1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interfaces that Hexagon uses to lower LLVM code
11 // into a selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "HexagonISelLowering.h"
16 #include "Hexagon.h"
17 #include "HexagonMachineFunctionInfo.h"
18 #include "HexagonRegisterInfo.h"
19 #include "HexagonSubtarget.h"
20 #include "HexagonTargetMachine.h"
21 #include "HexagonTargetObjectFile.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/TargetCallingConv.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstddef>
59 #include <cstdint>
60 #include <limits>
61 #include <utility>
62
63 using namespace llvm;
64
65 #define DEBUG_TYPE "hexagon-lowering"
66
67 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
68 cl::init(true), cl::Hidden,
69 cl::desc("Control jump table emission on Hexagon target"));
70
71 static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
72 cl::Hidden, cl::ZeroOrMore, cl::init(false),
73 cl::desc("Enable Hexagon SDNode scheduling"));
74
75 static cl::opt<bool> EnableFastMath("ffast-math",
76 cl::Hidden, cl::ZeroOrMore, cl::init(false),
77 cl::desc("Enable Fast Math processing"));
78
79 static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
80 cl::Hidden, cl::ZeroOrMore, cl::init(5),
81 cl::desc("Set minimum jump tables"));
82
83 static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
84 cl::Hidden, cl::ZeroOrMore, cl::init(6),
85 cl::desc("Max #stores to inline memcpy"));
86
87 static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
88 cl::Hidden, cl::ZeroOrMore, cl::init(4),
89 cl::desc("Max #stores to inline memcpy"));
90
91 static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
92 cl::Hidden, cl::ZeroOrMore, cl::init(6),
93 cl::desc("Max #stores to inline memmove"));
94
95 static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
96 cl::Hidden, cl::ZeroOrMore, cl::init(4),
97 cl::desc("Max #stores to inline memmove"));
98
99 static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
100 cl::Hidden, cl::ZeroOrMore, cl::init(8),
101 cl::desc("Max #stores to inline memset"));
102
103 static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
104 cl::Hidden, cl::ZeroOrMore, cl::init(4),
105 cl::desc("Max #stores to inline memset"));
106
107 static cl::opt<bool> AlignLoads("hexagon-align-loads",
108 cl::Hidden, cl::init(false),
109 cl::desc("Rewrite unaligned loads as a pair of aligned loads"));
110
111
112 namespace {
113
114 class HexagonCCState : public CCState {
115 unsigned NumNamedVarArgParams = 0;
116
117 public:
HexagonCCState(CallingConv::ID CC,bool IsVarArg,MachineFunction & MF,SmallVectorImpl<CCValAssign> & locs,LLVMContext & C,unsigned NumNamedArgs)118 HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
119 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
120 unsigned NumNamedArgs)
121 : CCState(CC, IsVarArg, MF, locs, C),
122 NumNamedVarArgParams(NumNamedArgs) {}
getNumNamedVarArgParams() const123 unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
124 };
125
126 } // end anonymous namespace
127
128
129 // Implement calling convention for Hexagon.
130
CC_SkipOdd(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)131 static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
132 CCValAssign::LocInfo &LocInfo,
133 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
134 static const MCPhysReg ArgRegs[] = {
135 Hexagon::R0, Hexagon::R1, Hexagon::R2,
136 Hexagon::R3, Hexagon::R4, Hexagon::R5
137 };
138 const unsigned NumArgRegs = array_lengthof(ArgRegs);
139 unsigned RegNum = State.getFirstUnallocated(ArgRegs);
140
141 // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
142 if (RegNum != NumArgRegs && RegNum % 2 == 1)
143 State.AllocateReg(ArgRegs[RegNum]);
144
145 // Always return false here, as this function only makes sure that the first
146 // unallocated register has an even register number and does not actually
147 // allocate a register for the current argument.
148 return false;
149 }
150
151 #include "HexagonGenCallingConv.inc"
152
153
promoteLdStType(MVT VT,MVT PromotedLdStVT)154 void HexagonTargetLowering::promoteLdStType(MVT VT, MVT PromotedLdStVT) {
155 if (VT != PromotedLdStVT) {
156 setOperationAction(ISD::LOAD, VT, Promote);
157 AddPromotedToType(ISD::LOAD, VT, PromotedLdStVT);
158
159 setOperationAction(ISD::STORE, VT, Promote);
160 AddPromotedToType(ISD::STORE, VT, PromotedLdStVT);
161 }
162 }
163
164 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const165 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
166 const {
167 return SDValue();
168 }
169
170 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
171 /// by "Src" to address "Dst" of size "Size". Alignment information is
172 /// specified by the specific parameter attribute. The copy will be passed as
173 /// a byval function parameter. Sometimes what we are copying is the end of a
174 /// larger object, the part that does not fit in registers.
CreateCopyOfByValArgument(SDValue Src,SDValue Dst,SDValue Chain,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,const SDLoc & dl)175 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
176 SDValue Chain, ISD::ArgFlagsTy Flags,
177 SelectionDAG &DAG, const SDLoc &dl) {
178 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
179 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
180 /*isVolatile=*/false, /*AlwaysInline=*/false,
181 /*isTailCall=*/false,
182 MachinePointerInfo(), MachinePointerInfo());
183 }
184
185 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const186 HexagonTargetLowering::CanLowerReturn(
187 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
188 const SmallVectorImpl<ISD::OutputArg> &Outs,
189 LLVMContext &Context) const {
190 SmallVector<CCValAssign, 16> RVLocs;
191 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
192
193 if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
194 return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
195 return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
196 }
197
198 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
199 // passed by value, the function prototype is modified to return void and
200 // the value is stored in memory pointed by a pointer passed by caller.
201 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const202 HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
203 bool IsVarArg,
204 const SmallVectorImpl<ISD::OutputArg> &Outs,
205 const SmallVectorImpl<SDValue> &OutVals,
206 const SDLoc &dl, SelectionDAG &DAG) const {
207 // CCValAssign - represent the assignment of the return value to locations.
208 SmallVector<CCValAssign, 16> RVLocs;
209
210 // CCState - Info about the registers and stack slot.
211 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
212 *DAG.getContext());
213
214 // Analyze return values of ISD::RET
215 if (Subtarget.useHVXOps())
216 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
217 else
218 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
219
220 SDValue Flag;
221 SmallVector<SDValue, 4> RetOps(1, Chain);
222
223 // Copy the result values into the output registers.
224 for (unsigned i = 0; i != RVLocs.size(); ++i) {
225 CCValAssign &VA = RVLocs[i];
226
227 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
228
229 // Guarantee that all emitted copies are stuck together with flags.
230 Flag = Chain.getValue(1);
231 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
232 }
233
234 RetOps[0] = Chain; // Update chain.
235
236 // Add the flag if we have it.
237 if (Flag.getNode())
238 RetOps.push_back(Flag);
239
240 return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
241 }
242
mayBeEmittedAsTailCall(const CallInst * CI) const243 bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
244 // If either no tail call or told not to tail call at all, don't.
245 auto Attr =
246 CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
247 if (!CI->isTailCall() || Attr.getValueAsString() == "true")
248 return false;
249
250 return true;
251 }
252
253 /// LowerCallResult - Lower the result values of an ISD::CALL into the
254 /// appropriate copies out of appropriate physical registers. This assumes that
255 /// Chain/Glue are the input chain/glue to use, and that TheCall is the call
256 /// being lowered. Returns a SDNode with the same number of values as the
257 /// ISD::CALL.
LowerCallResult(SDValue Chain,SDValue Glue,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,const SmallVectorImpl<SDValue> & OutVals,SDValue Callee) const258 SDValue HexagonTargetLowering::LowerCallResult(
259 SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
260 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
261 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
262 const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
263 // Assign locations to each value returned by this call.
264 SmallVector<CCValAssign, 16> RVLocs;
265
266 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
267 *DAG.getContext());
268
269 if (Subtarget.useHVXOps())
270 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
271 else
272 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
273
274 // Copy all of the result registers out of their specified physreg.
275 for (unsigned i = 0; i != RVLocs.size(); ++i) {
276 SDValue RetVal;
277 if (RVLocs[i].getValVT() == MVT::i1) {
278 // Return values of type MVT::i1 require special handling. The reason
279 // is that MVT::i1 is associated with the PredRegs register class, but
280 // values of that type are still returned in R0. Generate an explicit
281 // copy into a predicate register from R0, and treat the value of the
282 // predicate register as the call result.
283 auto &MRI = DAG.getMachineFunction().getRegInfo();
284 SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
285 MVT::i32, Glue);
286 // FR0 = (Value, Chain, Glue)
287 unsigned PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
288 SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
289 FR0.getValue(0), FR0.getValue(2));
290 // TPR = (Chain, Glue)
291 // Don't glue this CopyFromReg, because it copies from a virtual
292 // register. If it is glued to the call, InstrEmitter will add it
293 // as an implicit def to the call (EmitMachineNode).
294 RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
295 Glue = TPR.getValue(1);
296 Chain = TPR.getValue(0);
297 } else {
298 RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
299 RVLocs[i].getValVT(), Glue);
300 Glue = RetVal.getValue(2);
301 Chain = RetVal.getValue(1);
302 }
303 InVals.push_back(RetVal.getValue(0));
304 }
305
306 return Chain;
307 }
308
309 /// LowerCall - Functions arguments are copied from virtual regs to
310 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
311 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const312 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
313 SmallVectorImpl<SDValue> &InVals) const {
314 SelectionDAG &DAG = CLI.DAG;
315 SDLoc &dl = CLI.DL;
316 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
317 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
318 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
319 SDValue Chain = CLI.Chain;
320 SDValue Callee = CLI.Callee;
321 CallingConv::ID CallConv = CLI.CallConv;
322 bool IsVarArg = CLI.IsVarArg;
323 bool DoesNotReturn = CLI.DoesNotReturn;
324
325 bool IsStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
326 MachineFunction &MF = DAG.getMachineFunction();
327 MachineFrameInfo &MFI = MF.getFrameInfo();
328 auto PtrVT = getPointerTy(MF.getDataLayout());
329
330 unsigned NumParams = CLI.CS.getInstruction()
331 ? CLI.CS.getFunctionType()->getNumParams()
332 : 0;
333 if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
334 Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);
335
336 // Analyze operands of the call, assigning locations to each operand.
337 SmallVector<CCValAssign, 16> ArgLocs;
338 HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
339 NumParams);
340
341 if (Subtarget.useHVXOps())
342 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
343 else
344 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
345
346 auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
347 if (Attr.getValueAsString() == "true")
348 CLI.IsTailCall = false;
349
350 if (CLI.IsTailCall) {
351 bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
352 CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
353 IsVarArg, IsStructRet, StructAttrFlag, Outs,
354 OutVals, Ins, DAG);
355 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
356 CCValAssign &VA = ArgLocs[i];
357 if (VA.isMemLoc()) {
358 CLI.IsTailCall = false;
359 break;
360 }
361 }
362 LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
363 : "Argument must be passed on stack. "
364 "Not eligible for Tail Call\n"));
365 }
366 // Get a count of how many bytes are to be pushed on the stack.
367 unsigned NumBytes = CCInfo.getNextStackOffset();
368 SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
369 SmallVector<SDValue, 8> MemOpChains;
370
371 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
372 SDValue StackPtr =
373 DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
374
375 bool NeedsArgAlign = false;
376 unsigned LargestAlignSeen = 0;
377 // Walk the register/memloc assignments, inserting copies/loads.
378 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
379 CCValAssign &VA = ArgLocs[i];
380 SDValue Arg = OutVals[i];
381 ISD::ArgFlagsTy Flags = Outs[i].Flags;
382 // Record if we need > 8 byte alignment on an argument.
383 bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
384 NeedsArgAlign |= ArgAlign;
385
386 // Promote the value if needed.
387 switch (VA.getLocInfo()) {
388 default:
389 // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
390 llvm_unreachable("Unknown loc info!");
391 case CCValAssign::Full:
392 break;
393 case CCValAssign::BCvt:
394 Arg = DAG.getBitcast(VA.getLocVT(), Arg);
395 break;
396 case CCValAssign::SExt:
397 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
398 break;
399 case CCValAssign::ZExt:
400 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
401 break;
402 case CCValAssign::AExt:
403 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
404 break;
405 }
406
407 if (VA.isMemLoc()) {
408 unsigned LocMemOffset = VA.getLocMemOffset();
409 SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
410 StackPtr.getValueType());
411 MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
412 if (ArgAlign)
413 LargestAlignSeen = std::max(LargestAlignSeen,
414 VA.getLocVT().getStoreSizeInBits() >> 3);
415 if (Flags.isByVal()) {
416 // The argument is a struct passed by value. According to LLVM, "Arg"
417 // is a pointer.
418 MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
419 Flags, DAG, dl));
420 } else {
421 MachinePointerInfo LocPI = MachinePointerInfo::getStack(
422 DAG.getMachineFunction(), LocMemOffset);
423 SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
424 MemOpChains.push_back(S);
425 }
426 continue;
427 }
428
429 // Arguments that can be passed on register must be kept at RegsToPass
430 // vector.
431 if (VA.isRegLoc())
432 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
433 }
434
435 if (NeedsArgAlign && Subtarget.hasV60Ops()) {
436 LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
437 unsigned VecAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
438 LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
439 MFI.ensureMaxAlignment(LargestAlignSeen);
440 }
441 // Transform all store nodes into one single node because all store
442 // nodes are independent of each other.
