)1261 void Scope::AddUnresolved(VariableProxy* proxy) {
1262 DCHECK(!already_resolved_);
1263 DCHECK(!proxy->is_resolved());
1264 proxy->set_next_unresolved(unresolved_);
1265 unresolved_ = proxy;
1266 }
1267
DeclareDynamicGlobal(const AstRawString * name,VariableKind kind)1268 Variable* DeclarationScope::DeclareDynamicGlobal(const AstRawString* name,
1269 VariableKind kind) {
1270 DCHECK(is_script_scope());
1271 return variables_.Declare(zone(), this, name, VariableMode::kDynamicGlobal,
1272 kind);
1273 // TODO(neis): Mark variable as maybe-assigned?
1274 }
1275
RemoveUnresolved(VariableProxy * var)1276 bool Scope::RemoveUnresolved(VariableProxy* var) {
1277 if (unresolved_ == var) {
1278 unresolved_ = var->next_unresolved();
1279 var->set_next_unresolved(nullptr);
1280 return true;
1281 }
1282 VariableProxy* current = unresolved_;
1283 while (current != nullptr) {
1284 VariableProxy* next = current->next_unresolved();
1285 if (var == next) {
1286 current->set_next_unresolved(next->next_unresolved());
1287 var->set_next_unresolved(nullptr);
1288 return true;
1289 }
1290 current = next;
1291 }
1292 return false;
1293 }
1294
NewTemporary(const AstRawString * name)1295 Variable* Scope::NewTemporary(const AstRawString* name) {
1296 return NewTemporary(name, kMaybeAssigned);
1297 }
1298
NewTemporary(const AstRawString * name,MaybeAssignedFlag maybe_assigned)1299 Variable* Scope::NewTemporary(const AstRawString* name,
1300 MaybeAssignedFlag maybe_assigned) {
1301 DeclarationScope* scope = GetClosureScope();
1302 Variable* var = new (zone()) Variable(scope, name, VariableMode::kTemporary,
1303 NORMAL_VARIABLE, kCreatedInitialized);
1304 scope->AddLocal(var);
1305 if (maybe_assigned == kMaybeAssigned) var->set_maybe_assigned();
1306 return var;
1307 }
1308
CheckConflictingVarDeclarations()1309 Declaration* Scope::CheckConflictingVarDeclarations() {
1310 for (Declaration* decl : decls_) {
1311 VariableMode mode = decl->proxy()->var()->mode();
1312
1313 // Lexical vs lexical conflicts within the same scope have already been
1314 // captured in Parser::Declare. The only conflicts we still need to check
1315 // are lexical vs nested var, or any declarations within a declaration
1316 // block scope vs lexical declarations in its surrounding (function) scope.
1317 Scope* current = this;
1318 if (decl->IsVariableDeclaration() &&
1319 decl->AsVariableDeclaration()->AsNested() != nullptr) {
1320 DCHECK_EQ(mode, VariableMode::kVar);
1321 current = decl->AsVariableDeclaration()->AsNested()->scope();
1322 } else if (IsLexicalVariableMode(mode)) {
1323 if (!is_block_scope()) continue;
1324 DCHECK(is_declaration_scope());
1325 DCHECK_EQ(outer_scope()->scope_type(), FUNCTION_SCOPE);
1326 current = outer_scope();
1327 }
1328
1329 // Iterate through all scopes until and including the declaration scope.
1330 while (true) {
1331 // There is a conflict if there exists a non-VAR binding.
1332 Variable* other_var =
1333 current->variables_.Lookup(decl->proxy()->raw_name());
1334 if (other_var != nullptr && IsLexicalVariableMode(other_var->mode())) {
1335 return decl;
1336 }
1337 if (current->is_declaration_scope()) break;
1338 current = current->outer_scope();
1339 }
1340 }
1341 return nullptr;
1342 }
1343
CheckLexDeclarationsConflictingWith(const ZonePtrList<const AstRawString> & names)1344 Declaration* Scope::CheckLexDeclarationsConflictingWith(
1345 const ZonePtrList<const AstRawString>& names) {
1346 DCHECK(is_block_scope());
1347 for (int i = 0; i < names.length(); ++i) {
1348 Variable* var = LookupLocal(names.at(i));
1349 if (var != nullptr) {
1350 // Conflict; find and return its declaration.
1351 DCHECK(IsLexicalVariableMode(var->mode()));
1352 const AstRawString* name = names.at(i);
1353 for (Declaration* decl : decls_) {
1354 if (decl->proxy()->raw_name() == name) return decl;
1355 }
1356 DCHECK(false);
1357 }
1358 }
1359 return nullptr;
1360 }
1361
AllocateVariables(ParseInfo * info)1362 bool DeclarationScope::AllocateVariables(ParseInfo* info) {
1363 // Module variables must be allocated before variable resolution
1364 // to ensure that UpdateNeedsHoleCheck() can detect import variables.
1365 if (is_module_scope()) AsModuleScope()->AllocateModuleVariables();
1366
1367 if (!ResolveVariablesRecursively(info)) {
1368 DCHECK(info->pending_error_handler()->has_pending_error());
1369 return false;
1370 }
1371 AllocateVariablesRecursively();
1372
1373 return true;
1374 }
1375
AllowsLazyParsingWithoutUnresolvedVariables(const Scope * outer) const1376 bool Scope::AllowsLazyParsingWithoutUnresolvedVariables(
1377 const Scope* outer) const {
1378 // If none of the outer scopes need to decide whether to context allocate
1379 // specific variables, we can preparse inner functions without unresolved
1380 // variables. Otherwise we need to find unresolved variables to force context
1381 // allocation of the matching declarations. We can stop at the outer scope for
1382 // the parse, since context allocation of those variables is already
1383 // guaranteed to be correct.
1384 for (const Scope* s = this; s != outer; s = s->outer_scope_) {
1385 // Eval forces context allocation on all outer scopes, so we don't need to
1386 // look at those scopes. Sloppy eval makes top-level non-lexical variables
1387 // dynamic, whereas strict-mode requires context allocation.
1388 if (s->is_eval_scope()) return is_sloppy(s->language_mode());
1389 // Catch scopes force context allocation of all variables.
1390 if (s->is_catch_scope()) continue;
1391 // With scopes do not introduce variables that need allocation.
