1 //===- StackColoring.cpp --------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements the stack-coloring optimization that looks for
11 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
12 // which represent the possible lifetime of stack slots. It attempts to
13 // merge disjoint stack slots and reduce the used stack space.
14 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15 //
16 // TODO: In the future we plan to improve stack coloring in the following ways:
17 // 1. Allow merging multiple small slots into a single larger slot at different
18 // offsets.
19 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
20 // spill slots.
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/LiveInterval.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/TargetOpcodes.h"
43 #include "llvm/CodeGen/WinEHFuncInfo.h"
44 #include "llvm/Config/llvm-config.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Use.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <limits>
61 #include <memory>
62 #include <utility>
63
64 using namespace llvm;
65
66 #define DEBUG_TYPE "stack-coloring"
67
68 static cl::opt<bool>
69 DisableColoring("no-stack-coloring",
70 cl::init(false), cl::Hidden,
71 cl::desc("Disable stack coloring"));
72
73 /// The user may write code that uses allocas outside of the declared lifetime
74 /// zone. This can happen when the user returns a reference to a local
75 /// data-structure. We can detect these cases and decide not to optimize the
76 /// code. If this flag is enabled, we try to save the user. This option
77 /// is treated as overriding LifetimeStartOnFirstUse below.
78 static cl::opt<bool>
79 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
80 cl::init(false), cl::Hidden,
81 cl::desc("Do not optimize lifetime zones that "
82 "are broken"));
83
84 /// Enable enhanced dataflow scheme for lifetime analysis (treat first
85 /// use of stack slot as start of slot lifetime, as opposed to looking
86 /// for LIFETIME_START marker). See "Implementation notes" below for
87 /// more info.
88 static cl::opt<bool>
89 LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
90 cl::init(true), cl::Hidden,
91 cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
92
93
94 STATISTIC(NumMarkerSeen, "Number of lifetime markers found.");
95 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
96 STATISTIC(StackSlotMerged, "Number of stack slot merged.");
97 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
98
99 //===----------------------------------------------------------------------===//
100 // StackColoring Pass
101 //===----------------------------------------------------------------------===//
102 //
103 // Stack Coloring reduces stack usage by merging stack slots when they
104 // can't be used together. For example, consider the following C program:
105 //
106 // void bar(char *, int);
107 // void foo(bool var) {
108 // A: {
109 // char z[4096];
110 // bar(z, 0);
111 // }
112 //
113 // char *p;
114 // char x[4096];
115 // char y[4096];
116 // if (var) {
117 // p = x;
118 // } else {
119 // bar(y, 1);
120 // p = y + 1024;
121 // }
122 // B:
123 // bar(p, 2);
124 // }
125 //
126 // Naively-compiled, this program would use 12k of stack space. However, the
127 // stack slot corresponding to `z` is always destroyed before either of the
128 // stack slots for `x` or `y` are used, and then `x` is only used if `var`
129 // is true, while `y` is only used if `var` is false. So in no time are 2
130 // of the stack slots used together, and therefore we can merge them,
131 // compiling the function using only a single 4k alloca:
132 //
133 // void foo(bool var) { // equivalent
134 // char x[4096];
135 // char *p;
136 // bar(x, 0);
137 // if (var) {
138 // p = x;
139 // } else {
140 // bar(x, 1);
141 // p = x + 1024;
142 // }
143 // bar(p, 2);
144 // }
145 //
146 // This is an important optimization if we want stack space to be under
147 // control in large functions, both open-coded ones and ones created by
148 // inlining.
149 //
150 // Implementation Notes:
151 // ---------------------
152 //
153 // An important part of the above reasoning is that `z` can't be accessed
154 // while the latter 2 calls to `bar` are running. This is justified because
155 // `z`'s lifetime is over after we exit from block `A:`, so any further
156 // accesses to it would be UB. The way we represent this information
157 // in LLVM is by having frontends delimit blocks with `lifetime.start`
158 // and `lifetime.end` intrinsics.
159 //
160 // The effect of these intrinsics seems to be as follows (maybe I should
161 // specify this in the reference?):
162 //
163 // L1) at start, each stack-slot is marked as *out-of-scope*, unless no
164 // lifetime intrinsic refers to that stack slot, in which case
165 // it is marked as *in-scope*.
166 // L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
167 // the stack slot is overwritten with `undef`.
168 // L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
169 // L4) on function exit, all stack slots are marked as *out-of-scope*.
170 // L5) `lifetime.end` is a no-op when called on a slot that is already
171 // *out-of-scope*.
172 // L6) memory accesses to *out-of-scope* stack slots are UB.
173 // L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
174 // are invalidated, unless the slot is "degenerate". This is used to
175 // justify not marking slots as in-use until the pointer to them is
176 // used, but feels a bit hacky in the presence of things like LICM. See
177 // the "Degenerate Slots" section for more details.
178 //
179 // Now, let's ground stack coloring on these rules. We'll define a slot
180 // as *in-use* at a (dynamic) point in execution if it either can be
181 // written to at that point, or if it has a live and non-undef content
182 // at that point.
183 //
184 // Obviously, slots that are never *in-use* together can be merged, and
185 // in our example `foo`, the slots for `x`, `y` and `z` are never
186 // in-use together (of course, sometimes slots that *are* in-use together
187 // might still be mergable, but we don't care about that here).
188 //
189 // In this implementation, we successively merge pairs of slots that are
190 // not *in-use* together. We could be smarter - for example, we could merge
191 // a single large slot with 2 small slots, or we could construct the
192 // interference graph and run a "smart" graph coloring algorithm, but with
193 // that aside, how do we find out whether a pair of slots might be *in-use*
194 // together?