443 if (!MemOpChains.empty())
444 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
445
446 SDValue Glue;
447 if (!CLI.IsTailCall) {
448 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
449 Glue = Chain.getValue(1);
450 }
451
452 // Build a sequence of copy-to-reg nodes chained together with token
453 // chain and flag operands which copy the outgoing args into registers.
454 // The Glue is necessary since all emitted instructions must be
455 // stuck together.
456 if (!CLI.IsTailCall) {
457 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
458 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
459 RegsToPass[i].second, Glue);
460 Glue = Chain.getValue(1);
461 }
462 } else {
463 // For tail calls lower the arguments to the 'real' stack slot.
464 //
465 // Force all the incoming stack arguments to be loaded from the stack
466 // before any new outgoing arguments are stored to the stack, because the
467 // outgoing stack slots may alias the incoming argument stack slots, and
468 // the alias isn't otherwise explicit. This is slightly more conservative
469 // than necessary, because it means that each store effectively depends
470 // on every argument instead of just those arguments it would clobber.
471 //
472 // Do not flag preceding copytoreg stuff together with the following stuff.
473 Glue = SDValue();
474 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
475 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
476 RegsToPass[i].second, Glue);
477 Glue = Chain.getValue(1);
478 }
479 Glue = SDValue();
480 }
481
482 bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
483 unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
484
485 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
486 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
487 // node so that legalize doesn't hack it.
488 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
489 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
490 } else if (ExternalSymbolSDNode *S =
491 dyn_cast<ExternalSymbolSDNode>(Callee)) {
492 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
493 }
494
495 // Returns a chain & a flag for retval copy to use.
496 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
497 SmallVector<SDValue, 8> Ops;
498 Ops.push_back(Chain);
499 Ops.push_back(Callee);
500
501 // Add argument registers to the end of the list so that they are
502 // known live into the call.
503 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
504 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
505 RegsToPass[i].second.getValueType()));
506 }
507
508 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
509 assert(Mask && "Missing call preserved mask for calling convention");
510 Ops.push_back(DAG.getRegisterMask(Mask));
511
512 if (Glue.getNode())
513 Ops.push_back(Glue);
514
515 if (CLI.IsTailCall) {
516 MFI.setHasTailCall();
517 return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
518 }
519
520 // Set this here because we need to know this for "hasFP" in frame lowering.
521 // The target-independent code calls getFrameRegister before setting it, and
522 // getFrameRegister uses hasFP to determine whether the function has FP.
523 MFI.setHasCalls(true);
524
525 unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
526 Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
527 Glue = Chain.getValue(1);
528
529 // Create the CALLSEQ_END node.
530 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
531 DAG.getIntPtrConstant(0, dl, true), Glue, dl);
532 Glue = Chain.getValue(1);
533
534 // Handle result values, copying them out of physregs into vregs that we
535 // return.
536 return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
537 InVals, OutVals, Callee);
538 }
539
540 /// Returns true by value, base pointer and offset pointer and addressing
541 /// mode by reference if this node can be combined with a load / store to
542 /// form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const543 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
544 SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
545 SelectionDAG &DAG) const {
546 LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
547 if (!LSN)
548 return false;
549 EVT VT = LSN->getMemoryVT();
550 if (!VT.isSimple())
551 return false;
552 bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
553 VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
554 VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
555 VT == MVT::v4i16 || VT == MVT::v8i8 ||
556 Subtarget.isHVXVectorType(VT.getSimpleVT());
557 if (!IsLegalType)
558 return false;
559
560 if (Op->getOpcode() != ISD::ADD)
561 return false;
562 Base = Op->getOperand(0);
563 Offset = Op->getOperand(1);
564 if (!isa<ConstantSDNode>(Offset.getNode()))
565 return false;
566 AM = ISD::POST_INC;
567
568 int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
569 return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
570 }
571
572 SDValue
LowerINLINEASM(SDValue Op,SelectionDAG & DAG) const573 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
574 MachineFunction &MF = DAG.getMachineFunction();
575 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
576 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
577 unsigned LR = HRI.getRARegister();
578
579 if (Op.getOpcode() != ISD::INLINEASM || HMFI.hasClobberLR())
580 return Op;
581
582 unsigned NumOps = Op.getNumOperands();
583 if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
584 --NumOps; // Ignore the flag operand.
585
586 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
587 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
588 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
589 ++i; // Skip the ID value.
590
591 switch (InlineAsm::getKind(Flags)) {
592 default:
593 llvm_unreachable("Bad flags!");
594 case InlineAsm::Kind_RegUse:
595 case InlineAsm::Kind_Imm:
596 case InlineAsm::Kind_Mem:
597 i += NumVals;
598 break;
599 case InlineAsm::Kind_Clobber:
600 case InlineAsm::Kind_RegDef:
601 case InlineAsm::Kind_RegDefEarlyClobber: {
602 for (; NumVals; --NumVals, ++i) {
603 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
604 if (Reg != LR)
605 continue;
606 HMFI.setHasClobberLR(true);
607 return Op;
608 }
609 break;
610 }
611 }
612 }
613
614 return Op;
615 }
616
617 // Need to transform ISD::PREFETCH into something that doesn't inherit
618 // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
619 // SDNPMayStore.
LowerPREFETCH(SDValue Op,SelectionDAG & DAG) const620 SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
621 SelectionDAG &DAG) const {
622 SDValue Chain = Op.getOperand(0);
623 SDValue Addr = Op.getOperand(1);
624 // Lower it to DCFETCH($reg, #0). A "pat" will try to merge the offset in,
625 // if the "reg" is fed by an "add".
626 SDLoc DL(Op);
627 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
628 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
629 }
630
631 // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
632 // is marked as having side-effects, while the register read on Hexagon does
633 // not have any. TableGen refuses to accept the direct pattern from that node
634 // to the A4_tfrcpp.
LowerREADCYCLECOUNTER(SDValue Op,SelectionDAG & DAG) const635 SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
636 SelectionDAG &DAG) const {
637 SDValue Chain = Op.getOperand(0);
638 SDLoc dl(Op);
639 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
640 return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
641 }
642
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const643 SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
644 SelectionDAG &DAG) const {
645 SDValue Chain = Op.getOperand(0);
646 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
647 // Lower the hexagon_prefetch builtin to DCFETCH, as above.
648 if (IntNo == Intrinsic::hexagon_prefetch) {
649 SDValue Addr = Op.getOperand(2);
650 SDLoc DL(Op);
651 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
652 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
653 }
654 return SDValue();
655 }
656
657 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const658 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
659 SelectionDAG &DAG) const {
660 SDValue Chain = Op.getOperand(0);
661 SDValue Size = Op.getOperand(1);
662 SDValue Align = Op.getOperand(2);
663 SDLoc dl(Op);
664
665 ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
666 assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
667
668 unsigned A = AlignConst->getSExtValue();
669 auto &HFI = *Subtarget.getFrameLowering();
670 // "Zero" means natural stack alignment.
671 if (A == 0)
672 A = HFI.getStackAlignment();
673
674 LLVM_DEBUG({
675 dbgs () << __func__ << " Align: " << A << " Size: ";
676 Size.getNode()->dump(&DAG);
677 dbgs() << "\n";
678 });
679
680 SDValue AC = DAG.getConstant(A, dl, MVT::i32);
681 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
682 SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
683
684 DAG.ReplaceAllUsesOfValueWith(Op, AA);
685 return AA;
686 }
687
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const688 SDValue HexagonTargetLowering::LowerFormalArguments(
689 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
690 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
691 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
692 MachineFunction &MF = DAG.getMachineFunction();
693 MachineFrameInfo &MFI = MF.getFrameInfo();
694 MachineRegisterInfo &MRI = MF.getRegInfo();
695
696 // Assign locations to all of the incoming arguments.
697 SmallVector<CCValAssign, 16> ArgLocs;
698 HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
699 MF.getFunction().getFunctionType()->getNumParams());
700
701 if (Subtarget.useHVXOps())
702 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
703 else
704 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
705
706 // For LLVM, in the case when returning a struct by value (>8byte),
707 // the first argument is a pointer that points to the location on caller's
708 // stack where the return value will be stored. For Hexagon, the location on
709 // caller's stack is passed only when the struct size is smaller than (and
710 // equal to) 8 bytes. If not, no address will be passed into callee and
711 // callee return the result direclty through R0/R1.
712
713 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
714
715 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
716 CCValAssign &VA = ArgLocs[i];
717 ISD::ArgFlagsTy Flags = Ins[i].Flags;
718 bool ByVal = Flags.isByVal();
719
720 // Arguments passed in registers:
721 // 1. 32- and 64-bit values and HVX vectors are passed directly,
722 // 2. Large structs are passed via an address, and the address is
723 // passed in a register.
724 if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
725 llvm_unreachable("ByValSize must be bigger than 8 bytes");
726
727 bool InReg = VA.isRegLoc() &&
728 (!ByVal || (ByVal && Flags.getByValSize() > 8));
729
730 if (InReg) {
731 MVT RegVT = VA.getLocVT();
732 if (VA.getLocInfo() == CCValAssign::BCvt)
733 RegVT = VA.getValVT();
734
735 const TargetRegisterClass *RC = getRegClassFor(RegVT);
736 unsigned VReg = MRI.createVirtualRegister(RC);
737 SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
738
739 // Treat values of type MVT::i1 specially: they are passed in
740 // registers of type i32, but they need to remain as values of
741 // type i1 for consistency of the argument lowering.
742 if (VA.getValVT() == MVT::i1) {
743 assert(RegVT.getSizeInBits() <= 32);
744 SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
745 Copy, DAG.getConstant(1, dl, RegVT));
746 Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
747 ISD::SETNE);
748 } else {
749 #ifndef NDEBUG
750 unsigned RegSize = RegVT.getSizeInBits();
751 assert(RegSize == 32 || RegSize == 64 ||
752 Subtarget.isHVXVectorType(RegVT));
753 #endif
754 }
755 InVals.push_back(Copy);
756 MRI.addLiveIn(VA.getLocReg(), VReg);
757 } else {
758 assert(VA.isMemLoc() && "Argument should be passed in memory");
759
760 // If it's a byval parameter, then we need to compute the
761 // "real" size, not the size of the pointer.
762 unsigned ObjSize = Flags.isByVal()
763 ? Flags.getByValSize()
764 : VA.getLocVT().getStoreSizeInBits() / 8;
765
766 // Create the frame index object for this incoming parameter.
767 int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
768 int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
769 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
770
771 if (Flags.isByVal()) {
772 // If it's a pass-by-value aggregate, then do not dereference the stack
773 // location. Instead, we should generate a reference to the stack
774 // location.
775 InVals.push_back(FIN);
776 } else {
777 SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
778 MachinePointerInfo::getFixedStack(MF, FI, 0));
779 InVals.push_back(L);
780 }
781 }
782 }
783
784
785 if (IsVarArg) {
786 // This will point to the next argument passed via stack.
787 int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
788 int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
789 HMFI.setVarArgsFrameIndex(FI);
790 }
791
792 return Chain;
793 }
794
795 SDValue
LowerVASTART(SDValue Op,SelectionDAG & DAG) const796 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
797 // VASTART stores the address of the VarArgsFrameIndex slot into the
798 // memory location argument.
799 MachineFunction &MF = DAG.getMachineFunction();
800 HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
801 SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
802 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
803 return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
804 MachinePointerInfo(SV));
805 }
806
LowerSETCC(SDValue Op,SelectionDAG & DAG) const807 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
808 const SDLoc &dl(Op);
809 SDValue LHS = Op.getOperand(0);
810 SDValue RHS = Op.getOperand(1);
811 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
812 MVT ResTy = ty(Op);
813 MVT OpTy = ty(LHS);
814
815 if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
816 MVT ElemTy = OpTy.getVectorElementType();
817 assert(ElemTy.isScalarInteger());
818 MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
819 OpTy.getVectorNumElements());
820 return DAG.getSetCC(dl, ResTy,
821 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
822 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
823 }
824
825 // Treat all other vector types as legal.
826 if (ResTy.isVector())
827 return Op;
828
829 // Comparisons of short integers should use sign-extend, not zero-extend,
830 // since we can represent small negative values in the compare instructions.
831 // The LLVM default is to use zero-extend arbitrarily in these cases.
832 auto isSExtFree = [this](SDValue N) {
833 switch (N.getOpcode()) {
834 case ISD::TRUNCATE: {
835 // A sign-extend of a truncate of a sign-extend is free.
836 SDValue Op = N.getOperand(0);
837 if (Op.getOpcode() != ISD::AssertSext)
838 return false;
839 EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
840 unsigned ThisBW = ty(N).getSizeInBits();
841 unsigned OrigBW = OrigTy.getSizeInBits();
842 // The type that was sign-extended to get the AssertSext must be
843 // narrower than the type of N (so that N has still the same value
844 // as the original).
845 return ThisBW >= OrigBW;
846 }
847 case ISD::LOAD:
848 // We have sign-extended loads.