1392 if (s->is_with_scope()) continue;
1393 DCHECK(s->is_module_scope() || s->is_block_scope() ||
1394 s->is_function_scope());
1395 return false;
1396 }
1397 return true;
1398 }
1399
AllowsLazyCompilation() const1400 bool DeclarationScope::AllowsLazyCompilation() const {
1401 return !force_eager_compilation_;
1402 }
1403
ContextChainLength(Scope * scope) const1404 int Scope::ContextChainLength(Scope* scope) const {
1405 int n = 0;
1406 for (const Scope* s = this; s != scope; s = s->outer_scope_) {
1407 DCHECK_NOT_NULL(s); // scope must be in the scope chain
1408 if (s->NeedsContext()) n++;
1409 }
1410 return n;
1411 }
1412
ContextChainLengthUntilOutermostSloppyEval() const1413 int Scope::ContextChainLengthUntilOutermostSloppyEval() const {
1414 int result = 0;
1415 int length = 0;
1416
1417 for (const Scope* s = this; s != nullptr; s = s->outer_scope()) {
1418 if (!s->NeedsContext()) continue;
1419 length++;
1420 if (s->is_declaration_scope() &&
1421 s->AsDeclarationScope()->calls_sloppy_eval()) {
1422 result = length;
1423 }
1424 }
1425
1426 return result;
1427 }
1428
GetDeclarationScope()1429 DeclarationScope* Scope::GetDeclarationScope() {
1430 Scope* scope = this;
1431 while (!scope->is_declaration_scope()) {
1432 scope = scope->outer_scope();
1433 }
1434 return scope->AsDeclarationScope();
1435 }
1436
GetClosureScope() const1437 const DeclarationScope* Scope::GetClosureScope() const {
1438 const Scope* scope = this;
1439 while (!scope->is_declaration_scope() || scope->is_block_scope()) {
1440 scope = scope->outer_scope();
1441 }
1442 return scope->AsDeclarationScope();
1443 }
1444
GetClosureScope()1445 DeclarationScope* Scope::GetClosureScope() {
1446 Scope* scope = this;
1447 while (!scope->is_declaration_scope() || scope->is_block_scope()) {
1448 scope = scope->outer_scope();
1449 }
1450 return scope->AsDeclarationScope();
1451 }
1452
NeedsScopeInfo() const1453 bool Scope::NeedsScopeInfo() const {
1454 DCHECK(!already_resolved_);
1455 DCHECK(GetClosureScope()->ShouldEagerCompile());
1456 // The debugger expects all functions to have scope infos.
1457 // TODO(jochen|yangguo): Remove this requirement.
1458 if (is_function_scope()) return true;
1459 return NeedsContext();
1460 }
1461
ShouldBanArguments()1462 bool Scope::ShouldBanArguments() {
1463 return GetReceiverScope()->should_ban_arguments();
1464 }
1465
GetReceiverScope()1466 DeclarationScope* Scope::GetReceiverScope() {
1467 Scope* scope = this;
1468 while (!scope->is_script_scope() &&
1469 (!scope->is_function_scope() ||
1470 scope->AsDeclarationScope()->is_arrow_scope())) {
1471 scope = scope->outer_scope();
1472 }
1473 return scope->AsDeclarationScope();
1474 }
1475
GetOuterScopeWithContext()1476 Scope* Scope::GetOuterScopeWithContext() {
1477 Scope* scope = outer_scope_;
1478 while (scope && !scope->NeedsContext()) {
1479 scope = scope->outer_scope();
1480 }
1481 return scope;
1482 }
1483
CollectNonLocals(Isolate * isolate,ParseInfo * info,Handle<StringSet> non_locals)1484 Handle<StringSet> DeclarationScope::CollectNonLocals(
1485 Isolate* isolate, ParseInfo* info, Handle<StringSet> non_locals) {
1486 VariableProxy* free_variables = FetchFreeVariables(this, info);
1487 for (VariableProxy* proxy = free_variables; proxy != nullptr;
1488 proxy = proxy->next_unresolved()) {
1489 non_locals = StringSet::Add(isolate, non_locals, proxy->name());
1490 }
1491 return non_locals;
1492 }
1493
ResetAfterPreparsing(AstValueFactory * ast_value_factory,bool aborted)1494 void DeclarationScope::ResetAfterPreparsing(AstValueFactory* ast_value_factory,
1495 bool aborted) {
1496 DCHECK(is_function_scope());
1497
1498 // Reset all non-trivial members.
1499 if (!aborted || !IsArrowFunction(function_kind_)) {
1500 // Do not remove parameters when lazy parsing an Arrow Function has failed,
1501 // as the formal parameters are not re-parsed.
1502 params_.Clear();
1503 }
1504 decls_.Clear();
1505 locals_.Clear();
1506 inner_scope_ = nullptr;
1507 unresolved_ = nullptr;
1508 sloppy_block_function_map_ = nullptr;
1509 rare_data_ = nullptr;
1510 has_rest_ = false;
1511
1512 if (aborted) {
1513 // Prepare scope for use in the outer zone.
1514 zone_ = ast_value_factory->zone();
1515 variables_.Reset(ZoneAllocationPolicy(zone_));
1516 if (!IsArrowFunction(function_kind_)) {
1517 DeclareDefaultFunctionVariables(ast_value_factory);
1518 }
1519 } else {
1520 // Make sure this scope isn't used for allocation anymore.
1521 zone_ = nullptr;
1522 variables_.Invalidate();
1523 }
1524
1525 #ifdef DEBUG
1526 needs_migration_ = false;
1527 is_being_lazily_parsed_ = false;
1528 #endif
1529
1530 was_lazily_parsed_ = !aborted;
1531 }
1532
SavePreParsedScopeData()1533 void Scope::SavePreParsedScopeData() {
1534 DCHECK(FLAG_preparser_scope_analysis);
1535 if (ProducedPreParsedScopeData::ScopeIsSkippableFunctionScope(this)) {
1536 AsDeclarationScope()->SavePreParsedScopeDataForDeclarationScope();
1537 }
1538
1539 for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
1540 scope->SavePreParsedScopeData();
1541 }
1542 }
1543
SavePreParsedScopeDataForDeclarationScope()1544 void DeclarationScope::SavePreParsedScopeDataForDeclarationScope() {
1545 if (produced_preparsed_scope_data_ != nullptr) {
1546 DCHECK(FLAG_preparser_scope_analysis);
1547 produced_preparsed_scope_data_->SaveScopeAllocationData(this);
1548 }
1549 }
1550
AnalyzePartially(AstNodeFactory * ast_node_factory)1551 void DeclarationScope::AnalyzePartially(AstNodeFactory* ast_node_factory) {
1552 DCHECK(!force_eager_compilation_);
1553 VariableProxy* unresolved = nullptr;
1554
1555 if (!outer_scope_->is_script_scope() ||
1556 (FLAG_preparser_scope_analysis &&
1557 produced_preparsed_scope_data_ != nullptr &&
1558 produced_preparsed_scope_data_->ContainsInnerFunctions())) {
1559 // Try to resolve unresolved variables for this Scope and migrate those
1560 // which cannot be resolved inside. It doesn't make sense to try to resolve
1561 // them in the outer Scopes here, because they are incomplete.