195 //
196 // From our rules, we see that *out-of-scope* slots are never *in-use*,
197 // and from (L7) we see that "non-degenerate" slots remain non-*in-use*
198 // until their address is taken. Therefore, we can approximate slot activity
199 // using dataflow.
200 //
201 // A subtle point: naively, we might try to figure out which pairs of
202 // stack-slots interfere by propagating `S in-use` through the CFG for every
203 // stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
204 // which they are both *in-use*.
205 //
206 // That is sound, but overly conservative in some cases: in our (artificial)
207 // example `foo`, either `x` or `y` might be in use at the label `B:`, but
208 // as `x` is only in use if we came in from the `var` edge and `y` only
209 // if we came from the `!var` edge, they still can't be in use together.
210 // See PR32488 for an important real-life case.
211 //
212 // If we wanted to find all points of interference precisely, we could
213 // propagate `S in-use` and `S&T in-use` predicates through the CFG. That
214 // would be precise, but requires propagating `O(n^2)` dataflow facts.
215 //
216 // However, we aren't interested in the *set* of points of interference
217 // between 2 stack slots, only *whether* there *is* such a point. So we
218 // can rely on a little trick: for `S` and `T` to be in-use together,
219 // one of them needs to become in-use while the other is in-use (or
220 // they might both become in use simultaneously). We can check this
221 // by also keeping track of the points at which a stack slot might *start*
222 // being in-use.
223 //
224 // Exact first use:
225 // ----------------
226 //
227 // Consider the following motivating example:
228 //
229 // int foo() {
230 // char b1[1024], b2[1024];
231 // if (...) {
232 // char b3[1024];
233 // <uses of b1, b3>;
234 // return x;
235 // } else {
236 // char b4[1024], b5[1024];
237 // <uses of b2, b4, b5>;
238 // return y;
239 // }
240 // }
241 //
242 // In the code above, "b3" and "b4" are declared in distinct lexical
243 // scopes, meaning that it is easy to prove that they can share the
244 // same stack slot. Variables "b1" and "b2" are declared in the same
245 // scope, meaning that from a lexical point of view, their lifetimes
246 // overlap. From a control flow pointer of view, however, the two
247 // variables are accessed in disjoint regions of the CFG, thus it
248 // should be possible for them to share the same stack slot. An ideal
249 // stack allocation for the function above would look like:
250 //
251 // slot 0: b1, b2
252 // slot 1: b3, b4
253 // slot 2: b5
254 //
255 // Achieving this allocation is tricky, however, due to the way
256 // lifetime markers are inserted. Here is a simplified view of the
257 // control flow graph for the code above:
258 //
259 // +------ block 0 -------+
260 // 0| LIFETIME_START b1, b2 |
261 // 1| <test 'if' condition> |
262 // +-----------------------+
263 // ./ \.
264 // +------ block 1 -------+ +------ block 2 -------+
265 // 2| LIFETIME_START b3 | 5| LIFETIME_START b4, b5 |
266 // 3| <uses of b1, b3> | 6| <uses of b2, b4, b5> |
267 // 4| LIFETIME_END b3 | 7| LIFETIME_END b4, b5 |
268 // +-----------------------+ +-----------------------+
269 // \. /.
270 // +------ block 3 -------+
271 // 8| <cleanupcode> |
272 // 9| LIFETIME_END b1, b2 |
273 // 10| return |
274 // +-----------------------+
275 //
276 // If we create live intervals for the variables above strictly based
277 // on the lifetime markers, we'll get the set of intervals on the
278 // left. If we ignore the lifetime start markers and instead treat a
279 // variable's lifetime as beginning with the first reference to the
280 // var, then we get the intervals on the right.
281 //
282 // LIFETIME_START First Use
283 // b1: [0,9] [3,4] [8,9]
284 // b2: [0,9] [6,9]
285 // b3: [2,4] [3,4]
286 // b4: [5,7] [6,7]
287 // b5: [5,7] [6,7]
288 //
289 // For the intervals on the left, the best we can do is overlap two
290 // variables (b3 and b4, for example); this gives us a stack size of
291 // 4*1024 bytes, not ideal. When treating first-use as the start of a
292 // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
293 // byte stack (better).
294 //
295 // Degenerate Slots:
296 // -----------------
297 //
298 // Relying entirely on first-use of stack slots is problematic,
299 // however, due to the fact that optimizations can sometimes migrate
300 // uses of a variable outside of its lifetime start/end region. Here
301 // is an example:
302 //
303 // int bar() {
304 // char b1[1024], b2[1024];
305 // if (...) {
306 // <uses of b2>
307 // return y;
308 // } else {
309 // <uses of b1>
310 // while (...) {
311 // char b3[1024];
312 // <uses of b3>
313 // }
314 // }
315 // }
316 //
317 // Before optimization, the control flow graph for the code above
318 // might look like the following:
319 //
320 // +------ block 0 -------+
321 // 0| LIFETIME_START b1, b2 |
322 // 1| <test 'if' condition> |
323 // +-----------------------+
324 // ./ \.
325 // +------ block 1 -------+ +------- block 2 -------+
326 // 2| <uses of b2> | 3| <uses of b1> |
327 // +-----------------------+ +-----------------------+
328 // | |
329 // | +------- block 3 -------+ <-\.
330 // | 4| <while condition> | |
331 // | +-----------------------+ |
332 // | / | |
333 // | / +------- block 4 -------+
334 // \ / 5| LIFETIME_START b3 | |
335 // \ / 6| <uses of b3> | |
336 // \ / 7| LIFETIME_END b3 | |
337 // \ | +------------------------+ |
338 // \ | \ /
339 // +------ block 5 -----+ \---------------
340 // 8| <cleanupcode> |
341 // 9| LIFETIME_END b1, b2 |
342 // 10| return |
343 // +---------------------+
344 //
345 // During optimization, however, it can happen that an instruction
346 // computing an address in "b3" (for example, a loop-invariant GEP) is
347 // hoisted up out of the loop from block 4 to block 2. [Note that
348 // this is not an actual load from the stack, only an instruction that
349 // computes the address to be loaded]. If this happens, there is now a
350 // path leading from the first use of b3 to the return instruction
351 // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
352 // now larger than if we were computing live intervals strictly based
353 // on lifetime markers. In the example above, this lengthened lifetime
354 // would mean that it would appear illegal to overlap b3 with b2.