849 return true;
850 }
851 return false;
852 };
853
854 if (OpTy == MVT::i8 || OpTy == MVT::i16) {
855 ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
856 bool IsNegative = C && C->getAPIntValue().isNegative();
857 if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
858 return DAG.getSetCC(dl, ResTy,
859 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
860 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
861 }
862
863 return SDValue();
864 }
865
866 SDValue
LowerVSELECT(SDValue Op,SelectionDAG & DAG) const867 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
868 SDValue PredOp = Op.getOperand(0);
869 SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
870 EVT OpVT = Op1.getValueType();
871 SDLoc DL(Op);
872
873 if (OpVT == MVT::v2i16) {
874 SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1);
875 SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2);
876 SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2);
877 SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL);
878 return TR;
879 }
880
881 return SDValue();
882 }
883
convert_i1_to_i8(const Constant * ConstVal)884 static Constant *convert_i1_to_i8(const Constant *ConstVal) {
885 SmallVector<Constant *, 128> NewConst;
886 const ConstantVector *CV = dyn_cast<ConstantVector>(ConstVal);
887 if (!CV)
888 return nullptr;
889
890 LLVMContext &Ctx = ConstVal->getContext();
891 IRBuilder<> IRB(Ctx);
892 unsigned NumVectorElements = CV->getNumOperands();
893 assert(isPowerOf2_32(NumVectorElements) &&
894 "conversion only supported for pow2 VectorSize!");
895
896 for (unsigned i = 0; i < NumVectorElements / 8; ++i) {
897 uint8_t x = 0;
898 for (unsigned j = 0; j < 8; ++j) {
899 uint8_t y = CV->getOperand(i * 8 + j)->getUniqueInteger().getZExtValue();
900 x |= y << (7 - j);
901 }
902 assert((x == 0 || x == 255) && "Either all 0's or all 1's expected!");
903 NewConst.push_back(IRB.getInt8(x));
904 }
905 return ConstantVector::get(NewConst);
906 }
907
908 SDValue
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const909 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
910 EVT ValTy = Op.getValueType();
911 ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
912 Constant *CVal = nullptr;
913 bool isVTi1Type = false;
914 if (const Constant *ConstVal = dyn_cast<Constant>(CPN->getConstVal())) {
915 Type *CValTy = ConstVal->getType();
916 if (CValTy->isVectorTy() &&
917 CValTy->getVectorElementType()->isIntegerTy(1)) {
918 CVal = convert_i1_to_i8(ConstVal);
919 isVTi1Type = (CVal != nullptr);
920 }
921 }
922 unsigned Align = CPN->getAlignment();
923 bool IsPositionIndependent = isPositionIndependent();
924 unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
925
926 unsigned Offset = 0;
927 SDValue T;
928 if (CPN->isMachineConstantPoolEntry())
929 T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset,
930 TF);
931 else if (isVTi1Type)
932 T = DAG.getTargetConstantPool(CVal, ValTy, Align, Offset, TF);
933 else
934 T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset, TF);
935
936 assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
937 "Inconsistent target flag encountered");
938
939 if (IsPositionIndependent)
940 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
941 return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
942 }
943
944 SDValue
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const945 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
946 EVT VT = Op.getValueType();
947 int Idx = cast<JumpTableSDNode>(Op)->getIndex();
948 if (isPositionIndependent()) {
949 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
950 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
951 }
952
953 SDValue T = DAG.getTargetJumpTable(Idx, VT);
954 return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
955 }
956
957 SDValue
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const958 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
959 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
960 MachineFunction &MF = DAG.getMachineFunction();
961 MachineFrameInfo &MFI = MF.getFrameInfo();
962 MFI.setReturnAddressIsTaken(true);
963
964 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
965 return SDValue();
966
967 EVT VT = Op.getValueType();
968 SDLoc dl(Op);
969 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
970 if (Depth) {
971 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
972 SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
973 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
974 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
975 MachinePointerInfo());
976 }
977
978 // Return LR, which contains the return address. Mark it an implicit live-in.
979 unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
980 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
981 }
982
983 SDValue
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const984 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
985 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
986 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
987 MFI.setFrameAddressIsTaken(true);
988
989 EVT VT = Op.getValueType();
990 SDLoc dl(Op);
991 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
992 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
993 HRI.getFrameRegister(), VT);
994 while (Depth--)
995 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
996 MachinePointerInfo());
997 return FrameAddr;
998 }
999
1000 SDValue
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const1001 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
1002 SDLoc dl(Op);
1003 return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1004 }
1005
1006 SDValue
LowerGLOBALADDRESS(SDValue Op,SelectionDAG & DAG) const1007 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
1008 SDLoc dl(Op);
1009 auto *GAN = cast<GlobalAddressSDNode>(Op);
1010 auto PtrVT = getPointerTy(DAG.getDataLayout());
1011 auto *GV = GAN->getGlobal();
1012 int64_t Offset = GAN->getOffset();
1013
1014 auto &HLOF = *HTM.getObjFileLowering();
1015 Reloc::Model RM = HTM.getRelocationModel();
1016
1017 if (RM == Reloc::Static) {
1018 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
1019 const GlobalObject *GO = GV->getBaseObject();
1020 if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
1021 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
1022 return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
1023 }
1024
1025 bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
1026 if (UsePCRel) {
1027 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
1028 HexagonII::MO_PCREL);
1029 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
1030 }
1031
1032 // Use GOT index.
1033 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1034 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
1035 SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
1036 return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
1037 }
1038
1039 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
1040 SDValue
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const1041 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1042 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1043 SDLoc dl(Op);
1044 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1045
1046 Reloc::Model RM = HTM.getRelocationModel();
1047 if (RM == Reloc::Static) {
1048 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
1049 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
1050 }
1051
1052 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
1053 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
1054 }
1055
1056 SDValue
LowerGLOBAL_OFFSET_TABLE(SDValue Op,SelectionDAG & DAG) const1057 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
1058 const {
1059 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1060 SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
1061 HexagonII::MO_PCREL);
1062 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
1063 }
1064
1065 SDValue
GetDynamicTLSAddr(SelectionDAG & DAG,SDValue Chain,GlobalAddressSDNode * GA,SDValue Glue,EVT PtrVT,unsigned ReturnReg,unsigned char OperandFlags) const1066 HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
1067 GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
1068 unsigned char OperandFlags) const {
1069 MachineFunction &MF = DAG.getMachineFunction();
1070 MachineFrameInfo &MFI = MF.getFrameInfo();
1071 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1072 SDLoc dl(GA);
1073 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
1074 GA->getValueType(0),
1075 GA->getOffset(),
1076 OperandFlags);
1077 // Create Operands for the call.The Operands should have the following:
1078 // 1. Chain SDValue
1079 // 2. Callee which in this case is the Global address value.
1080 // 3. Registers live into the call.In this case its R0, as we
1081 // have just one argument to be passed.
1082 // 4. Glue.
1083 // Note: The order is important.
1084
1085 const auto &HRI = *Subtarget.getRegisterInfo();
1086 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
1087 assert(Mask && "Missing call preserved mask for calling convention");
1088 SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
1089 DAG.getRegisterMask(Mask), Glue };
1090 Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
1091
1092 // Inform MFI that function has calls.
1093 MFI.setAdjustsStack(true);
1094
1095 Glue = Chain.getValue(1);
1096 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
1097 }
1098
1099 //
1100 // Lower using the intial executable model for TLS addresses
1101 //
1102 SDValue
LowerToTLSInitialExecModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const1103 HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
1104 SelectionDAG &DAG) const {
1105 SDLoc dl(GA);
1106 int64_t Offset = GA->getOffset();
1107 auto PtrVT = getPointerTy(DAG.getDataLayout());
1108
1109 // Get the thread pointer.
1110 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1111
1112 bool IsPositionIndependent = isPositionIndependent();
1113 unsigned char TF =
1114 IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
1115
1116 // First generate the TLS symbol address
1117 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
1118 Offset, TF);
1119
1120 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1121
1122 if (IsPositionIndependent) {
1123 // Generate the GOT pointer in case of position independent code
1124 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
1125
1126 // Add the TLS Symbol address to GOT pointer.This gives
1127 // GOT relative relocation for the symbol.
1128 Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1129 }
1130
1131 // Load the offset value for TLS symbol.This offset is relative to
1132 // thread pointer.
1133 SDValue LoadOffset =
1134 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
1135
1136 // Address of the thread local variable is the add of thread
1137 // pointer and the offset of the variable.
1138 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
1139 }
1140
1141 //
1142 // Lower using the local executable model for TLS addresses
1143 //
1144 SDValue
LowerToTLSLocalExecModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const1145 HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
1146 SelectionDAG &DAG) const {
1147 SDLoc dl(GA);
1148 int64_t Offset = GA->getOffset();
1149 auto PtrVT = getPointerTy(DAG.getDataLayout());
1150
1151 // Get the thread pointer.
1152 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1153 // Generate the TLS symbol address
1154 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1155 HexagonII::MO_TPREL);
1156 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1157
1158 // Address of the thread local variable is the add of thread
1159 // pointer and the offset of the variable.
1160 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
1161 }
1162
1163 //
1164 // Lower using the general dynamic model for TLS addresses
1165 //
1166 SDValue
LowerToTLSGeneralDynamicModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const1167 HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1168 SelectionDAG &DAG) const {
1169 SDLoc dl(GA);
1170 int64_t Offset = GA->getOffset();
1171 auto PtrVT = getPointerTy(DAG.getDataLayout());
1172
1173 // First generate the TLS symbol address
1174 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1175 HexagonII::MO_GDGOT);
1176
1177 // Then, generate the GOT pointer
1178 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
1179
1180 // Add the TLS symbol and the GOT pointer
1181 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1182 SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1183
1184 // Copy over the argument to R0
1185 SDValue InFlag;
1186 Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag);
1187 InFlag = Chain.getValue(1);
1188
1189 unsigned Flags =
1190 static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls()
1191 ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
1192 : HexagonII::MO_GDPLT;
1193
1194 return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT,
1195 Hexagon::R0, Flags);
1196 }
1197
1198 //
1199 // Lower TLS addresses.
1200 //
1201 // For now for dynamic models, we only support the general dynamic model.
1202 //
1203 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const1204 HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1205 SelectionDAG &DAG) const {
1206 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1207
1208 switch (HTM.getTLSModel(GA->getGlobal())) {
1209 case TLSModel::GeneralDynamic:
1210 case TLSModel::LocalDynamic:
1211 return LowerToTLSGeneralDynamicModel(GA, DAG);
1212 case TLSModel::InitialExec:
1213 return LowerToTLSInitialExecModel(GA, DAG);
1214 case TLSModel::LocalExec:
1215 return LowerToTLSLocalExecModel(GA, DAG);
1216 }
1217 llvm_unreachable("Bogus TLS model");
1218 }
1219
1220 //===----------------------------------------------------------------------===//
1221 // TargetLowering Implementation
1222 //===----------------------------------------------------------------------===//
1223
HexagonTargetLowering(const TargetMachine & TM,const HexagonSubtarget & ST)1224 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1225 const HexagonSubtarget &ST)
1226 : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
1227 Subtarget(ST) {
1228 bool IsV4 = !Subtarget.hasV5Ops();
1229 auto &HRI = *Subtarget.getRegisterInfo();
1230
1231 setPrefLoopAlignment(4);
1232 setPrefFunctionAlignment(4);
1233 setMinFunctionAlignment(2);
1234 setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
1235 setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
1236 setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);
1237
1238 setMaxAtomicSizeInBitsSupported(64);
1239 setMinCmpXchgSizeInBits(32);
1240
1241 if (EnableHexSDNodeSched)
1242 setSchedulingPreference(Sched::VLIW);
1243 else
1244 setSchedulingPreference(Sched::Source);
1245
1246 // Limits for inline expansion of memcpy/memmove
1247 MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
1248 MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
1249 MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
1250 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
1251 MaxStoresPerMemset = MaxStoresPerMemsetCL;
1252 MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
1253
1254 //
1255 // Set up register classes.
1256 //
1257
1258 addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
1259 addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa
1260 addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa
1261 addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba
1262 addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
1263 addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
1264 addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass);
1265 addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
1266 addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass);
1267 addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
1268 addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
1269
1270 if (Subtarget.hasV5Ops()) {
1271 addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1272 addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1273 }
1274
1275 //
1276 // Handling of scalar operations.
1277 //
1278 // All operations default to "legal", except:
1279 // - indexed loads and stores (pre-/post-incremented),
1280 // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
1281 // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
1282 // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
1283 // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
1284 // which default to "expand" for at least one type.
1285
1286 // Misc operations.
1287 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); // Default: expand
1288 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); // Default: expand
1289
1290 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
1291 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
1292 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
1293 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1294 setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
1295 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
1296 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1297 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1298 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
1299 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
1300 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1301 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1302
1303 // Custom legalize GlobalAddress nodes into CONST32.
1304 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1305 setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
1306 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1307
1308 // Hexagon needs to optimize cases with negative constants.
1309 setOperationAction(ISD::SETCC, MVT::i8, Custom);
1310 setOperationAction(ISD::SETCC, MVT::i16, Custom);
1311 setOperationAction(ISD::SETCC, MVT::v4i8, Custom);
1312 setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1313
1314 // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1315 setOperationAction(ISD::VASTART, MVT::Other, Custom);
1316 setOperationAction(ISD::VAEND, MVT::Other, Expand);
1317 setOperationAction(ISD::VAARG, MVT::Other, Expand);
1318 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
1319
1320 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1321 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1322 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1323
1324 if (EmitJumpTables)
1325 setMinimumJumpTableEntries(MinimumJumpTables);
1326 else
1327 setMinimumJumpTableEntries(std::numeric_limits<int>::max());
1328 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1329
1330 setOperationAction(ISD::ABS, MVT::i32, Legal);
1331 setOperationAction(ISD::ABS, MVT::i64, Legal);
1332
1333 // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
1334 // but they only operate on i64.