1562 for (VariableProxy* proxy = FetchFreeVariables(this); proxy != nullptr;
1563 proxy = proxy->next_unresolved()) {
1564 DCHECK(!proxy->is_resolved());
1565 VariableProxy* copy = ast_node_factory->CopyVariableProxy(proxy);
1566 copy->set_next_unresolved(unresolved);
1567 unresolved = copy;
1568 }
1569
1570 // Migrate function_ to the right Zone.
1571 if (function_ != nullptr) {
1572 function_ = ast_node_factory->CopyVariable(function_);
1573 }
1574
1575 if (FLAG_preparser_scope_analysis) {
1576 SavePreParsedScopeData();
1577 }
1578 }
1579
1580 #ifdef DEBUG
1581 if (FLAG_print_scopes) {
1582 PrintF("Inner function scope:\n");
1583 Print();
1584 }
1585 #endif
1586
1587 ResetAfterPreparsing(ast_node_factory->ast_value_factory(), false);
1588
1589 unresolved_ = unresolved;
1590 }
1591
1592 #ifdef DEBUG
1593 namespace {
1594
Header(ScopeType scope_type,FunctionKind function_kind,bool is_declaration_scope)1595 const char* Header(ScopeType scope_type, FunctionKind function_kind,
1596 bool is_declaration_scope) {
1597 switch (scope_type) {
1598 case EVAL_SCOPE: return "eval";
1599 // TODO(adamk): Should we print concise method scopes specially?
1600 case FUNCTION_SCOPE:
1601 if (IsGeneratorFunction(function_kind)) return "function*";
1602 if (IsAsyncFunction(function_kind)) return "async function";
1603 if (IsArrowFunction(function_kind)) return "arrow";
1604 return "function";
1605 case MODULE_SCOPE: return "module";
1606 case SCRIPT_SCOPE: return "global";
1607 case CATCH_SCOPE: return "catch";
1608 case BLOCK_SCOPE: return is_declaration_scope ? "varblock" : "block";
1609 case WITH_SCOPE: return "with";
1610 }
1611 UNREACHABLE();
1612 }
1613
Indent(int n,const char * str)1614 void Indent(int n, const char* str) { PrintF("%*s%s", n, "", str); }
1615
PrintName(const AstRawString * name)1616 void PrintName(const AstRawString* name) {
1617 PrintF("%.*s", name->length(), name->raw_data());
1618 }
1619
PrintLocation(Variable * var)1620 void PrintLocation(Variable* var) {
1621 switch (var->location()) {
1622 case VariableLocation::UNALLOCATED:
1623 break;
1624 case VariableLocation::PARAMETER:
1625 PrintF("parameter[%d]", var->index());
1626 break;
1627 case VariableLocation::LOCAL:
1628 PrintF("local[%d]", var->index());
1629 break;
1630 case VariableLocation::CONTEXT:
1631 PrintF("context[%d]", var->index());
1632 break;
1633 case VariableLocation::LOOKUP:
1634 PrintF("lookup");
1635 break;
1636 case VariableLocation::MODULE:
1637 PrintF("module");
1638 break;
1639 }
1640 }
1641
PrintVar(int indent,Variable * var)1642 void PrintVar(int indent, Variable* var) {
1643 Indent(indent, VariableMode2String(var->mode()));
1644 PrintF(" ");
1645 if (var->raw_name()->IsEmpty())
1646 PrintF(".%p", reinterpret_cast<void*>(var));
1647 else
1648 PrintName(var->raw_name());
1649 PrintF("; // (%p) ", reinterpret_cast<void*>(var));
1650 PrintLocation(var);
1651 bool comma = !var->IsUnallocated();
1652 if (var->has_forced_context_allocation()) {
1653 if (comma) PrintF(", ");
1654 PrintF("forced context allocation");
1655 comma = true;
1656 }
1657 if (var->maybe_assigned() == kNotAssigned) {
1658 if (comma) PrintF(", ");
1659 PrintF("never assigned");
1660 comma = true;
1661 }
1662 if (var->initialization_flag() == kNeedsInitialization &&
1663 !var->binding_needs_init()) {
1664 if (comma) PrintF(", ");
1665 PrintF("hole initialization elided");
1666 }
1667 PrintF("\n");
1668 }
1669
PrintMap(int indent,const char * label,VariableMap * map,bool locals,Variable * function_var)1670 void PrintMap(int indent, const char* label, VariableMap* map, bool locals,
1671 Variable* function_var) {
1672 bool printed_label = false;
1673 for (VariableMap::Entry* p = map->Start(); p != nullptr; p = map->Next(p)) {
1674 Variable* var = reinterpret_cast<Variable*>(p->value);
1675 if (var == function_var) continue;
1676 if (var == kDummyPreParserVariable ||
1677 var == kDummyPreParserLexicalVariable) {
1678 continue;
1679 }
1680 bool local = !IsDynamicVariableMode(var->mode());
1681 if ((locals ? local : !local) &&
1682 (var->is_used() || !var->IsUnallocated())) {
1683 if (!printed_label) {
1684 Indent(indent, label);
1685 printed_label = true;
1686 }
1687 PrintVar(indent, var);
1688 }
1689 }
1690 }
1691
1692 } // anonymous namespace
1693
PrintParameters()1694 void DeclarationScope::PrintParameters() {
1695 PrintF(" (");
1696 for (int i = 0; i < params_.length(); i++) {
1697 if (i > 0) PrintF(", ");
1698 const AstRawString* name = params_[i]->raw_name();
1699 if (name->IsEmpty())
1700 PrintF(".%p", reinterpret_cast<void*>(params_[i]));
1701 else
1702 PrintName(name);
1703 }
1704 PrintF(")");
1705 }
1706
Print(int n)1707 void Scope::Print(int n) {
1708 int n0 = (n > 0 ? n : 0);
1709 int n1 = n0 + 2; // indentation
1710
1711 // Print header.