355 //
356 // To deal with this such cases, the code in ::collectMarkers() below
357 // tries to identify "degenerate" slots -- those slots where on a single
358 // forward pass through the CFG we encounter a first reference to slot
359 // K before we hit the slot K lifetime start marker. For such slots,
360 // we fall back on using the lifetime start marker as the beginning of
361 // the variable's lifetime. NB: with this implementation, slots can
362 // appear degenerate in cases where there is unstructured control flow:
363 //
364 // if (q) goto mid;
365 // if (x > 9) {
366 // int b[100];
367 // memcpy(&b[0], ...);
368 // mid: b[k] = ...;
369 // abc(&b);
370 // }
371 //
372 // If in RPO ordering chosen to walk the CFG we happen to visit the b[k]
373 // before visiting the memcpy block (which will contain the lifetime start
374 // for "b" then it will appear that 'b' has a degenerate lifetime.
375 //
376
377 namespace {
378
379 /// StackColoring - A machine pass for merging disjoint stack allocations,
380 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
381 class StackColoring : public MachineFunctionPass {
382 MachineFrameInfo *MFI;
383 MachineFunction *MF;
384
385 /// A class representing liveness information for a single basic block.
386 /// Each bit in the BitVector represents the liveness property
387 /// for a different stack slot.
388 struct BlockLifetimeInfo {
389 /// Which slots BEGINs in each basic block.
390 BitVector Begin;
391
392 /// Which slots ENDs in each basic block.
393 BitVector End;
394
395 /// Which slots are marked as LIVE_IN, coming into each basic block.
396 BitVector LiveIn;
397
398 /// Which slots are marked as LIVE_OUT, coming out of each basic block.
399 BitVector LiveOut;
400 };
401
402 /// Maps active slots (per bit) for each basic block.
403 using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>;
404 LivenessMap BlockLiveness;
405
406 /// Maps serial numbers to basic blocks.
407 DenseMap<const MachineBasicBlock *, int> BasicBlocks;
408
409 /// Maps basic blocks to a serial number.
410 SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering;
411
412 /// Maps slots to their use interval. Outside of this interval, slots
413 /// values are either dead or `undef` and they will not be written to.
414 SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
415
416 /// Maps slots to the points where they can become in-use.
417 SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;
418
419 /// VNInfo is used for the construction of LiveIntervals.
420 VNInfo::Allocator VNInfoAllocator;
421
422 /// SlotIndex analysis object.
423 SlotIndexes *Indexes;
424
425 /// The list of lifetime markers found. These markers are to be removed
426 /// once the coloring is done.
427 SmallVector<MachineInstr*, 8> Markers;
428
429 /// Record the FI slots for which we have seen some sort of
430 /// lifetime marker (either start or end).
431 BitVector InterestingSlots;
432
433 /// FI slots that need to be handled conservatively (for these
434 /// slots lifetime-start-on-first-use is disabled).
435 BitVector ConservativeSlots;
436
437 /// Number of iterations taken during data flow analysis.
438 unsigned NumIterations;
439
440 public:
441 static char ID;
442
StackColoring()443 StackColoring() : MachineFunctionPass(ID) {
444 initializeStackColoringPass(*PassRegistry::getPassRegistry());
445 }
446
447 void getAnalysisUsage(AnalysisUsage &AU) const override;
448 bool runOnMachineFunction(MachineFunction &Func) override;
449
450 private:
451 /// Used in collectMarkers
452 using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>;
453
454 /// Debug.
455 void dump() const;
456 void dumpIntervals() const;
457 void dumpBB(MachineBasicBlock *MBB) const;
458 void dumpBV(const char *tag, const BitVector &BV) const;
459
460 /// Removes all of the lifetime marker instructions from the function.
461 /// \returns true if any markers were removed.
462 bool removeAllMarkers();
463
464 /// Scan the machine function and find all of the lifetime markers.
465 /// Record the findings in the BEGIN and END vectors.
466 /// \returns the number of markers found.
467 unsigned collectMarkers(unsigned NumSlot);
468
469 /// Perform the dataflow calculation and calculate the lifetime for each of
470 /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
471 /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
472 /// in and out blocks.
473 void calculateLocalLiveness();
474
475 /// Returns TRUE if we're using the first-use-begins-lifetime method for
476 /// this slot (if FALSE, then the start marker is treated as start of lifetime).
applyFirstUse(int Slot)477 bool applyFirstUse(int Slot) {
478 if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
479 return false;
480 if (ConservativeSlots.test(Slot))
481 return false;
482 return true;
483 }
484
485 /// Examines the specified instruction and returns TRUE if the instruction
486 /// represents the start or end of an interesting lifetime. The slot or slots
487 /// starting or ending are added to the vector "slots" and "isStart" is set
488 /// accordingly.
489 /// \returns True if inst contains a lifetime start or end
490 bool isLifetimeStartOrEnd(const MachineInstr &MI,
491 SmallVector<int, 4> &slots,
492 bool &isStart);
493
494 /// Construct the LiveIntervals for the slots.
495 void calculateLiveIntervals(unsigned NumSlots);
496
497 /// Go over the machine function and change instructions which use stack
498 /// slots to use the joint slots.