1335 for (MVT VT : MVT::integer_valuetypes()) {
1336 setOperationAction(ISD::UADDO, VT, Expand);
1337 setOperationAction(ISD::USUBO, VT, Expand);
1338 setOperationAction(ISD::SADDO, VT, Expand);
1339 setOperationAction(ISD::SSUBO, VT, Expand);
1340 setOperationAction(ISD::ADDCARRY, VT, Expand);
1341 setOperationAction(ISD::SUBCARRY, VT, Expand);
1342 }
1343 setOperationAction(ISD::ADDCARRY, MVT::i64, Custom);
1344 setOperationAction(ISD::SUBCARRY, MVT::i64, Custom);
1345
1346 setOperationAction(ISD::CTLZ, MVT::i8, Promote);
1347 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
1348 setOperationAction(ISD::CTTZ, MVT::i8, Promote);
1349 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
1350
1351 // In V5, popcount can count # of 1s in i64 but returns i32.
1352 // On V4 it will be expanded (set later).
1353 setOperationAction(ISD::CTPOP, MVT::i8, Promote);
1354 setOperationAction(ISD::CTPOP, MVT::i16, Promote);
1355 setOperationAction(ISD::CTPOP, MVT::i32, Promote);
1356 setOperationAction(ISD::CTPOP, MVT::i64, Legal);
1357
1358 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1359 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
1360 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
1361 setOperationAction(ISD::BSWAP, MVT::i64, Legal);
1362
1363 for (unsigned IntExpOp :
1364 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM,
1365 ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR,
1366 ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
1367 ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
1368 for (MVT VT : MVT::integer_valuetypes())
1369 setOperationAction(IntExpOp, VT, Expand);
1370 }
1371
1372 for (unsigned FPExpOp :
1373 {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
1374 ISD::FPOW, ISD::FCOPYSIGN}) {
1375 for (MVT VT : MVT::fp_valuetypes())
1376 setOperationAction(FPExpOp, VT, Expand);
1377 }
1378
1379 // No extending loads from i32.
1380 for (MVT VT : MVT::integer_valuetypes()) {
1381 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
1382 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
1383 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
1384 }
1385 // Turn FP truncstore into trunc + store.
1386 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1387 // Turn FP extload into load/fpextend.
1388 for (MVT VT : MVT::fp_valuetypes())
1389 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1390
1391 // Expand BR_CC and SELECT_CC for all integer and fp types.
1392 for (MVT VT : MVT::integer_valuetypes()) {
1393 setOperationAction(ISD::BR_CC, VT, Expand);
1394 setOperationAction(ISD::SELECT_CC, VT, Expand);
1395 }
1396 for (MVT VT : MVT::fp_valuetypes()) {
1397 setOperationAction(ISD::BR_CC, VT, Expand);
1398 setOperationAction(ISD::SELECT_CC, VT, Expand);
1399 }
1400 setOperationAction(ISD::BR_CC, MVT::Other, Expand);
1401
1402 //
1403 // Handling of vector operations.
1404 //
1405
1406 promoteLdStType(MVT::v4i8, MVT::i32);
1407 promoteLdStType(MVT::v2i16, MVT::i32);
1408 promoteLdStType(MVT::v8i8, MVT::i64);
1409 promoteLdStType(MVT::v4i16, MVT::i64);
1410 promoteLdStType(MVT::v2i32, MVT::i64);
1411
1412 // Set the action for vector operations to "expand", then override it with
1413 // either "custom" or "legal" for specific cases.
1414 static const unsigned VectExpOps[] = {
1415 // Integer arithmetic:
1416 ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV,
1417 ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::SADDO,
1418 ISD::UADDO, ISD::SSUBO, ISD::USUBO, ISD::SMUL_LOHI, ISD::UMUL_LOHI,
1419 // Logical/bit:
1420 ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR,
1421 ISD::CTPOP, ISD::CTLZ, ISD::CTTZ,
1422 // Floating point arithmetic/math functions:
1423 ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV,
1424 ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN,
1425 ISD::FCOS, ISD::FPOW, ISD::FLOG, ISD::FLOG2,
1426 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC,
1427 ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR,
1428 ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
1429 // Misc:
1430 ISD::BR_CC, ISD::SELECT_CC, ISD::ConstantPool,
1431 // Vector:
1432 ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR,
1433 ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT,
1434 ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR,
1435 ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE
1436 };
1437
1438 for (MVT VT : MVT::vector_valuetypes()) {
1439 for (unsigned VectExpOp : VectExpOps)
1440 setOperationAction(VectExpOp, VT, Expand);
1441
1442 // Expand all extending loads and truncating stores:
1443 for (MVT TargetVT : MVT::vector_valuetypes()) {
1444 if (TargetVT == VT)
1445 continue;
1446 setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
1447 setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
1448 setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
1449 setTruncStoreAction(VT, TargetVT, Expand);
1450 }
1451
1452 // Normalize all inputs to SELECT to be vectors of i32.
1453 if (VT.getVectorElementType() != MVT::i32) {
1454 MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
1455 setOperationAction(ISD::SELECT, VT, Promote);
1456 AddPromotedToType(ISD::SELECT, VT, VT32);
1457 }
1458 setOperationAction(ISD::SRA, VT, Custom);
1459 setOperationAction(ISD::SHL, VT, Custom);
1460 setOperationAction(ISD::SRL, VT, Custom);
1461 }
1462
1463 // Extending loads from (native) vectors of i8 into (native) vectors of i16
1464 // are legal.
1465 setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1466 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1467 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1468 setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1469 setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1470 setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1471
1472 // Types natively supported:
1473 for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
1474 MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1475 setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom);
1476 setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
1477 setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom);
1478 setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom);
1479 setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom);
1480 setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom);
1481
1482 setOperationAction(ISD::ADD, NativeVT, Legal);
1483 setOperationAction(ISD::SUB, NativeVT, Legal);
1484 setOperationAction(ISD::MUL, NativeVT, Legal);
1485 setOperationAction(ISD::AND, NativeVT, Legal);
1486 setOperationAction(ISD::OR, NativeVT, Legal);
1487 setOperationAction(ISD::XOR, NativeVT, Legal);
1488 }
1489
1490 // Custom lower unaligned loads.
1491 for (MVT VecVT : {MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
1492 MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1493 setOperationAction(ISD::LOAD, VecVT, Custom);
1494 }
1495
1496 for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v2i32, MVT::v4i16, MVT::v2i32}) {
1497 setCondCodeAction(ISD::SETLT, VT, Expand);
1498 setCondCodeAction(ISD::SETLE, VT, Expand);
1499 setCondCodeAction(ISD::SETULT, VT, Expand);
1500 setCondCodeAction(ISD::SETULE, VT, Expand);
1501 }
1502
1503 // Custom-lower bitcasts from i8 to v8i1.
1504 setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1505 setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1506 setOperationAction(ISD::VSELECT, MVT::v2i16, Custom);
1507 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8, Custom);
1508 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
1509 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
1510
1511 // Subtarget-specific operation actions.
1512 //
1513 if (Subtarget.hasV60Ops()) {
1514 setOperationAction(ISD::ROTL, MVT::i32, Custom);
1515 setOperationAction(ISD::ROTL, MVT::i64, Custom);
1516 }
1517 if (Subtarget.hasV5Ops()) {
1518 setOperationAction(ISD::FMA, MVT::f64, Expand);
1519 setOperationAction(ISD::FADD, MVT::f64, Expand);
1520 setOperationAction(ISD::FSUB, MVT::f64, Expand);
1521 setOperationAction(ISD::FMUL, MVT::f64, Expand);
1522
1523 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1524 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1525
1526 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
1527 setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
1528 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1529 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
1530 setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
1531 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1532 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
1533 setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
1534 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1535 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
1536 setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
1537 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1538 } else { // V4
1539 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
1540 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Expand);
1541 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
1542 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
1543 setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand);
1544 setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand);
1545 setOperationAction(ISD::FP_EXTEND, MVT::f32, Expand);
1546 setOperationAction(ISD::FP_ROUND, MVT::f64, Expand);
1547 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
1548
1549 setOperationAction(ISD::CTPOP, MVT::i8, Expand);
1550 setOperationAction(ISD::CTPOP, MVT::i16, Expand);
1551 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1552 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
1553
1554 // Expand these operations for both f32 and f64:
1555 for (unsigned FPExpOpV4 :
1556 {ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FABS, ISD::FNEG, ISD::FMA}) {
1557 setOperationAction(FPExpOpV4, MVT::f32, Expand);
1558 setOperationAction(FPExpOpV4, MVT::f64, Expand);
1559 }
1560
1561 for (ISD::CondCode FPExpCCV4 :
1562 {ISD::SETOEQ, ISD::SETOGT, ISD::SETOLT, ISD::SETOGE, ISD::SETOLE,
1563 ISD::SETUO, ISD::SETO}) {
1564 setCondCodeAction(FPExpCCV4, MVT::f32, Expand);
1565 setCondCodeAction(FPExpCCV4, MVT::f64, Expand);
1566 }
1567 }
1568
1569 // Handling of indexed loads/stores: default is "expand".
1570 //
1571 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
1572 MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
1573 setIndexedLoadAction(ISD::POST_INC, VT, Legal);
1574 setIndexedStoreAction(ISD::POST_INC, VT, Legal);
1575 }
1576
1577 if (Subtarget.useHVXOps())
1578 initializeHVXLowering();
1579
1580 computeRegisterProperties(&HRI);
1581
1582 //
1583 // Library calls for unsupported operations
1584 //
1585 bool FastMath = EnableFastMath;
1586
1587 setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1588 setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1589 setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1590 setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1591 setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1592 setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1593 setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1594 setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1595
1596 setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1597 setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1598 setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1599 setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1600 setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1601 setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1602
1603 if (IsV4) {
1604 // Handle single-precision floating point operations on V4.
1605 if (FastMath) {
1606 setLibcallName(RTLIB::ADD_F32, "__hexagon_fast_addsf3");
1607 setLibcallName(RTLIB::SUB_F32, "__hexagon_fast_subsf3");
1608 setLibcallName(RTLIB::MUL_F32, "__hexagon_fast_mulsf3");
1609 setLibcallName(RTLIB::OGT_F32, "__hexagon_fast_gtsf2");
1610 setLibcallName(RTLIB::OLT_F32, "__hexagon_fast_ltsf2");
1611 // Double-precision compares.
1612 setLibcallName(RTLIB::OGT_F64, "__hexagon_fast_gtdf2");
1613 setLibcallName(RTLIB::OLT_F64, "__hexagon_fast_ltdf2");
1614 } else {
1615 setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3");
1616 setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
1617 setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3");
1618 setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2");
1619 setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2");
1620 // Double-precision compares.
1621 setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2");
1622 setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2");
1623 }
1624 }
1625
1626 // This is the only fast library function for sqrtd.
1627 if (FastMath)
1628 setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
1629
1630 // Prefix is: nothing for "slow-math",
1631 // "fast2_" for V4 fast-math and V5+ fast-math double-precision
1632 // (actually, keep fast-math and fast-math2 separate for now)
1633 if (FastMath) {
1634 setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
1635 setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
1636 setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
1637 setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
1638 // Calling __hexagon_fast2_divsf3 with fast-math on V5 (ok).
1639 setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
1640 } else {
1641 setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1642 setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1643 setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1644 setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1645 setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1646 }
1647
1648 if (Subtarget.hasV5Ops()) {
1649 if (FastMath)
1650 setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
1651 else
1652 setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
1653 } else {
1654 // V4
1655 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf");
1656 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf");
1657 setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf");
1658 setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf");
1659 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf");
1660 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf");
1661 setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf");
1662 setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf");
1663 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi");
1664 setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi");
1665 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi");
1666 setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi");
1667 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi");
1668 setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi");
1669 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi");
1670 setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi");
1671 setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2");
1672 setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2");
1673 setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2");
1674 setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2");
1675 setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2");
1676 setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2");
1677 setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2");
1678 setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2");
1679 setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2");
1680 setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2");
1681 setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2");
1682 setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2");
1683 setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2");
1684 setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2");
1685 }
1686
1687 // These cause problems when the shift amount is non-constant.