1712 FunctionKind function_kind = is_function_scope()
1713 ? AsDeclarationScope()->function_kind()
1714 : kNormalFunction;
1715 Indent(n0, Header(scope_type_, function_kind, is_declaration_scope()));
1716 if (scope_name_ != nullptr && !scope_name_->IsEmpty()) {
1717 PrintF(" ");
1718 PrintName(scope_name_);
1719 }
1720
1721 // Print parameters, if any.
1722 Variable* function = nullptr;
1723 if (is_function_scope()) {
1724 AsDeclarationScope()->PrintParameters();
1725 function = AsDeclarationScope()->function_var();
1726 }
1727
1728 PrintF(" { // (%p) (%d, %d)\n", reinterpret_cast<void*>(this),
1729 start_position(), end_position());
1730 if (is_hidden()) {
1731 Indent(n1, "// is hidden\n");
1732 }
1733
1734 // Function name, if any (named function literals, only).
1735 if (function != nullptr) {
1736 Indent(n1, "// (local) function name: ");
1737 PrintName(function->raw_name());
1738 PrintF("\n");
1739 }
1740
1741 // Scope info.
1742 if (is_strict(language_mode())) {
1743 Indent(n1, "// strict mode scope\n");
1744 }
1745 if (IsAsmModule()) Indent(n1, "// scope is an asm module\n");
1746 if (is_declaration_scope() && AsDeclarationScope()->calls_sloppy_eval()) {
1747 Indent(n1, "// scope calls sloppy 'eval'\n");
1748 }
1749 if (is_declaration_scope() && AsDeclarationScope()->NeedsHomeObject()) {
1750 Indent(n1, "// scope needs home object\n");
1751 }
1752 if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
1753 if (is_declaration_scope()) {
1754 DeclarationScope* scope = AsDeclarationScope();
1755 if (scope->was_lazily_parsed()) Indent(n1, "// lazily parsed\n");
1756 if (scope->ShouldEagerCompile()) Indent(n1, "// will be compiled\n");
1757 }
1758 if (num_stack_slots_ > 0) {
1759 Indent(n1, "// ");
1760 PrintF("%d stack slots\n", num_stack_slots_);
1761 }
1762 if (num_heap_slots_ > 0) {
1763 Indent(n1, "// ");
1764 PrintF("%d heap slots\n", num_heap_slots_);
1765 }
1766
1767 // Print locals.
1768 if (function != nullptr) {
1769 Indent(n1, "// function var:\n");
1770 PrintVar(n1, function);
1771 }
1772
1773 // Print temporaries.
1774 {
1775 bool printed_header = false;
1776 for (Variable* local : locals_) {
1777 if (local->mode() != VariableMode::kTemporary) continue;
1778 if (!printed_header) {
1779 printed_header = true;
1780 Indent(n1, "// temporary vars:\n");
1781 }
1782 PrintVar(n1, local);
1783 }
1784 }
1785
1786 if (variables_.occupancy() > 0) {
1787 PrintMap(n1, "// local vars:\n", &variables_, true, function);
1788 PrintMap(n1, "// dynamic vars:\n", &variables_, false, function);
1789 }
1790
1791 // Print inner scopes (disable by providing negative n).
1792 if (n >= 0) {
1793 for (Scope* scope = inner_scope_; scope != nullptr;
1794 scope = scope->sibling_) {
1795 PrintF("\n");
1796 scope->Print(n1);
1797 }
1798 }
1799
1800 Indent(n0, "}\n");
1801 }
1802
CheckScopePositions()1803 void Scope::CheckScopePositions() {
1804 // Visible leaf scopes must have real positions.
1805 if (!is_hidden() && inner_scope_ == nullptr) {
1806 DCHECK_NE(kNoSourcePosition, start_position());
1807 DCHECK_NE(kNoSourcePosition, end_position());
1808 }
1809 for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
1810 scope->CheckScopePositions();
1811 }
1812 }
1813
CheckZones()1814 void Scope::CheckZones() {
1815 DCHECK(!needs_migration_);
1816 for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
1817 if (scope->is_declaration_scope() &&
1818 scope->AsDeclarationScope()->was_lazily_parsed()) {
1819 DCHECK_NULL(scope->zone());
1820 DCHECK_NULL(scope->inner_scope_);
1821 continue;
1822 }
1823 scope->CheckZones();
1824 }
1825 }
1826 #endif // DEBUG
1827
NonLocal(const AstRawString * name,VariableMode mode)1828 Variable* Scope::NonLocal(const AstRawString* name, VariableMode mode) {
1829 // Declare a new non-local.
1830 DCHECK(IsDynamicVariableMode(mode));
1831 Variable* var = variables_.Declare(zone(), nullptr, name, mode);
1832 // Allocate it by giving it a dynamic lookup.
1833 var->AllocateTo(VariableLocation::LOOKUP, -1);
1834 return var;
1835 }
1836
LookupRecursive(ParseInfo * info,VariableProxy * proxy,Scope * outer_scope_end)1837 Variable* Scope::LookupRecursive(ParseInfo* info, VariableProxy* proxy,
1838 Scope* outer_scope_end) {
1839 DCHECK_NE(outer_scope_end, this);
1840 // Short-cut: whenever we find a debug-evaluate scope, just look everything up
1841 // dynamically. Debug-evaluate doesn't properly create scope info for the
1842 // lookups it does. It may not have a valid 'this' declaration, and anything
1843 // accessed through debug-evaluate might invalidly resolve to stack-allocated
1844 // variables.
1845 // TODO(yangguo): Remove once debug-evaluate creates proper ScopeInfo for the
1846 // scopes in which it's evaluating.
1847 if (is_debug_evaluate_scope_)
1848 return NonLocal(proxy->raw_name(), VariableMode::kDynamic);
1849
1850 // Try to find the variable in this scope.
1851 Variable* var = LookupLocal(proxy->raw_name());
1852
1853 // We found a variable and we are done. (Even if there is an 'eval' in this
1854 // scope which introduces the same variable again, the resulting variable
1855 // remains the same.)