499 void remapInstructions(DenseMap<int, int> &SlotRemap);
500
501 /// The input program may contain instructions which are not inside lifetime
502 /// markers. This can happen due to a bug in the compiler or due to a bug in
503 /// user code (for example, returning a reference to a local variable).
504 /// This procedure checks all of the instructions in the function and
505 /// invalidates lifetime ranges which do not contain all of the instructions
506 /// which access that frame slot.
507 void removeInvalidSlotRanges();
508
509 /// Map entries which point to other entries to their destination.
510 /// A->B->C becomes A->C.
511 void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
512 };
513
514 } // end anonymous namespace
515
516 char StackColoring::ID = 0;
517
518 char &llvm::StackColoringID = StackColoring::ID;
519
520 INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE,
521 "Merge disjoint stack slots", false, false)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)522 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
523 INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE,
524 "Merge disjoint stack slots", false, false)
525
526 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
527 AU.addRequired<SlotIndexes>();
528 MachineFunctionPass::getAnalysisUsage(AU);
529 }
530
531 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpBV(const char * tag,const BitVector & BV) const532 LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
533 const BitVector &BV) const {
534 dbgs() << tag << " : { ";
535 for (unsigned I = 0, E = BV.size(); I != E; ++I)
536 dbgs() << BV.test(I) << " ";
537 dbgs() << "}\n";
538 }
539
dumpBB(MachineBasicBlock * MBB) const540 LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
541 LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
542 assert(BI != BlockLiveness.end() && "Block not found");
543 const BlockLifetimeInfo &BlockInfo = BI->second;
544
545 dumpBV("BEGIN", BlockInfo.Begin);
546 dumpBV("END", BlockInfo.End);
547 dumpBV("LIVE_IN", BlockInfo.LiveIn);
548 dumpBV("LIVE_OUT", BlockInfo.LiveOut);
549 }
550
dump() const551 LLVM_DUMP_METHOD void StackColoring::dump() const {
552 for (MachineBasicBlock *MBB : depth_first(MF)) {
553 dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
554 << MBB->getName() << "]\n";
555 dumpBB(MBB);
556 }
557 }
558
dumpIntervals() const559 LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
560 for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
561 dbgs() << "Interval[" << I << "]:\n";
562 Intervals[I]->dump();
563 }
564 }
565 #endif
566
getStartOrEndSlot(const MachineInstr & MI)567 static inline int getStartOrEndSlot(const MachineInstr &MI)
568 {
569 assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
570 MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
571 "Expected LIFETIME_START or LIFETIME_END op");
572 const MachineOperand &MO = MI.getOperand(0);
573 int Slot = MO.getIndex();
574 if (Slot >= 0)
575 return Slot;
576 return -1;
577 }
578
579 // At the moment the only way to end a variable lifetime is with
580 // a VARIABLE_LIFETIME op (which can't contain a start). If things
581 // change and the IR allows for a single inst that both begins
582 // and ends lifetime(s), this interface will need to be reworked.
isLifetimeStartOrEnd(const MachineInstr & MI,SmallVector<int,4> & slots,bool & isStart)583 bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
584 SmallVector<int, 4> &slots,
585 bool &isStart) {
586 if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
587 MI.getOpcode() == TargetOpcode::LIFETIME_END) {
588 int Slot = getStartOrEndSlot(MI);
589 if (Slot < 0)
590 return false;
591 if (!InterestingSlots.test(Slot))
592 return false;
593 slots.push_back(Slot);
594 if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
595 isStart = false;
596 return true;
597 }
598 if (!applyFirstUse(Slot)) {
599 isStart = true;
600 return true;
601 }
602 } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
603 if (!MI.isDebugInstr()) {
604 bool found = false;
605 for (const MachineOperand &MO : MI.operands()) {
606 if (!MO.isFI())
607 continue;
608 int Slot = MO.getIndex();
609 if (Slot<0)
610 continue;
611 if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
612 slots.push_back(Slot);
613 found = true;
614 }
615 }
616 if (found) {
617 isStart = true;
618 return true;
619 }
620 }
621 }
622 return false;
623 }
624
collectMarkers(unsigned NumSlot)625 unsigned StackColoring::collectMarkers(unsigned NumSlot) {
626 unsigned MarkersFound = 0;
627 BlockBitVecMap SeenStartMap;
628 InterestingSlots.clear();
629 InterestingSlots.resize(NumSlot);
630 ConservativeSlots.clear();
631 ConservativeSlots.resize(NumSlot);
632
633 // number of start and end lifetime ops for each slot
634 SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
635 SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
636
637 // Step 1: collect markers and populate the "InterestingSlots"
638 // and "ConservativeSlots" sets.
639 for (MachineBasicBlock *MBB : depth_first(MF)) {
640 // Compute the set of slots for which we've seen a START marker but have
641 // not yet seen an END marker at this point in the walk (e.g. on entry
642 // to this bb).
643 BitVector BetweenStartEnd;
644 BetweenStartEnd.resize(NumSlot);
645 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
646 PE = MBB->pred_end(); PI != PE; ++PI) {
647 BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI);
648 if (I != SeenStartMap.end()) {
649 BetweenStartEnd |= I->second;
650 }
651 }
652
653 // Walk the instructions in the block to look for start/end ops.