1688 setLibcallName(RTLIB::SHL_I128, nullptr);
1689 setLibcallName(RTLIB::SRL_I128, nullptr);
1690 setLibcallName(RTLIB::SRA_I128, nullptr);
1691 }
1692
getTargetNodeName(unsigned Opcode) const1693 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1694 switch ((HexagonISD::NodeType)Opcode) {
1695 case HexagonISD::ADDC: return "HexagonISD::ADDC";
1696 case HexagonISD::SUBC: return "HexagonISD::SUBC";
1697 case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA";
1698 case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT";
1699 case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL";
1700 case HexagonISD::BARRIER: return "HexagonISD::BARRIER";
1701 case HexagonISD::CALL: return "HexagonISD::CALL";
1702 case HexagonISD::CALLnr: return "HexagonISD::CALLnr";
1703 case HexagonISD::CALLR: return "HexagonISD::CALLR";
1704 case HexagonISD::COMBINE: return "HexagonISD::COMBINE";
1705 case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
1706 case HexagonISD::CONST32: return "HexagonISD::CONST32";
1707 case HexagonISD::CP: return "HexagonISD::CP";
1708 case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH";
1709 case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
1710 case HexagonISD::TSTBIT: return "HexagonISD::TSTBIT";
1711 case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU";
1712 case HexagonISD::INSERT: return "HexagonISD::INSERT";
1713 case HexagonISD::JT: return "HexagonISD::JT";
1714 case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG";
1715 case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN";
1716 case HexagonISD::VASL: return "HexagonISD::VASL";
1717 case HexagonISD::VASR: return "HexagonISD::VASR";
1718 case HexagonISD::VLSR: return "HexagonISD::VLSR";
1719 case HexagonISD::VSPLAT: return "HexagonISD::VSPLAT";
1720 case HexagonISD::VEXTRACTW: return "HexagonISD::VEXTRACTW";
1721 case HexagonISD::VINSERTW0: return "HexagonISD::VINSERTW0";
1722 case HexagonISD::VROR: return "HexagonISD::VROR";
1723 case HexagonISD::READCYCLE: return "HexagonISD::READCYCLE";
1724 case HexagonISD::VZERO: return "HexagonISD::VZERO";
1725 case HexagonISD::VSPLATW: return "HexagonISD::VSPLATW";
1726 case HexagonISD::D2P: return "HexagonISD::D2P";
1727 case HexagonISD::P2D: return "HexagonISD::P2D";
1728 case HexagonISD::V2Q: return "HexagonISD::V2Q";
1729 case HexagonISD::Q2V: return "HexagonISD::Q2V";
1730 case HexagonISD::QCAT: return "HexagonISD::QCAT";
1731 case HexagonISD::QTRUE: return "HexagonISD::QTRUE";
1732 case HexagonISD::QFALSE: return "HexagonISD::QFALSE";
1733 case HexagonISD::TYPECAST: return "HexagonISD::TYPECAST";
1734 case HexagonISD::VALIGN: return "HexagonISD::VALIGN";
1735 case HexagonISD::VALIGNADDR: return "HexagonISD::VALIGNADDR";
1736 case HexagonISD::OP_END: break;
1737 }
1738 return nullptr;
1739 }
1740
1741 // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
1742 // intrinsic.
isBrevLdIntrinsic(const Value * Inst)1743 static bool isBrevLdIntrinsic(const Value *Inst) {
1744 unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
1745 return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
1746 ID == Intrinsic::hexagon_L2_loadri_pbr ||
1747 ID == Intrinsic::hexagon_L2_loadrh_pbr ||
1748 ID == Intrinsic::hexagon_L2_loadruh_pbr ||
1749 ID == Intrinsic::hexagon_L2_loadrb_pbr ||
1750 ID == Intrinsic::hexagon_L2_loadrub_pbr);
1751 }
1752
1753 // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
1754 // instruction. So far we only handle bitcast, extract value and bit reverse
1755 // load intrinsic instructions. Should we handle CGEP ?
getBrevLdObject(Value * V)1756 static Value *getBrevLdObject(Value *V) {
1757 if (Operator::getOpcode(V) == Instruction::ExtractValue ||
1758 Operator::getOpcode(V) == Instruction::BitCast)
1759 V = cast<Operator>(V)->getOperand(0);
1760 else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
1761 V = cast<Instruction>(V)->getOperand(0);
1762 return V;
1763 }
1764
1765 // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
1766 // a back edge. If the back edge comes from the intrinsic itself, the incoming
1767 // edge is returned.
returnEdge(const PHINode * PN,Value * IntrBaseVal)1768 static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
1769 const BasicBlock *Parent = PN->getParent();
1770 int Idx = -1;
1771 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1772 BasicBlock *Blk = PN->getIncomingBlock(i);
1773 // Determine if the back edge is originated from intrinsic.
1774 if (Blk == Parent) {
1775 Value *BackEdgeVal = PN->getIncomingValue(i);
1776 Value *BaseVal;
1777 // Loop over till we return the same Value or we hit the IntrBaseVal.
1778 do {
1779 BaseVal = BackEdgeVal;
1780 BackEdgeVal = getBrevLdObject(BackEdgeVal);
1781 } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
1782 // If the getBrevLdObject returns IntrBaseVal, we should return the
1783 // incoming edge.
1784 if (IntrBaseVal == BackEdgeVal)
1785 continue;
1786 Idx = i;
1787 break;
1788 } else // Set the node to incoming edge.
1789 Idx = i;
1790 }
1791 assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
1792 return PN->getIncomingValue(Idx);
1793 }
1794
1795 // Bit-reverse Load Intrinsic: Figure out the underlying object the base
1796 // pointer points to, for the bit-reverse load intrinsic. Setting this to
1797 // memoperand might help alias analysis to figure out the dependencies.
getUnderLyingObjectForBrevLdIntr(Value * V)1798 static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
1799 Value *IntrBaseVal = V;
1800 Value *BaseVal;
1801 // Loop over till we return the same Value, implies we either figure out
1802 // the object or we hit a PHI
1803 do {
1804 BaseVal = V;
1805 V = getBrevLdObject(V);
1806 } while (BaseVal != V);
1807
1808 // Identify the object from PHINode.
1809 if (const PHINode *PN = dyn_cast<PHINode>(V))
1810 return returnEdge(PN, IntrBaseVal);
1811 // For non PHI nodes, the object is the last value returned by getBrevLdObject
1812 else
1813 return V;
1814 }
1815
1816 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1817 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1818 /// true and store the intrinsic information into the IntrinsicInfo that was
1819 /// passed to the function.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const1820 bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1821 const CallInst &I,
1822 MachineFunction &MF,
1823 unsigned Intrinsic) const {
1824 switch (Intrinsic) {
1825 case Intrinsic::hexagon_L2_loadrd_pbr:
1826 case Intrinsic::hexagon_L2_loadri_pbr:
1827 case Intrinsic::hexagon_L2_loadrh_pbr:
1828 case Intrinsic::hexagon_L2_loadruh_pbr:
1829 case Intrinsic::hexagon_L2_loadrb_pbr:
1830 case Intrinsic::hexagon_L2_loadrub_pbr: {
1831 Info.opc = ISD::INTRINSIC_W_CHAIN;
1832 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
1833 auto &Cont = I.getCalledFunction()->getParent()->getContext();
1834 // The intrinsic function call is of the form { ElTy, i8* }
1835 // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
1836 // should be derived from ElTy.
1837 PointerType *PtrTy = I.getCalledFunction()
1838 ->getReturnType()
1839 ->getContainedType(0)
1840 ->getPointerTo();
1841 Info.memVT = MVT::getVT(PtrTy->getElementType());
1842 llvm::Value *BasePtrVal = I.getOperand(0);
1843 Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
1844 // The offset value comes through Modifier register. For now, assume the
1845 // offset is 0.
1846 Info.offset = 0;
1847 Info.align = DL.getABITypeAlignment(Info.memVT.getTypeForEVT(Cont));
1848 Info.flags = MachineMemOperand::MOLoad;
1849 return true;
1850 }
1851 case Intrinsic::hexagon_V6_vgathermw:
1852 case Intrinsic::hexagon_V6_vgathermw_128B:
1853 case Intrinsic::hexagon_V6_vgathermh:
1854 case Intrinsic::hexagon_V6_vgathermh_128B:
1855 case Intrinsic::hexagon_V6_vgathermhw:
1856 case Intrinsic::hexagon_V6_vgathermhw_128B:
1857 case Intrinsic::hexagon_V6_vgathermwq:
1858 case Intrinsic::hexagon_V6_vgathermwq_128B:
1859 case Intrinsic::hexagon_V6_vgathermhq:
1860 case Intrinsic::hexagon_V6_vgathermhq_128B:
1861 case Intrinsic::hexagon_V6_vgathermhwq:
1862 case Intrinsic::hexagon_V6_vgathermhwq_128B: {
1863 const Module &M = *I.getParent()->getParent()->getParent();
1864 Info.opc = ISD::INTRINSIC_W_CHAIN;
1865 Type *VecTy = I.getArgOperand(1)->getType();
1866 Info.memVT = MVT::getVT(VecTy);
1867 Info.ptrVal = I.getArgOperand(0);
1868 Info.offset = 0;
1869 Info.align = M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8;
1870 Info.flags = MachineMemOperand::MOLoad |
1871 MachineMemOperand::MOStore |
1872 MachineMemOperand::MOVolatile;
1873 return true;
1874 }
1875 default:
1876 break;
1877 }
1878 return false;
1879 }
1880
isTruncateFree(Type * Ty1,Type * Ty2) const1881 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
1882 return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
1883 }
1884
isTruncateFree(EVT VT1,EVT VT2) const1885 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1886 if (!VT1.isSimple() || !VT2.isSimple())
1887 return false;
1888 return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
1889 }
1890
isFMAFasterThanFMulAndFAdd(EVT VT) const1891 bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
1892 return isOperationLegalOrCustom(ISD::FMA, VT);
1893 }
1894
1895 // Should we expand the build vector with shuffles?
shouldExpandBuildVectorWithShuffles(EVT VT,unsigned DefinedValues) const1896 bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
1897 unsigned DefinedValues) const {
1898 return false;
1899 }
1900
isShuffleMaskLegal(ArrayRef<int> Mask,EVT VT) const1901 bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
1902 EVT VT) const {
1903 return true;
1904 }
1905
1906 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT) const1907 HexagonTargetLowering::getPreferredVectorAction(EVT VT) const {
1908 if (VT.getVectorNumElements() == 1)
1909 return TargetLoweringBase::TypeScalarizeVector;
1910
1911 // Always widen vectors of i1.
1912 MVT ElemTy = VT.getSimpleVT().getVectorElementType();
1913 if (ElemTy == MVT::i1)
1914 return TargetLoweringBase::TypeWidenVector;
1915
1916 if (Subtarget.useHVXOps()) {
1917 // If the size of VT is at least half of the vector length,
1918 // widen the vector. Note: the threshold was not selected in
1919 // any scientific way.
1920 ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes();
1921 if (llvm::find(Tys, ElemTy) != Tys.end()) {
1922 unsigned HwWidth = 8*Subtarget.getVectorLength();
1923 unsigned VecWidth = VT.getSizeInBits();
1924 if (VecWidth >= HwWidth/2 && VecWidth < HwWidth)
1925 return TargetLoweringBase::TypeWidenVector;
1926 }
1927 }
1928 return TargetLoweringBase::TypeSplitVector;
1929 }
1930
1931 std::pair<SDValue, int>
getBaseAndOffset(SDValue Addr) const1932 HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
1933 if (Addr.getOpcode() == ISD::ADD) {
1934 SDValue Op1 = Addr.getOperand(1);
1935 if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
1936 return { Addr.getOperand(0), CN->getSExtValue() };
1937 }
1938 return { Addr, 0 };
1939 }
1940
1941 // Lower a vector shuffle (V1, V2, V3). V1 and V2 are the two vectors
1942 // to select data from, V3 is the permutation.
1943 SDValue
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const1944 HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
1945 const {
1946 const auto *SVN = cast<ShuffleVectorSDNode>(Op);
1947 ArrayRef<int> AM = SVN->getMask();
1948 assert(AM.size() <= 8 && "Unexpected shuffle mask");
1949 unsigned VecLen = AM.size();
1950
1951 MVT VecTy = ty(Op);
1952 assert(!Subtarget.isHVXVectorType(VecTy, true) &&
1953 "HVX shuffles should be legal");
1954 assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");
1955
1956 SDValue Op0 = Op.getOperand(0);
1957 SDValue Op1 = Op.getOperand(1);
1958 const SDLoc &dl(Op);
1959
1960 // If the inputs are not the same as the output, bail. This is not an
1961 // error situation, but complicates the handling and the default expansion
1962 // (into BUILD_VECTOR) should be adequate.
1963 if (ty(Op0) != VecTy || ty(Op1) != VecTy)
1964 return SDValue();
1965
1966 // Normalize the mask so that the first non-negative index comes from
1967 // the first operand.
1968 SmallVector<int,8> Mask(AM.begin(), AM.end());
1969 unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
1970 if (F == AM.size())
1971 return DAG.getUNDEF(VecTy);
1972 if (AM[F] >= int(VecLen)) {
1973 ShuffleVectorSDNode::commuteMask(Mask);
1974 std::swap(Op0, Op1);
1975 }
1976
1977 // Express the shuffle mask in terms of bytes.
1978 SmallVector<int,8> ByteMask;
1979 unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
1980 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1981 int M = Mask[i];
1982 if (M < 0) {
1983 for (unsigned j = 0; j != ElemBytes; ++j)
1984 ByteMask.push_back(-1);
1985 } else {
1986 for (unsigned j = 0; j != ElemBytes; ++j)
1987 ByteMask.push_back(M*ElemBytes + j);
1988 }
1989 }
1990 assert(ByteMask.size() <= 8);
1991
1992 // All non-undef (non-negative) indexes are well within [0..127], so they
1993 // fit in a single byte. Build two 64-bit words:
1994 // - MaskIdx where each byte is the corresponding index (for non-negative
1995 // indexes), and 0xFF for negative indexes, and
1996 // - MaskUnd that has 0xFF for each negative index.