1856 if (var != nullptr) return var;
1857
1858 if (outer_scope_ == outer_scope_end) {
1859 // We may just be trying to find all free variables. In that case, don't
1860 // declare them in the outer scope.
1861 if (!is_script_scope()) return nullptr;
1862
1863 if (proxy->is_private_field()) {
1864 info->pending_error_handler()->ReportMessageAt(
1865 proxy->position(), proxy->position() + 1,
1866 MessageTemplate::kInvalidPrivateFieldAccess, proxy->raw_name(),
1867 kSyntaxError);
1868 return nullptr;
1869 }
1870
1871 // No binding has been found. Declare a variable on the global object.
1872 return AsDeclarationScope()->DeclareDynamicGlobal(proxy->raw_name(),
1873 NORMAL_VARIABLE);
1874 }
1875
1876 DCHECK(!is_script_scope());
1877
1878 var = outer_scope_->LookupRecursive(info, proxy, outer_scope_end);
1879
1880 // The variable could not be resolved statically.
1881 if (var == nullptr) return var;
1882
1883 // TODO(marja): Separate LookupRecursive for preparsed scopes better.
1884 if (var == kDummyPreParserVariable || var == kDummyPreParserLexicalVariable) {
1885 DCHECK(GetDeclarationScope()->is_being_lazily_parsed());
1886 DCHECK(FLAG_lazy_inner_functions);
1887 return var;
1888 }
1889
1890 if (is_function_scope() && !var->is_dynamic()) {
1891 var->ForceContextAllocation();
1892 }
1893 // "this" can't be shadowed by "eval"-introduced bindings or by "with"
1894 // scopes.
1895 // TODO(wingo): There are other variables in this category; add them.
1896 if (var->is_this()) return var;
1897
1898 if (is_with_scope()) {
1899 // The current scope is a with scope, so the variable binding can not be
1900 // statically resolved. However, note that it was necessary to do a lookup
1901 // in the outer scope anyway, because if a binding exists in an outer
1902 // scope, the associated variable has to be marked as potentially being
1903 // accessed from inside of an inner with scope (the property may not be in
1904 // the 'with' object).
1905 if (!var->is_dynamic() && var->IsUnallocated()) {
1906 DCHECK(!already_resolved_);
1907 var->set_is_used();
1908 var->ForceContextAllocation();
1909 if (proxy->is_assigned()) var->set_maybe_assigned();
1910 }
1911 return NonLocal(proxy->raw_name(), VariableMode::kDynamic);
1912 }
1913
1914 if (is_declaration_scope() && AsDeclarationScope()->calls_sloppy_eval()) {
1915 // A variable binding may have been found in an outer scope, but the current
1916 // scope makes a sloppy 'eval' call, so the found variable may not be the
1917 // correct one (the 'eval' may introduce a binding with the same name). In
1918 // that case, change the lookup result to reflect this situation. Only
1919 // scopes that can host var bindings (declaration scopes) need be considered
1920 // here (this excludes block and catch scopes), and variable lookups at
1921 // script scope are always dynamic.
1922 if (var->IsGlobalObjectProperty()) {
1923 return NonLocal(proxy->raw_name(), VariableMode::kDynamicGlobal);
1924 }
1925
1926 if (var->is_dynamic()) return var;
1927
1928 Variable* invalidated = var;
1929 var = NonLocal(proxy->raw_name(), VariableMode::kDynamicLocal);
1930 var->set_local_if_not_shadowed(invalidated);
1931 }
1932
1933 return var;
1934 }
1935
ResolveVariable(ParseInfo * info,VariableProxy * proxy)1936 bool Scope::ResolveVariable(ParseInfo* info, VariableProxy* proxy) {
1937 DCHECK(info->script_scope()->is_script_scope());
1938 DCHECK(!proxy->is_resolved());
1939 Variable* var = LookupRecursive(info, proxy, nullptr);
1940 if (var == nullptr) {
1941 DCHECK(proxy->is_private_field());
1942 return false;
1943 }
1944 ResolveTo(info, proxy, var);
1945 return true;
1946 }
1947
1948 namespace {
1949
SetNeedsHoleCheck(Variable * var,VariableProxy * proxy)1950 void SetNeedsHoleCheck(Variable* var, VariableProxy* proxy) {
1951 proxy->set_needs_hole_check();
1952 var->ForceHoleInitialization();
1953 }
1954
UpdateNeedsHoleCheck(Variable * var,VariableProxy * proxy,Scope * scope)1955 void UpdateNeedsHoleCheck(Variable* var, VariableProxy* proxy, Scope* scope) {
1956 if (var->mode() == VariableMode::kDynamicLocal) {
1957 // Dynamically introduced variables never need a hole check (since they're
1958 // VariableMode::kVar bindings, either from var or function declarations),
1959 // but the variable they shadow might need a hole check, which we want to do
1960 // if we decide that no shadowing variable was dynamically introoduced.
1961 DCHECK_EQ(kCreatedInitialized, var->initialization_flag());
1962 return UpdateNeedsHoleCheck(var->local_if_not_shadowed(), proxy, scope);
1963 }
1964
1965 if (var->initialization_flag() == kCreatedInitialized) return;
1966
1967 // It's impossible to eliminate module import hole checks here, because it's
1968 // unknown at compilation time whether the binding referred to in the
1969 // exporting module itself requires hole checks.
1970 if (var->location() == VariableLocation::MODULE && !var->IsExport()) {
1971 return SetNeedsHoleCheck(var, proxy);
1972 }
1973
1974 // Check if the binding really needs an initialization check. The check
1975 // can be skipped in the following situation: we have a VariableMode::kLet or
1976 // VariableMode::kConst binding, both the Variable and the VariableProxy have
1977 // the same declaration scope (i.e. they are both in global code, in the same
1978 // function or in the same eval code), the VariableProxy is in the source
1979 // physically located after the initializer of the variable, and that the
1980 // initializer cannot be skipped due to a nonlinear scope.
1981 //
1982 // The condition on the closure scopes is a conservative check for
1983 // nested functions that access a binding and are called before the
1984 // binding is initialized:
1985 // function() { f(); let x = 1; function f() { x = 2; } }
1986 //
1987 // The check cannot be skipped on non-linear scopes, namely switch
1988 // scopes, to ensure tests are done in cases like the following:
1989 // switch (1) { case 0: let x = 2; case 1: f(x); }
1990 // The scope of the variable needs to be checked, in case the use is
1991 // in a sub-block which may be linear.