654 for (MachineInstr &MI : *MBB) {
655 if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
656 MI.getOpcode() == TargetOpcode::LIFETIME_END) {
657 int Slot = getStartOrEndSlot(MI);
658 if (Slot < 0)
659 continue;
660 InterestingSlots.set(Slot);
661 if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
662 BetweenStartEnd.set(Slot);
663 NumStartLifetimes[Slot] += 1;
664 } else {
665 BetweenStartEnd.reset(Slot);
666 NumEndLifetimes[Slot] += 1;
667 }
668 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
669 if (Allocation) {
670 LLVM_DEBUG(dbgs() << "Found a lifetime ");
671 LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
672 ? "start"
673 : "end"));
674 LLVM_DEBUG(dbgs() << " marker for slot #" << Slot);
675 LLVM_DEBUG(dbgs()
676 << " with allocation: " << Allocation->getName() << "\n");
677 }
678 Markers.push_back(&MI);
679 MarkersFound += 1;
680 } else {
681 for (const MachineOperand &MO : MI.operands()) {
682 if (!MO.isFI())
683 continue;
684 int Slot = MO.getIndex();
685 if (Slot < 0)
686 continue;
687 if (! BetweenStartEnd.test(Slot)) {
688 ConservativeSlots.set(Slot);
689 }
690 }
691 }
692 }
693 BitVector &SeenStart = SeenStartMap[MBB];
694 SeenStart |= BetweenStartEnd;
695 }
696 if (!MarkersFound) {
697 return 0;
698 }
699
700 // PR27903: slots with multiple start or end lifetime ops are not
701 // safe to enable for "lifetime-start-on-first-use".
702 for (unsigned slot = 0; slot < NumSlot; ++slot)
703 if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
704 ConservativeSlots.set(slot);
705 LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots));
706
707 // Step 2: compute begin/end sets for each block
708
709 // NOTE: We use a depth-first iteration to ensure that we obtain a
710 // deterministic numbering.
711 for (MachineBasicBlock *MBB : depth_first(MF)) {
712 // Assign a serial number to this basic block.
713 BasicBlocks[MBB] = BasicBlockNumbering.size();
714 BasicBlockNumbering.push_back(MBB);
715
716 // Keep a reference to avoid repeated lookups.
717 BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
718
719 BlockInfo.Begin.resize(NumSlot);
720 BlockInfo.End.resize(NumSlot);
721
722 SmallVector<int, 4> slots;
723 for (MachineInstr &MI : *MBB) {
724 bool isStart = false;
725 slots.clear();
726 if (isLifetimeStartOrEnd(MI, slots, isStart)) {
727 if (!isStart) {
728 assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
729 int Slot = slots[0];
730 if (BlockInfo.Begin.test(Slot)) {
731 BlockInfo.Begin.reset(Slot);
732 }
733 BlockInfo.End.set(Slot);
734 } else {
735 for (auto Slot : slots) {
736 LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot);
737 LLVM_DEBUG(dbgs()
738 << " at " << printMBBReference(*MBB) << " index ");
739 LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
740 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
741 if (Allocation) {
742 LLVM_DEBUG(dbgs()
743 << " with allocation: " << Allocation->getName());
744 }
745 LLVM_DEBUG(dbgs() << "\n");
746 if (BlockInfo.End.test(Slot)) {
747 BlockInfo.End.reset(Slot);
748 }
749 BlockInfo.Begin.set(Slot);
750 }
751 }
752 }
753 }
754 }
755
756 // Update statistics.
757 NumMarkerSeen += MarkersFound;
758 return MarkersFound;
759 }
760
calculateLocalLiveness()761 void StackColoring::calculateLocalLiveness() {
762 unsigned NumIters = 0;
763 bool changed = true;
764 while (changed) {
765 changed = false;
766 ++NumIters;
767
768 for (const MachineBasicBlock *BB : BasicBlockNumbering) {
769 // Use an iterator to avoid repeated lookups.
770 LivenessMap::iterator BI = BlockLiveness.find(BB);
771 assert(BI != BlockLiveness.end() && "Block not found");
772 BlockLifetimeInfo &BlockInfo = BI->second;
773
774 // Compute LiveIn by unioning together the LiveOut sets of all preds.
775 BitVector LocalLiveIn;
776 for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
777 PE = BB->pred_end(); PI != PE; ++PI) {
778 LivenessMap::const_iterator I = BlockLiveness.find(*PI);
779 // PR37130: transformations prior to stack coloring can
780 // sometimes leave behind statically unreachable blocks; these
781 // can be safely skipped here.
782 if (I != BlockLiveness.end())
783 LocalLiveIn |= I->second.LiveOut;
784 }
785
786 // Compute LiveOut by subtracting out lifetimes that end in this
787 // block, then adding in lifetimes that begin in this block. If
788 // we have both BEGIN and END markers in the same basic block
789 // then we know that the BEGIN marker comes after the END,
790 // because we already handle the case where the BEGIN comes
791 // before the END when collecting the markers (and building the
792 // BEGIN/END vectors).
793 BitVector LocalLiveOut = LocalLiveIn;
794 LocalLiveOut.reset(BlockInfo.End);
795 LocalLiveOut |= BlockInfo.Begin;
796
797 // Update block LiveIn set, noting whether it has changed.
798 if (LocalLiveIn.test(BlockInfo.LiveIn)) {
799 changed = true;
800 BlockInfo.LiveIn |= LocalLiveIn;
801 }
802
803 // Update block LiveOut set, noting whether it has changed.
804 if (LocalLiveOut.test(BlockInfo.LiveOut)) {
805 changed = true;
806 BlockInfo.LiveOut |= LocalLiveOut;
807 }
808 }
809 } // while changed.
810
811 NumIterations = NumIters;
812 }
813
calculateLiveIntervals(unsigned NumSlots)814 void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
815 SmallVector<SlotIndex, 16> Starts;
816 SmallVector<bool, 16> DefinitelyInUse;
817
818 // For each block, find which slots are active within this block
819 // and update the live intervals.
820 for (const MachineBasicBlock &MBB : *MF) {
821 Starts.clear();
822 Starts.resize(NumSlots);
823 DefinitelyInUse.clear();
824 DefinitelyInUse.resize(NumSlots);
825
826 // Start the interval of the slots that we previously found to be 'in-use'.