1997 uint64_t MaskIdx = 0;
1998 uint64_t MaskUnd = 0;
1999 for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
2000 unsigned S = 8*i;
2001 uint64_t M = ByteMask[i] & 0xFF;
2002 if (M == 0xFF)
2003 MaskUnd |= M << S;
2004 MaskIdx |= M << S;
2005 }
2006
2007 if (ByteMask.size() == 4) {
2008 // Identity.
2009 if (MaskIdx == (0x03020100 | MaskUnd))
2010 return Op0;
2011 // Byte swap.
2012 if (MaskIdx == (0x00010203 | MaskUnd)) {
2013 SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
2014 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
2015 return DAG.getBitcast(VecTy, T1);
2016 }
2017
2018 // Byte packs.
2019 SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl,
2020 typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0});
2021 if (MaskIdx == (0x06040200 | MaskUnd))
2022 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
2023 if (MaskIdx == (0x07050301 | MaskUnd))
2024 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);
2025
2026 SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl,
2027 typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1});
2028 if (MaskIdx == (0x02000604 | MaskUnd))
2029 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
2030 if (MaskIdx == (0x03010705 | MaskUnd))
2031 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
2032 }
2033
2034 if (ByteMask.size() == 8) {
2035 // Identity.
2036 if (MaskIdx == (0x0706050403020100ull | MaskUnd))
2037 return Op0;
2038 // Byte swap.
2039 if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
2040 SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
2041 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
2042 return DAG.getBitcast(VecTy, T1);
2043 }
2044
2045 // Halfword picks.
2046 if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
2047 return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
2048 if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
2049 return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
2050 if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
2051 return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
2052 if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
2053 return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
2054 if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
2055 VectorPair P = opSplit(Op0, dl, DAG);
2056 return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
2057 }
2058
2059 // Byte packs.
2060 if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
2061 return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
2062 if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
2063 return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
2064 }
2065
2066 return SDValue();
2067 }
2068
2069 // Create a Hexagon-specific node for shifting a vector by an integer.
2070 SDValue
getVectorShiftByInt(SDValue Op,SelectionDAG & DAG) const2071 HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
2072 const {
2073 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) {
2074 if (SDValue S = BVN->getSplatValue()) {
2075 unsigned NewOpc;
2076 switch (Op.getOpcode()) {
2077 case ISD::SHL:
2078 NewOpc = HexagonISD::VASL;
2079 break;
2080 case ISD::SRA:
2081 NewOpc = HexagonISD::VASR;
2082 break;
2083 case ISD::SRL:
2084 NewOpc = HexagonISD::VLSR;
2085 break;
2086 default:
2087 llvm_unreachable("Unexpected shift opcode");
2088 }
2089 return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), S);
2090 }
2091 }
2092
2093 return SDValue();
2094 }
2095
2096 SDValue
LowerVECTOR_SHIFT(SDValue Op,SelectionDAG & DAG) const2097 HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
2098 return getVectorShiftByInt(Op, DAG);
2099 }
2100
2101 SDValue
LowerROTL(SDValue Op,SelectionDAG & DAG) const2102 HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
2103 if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
2104 return Op;
2105 return SDValue();
2106 }
2107
2108 SDValue
LowerBITCAST(SDValue Op,SelectionDAG & DAG) const2109 HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2110 MVT ResTy = ty(Op);
2111 SDValue InpV = Op.getOperand(0);
2112 MVT InpTy = ty(InpV);
2113 assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
2114 const SDLoc &dl(Op);
2115
2116 // Handle conversion from i8 to v8i1.
2117 if (ResTy == MVT::v8i1) {
2118 SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
2119 SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
2120 return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
2121 }
2122
2123 return SDValue();
2124 }
2125
2126 bool
getBuildVectorConstInts(ArrayRef<SDValue> Values,MVT VecTy,SelectionDAG & DAG,MutableArrayRef<ConstantInt * > Consts) const2127 HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
2128 MVT VecTy, SelectionDAG &DAG,
2129 MutableArrayRef<ConstantInt*> Consts) const {
2130 MVT ElemTy = VecTy.getVectorElementType();
2131 unsigned ElemWidth = ElemTy.getSizeInBits();
2132 IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
2133 bool AllConst = true;
2134
2135 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2136 SDValue V = Values[i];
2137 if (V.isUndef()) {
2138 Consts[i] = ConstantInt::get(IntTy, 0);
2139 continue;
2140 }
2141 // Make sure to always cast to IntTy.
2142 if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
2143 const ConstantInt *CI = CN->getConstantIntValue();
2144 Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
2145 } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
2146 const ConstantFP *CF = CN->getConstantFPValue();
2147 APInt A = CF->getValueAPF().bitcastToAPInt();
2148 Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
2149 } else {
2150 AllConst = false;
2151 }
2152 }
2153 return AllConst;
2154 }
2155
2156 SDValue
buildVector32(ArrayRef<SDValue> Elem,const SDLoc & dl,MVT VecTy,SelectionDAG & DAG) const2157 HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
2158 MVT VecTy, SelectionDAG &DAG) const {
2159 MVT ElemTy = VecTy.getVectorElementType();
2160 assert(VecTy.getVectorNumElements() == Elem.size());
2161
2162 SmallVector<ConstantInt*,4> Consts(Elem.size());
2163 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2164
2165 unsigned First, Num = Elem.size();
2166 for (First = 0; First != Num; ++First)
2167 if (!isUndef(Elem[First]))
2168 break;
2169 if (First == Num)
2170 return DAG.getUNDEF(VecTy);
2171
2172 if (AllConst &&
2173 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2174 return getZero(dl, VecTy, DAG);
2175
2176 if (ElemTy == MVT::i16) {
2177 assert(Elem.size() == 2);
2178 if (AllConst) {
2179 uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
2180 Consts[1]->getZExtValue() << 16;
2181 return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32));
2182 }
2183 SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32,
2184 {Elem[1], Elem[0]}, DAG);
2185 return DAG.getBitcast(MVT::v2i16, N);
2186 }
2187
2188 if (ElemTy == MVT::i8) {
2189 // First try generating a constant.
2190 if (AllConst) {
2191 int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
2192 (Consts[1]->getZExtValue() & 0xFF) << 8 |
2193 (Consts[1]->getZExtValue() & 0xFF) << 16 |
2194 Consts[2]->getZExtValue() << 24;
2195 return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
2196 }
2197
2198 // Then try splat.
2199 bool IsSplat = true;
2200 for (unsigned i = 0; i != Num; ++i) {
2201 if (i == First)
2202 continue;
2203 if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2204 continue;
2205 IsSplat = false;
2206 break;
2207 }
2208 if (IsSplat) {
2209 // Legalize the operand to VSPLAT.
2210 SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2211 return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
2212 }
2213
2214 // Generate
2215 // (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
2216 // (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
2217 assert(Elem.size() == 4);
2218 SDValue Vs[4];
2219 for (unsigned i = 0; i != 4; ++i) {
2220 Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
2221 Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
2222 }
2223 SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
2224 SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
2225 SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
2226 SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
2227 SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});
2228
2229 SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
2230 return DAG.getBitcast(MVT::v4i8, R);
2231 }
2232
2233 #ifndef NDEBUG
2234 dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n';
2235 #endif
2236 llvm_unreachable("Unexpected vector element type");
2237 }
2238
2239 SDValue
buildVector64(ArrayRef<SDValue> Elem,const SDLoc & dl,MVT VecTy,SelectionDAG & DAG) const2240 HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
2241 MVT VecTy, SelectionDAG &DAG) const {
2242 MVT ElemTy = VecTy.getVectorElementType();
2243 assert(VecTy.getVectorNumElements() == Elem.size());
2244
2245 SmallVector<ConstantInt*,8> Consts(Elem.size());
2246 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2247
2248 unsigned First, Num = Elem.size();
2249 for (First = 0; First != Num; ++First)
2250 if (!isUndef(Elem[First]))
2251 break;
2252 if (First == Num)
2253 return DAG.getUNDEF(VecTy);
2254
2255 if (AllConst &&
2256 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2257 return getZero(dl, VecTy, DAG);
2258
2259 // First try splat if possible.
2260 if (ElemTy == MVT::i16) {
2261 bool IsSplat = true;
2262 for (unsigned i = 0; i != Num; ++i) {
2263 if (i == First)
2264 continue;
2265 if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2266 continue;
2267 IsSplat = false;
2268 break;
2269 }
2270 if (IsSplat) {
2271 // Legalize the operand to VSPLAT.
2272 SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2273 return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
2274 }
2275 }
2276
2277 // Then try constant.
2278 if (AllConst) {
2279 uint64_t Val = 0;
2280 unsigned W = ElemTy.getSizeInBits();
2281 uint64_t Mask = (ElemTy == MVT::i8) ? 0xFFull
2282 : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull;
2283 for (unsigned i = 0; i != Num; ++i)
2284 Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
2285 SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
2286 return DAG.getBitcast(VecTy, V0);
2287 }
2288
2289 // Build two 32-bit vectors and concatenate.
2290 MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
2291 SDValue L = (ElemTy == MVT::i32)
2292 ? Elem[0]
2293 : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
2294 SDValue H = (ElemTy == MVT::i32)
2295 ? Elem[1]
2296 : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
2297 return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L});
2298 }
2299
2300 SDValue
extractVector(SDValue VecV,SDValue IdxV,const SDLoc & dl,MVT ValTy,MVT ResTy,SelectionDAG & DAG) const2301 HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
2302 const SDLoc &dl, MVT ValTy, MVT ResTy,
2303 SelectionDAG &DAG) const {
2304 MVT VecTy = ty(VecV);
2305 assert(!ValTy.isVector() ||
2306 VecTy.getVectorElementType() == ValTy.getVectorElementType());
2307 unsigned VecWidth = VecTy.getSizeInBits();
2308 unsigned ValWidth = ValTy.getSizeInBits();
2309 unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
2310 assert((VecWidth % ElemWidth) == 0);
2311 auto *IdxN = dyn_cast<ConstantSDNode>(IdxV);
2312
2313 // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
2314 // without any coprocessors).
2315 if (ElemWidth == 1) {
2316 assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure");
2317 assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
2318 // Check if this is an extract of the lowest bit.
2319 if (IdxN) {
2320 // Extracting the lowest bit is a no-op, but it changes the type,
2321 // so it must be kept as an operation to avoid errors related to
2322 // type mismatches.
2323 if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1)
2324 return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
2325 }
2326
2327 // If the value extracted is a single bit, use tstbit.
2328 if (ValWidth == 1) {
2329 SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2330 SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
2331 SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
2332 return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
2333 }
2334
2335 // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
2336 // a predicate register. The elements of the vector are repeated
2337 // in the register (if necessary) so that the total number is 8.
2338 // The extracted subvector will need to be expanded in such a way.
2339 unsigned Scale = VecWidth / ValWidth;
2340
2341 // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
2342 // position 0.
2343 assert(ty(IdxV) == MVT::i32);
2344 SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2345 DAG.getConstant(8*Scale, dl, MVT::i32));
2346 SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2347 SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
2348 while (Scale > 1) {
2349 // The longest possible subvector is at most 32 bits, so it is always
2350 // contained in the low subregister.
2351 T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1);
2352 T1 = expandPredicate(T1, dl, DAG);
2353 Scale /= 2;
2354 }
2355
2356 return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
2357 }
2358
2359 assert(VecWidth == 32 || VecWidth == 64);
2360
2361 // Cast everything to scalar integer types.
2362 MVT ScalarTy = tyScalar(VecTy);
2363 VecV = DAG.getBitcast(ScalarTy, VecV);
2364
2365 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2366 SDValue ExtV;
2367
2368 if (IdxN) {
2369 unsigned Off = IdxN->getZExtValue() * ElemWidth;
2370 if (VecWidth == 64 && ValWidth == 32) {
2371 assert(Off == 0 || Off == 32);
2372 unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
2373 ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV);
2374 } else if (Off == 0 && (ValWidth % 8) == 0) {
2375 ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
2376 } else {
2377 SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
2378 // The return type of EXTRACTU must be the same as the type of the
2379 // input vector.
2380 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2381 {VecV, WidthV, OffV});
2382 }
2383 } else {
2384 if (ty(IdxV) != MVT::i32)
2385 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2386 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2387 DAG.getConstant(ElemWidth, dl, MVT::i32));
2388 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2389 {VecV, WidthV, OffV});
2390 }
2391
2392 // Cast ExtV to the requested result type.
2393 ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
2394 ExtV = DAG.getBitcast(ResTy, ExtV);
2395 return ExtV;
2396 }
2397
2398 SDValue
insertVector(SDValue VecV,SDValue ValV,SDValue IdxV,const SDLoc & dl,MVT ValTy,SelectionDAG & DAG) const2399 HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
2400 const SDLoc &dl, MVT ValTy,
2401 SelectionDAG &DAG) const {
2402 MVT VecTy = ty(VecV);
2403 if (VecTy.getVectorElementType() == MVT::i1) {
2404 MVT ValTy = ty(ValV);
2405 assert(ValTy.getVectorElementType() == MVT::i1);
2406 SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV);
2407 unsigned VecLen = VecTy.getVectorNumElements();
2408 unsigned Scale = VecLen / ValTy.getVectorNumElements();
2409 assert(Scale > 1);
2410
2411 for (unsigned R = Scale; R > 1; R /= 2) {
2412 ValR = contractPredicate(ValR, dl, DAG);
2413 ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2414 DAG.getUNDEF(MVT::i32), ValR);
2415 }
2416 // The longest possible subvector is at most 32 bits, so it is always
2417 // contained in the low subregister.