1992 if (var->scope()->GetClosureScope() != scope->GetClosureScope()) {
1993 return SetNeedsHoleCheck(var, proxy);
1994 }
1995
1996 if (var->is_this()) {
1997 DCHECK(IsDerivedConstructor(scope->GetClosureScope()->function_kind()));
1998 // TODO(littledan): implement 'this' hole check elimination.
1999 return SetNeedsHoleCheck(var, proxy);
2000 }
2001
2002 // We should always have valid source positions.
2003 DCHECK_NE(var->initializer_position(), kNoSourcePosition);
2004 DCHECK_NE(proxy->position(), kNoSourcePosition);
2005
2006 if (var->scope()->is_nonlinear() ||
2007 var->initializer_position() >= proxy->position()) {
2008 return SetNeedsHoleCheck(var, proxy);
2009 }
2010 }
2011
2012 } // anonymous namespace
2013
ResolveTo(ParseInfo * info,VariableProxy * proxy,Variable * var)2014 void Scope::ResolveTo(ParseInfo* info, VariableProxy* proxy, Variable* var) {
2015 #ifdef DEBUG
2016 if (info->is_native()) {
2017 // To avoid polluting the global object in native scripts
2018 // - Variables must not be allocated to the global scope.
2019 DCHECK_NOT_NULL(outer_scope());
2020 // - Variables must be bound locally or unallocated.
2021 if (var->IsGlobalObjectProperty()) {
2022 // The following variable name may be minified. If so, disable
2023 // minification in js2c.py for better output.
2024 Handle<String> name = proxy->raw_name()->string();
2025 FATAL("Unbound variable: '%s' in native script.",
2026 name->ToCString().get());
2027 }
2028 VariableLocation location = var->location();
2029 DCHECK(location == VariableLocation::LOCAL ||
2030 location == VariableLocation::CONTEXT ||
2031 location == VariableLocation::PARAMETER ||
2032 location == VariableLocation::UNALLOCATED);
2033 }
2034 #endif
2035
2036 DCHECK_NOT_NULL(var);
2037 UpdateNeedsHoleCheck(var, proxy, this);
2038 proxy->BindTo(var);
2039 }
2040
ResolveVariablesRecursively(ParseInfo * info)2041 bool Scope::ResolveVariablesRecursively(ParseInfo* info) {
2042 DCHECK(info->script_scope()->is_script_scope());
2043 // Lazy parsed declaration scopes are already partially analyzed. If there are
2044 // unresolved references remaining, they just need to be resolved in outer
2045 // scopes.
2046 if (is_declaration_scope() && AsDeclarationScope()->was_lazily_parsed()) {
2047 DCHECK_EQ(variables_.occupancy(), 0);
2048 for (VariableProxy* proxy = unresolved_; proxy != nullptr;
2049 proxy = proxy->next_unresolved()) {
2050 Variable* var = outer_scope()->LookupRecursive(info, proxy, nullptr);
2051 if (var == nullptr) {
2052 DCHECK(proxy->is_private_field());
2053 return false;
2054 }
2055 if (!var->is_dynamic()) {
2056 var->set_is_used();
2057 var->ForceContextAllocation();
2058 if (proxy->is_assigned()) var->set_maybe_assigned();
2059 }
2060 }
2061 } else {
2062 // Resolve unresolved variables for this scope.
2063 for (VariableProxy* proxy = unresolved_; proxy != nullptr;
2064 proxy = proxy->next_unresolved()) {
2065 if (!ResolveVariable(info, proxy)) return false;
2066 }
2067
2068 // Resolve unresolved variables for inner scopes.
2069 for (Scope* scope = inner_scope_; scope != nullptr;
2070 scope = scope->sibling_) {
2071 if (!scope->ResolveVariablesRecursively(info)) return false;
2072 }
2073 }
2074 return true;
2075 }
2076
FetchFreeVariables(DeclarationScope * max_outer_scope,ParseInfo * info,VariableProxy * stack)2077 VariableProxy* Scope::FetchFreeVariables(DeclarationScope* max_outer_scope,
2078 ParseInfo* info,
2079 VariableProxy* stack) {
2080 // Module variables must be allocated before variable resolution
2081 // to ensure that UpdateNeedsHoleCheck() can detect import variables.
2082 if (info != nullptr && is_module_scope()) {
2083 AsModuleScope()->AllocateModuleVariables();
2084 }
2085 // Lazy parsed declaration scopes are already partially analyzed. If there are
2086 // unresolved references remaining, they just need to be resolved in outer
2087 // scopes.
2088 Scope* lookup =
2089 is_declaration_scope() && AsDeclarationScope()->was_lazily_parsed()
2090 ? outer_scope()
2091 : this;
2092 for (VariableProxy *proxy = unresolved_, *next = nullptr; proxy != nullptr;
2093 proxy = next) {
2094 next = proxy->next_unresolved();
2095 DCHECK(!proxy->is_resolved());
2096 Variable* var =
2097 lookup->LookupRecursive(info, proxy, max_outer_scope->outer_scope());
2098 if (var == nullptr) {
2099 proxy->set_next_unresolved(stack);
2100 stack = proxy;
2101 } else if (var != kDummyPreParserVariable &&
2102 var != kDummyPreParserLexicalVariable) {
2103 if (info != nullptr) {
2104 // In this case we need to leave scopes in a way that they can be
2105 // allocated. If we resolved variables from lazy parsed scopes, we need
2106 // to context allocate the var.
2107 ResolveTo(info, proxy, var);
2108 if (!var->is_dynamic() && lookup != this) var->ForceContextAllocation();
2109 } else {
2110 var->set_is_used();
2111 if (proxy->is_assigned()) {
2112 var->set_maybe_assigned();
2113 }
2114 }
2115 }
2116 }
2117
2118 // Clear unresolved_ as it's in an inconsistent state.