827 BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
828 for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
829 pos = MBBLiveness.LiveIn.find_next(pos)) {
830 Starts[pos] = Indexes->getMBBStartIdx(&MBB);
831 }
832
833 // Create the interval for the basic blocks containing lifetime begin/end.
834 for (const MachineInstr &MI : MBB) {
835 SmallVector<int, 4> slots;
836 bool IsStart = false;
837 if (!isLifetimeStartOrEnd(MI, slots, IsStart))
838 continue;
839 SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
840 for (auto Slot : slots) {
841 if (IsStart) {
842 // If a slot is already definitely in use, we don't have to emit
843 // a new start marker because there is already a pre-existing
844 // one.
845 if (!DefinitelyInUse[Slot]) {
846 LiveStarts[Slot].push_back(ThisIndex);
847 DefinitelyInUse[Slot] = true;
848 }
849 if (!Starts[Slot].isValid())
850 Starts[Slot] = ThisIndex;
851 } else {
852 if (Starts[Slot].isValid()) {
853 VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
854 Intervals[Slot]->addSegment(
855 LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
856 Starts[Slot] = SlotIndex(); // Invalidate the start index
857 DefinitelyInUse[Slot] = false;
858 }
859 }
860 }
861 }
862
863 // Finish up started segments
864 for (unsigned i = 0; i < NumSlots; ++i) {
865 if (!Starts[i].isValid())
866 continue;
867
868 SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
869 VNInfo *VNI = Intervals[i]->getValNumInfo(0);
870 Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
871 }
872 }
873 }
874
removeAllMarkers()875 bool StackColoring::removeAllMarkers() {
876 unsigned Count = 0;
877 for (MachineInstr *MI : Markers) {
878 MI->eraseFromParent();
879 Count++;
880 }
881 Markers.clear();
882
883 LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n");
884 return Count;
885 }
886
remapInstructions(DenseMap<int,int> & SlotRemap)887 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
888 unsigned FixedInstr = 0;
889 unsigned FixedMemOp = 0;
890 unsigned FixedDbg = 0;
891
892 // Remap debug information that refers to stack slots.
893 for (auto &VI : MF->getVariableDbgInfo()) {
894 if (!VI.Var)
895 continue;
896 if (SlotRemap.count(VI.Slot)) {
897 LLVM_DEBUG(dbgs() << "Remapping debug info for ["
898 << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
899 VI.Slot = SlotRemap[VI.Slot];
900 FixedDbg++;
901 }
902 }
903
904 // Keep a list of *allocas* which need to be remapped.
905 DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
906
907 // Keep a list of allocas which has been affected by the remap.
908 SmallPtrSet<const AllocaInst*, 32> MergedAllocas;
909
910 for (const std::pair<int, int> &SI : SlotRemap) {
911 const AllocaInst *From = MFI->getObjectAllocation(SI.first);
912 const AllocaInst *To = MFI->getObjectAllocation(SI.second);
913 assert(To && From && "Invalid allocation object");
914 Allocas[From] = To;
915
916 // AA might be used later for instruction scheduling, and we need it to be
917 // able to deduce the correct aliasing releationships between pointers
918 // derived from the alloca being remapped and the target of that remapping.
919 // The only safe way, without directly informing AA about the remapping
920 // somehow, is to directly update the IR to reflect the change being made
921 // here.
922 Instruction *Inst = const_cast<AllocaInst *>(To);
923 if (From->getType() != To->getType()) {
924 BitCastInst *Cast = new BitCastInst(Inst, From->getType());
925 Cast->insertAfter(Inst);
926 Inst = Cast;
927 }
928
929 // We keep both slots to maintain AliasAnalysis metadata later.
930 MergedAllocas.insert(From);
931 MergedAllocas.insert(To);
932
933 // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
934 // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
935 // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
936 MachineFrameInfo::SSPLayoutKind FromKind
937 = MFI->getObjectSSPLayout(SI.first);
938 MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second);
939 if (FromKind != MachineFrameInfo::SSPLK_None &&
940 (ToKind == MachineFrameInfo::SSPLK_None ||
941 (ToKind != MachineFrameInfo::SSPLK_LargeArray &&
942 FromKind != MachineFrameInfo::SSPLK_AddrOf)))
943 MFI->setObjectSSPLayout(SI.second, FromKind);
944
945 // The new alloca might not be valid in a llvm.dbg.declare for this
946 // variable, so undef out the use to make the verifier happy.
947 AllocaInst *FromAI = const_cast<AllocaInst *>(From);
948 if (FromAI->isUsedByMetadata())
949 ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
950 for (auto &Use : FromAI->uses()) {
951 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
952 if (BCI->isUsedByMetadata())
953 ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
954 }
955
956 // Note that this will not replace uses in MMOs (which we'll update below),
957 // or anywhere else (which is why we won't delete the original
958 // instruction).
959 FromAI->replaceAllUsesWith(Inst);
960 }
961
962 // Remap all instructions to the new stack slots.
963 for (MachineBasicBlock &BB : *MF)
964 for (MachineInstr &I : BB) {
965 // Skip lifetime markers. We'll remove them soon.
966 if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
967 I.getOpcode() == TargetOpcode::LIFETIME_END)
968 continue;
969
970 // Update the MachineMemOperand to use the new alloca.
971 for (MachineMemOperand *MMO : I.memoperands()) {
972 // We've replaced IR-level uses of the remapped allocas, so we only
973 // need to replace direct uses here.
974 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
975 if (!AI)
976 continue;
977
978 if (!Allocas.count(AI))
979 continue;
980
981 MMO->setValue(Allocas[AI]);
982 FixedMemOp++;
983 }
984
985 // Update all of the machine instruction operands.
986 for (MachineOperand &MO : I.operands()) {
987 if (!MO.isFI())
988 continue;
989 int FromSlot = MO.getIndex();
990
991 // Don't touch arguments.