2418 ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR);
2419
2420 unsigned ValBytes = 64 / Scale;
2421 SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32);
2422 SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2423 DAG.getConstant(8, dl, MVT::i32));
2424 SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2425 SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2426 {VecR, ValR, Width, Idx});
2427 return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
2428 }
2429
2430 unsigned VecWidth = VecTy.getSizeInBits();
2431 unsigned ValWidth = ValTy.getSizeInBits();
2432 assert(VecWidth == 32 || VecWidth == 64);
2433 assert((VecWidth % ValWidth) == 0);
2434
2435 // Cast everything to scalar integer types.
2436 MVT ScalarTy = MVT::getIntegerVT(VecWidth);
2437 // The actual type of ValV may be different than ValTy (which is related
2438 // to the vector type).
2439 unsigned VW = ty(ValV).getSizeInBits();
2440 ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
2441 VecV = DAG.getBitcast(ScalarTy, VecV);
2442 if (VW != VecWidth)
2443 ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);
2444
2445 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2446 SDValue InsV;
2447
2448 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
2449 unsigned W = C->getZExtValue() * ValWidth;
2450 SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
2451 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2452 {VecV, ValV, WidthV, OffV});
2453 } else {
2454 if (ty(IdxV) != MVT::i32)
2455 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2456 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
2457 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2458 {VecV, ValV, WidthV, OffV});
2459 }
2460
2461 return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
2462 }
2463
2464 SDValue
expandPredicate(SDValue Vec32,const SDLoc & dl,SelectionDAG & DAG) const2465 HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
2466 SelectionDAG &DAG) const {
2467 assert(ty(Vec32).getSizeInBits() == 32);
2468 if (isUndef(Vec32))
2469 return DAG.getUNDEF(MVT::i64);
2470 return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG);
2471 }
2472
2473 SDValue
contractPredicate(SDValue Vec64,const SDLoc & dl,SelectionDAG & DAG) const2474 HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
2475 SelectionDAG &DAG) const {
2476 assert(ty(Vec64).getSizeInBits() == 64);
2477 if (isUndef(Vec64))
2478 return DAG.getUNDEF(MVT::i32);
2479 return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG);
2480 }
2481
2482 SDValue
getZero(const SDLoc & dl,MVT Ty,SelectionDAG & DAG) const2483 HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
2484 const {
2485 if (Ty.isVector()) {
2486 assert(Ty.isInteger() && "Only integer vectors are supported here");
2487 unsigned W = Ty.getSizeInBits();
2488 if (W <= 64)
2489 return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
2490 return DAG.getNode(HexagonISD::VZERO, dl, Ty);
2491 }
2492
2493 if (Ty.isInteger())
2494 return DAG.getConstant(0, dl, Ty);
2495 if (Ty.isFloatingPoint())
2496 return DAG.getConstantFP(0.0, dl, Ty);
2497 llvm_unreachable("Invalid type for zero");
2498 }
2499
2500 SDValue
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const2501 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
2502 MVT VecTy = ty(Op);
2503 unsigned BW = VecTy.getSizeInBits();
2504 const SDLoc &dl(Op);
2505 SmallVector<SDValue,8> Ops;
2506 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
2507 Ops.push_back(Op.getOperand(i));
2508
2509 if (BW == 32)
2510 return buildVector32(Ops, dl, VecTy, DAG);
2511 if (BW == 64)
2512 return buildVector64(Ops, dl, VecTy, DAG);
2513
2514 if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
2515 // For each i1 element in the resulting predicate register, put 1
2516 // shifted by the index of the element into a general-purpose register,
2517 // then or them together and transfer it back into a predicate register.
2518 SDValue Rs[8];
2519 SDValue Z = getZero(dl, MVT::i32, DAG);
2520 // Always produce 8 bits, repeat inputs if necessary.
2521 unsigned Rep = 8 / VecTy.getVectorNumElements();
2522 for (unsigned i = 0; i != 8; ++i) {
2523 SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
2524 Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
2525 }
2526 for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
2527 for (unsigned i = 0, e = A.size()/2; i != e; ++i)
2528 Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
2529 }
2530 // Move the value directly to a predicate register.
2531 return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
2532 }
2533
2534 return SDValue();
2535 }
2536
2537 SDValue
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG) const2538 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
2539 SelectionDAG &DAG) const {
2540 MVT VecTy = ty(Op);
2541 const SDLoc &dl(Op);
2542 if (VecTy.getSizeInBits() == 64) {
2543 assert(Op.getNumOperands() == 2);
2544 return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1),
2545 Op.getOperand(0));
2546 }
2547
2548 MVT ElemTy = VecTy.getVectorElementType();
2549 if (ElemTy == MVT::i1) {
2550 assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
2551 MVT OpTy = ty(Op.getOperand(0));
2552 // Scale is how many times the operands need to be contracted to match
2553 // the representation in the target register.
2554 unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
2555 assert(Scale == Op.getNumOperands() && Scale > 1);
2556
2557 // First, convert all bool vectors to integers, then generate pairwise
2558 // inserts to form values of doubled length. Up until there are only
2559 // two values left to concatenate, all of these values will fit in a
2560 // 32-bit integer, so keep them as i32 to use 32-bit inserts.
2561 SmallVector<SDValue,4> Words[2];
2562 unsigned IdxW = 0;
2563
2564 for (SDValue P : Op.getNode()->op_values()) {
2565 SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
2566 for (unsigned R = Scale; R > 1; R /= 2) {
2567 W = contractPredicate(W, dl, DAG);
2568 W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2569 DAG.getUNDEF(MVT::i32), W);
2570 }
2571 W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W);
2572 Words[IdxW].push_back(W);
2573 }
2574
2575 while (Scale > 2) {
2576 SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
2577 Words[IdxW ^ 1].clear();
2578
2579 for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
2580 SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
2581 // Insert W1 into W0 right next to the significant bits of W0.
2582 SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2583 {W0, W1, WidthV, WidthV});
2584 Words[IdxW ^ 1].push_back(T);
2585 }
2586 IdxW ^= 1;
2587 Scale /= 2;
2588 }
2589
2590 // Another sanity check. At this point there should only be two words
2591 // left, and Scale should be 2.
2592 assert(Scale == 2 && Words[IdxW].size() == 2);
2593
2594 SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2595 Words[IdxW][1], Words[IdxW][0]);
2596 return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
2597 }
2598
2599 return SDValue();
2600 }
2601
2602 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const2603 HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
2604 SelectionDAG &DAG) const {
2605 SDValue Vec = Op.getOperand(0);
2606 MVT ElemTy = ty(Vec).getVectorElementType();
2607 return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
2608 }
2609
2610 SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const2611 HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
2612 SelectionDAG &DAG) const {
2613 return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
2614 ty(Op), ty(Op), DAG);
2615 }
2616
2617 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const2618 HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
2619 SelectionDAG &DAG) const {
2620 return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
2621 SDLoc(Op), ty(Op).getVectorElementType(), DAG);
2622 }
2623
2624 SDValue
LowerINSERT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const2625 HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
2626 SelectionDAG &DAG) const {
2627 SDValue ValV = Op.getOperand(1);
2628 return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
2629 SDLoc(Op), ty(ValV), DAG);
2630 }
2631
2632 bool
allowTruncateForTailCall(Type * Ty1,Type * Ty2) const2633 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
2634 // Assuming the caller does not have either a signext or zeroext modifier, and
2635 // only one value is accepted, any reasonable truncation is allowed.
2636 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
2637 return false;
2638
2639 // FIXME: in principle up to 64-bit could be made safe, but it would be very
2640 // fragile at the moment: any support for multiple value returns would be
2641 // liable to disallow tail calls involving i64 -> iN truncation in many cases.
2642 return Ty1->getPrimitiveSizeInBits() <= 32;
2643 }
2644
2645 SDValue
LowerUnalignedLoad(SDValue Op,SelectionDAG & DAG) const2646 HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
2647 const {
2648 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
2649 unsigned HaveAlign = LN->getAlignment();
2650 MVT LoadTy = ty(Op);
2651 unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy);
2652 if (HaveAlign >= NeedAlign)
2653 return Op;
2654
2655 const SDLoc &dl(Op);
2656 const DataLayout &DL = DAG.getDataLayout();
2657 LLVMContext &Ctx = *DAG.getContext();
2658 unsigned AS = LN->getAddressSpace();
2659
2660 // If the load aligning is disabled or the load can be broken up into two
2661 // smaller legal loads, do the default (target-independent) expansion.
2662 bool DoDefault = false;
2663 // Handle it in the default way if this is an indexed load.
2664 if (!LN->isUnindexed())
2665 DoDefault = true;
2666
2667 if (!AlignLoads) {
2668 if (allowsMemoryAccess(Ctx, DL, LN->getMemoryVT(), AS, HaveAlign))
2669 return Op;
2670 DoDefault = true;
2671 }
2672 if (!DoDefault && 2*HaveAlign == NeedAlign) {
2673 // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
2674 MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8*HaveAlign)
2675 : MVT::getVectorVT(MVT::i8, HaveAlign);
2676 DoDefault = allowsMemoryAccess(Ctx, DL, PartTy, AS, HaveAlign);
2677 }
2678 if (DoDefault) {
2679 std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
2680 return DAG.getMergeValues({P.first, P.second}, dl);
2681 }
2682
2683 // The code below generates two loads, both aligned as NeedAlign, and
2684 // with the distance of NeedAlign between them. For that to cover the
2685 // bits that need to be loaded (and without overlapping), the size of
2686 // the loads should be equal to NeedAlign. This is true for all loadable
2687 // types, but add an assertion in case something changes in the future.
2688 assert(LoadTy.getSizeInBits() == 8*NeedAlign);
2689
2690 unsigned LoadLen = NeedAlign;
2691 SDValue Base = LN->getBasePtr();
2692 SDValue Chain = LN->getChain();
2693 auto BO = getBaseAndOffset(Base);
2694 unsigned BaseOpc = BO.first.getOpcode();
2695 if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
2696 return Op;
2697
2698 if (BO.second % LoadLen != 0) {
2699 BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
2700 DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
2701 BO.second -= BO.second % LoadLen;
2702 }
2703 SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
2704 ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
2705 DAG.getConstant(NeedAlign, dl, MVT::i32))
2706 : BO.first;
2707 SDValue Base0 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second, dl);
2708 SDValue Base1 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second+LoadLen, dl);
2709
2710 MachineMemOperand *WideMMO = nullptr;
2711 if (MachineMemOperand *MMO = LN->getMemOperand()) {
2712 MachineFunction &MF = DAG.getMachineFunction();
2713 WideMMO = MF.getMachineMemOperand(MMO->getPointerInfo(), MMO->getFlags(),
2714 2*LoadLen, LoadLen, MMO->getAAInfo(), MMO->getRanges(),
2715 MMO->getSyncScopeID(), MMO->getOrdering(),
2716 MMO->getFailureOrdering());
2717 }
2718
2719 SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
2720 SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);
2721
2722 SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
2723 {Load1, Load0, BaseNoOff.getOperand(0)});
2724 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2725 Load0.getValue(1), Load1.getValue(1));
2726 SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
2727 return M;
2728 }
2729
2730 SDValue
LowerAddSubCarry(SDValue Op,SelectionDAG & DAG) const2731 HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const {
2732 const SDLoc &dl(Op);
2733 unsigned Opc = Op.getOpcode();
2734 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);
2735
2736 if (Opc == ISD::ADDCARRY)
2737 return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
2738 { X, Y, C });
2739
2740 EVT CarryTy = C.getValueType();
2741 SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
2742 { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
2743 SDValue Out[] = { SubC.getValue(0),
2744 DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
2745 return DAG.getMergeValues(Out, dl);
2746 }
2747
2748 SDValue
LowerEH_RETURN(SDValue Op,SelectionDAG & DAG) const2749 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
2750 SDValue Chain = Op.getOperand(0);
2751 SDValue Offset = Op.getOperand(1);
2752 SDValue Handler = Op.getOperand(2);
2753 SDLoc dl(Op);
2754 auto PtrVT = getPointerTy(DAG.getDataLayout());
2755
2756 // Mark function as containing a call to EH_RETURN.
2757 HexagonMachineFunctionInfo *FuncInfo =
2758 DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
2759 FuncInfo->setHasEHReturn();
2760
2761 unsigned OffsetReg = Hexagon::R28;
2762
2763 SDValue StoreAddr =
2764 DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
2765 DAG.getIntPtrConstant(4, dl));
2766 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
2767 Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
2768
2769 // Not needed we already use it as explict input to EH_RETURN.
2770 // MF.getRegInfo().addLiveOut(OffsetReg);
2771
2772 return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
2773 }
2774
2775 SDValue
LowerOperation(SDValue Op,SelectionDAG & DAG) const2776 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2777 unsigned Opc = Op.getOpcode();
2778
2779 // Handle INLINEASM first.
2780 if (Opc == ISD::INLINEASM)
2781 return LowerINLINEASM(Op, DAG);
2782
2783 if (isHvxOperation(Op)) {
2784 // If HVX lowering returns nothing, try the default lowering.