2119 unresolved_ = nullptr;
2120
2121 for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
2122 stack = scope->FetchFreeVariables(max_outer_scope, info, stack);
2123 }
2124
2125 return stack;
2126 }
2127
MustAllocate(Variable * var)2128 bool Scope::MustAllocate(Variable* var) {
2129 if (var == kDummyPreParserLexicalVariable || var == kDummyPreParserVariable) {
2130 return true;
2131 }
2132 DCHECK(var->location() != VariableLocation::MODULE);
2133 // Give var a read/write use if there is a chance it might be accessed
2134 // via an eval() call. This is only possible if the variable has a
2135 // visible name.
2136 if ((var->is_this() || !var->raw_name()->IsEmpty()) &&
2137 (inner_scope_calls_eval_ || is_catch_scope() || is_script_scope())) {
2138 var->set_is_used();
2139 if (inner_scope_calls_eval_) var->set_maybe_assigned();
2140 }
2141 DCHECK(!var->has_forced_context_allocation() || var->is_used());
2142 // Global variables do not need to be allocated.
2143 return !var->IsGlobalObjectProperty() && var->is_used();
2144 }
2145
2146
MustAllocateInContext(Variable * var)2147 bool Scope::MustAllocateInContext(Variable* var) {
2148 // If var is accessed from an inner scope, or if there is a possibility
2149 // that it might be accessed from the current or an inner scope (through
2150 // an eval() call or a runtime with lookup), it must be allocated in the
2151 // context.
2152 //
2153 // Temporary variables are always stack-allocated. Catch-bound variables are
2154 // always context-allocated.
2155 if (var->mode() == VariableMode::kTemporary) return false;
2156 if (is_catch_scope()) return true;
2157 if ((is_script_scope() || is_eval_scope()) &&
2158 IsLexicalVariableMode(var->mode())) {
2159 return true;
2160 }
2161 return var->has_forced_context_allocation() || inner_scope_calls_eval_;
2162 }
2163
2164
AllocateStackSlot(Variable * var)2165 void Scope::AllocateStackSlot(Variable* var) {
2166 if (is_block_scope()) {
2167 outer_scope()->GetDeclarationScope()->AllocateStackSlot(var);
2168 } else {
2169 var->AllocateTo(VariableLocation::LOCAL, num_stack_slots_++);
2170 }
2171 }
2172
2173
AllocateHeapSlot(Variable * var)2174 void Scope::AllocateHeapSlot(Variable* var) {
2175 var->AllocateTo(VariableLocation::CONTEXT, num_heap_slots_++);
2176 }
2177
AllocateParameterLocals()2178 void DeclarationScope::AllocateParameterLocals() {
2179 DCHECK(is_function_scope());
2180
2181 bool has_mapped_arguments = false;
2182 if (arguments_ != nullptr) {
2183 DCHECK(!is_arrow_scope());
2184 if (MustAllocate(arguments_) && !has_arguments_parameter_) {
2185 // 'arguments' is used and does not refer to a function
2186 // parameter of the same name. If the arguments object
2187 // aliases formal parameters, we conservatively allocate
2188 // them specially in the loop below.
2189 has_mapped_arguments =
2190 GetArgumentsType() == CreateArgumentsType::kMappedArguments;
2191 } else {
2192 // 'arguments' is unused. Tell the code generator that it does not need to
2193 // allocate the arguments object by nulling out arguments_.
2194 arguments_ = nullptr;
2195 }
2196 }
2197
2198 // The same parameter may occur multiple times in the parameters_ list.
2199 // If it does, and if it is not copied into the context object, it must
2200 // receive the highest parameter index for that parameter; thus iteration
2201 // order is relevant!
2202 for (int i = num_parameters() - 1; i >= 0; --i) {
2203 Variable* var = params_[i];
2204 DCHECK(!has_rest_ || var != rest_parameter());
2205 DCHECK_EQ(this, var->scope());
2206 if (has_mapped_arguments) {
2207 var->set_is_used();
2208 var->set_maybe_assigned();
2209 var->ForceContextAllocation();
2210 }
2211 AllocateParameter(var, i);
2212 }
2213 }
2214
AllocateParameter(Variable * var,int index)2215 void DeclarationScope::AllocateParameter(Variable* var, int index) {
2216 if (MustAllocate(var)) {
2217 if (has_forced_context_allocation_for_parameters() ||
2218 MustAllocateInContext(var)) {
2219 DCHECK(var->IsUnallocated() || var->IsContextSlot());
2220 if (var->IsUnallocated()) {
2221 AllocateHeapSlot(var);
2222 }
2223 } else {
2224 DCHECK(var->IsUnallocated() || var->IsParameter());
2225 if (var->IsUnallocated()) {
2226 var->AllocateTo(VariableLocation::PARAMETER, index);
2227 }
2228 }
2229 }
2230 }
2231
AllocateReceiver()2232 void DeclarationScope::AllocateReceiver() {
2233 if (!has_this_declaration()) return;
2234 DCHECK_NOT_NULL(receiver());
2235 DCHECK_EQ(receiver()->scope(), this);
2236 AllocateParameter(receiver(), -1);
2237 }
2238
AllocateNonParameterLocal(Variable * var)2239 void Scope::AllocateNonParameterLocal(Variable* var) {
2240 DCHECK(var->scope() == this);
2241 if (var->IsUnallocated() && MustAllocate(var)) {
2242 if (MustAllocateInContext(var)) {
2243 AllocateHeapSlot(var);
2244 DCHECK_IMPLIES(is_catch_scope(),
2245 var->index() == Context::THROWN_OBJECT_INDEX);
2246 } else {
2247 AllocateStackSlot(var);
2248 }
2249 }
2250 }
2251
AllocateNonParameterLocalsAndDeclaredGlobals()2252 void Scope::AllocateNonParameterLocalsAndDeclaredGlobals() {
2253 for (Variable* local : locals_) {
2254 AllocateNonParameterLocal(local);
2255 }
2256
2257 if (is_declaration_scope()) {
2258 AsDeclarationScope()->AllocateLocals();
2259 }
2260 }
2261
AllocateLocals()2262 void DeclarationScope::AllocateLocals() {
2263 // For now, function_ must be allocated at the very end. If it gets
2264 // allocated in the context, it must be the last slot in the context,
2265 // because of the current ScopeInfo implementation (see
2266 // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
2267 if (function_ != nullptr && MustAllocate(function_)) {
2268 AllocateNonParameterLocal(function_);
2269 } else {
2270 function_ = nullptr;
2271 }
2272
2273 DCHECK(!has_rest_ || !MustAllocate(rest_parameter()) ||
2274 !rest_parameter()->IsUnallocated());
2275
2276 if (new_target_ != nullptr && !MustAllocate(new_target_)) {
2277 new_target_ = nullptr;
2278 }
2279
2280 NullifyRareVariableIf(RareVariable::kThisFunction,
2281 [=](Variable* var) { return !MustAllocate(var); });
2282 }
2283
AllocateModuleVariables()2284 void ModuleScope::AllocateModuleVariables() {
2285 for (const auto& it : module()->regular_imports()) {
2286 Variable* var = LookupLocal(it.first);
2287 var->AllocateTo(VariableLocation::MODULE, it.second->cell_index);
2288 DCHECK(!var->IsExport());
2289 }
2290
2291 for (const auto& it : module()->regular_exports()) {
2292 Variable* var = LookupLocal(it.first);
2293 var->AllocateTo(VariableLocation::MODULE, it.second->cell_index);
2294 DCHECK(var->IsExport());
2295 }
2296 }
2297
AllocateVariablesRecursively()2298 void Scope::AllocateVariablesRecursively() {
2299 DCHECK(!already_resolved_);
2300 DCHECK_IMPLIES(!FLAG_preparser_scope_analysis, num_stack_slots_ == 0);
2301
2302 // Don't allocate variables of preparsed scopes.