992 if (FromSlot<0)
993 continue;
994
995 // Only look at mapped slots.
996 if (!SlotRemap.count(FromSlot))
997 continue;
998
999 // In a debug build, check that the instruction that we are modifying is
1000 // inside the expected live range. If the instruction is not inside
1001 // the calculated range then it means that the alloca usage moved
1002 // outside of the lifetime markers, or that the user has a bug.
1003 // NOTE: Alloca address calculations which happen outside the lifetime
1004 // zone are okay, despite the fact that we don't have a good way
1005 // for validating all of the usages of the calculation.
1006 #ifndef NDEBUG
1007 bool TouchesMemory = I.mayLoad() || I.mayStore();
1008 // If we *don't* protect the user from escaped allocas, don't bother
1009 // validating the instructions.
1010 if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) {
1011 SlotIndex Index = Indexes->getInstructionIndex(I);
1012 const LiveInterval *Interval = &*Intervals[FromSlot];
1013 assert(Interval->find(Index) != Interval->end() &&
1014 "Found instruction usage outside of live range.");
1015 }
1016 #endif
1017
1018 // Fix the machine instructions.
1019 int ToSlot = SlotRemap[FromSlot];
1020 MO.setIndex(ToSlot);
1021 FixedInstr++;
1022 }
1023
1024 // We adjust AliasAnalysis information for merged stack slots.
1025 MachineSDNode::mmo_iterator NewMemOps =
1026 MF->allocateMemRefsArray(I.getNumMemOperands());
1027 unsigned MemOpIdx = 0;
1028 bool ReplaceMemOps = false;
1029 for (MachineMemOperand *MMO : I.memoperands()) {
1030 // If this memory location can be a slot remapped here,
1031 // we remove AA information.
1032 bool MayHaveConflictingAAMD = false;
1033 if (MMO->getAAInfo()) {
1034 if (const Value *MMOV = MMO->getValue()) {
1035 SmallVector<Value *, 4> Objs;
1036 getUnderlyingObjectsForCodeGen(MMOV, Objs, MF->getDataLayout());
1037
1038 if (Objs.empty())
1039 MayHaveConflictingAAMD = true;
1040 else
1041 for (Value *V : Objs) {
1042 // If this memory location comes from a known stack slot
1043 // that is not remapped, we continue checking.
1044 // Otherwise, we need to invalidate AA infomation.
1045 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
1046 if (AI && MergedAllocas.count(AI)) {
1047 MayHaveConflictingAAMD = true;
1048 break;
1049 }
1050 }
1051 }
1052 }
1053 if (MayHaveConflictingAAMD) {
1054 NewMemOps[MemOpIdx++] = MF->getMachineMemOperand(MMO, AAMDNodes());
1055 ReplaceMemOps = true;
1056 }
1057 else
1058 NewMemOps[MemOpIdx++] = MMO;
1059 }
1060
1061 // If any memory operand is updated, set memory references of
1062 // this instruction.
1063 if (ReplaceMemOps)
1064 I.setMemRefs(std::make_pair(NewMemOps, I.getNumMemOperands()));
1065 }
1066
1067 // Update the location of C++ catch objects for the MSVC personality routine.
1068 if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
1069 for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
1070 for (WinEHHandlerType &H : TBME.HandlerArray)
1071 if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
1072 SlotRemap.count(H.CatchObj.FrameIndex))
1073 H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
1074
1075 LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n");
1076 LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n");
1077 LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n");
1078 }
1079
removeInvalidSlotRanges()1080 void StackColoring::removeInvalidSlotRanges() {
1081 for (MachineBasicBlock &BB : *MF)
1082 for (MachineInstr &I : BB) {
1083 if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
1084 I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr())
1085 continue;
1086
1087 // Some intervals are suspicious! In some cases we find address
1088 // calculations outside of the lifetime zone, but not actual memory
1089 // read or write. Memory accesses outside of the lifetime zone are a clear
1090 // violation, but address calculations are okay. This can happen when
1091 // GEPs are hoisted outside of the lifetime zone.
1092 // So, in here we only check instructions which can read or write memory.
1093 if (!I.mayLoad() && !I.mayStore())
1094 continue;
1095
1096 // Check all of the machine operands.
1097 for (const MachineOperand &MO : I.operands()) {
1098 if (!MO.isFI())
1099 continue;
1100
1101 int Slot = MO.getIndex();
1102
1103 if (Slot<0)
1104 continue;
1105
1106 if (Intervals[Slot]->empty())
1107 continue;
1108
1109 // Check that the used slot is inside the calculated lifetime range.
1110 // If it is not, warn about it and invalidate the range.
1111 LiveInterval *Interval = &*Intervals[Slot];
1112 SlotIndex Index = Indexes->getInstructionIndex(I);
1113 if (Interval->find(Index) == Interval->end()) {
1114 Interval->clear();
1115 LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n");
1116 EscapedAllocas++;
1117 }
1118 }
1119 }
1120 }
1121
expungeSlotMap(DenseMap<int,int> & SlotRemap,unsigned NumSlots)1122 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
1123 unsigned NumSlots) {
1124 // Expunge slot remap map.
1125 for (unsigned i=0; i < NumSlots; ++i) {
1126 // If we are remapping i
1127 if (SlotRemap.count(i)) {
1128 int Target = SlotRemap[i];
1129 // As long as our target is mapped to something else, follow it.