2785 if (SDValue V = LowerHvxOperation(Op, DAG))
2786 return V;
2787 }
2788
2789 switch (Opc) {
2790 default:
2791 #ifndef NDEBUG
2792 Op.getNode()->dumpr(&DAG);
2793 if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
2794 errs() << "Error: check for a non-legal type in this operation\n";
2795 #endif
2796 llvm_unreachable("Should not custom lower this!");
2797 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
2798 case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG);
2799 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
2800 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
2801 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2802 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
2803 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2804 case ISD::BITCAST: return LowerBITCAST(Op, DAG);
2805 case ISD::LOAD: return LowerUnalignedLoad(Op, DAG);
2806 case ISD::ADDCARRY:
2807 case ISD::SUBCARRY: return LowerAddSubCarry(Op, DAG);
2808 case ISD::SRA:
2809 case ISD::SHL:
2810 case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG);
2811 case ISD::ROTL: return LowerROTL(Op, DAG);
2812 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
2813 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2814 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
2815 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
2816 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
2817 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2818 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
2819 case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG);
2820 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
2821 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
2822 case ISD::VASTART: return LowerVASTART(Op, DAG);
2823 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
2824 case ISD::SETCC: return LowerSETCC(Op, DAG);
2825 case ISD::VSELECT: return LowerVSELECT(Op, DAG);
2826 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2827 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
2828 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG);
2829 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
2830 break;
2831 }
2832
2833 return SDValue();
2834 }
2835
2836 void
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const2837 HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
2838 SmallVectorImpl<SDValue> &Results,
2839 SelectionDAG &DAG) const {
2840 const SDLoc &dl(N);
2841 switch (N->getOpcode()) {
2842 case ISD::SRL:
2843 case ISD::SRA:
2844 case ISD::SHL:
2845 return;
2846 case ISD::BITCAST:
2847 // Handle a bitcast from v8i1 to i8.
2848 if (N->getValueType(0) == MVT::i8) {
2849 SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
2850 N->getOperand(0), DAG);
2851 Results.push_back(P);
2852 }
2853 break;
2854 }
2855 }
2856
2857 /// Returns relocation base for the given PIC jumptable.
2858 SDValue
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const2859 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2860 SelectionDAG &DAG) const {
2861 int Idx = cast<JumpTableSDNode>(Table)->getIndex();
2862 EVT VT = Table.getValueType();
2863 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
2864 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
2865 }
2866
2867 //===----------------------------------------------------------------------===//
2868 // Inline Assembly Support
2869 //===----------------------------------------------------------------------===//
2870
2871 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const2872 HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
2873 if (Constraint.size() == 1) {
2874 switch (Constraint[0]) {
2875 case 'q':
2876 case 'v':
2877 if (Subtarget.useHVXOps())
2878 return C_RegisterClass;
2879 break;
2880 case 'a':
2881 return C_RegisterClass;
2882 default:
2883 break;
2884 }
2885 }
2886 return TargetLowering::getConstraintType(Constraint);
2887 }
2888
2889 std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const2890 HexagonTargetLowering::getRegForInlineAsmConstraint(
2891 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
2892
2893 if (Constraint.size() == 1) {
2894 switch (Constraint[0]) {
2895 case 'r': // R0-R31
2896 switch (VT.SimpleTy) {
2897 default:
2898 return {0u, nullptr};
2899 case MVT::i1:
2900 case MVT::i8:
2901 case MVT::i16:
2902 case MVT::i32:
2903 case MVT::f32:
2904 return {0u, &Hexagon::IntRegsRegClass};
2905 case MVT::i64:
2906 case MVT::f64:
2907 return {0u, &Hexagon::DoubleRegsRegClass};
2908 }
2909 break;
2910 case 'a': // M0-M1
2911 if (VT != MVT::i32)
2912 return {0u, nullptr};
2913 return {0u, &Hexagon::ModRegsRegClass};
2914 case 'q': // q0-q3
2915 switch (VT.getSizeInBits()) {
2916 default:
2917 return {0u, nullptr};
2918 case 512:
2919 case 1024:
2920 return {0u, &Hexagon::HvxQRRegClass};
2921 }
2922 break;
2923 case 'v': // V0-V31
2924 switch (VT.getSizeInBits()) {
2925 default:
2926 return {0u, nullptr};
2927 case 512:
2928 return {0u, &Hexagon::HvxVRRegClass};
2929 case 1024:
2930 if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
2931 return {0u, &Hexagon::HvxVRRegClass};
2932 return {0u, &Hexagon::HvxWRRegClass};
2933 case 2048:
2934 return {0u, &Hexagon::HvxWRRegClass};
2935 }
2936 break;
2937 default:
2938 return {0u, nullptr};
2939 }
2940 }
2941
2942 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2943 }
2944
2945 /// isFPImmLegal - Returns true if the target can instruction select the
2946 /// specified FP immediate natively. If false, the legalizer will
2947 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT) const2948 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2949 return Subtarget.hasV5Ops();
2950 }
2951
2952 /// isLegalAddressingMode - Return true if the addressing mode represented by
2953 /// AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const2954 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
2955 const AddrMode &AM, Type *Ty,
2956 unsigned AS, Instruction *I) const {
2957 if (Ty->isSized()) {
2958 // When LSR detects uses of the same base address to access different
2959 // types (e.g. unions), it will assume a conservative type for these
2960 // uses:
2961 // LSR Use: Kind=Address of void in addrspace(4294967295), ...
2962 // The type Ty passed here would then be "void". Skip the alignment
2963 // checks, but do not return false right away, since that confuses
2964 // LSR into crashing.
2965 unsigned A = DL.getABITypeAlignment(Ty);
2966 // The base offset must be a multiple of the alignment.
2967 if ((AM.BaseOffs % A) != 0)
2968 return false;
2969 // The shifted offset must fit in 11 bits.
2970 if (!isInt<11>(AM.BaseOffs >> Log2_32(A)))
2971 return false;
2972 }
2973
2974 // No global is ever allowed as a base.
2975 if (AM.BaseGV)
2976 return false;
2977
2978 int Scale = AM.Scale;
2979 if (Scale < 0)
2980 Scale = -Scale;
2981 switch (Scale) {
2982 case 0: // No scale reg, "r+i", "r", or just "i".
2983 break;
2984 default: // No scaled addressing mode.
2985 return false;
2986 }
2987 return true;
2988 }
2989
2990 /// Return true if folding a constant offset with the given GlobalAddress is
2991 /// legal. It is frequently not legal in PIC relocation models.
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const2992 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
2993 const {
2994 return HTM.getRelocationModel() == Reloc::Static;
2995 }
2996
2997 /// isLegalICmpImmediate - Return true if the specified immediate is legal
2998 /// icmp immediate, that is the target has icmp instructions which can compare
2999 /// a register against the immediate without having to materialize the
3000 /// immediate into a register.
isLegalICmpImmediate(int64_t Imm) const3001 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
3002 return Imm >= -512 && Imm <= 511;
3003 }
3004
3005 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3006 /// for tail call optimization. Targets which want to do tail call
3007 /// optimization should implement this function.
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool IsVarArg,bool IsCalleeStructRet,bool IsCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const3008 bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
3009 SDValue Callee,
3010 CallingConv::ID CalleeCC,
3011 bool IsVarArg,
3012 bool IsCalleeStructRet,
3013 bool IsCallerStructRet,
3014 const SmallVectorImpl<ISD::OutputArg> &Outs,
3015 const SmallVectorImpl<SDValue> &OutVals,
3016 const SmallVectorImpl<ISD::InputArg> &Ins,
3017 SelectionDAG& DAG) const {
3018 const Function &CallerF = DAG.getMachineFunction().getFunction();
3019 CallingConv::ID CallerCC = CallerF.getCallingConv();
3020 bool CCMatch = CallerCC == CalleeCC;
3021
3022 // ***************************************************************************
3023 // Look for obvious safe cases to perform tail call optimization that do not
3024 // require ABI changes.
3025 // ***************************************************************************
3026
3027 // If this is a tail call via a function pointer, then don't do it!
3028 if (!isa<GlobalAddressSDNode>(Callee) &&
3029 !isa<ExternalSymbolSDNode>(Callee)) {
3030 return false;
3031 }
3032
3033 // Do not optimize if the calling conventions do not match and the conventions
3034 // used are not C or Fast.
3035 if (!CCMatch) {
3036 bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
3037 bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
3038 // If R & E, then ok.
3039 if (!R || !E)
3040 return false;
3041 }
3042
3043 // Do not tail call optimize vararg calls.
3044 if (IsVarArg)
3045 return false;
3046
3047 // Also avoid tail call optimization if either caller or callee uses struct
3048 // return semantics.
3049 if (IsCalleeStructRet || IsCallerStructRet)
3050 return false;
3051
3052 // In addition to the cases above, we also disable Tail Call Optimization if
3053 // the calling convention code that at least one outgoing argument needs to
3054 // go on the stack. We cannot check that here because at this point that
3055 // information is not available.
3056 return true;
3057 }
3058
3059 /// Returns the target specific optimal type for load and store operations as
3060 /// a result of memset, memcpy, and memmove lowering.
3061 ///
3062 /// If DstAlign is zero that means it's safe to destination alignment can
3063 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
3064 /// a need to check it against alignment requirement, probably because the
3065 /// source does not need to be loaded. If 'IsMemset' is true, that means it's
3066 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
3067 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
3068 /// does not need to be loaded. It returns EVT::Other if the type should be
3069 /// determined using generic target-independent logic.
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const3070 EVT HexagonTargetLowering::getOptimalMemOpType(uint64_t Size,
3071 unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset,
3072 bool MemcpyStrSrc, MachineFunction &MF) const {
3073
3074 auto Aligned = [](unsigned GivenA, unsigned MinA) -> bool {
3075 return (GivenA % MinA) == 0;
3076 };
3077
3078 if (Size >= 8 && Aligned(DstAlign, 8) && (IsMemset || Aligned(SrcAlign, 8)))
3079 return MVT::i64;
3080 if (Size >= 4 && Aligned(DstAlign, 4) && (IsMemset || Aligned(SrcAlign, 4)))
3081 return MVT::i32;
3082 if (Size >= 2 && Aligned(DstAlign, 2) && (IsMemset || Aligned(SrcAlign, 2)))
3083 return MVT::i16;
3084
3085 return MVT::Other;
3086 }
3087
allowsMisalignedMemoryAccesses(EVT VT,unsigned AS,unsigned Align,bool * Fast) const3088 bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
3089 unsigned AS, unsigned Align, bool *Fast) const {
3090 if (Fast)
3091 *Fast = false;
3092 return Subtarget.isHVXVectorType(VT.getSimpleVT());
3093 }
3094
3095 std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(const TargetRegisterInfo * TRI,MVT VT) const3096 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
3097 MVT VT) const {
3098 if (Subtarget.isHVXVectorType(VT, true)) {
3099 unsigned BitWidth = VT.getSizeInBits();
3100 unsigned VecWidth = Subtarget.getVectorLength() * 8;
3101
3102 if (VT.getVectorElementType() == MVT::i1)
3103 return std::make_pair(&Hexagon::HvxQRRegClass, 1);
3104 if (BitWidth == VecWidth)
3105 return std::make_pair(&Hexagon::HvxVRRegClass, 1);
3106 assert(BitWidth == 2 * VecWidth);
3107 return std::make_pair(&Hexagon::HvxWRRegClass, 1);
3108 }
3109
3110 return TargetLowering::findRepresentativeClass(TRI, VT);
3111 }
3112
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const3113 Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
3114 AtomicOrdering Ord) const {
3115 BasicBlock *BB = Builder.GetInsertBlock();
3116 Module *M = BB->getParent()->getParent();
3117 Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
3118 unsigned SZ = Ty->getPrimitiveSizeInBits();
3119 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
3120 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
3121 : Intrinsic::hexagon_L4_loadd_locked;
3122 Value *Fn = Intrinsic::getDeclaration(M, IntID);
3123 return Builder.CreateCall(Fn, Addr, "larx");
3124 }
3125
3126 /// Perform a store-conditional operation to Addr. Return the status of the
3127 /// store. This should be 0 if the store succeeded, non-zero otherwise.
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const3128 Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
3129 Value *Val, Value *Addr, AtomicOrdering Ord) const {
3130 BasicBlock *BB = Builder.GetInsertBlock();
3131 Module *M = BB->getParent()->getParent();
3132 Type *Ty = Val->getType();
3133 unsigned SZ = Ty->getPrimitiveSizeInBits();
3134 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
3135 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
3136 : Intrinsic::hexagon_S4_stored_locked;
3137 Value *Fn = Intrinsic::getDeclaration(M, IntID);
3138 Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
3139 Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
3140 Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
3141 return Ext;
3142 }
3143
3144 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const3145 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
3146 // Do not expand loads and stores that don't exceed 64 bits.
3147 return LI->getType()->getPrimitiveSizeInBits() > 64
3148 ? AtomicExpansionKind::LLOnly
3149 : AtomicExpansionKind::None;
3150 }
3151
shouldExpandAtomicStoreInIR(StoreInst * SI) const3152 bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
3153 // Do not expand loads and stores that don't exceed 64 bits.
3154 return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
3155 }
3156
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const3157 bool HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
3158 AtomicCmpXchgInst *AI) const {
3159 const DataLayout &DL = AI->getModule()->getDataLayout();
3160 unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
3161 return Size >= 4 && Size <= 8;
3162 }
3163