2303 if (is_declaration_scope() && AsDeclarationScope()->was_lazily_parsed()) {
2304 return;
2305 }
2306
2307 // Allocate variables for inner scopes.
2308 for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
2309 scope->AllocateVariablesRecursively();
2310 }
2311
2312 DCHECK(!already_resolved_);
2313 DCHECK_EQ(Context::MIN_CONTEXT_SLOTS, num_heap_slots_);
2314
2315 // Allocate variables for this scope.
2316 // Parameters must be allocated first, if any.
2317 if (is_declaration_scope()) {
2318 if (is_function_scope()) {
2319 AsDeclarationScope()->AllocateParameterLocals();
2320 }
2321 AsDeclarationScope()->AllocateReceiver();
2322 }
2323 AllocateNonParameterLocalsAndDeclaredGlobals();
2324
2325 // Force allocation of a context for this scope if necessary. For a 'with'
2326 // scope and for a function scope that makes an 'eval' call we need a context,
2327 // even if no local variables were statically allocated in the scope.
2328 // Likewise for modules and function scopes representing asm.js modules.
2329 bool must_have_context =
2330 is_with_scope() || is_module_scope() || IsAsmModule() ||
2331 (is_function_scope() && AsDeclarationScope()->calls_sloppy_eval()) ||
2332 (is_block_scope() && is_declaration_scope() &&
2333 AsDeclarationScope()->calls_sloppy_eval());
2334
2335 // If we didn't allocate any locals in the local context, then we only
2336 // need the minimal number of slots if we must have a context.
2337 if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS && !must_have_context) {
2338 num_heap_slots_ = 0;
2339 }
2340
2341 // Allocation done.
2342 DCHECK(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
2343 }
2344
AllocateScopeInfosRecursively(Isolate * isolate,MaybeHandle<ScopeInfo> outer_scope)2345 void Scope::AllocateScopeInfosRecursively(Isolate* isolate,
2346 MaybeHandle<ScopeInfo> outer_scope) {
2347 DCHECK(scope_info_.is_null());
2348 MaybeHandle<ScopeInfo> next_outer_scope = outer_scope;
2349
2350 if (NeedsScopeInfo()) {
2351 scope_info_ = ScopeInfo::Create(isolate, zone(), this, outer_scope);
2352 // The ScopeInfo chain should mirror the context chain, so we only link to
2353 // the next outer scope that needs a context.
2354 if (NeedsContext()) next_outer_scope = scope_info_;
2355 }
2356
2357 // Allocate ScopeInfos for inner scopes.
2358 for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
2359 if (!scope->is_function_scope() ||
2360 scope->AsDeclarationScope()->ShouldEagerCompile()) {
2361 scope->AllocateScopeInfosRecursively(isolate, next_outer_scope);
2362 }
2363 }
2364 }
2365
2366 // static
AllocateScopeInfos(ParseInfo * info,Isolate * isolate)2367 void DeclarationScope::AllocateScopeInfos(ParseInfo* info, Isolate* isolate) {
2368 DeclarationScope* scope = info->literal()->scope();
2369 if (!scope->scope_info_.is_null()) return; // Allocated by outer function.
2370
2371 MaybeHandle<ScopeInfo> outer_scope;
2372 if (scope->outer_scope_ != nullptr) {
2373 outer_scope = scope->outer_scope_->scope_info_;
2374 }
2375
2376 scope->AllocateScopeInfosRecursively(isolate, outer_scope);
2377
2378 // The debugger expects all shared function infos to contain a scope info.
2379 // Since the top-most scope will end up in a shared function info, make sure
2380 // it has one, even if it doesn't need a scope info.
2381 // TODO(jochen|yangguo): Remove this requirement.
2382 if (scope->scope_info_.is_null()) {
2383 scope->scope_info_ =
2384 ScopeInfo::Create(isolate, scope->zone(), scope, outer_scope);
2385 }
2386
2387 // Ensuring that the outer script scope has a scope info avoids having
2388 // special case for native contexts vs other contexts.
2389 if (info->script_scope() && info->script_scope()->scope_info_.is_null()) {
2390 info->script_scope()->scope_info_ =
2391 handle(ScopeInfo::Empty(isolate), isolate);
2392 }
2393 }
2394
StackLocalCount() const2395 int Scope::StackLocalCount() const {
2396 Variable* function =
2397 is_function_scope() ? AsDeclarationScope()->function_var() : nullptr;
2398 return num_stack_slots() -
2399 (function != nullptr && function->IsStackLocal() ? 1 : 0);
2400 }
2401
2402
ContextLocalCount() const2403 int Scope::ContextLocalCount() const {
2404 if (num_heap_slots() == 0) return 0;
2405 Variable* function =
2406 is_function_scope() ? AsDeclarationScope()->function_var() : nullptr;
2407 bool is_function_var_in_context =
2408 function != nullptr && function->IsContextSlot();
2409 return num_heap_slots() - Context::MIN_CONTEXT_SLOTS -
2410 (is_function_var_in_context ? 1 : 0);
2411 }
2412
2413 } // namespace internal
2414 } // namespace v8
2415