1130 while (SlotRemap.count(Target)) {
1131 Target = SlotRemap[Target];
1132 SlotRemap[i] = Target;
1133 }
1134 }
1135 }
1136 }
1137
runOnMachineFunction(MachineFunction & Func)1138 bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
1139 LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
1140 << "********** Function: " << Func.getName() << '\n');
1141 MF = &Func;
1142 MFI = &MF->getFrameInfo();
1143 Indexes = &getAnalysis<SlotIndexes>();
1144 BlockLiveness.clear();
1145 BasicBlocks.clear();
1146 BasicBlockNumbering.clear();
1147 Markers.clear();
1148 Intervals.clear();
1149 LiveStarts.clear();
1150 VNInfoAllocator.Reset();
1151
1152 unsigned NumSlots = MFI->getObjectIndexEnd();
1153
1154 // If there are no stack slots then there are no markers to remove.
1155 if (!NumSlots)
1156 return false;
1157
1158 SmallVector<int, 8> SortedSlots;
1159 SortedSlots.reserve(NumSlots);
1160 Intervals.reserve(NumSlots);
1161 LiveStarts.resize(NumSlots);
1162
1163 unsigned NumMarkers = collectMarkers(NumSlots);
1164
1165 unsigned TotalSize = 0;
1166 LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots
1167 << " slots\n");
1168 LLVM_DEBUG(dbgs() << "Slot structure:\n");
1169
1170 for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
1171 LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i)
1172 << " bytes.\n");
1173 TotalSize += MFI->getObjectSize(i);
1174 }
1175
1176 LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n");
1177
1178 // Don't continue because there are not enough lifetime markers, or the
1179 // stack is too small, or we are told not to optimize the slots.
1180 if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
1181 skipFunction(Func.getFunction())) {
1182 LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
1183 return removeAllMarkers();
1184 }
1185
1186 for (unsigned i=0; i < NumSlots; ++i) {
1187 std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
1188 LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
1189 Intervals.push_back(std::move(LI));
1190 SortedSlots.push_back(i);
1191 }
1192
1193 // Calculate the liveness of each block.
1194 calculateLocalLiveness();
1195 LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
1196 LLVM_DEBUG(dump());
1197
1198 // Propagate the liveness information.
1199 calculateLiveIntervals(NumSlots);
1200 LLVM_DEBUG(dumpIntervals());
1201
1202 // Search for allocas which are used outside of the declared lifetime
1203 // markers.
1204 if (ProtectFromEscapedAllocas)
1205 removeInvalidSlotRanges();
1206
1207 // Maps old slots to new slots.
1208 DenseMap<int, int> SlotRemap;
1209 unsigned RemovedSlots = 0;
1210 unsigned ReducedSize = 0;
1211
1212 // Do not bother looking at empty intervals.
1213 for (unsigned I = 0; I < NumSlots; ++I) {
1214 if (Intervals[SortedSlots[I]]->empty())
1215 SortedSlots[I] = -1;
1216 }
1217
1218 // This is a simple greedy algorithm for merging allocas. First, sort the
1219 // slots, placing the largest slots first. Next, perform an n^2 scan and look
1220 // for disjoint slots. When you find disjoint slots, merge the samller one
1221 // into the bigger one and update the live interval. Remove the small alloca
1222 // and continue.
1223
1224 // Sort the slots according to their size. Place unused slots at the end.
1225 // Use stable sort to guarantee deterministic code generation.
1226 std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
1227 [this](int LHS, int RHS) {
1228 // We use -1 to denote a uninteresting slot. Place these slots at the end.
1229 if (LHS == -1) return false;
1230 if (RHS == -1) return true;
1231 // Sort according to size.
1232 return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
1233 });
1234
1235 for (auto &s : LiveStarts)
1236 llvm::sort(s.begin(), s.end());
1237
1238 bool Changed = true;
1239 while (Changed) {
1240 Changed = false;
1241 for (unsigned I = 0; I < NumSlots; ++I) {
1242 if (SortedSlots[I] == -1)
1243 continue;
1244
1245 for (unsigned J=I+1; J < NumSlots; ++J) {
1246 if (SortedSlots[J] == -1)
1247 continue;
1248
1249 int FirstSlot = SortedSlots[I];
1250 int SecondSlot = SortedSlots[J];
1251 LiveInterval *First = &*Intervals[FirstSlot];
1252 LiveInterval *Second = &*Intervals[SecondSlot];
1253 auto &FirstS = LiveStarts[FirstSlot];
1254 auto &SecondS = LiveStarts[SecondSlot];
1255 assert(!First->empty() && !Second->empty() && "Found an empty range");
1256
1257 // Merge disjoint slots. This is a little bit tricky - see the
1258 // Implementation Notes section for an explanation.
1259 if (!First->isLiveAtIndexes(SecondS) &&
1260 !Second->isLiveAtIndexes(FirstS)) {
1261 Changed = true;
1262 First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
1263
1264 int OldSize = FirstS.size();
1265 FirstS.append(SecondS.begin(), SecondS.end());
1266 auto Mid = FirstS.begin() + OldSize;
1267 std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
1268
1269 SlotRemap[SecondSlot] = FirstSlot;
1270 SortedSlots[J] = -1;
1271 LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #"
1272 << SecondSlot << " together.\n");
1273 unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
1274 MFI->getObjectAlignment(SecondSlot));
1275
1276 assert(MFI->getObjectSize(FirstSlot) >=
1277 MFI->getObjectSize(SecondSlot) &&
1278 "Merging a small object into a larger one");
1279
1280 RemovedSlots+=1;
1281 ReducedSize += MFI->getObjectSize(SecondSlot);
1282 MFI->setObjectAlignment(FirstSlot, MaxAlignment);
1283 MFI->RemoveStackObject(SecondSlot);
1284 }
1285 }
1286 }
1287 }// While changed.
1288
1289 // Record statistics.
1290 StackSpaceSaved += ReducedSize;
1291 StackSlotMerged += RemovedSlots;
1292 LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved "
1293 << ReducedSize << " bytes\n");
1294
1295 // Scan the entire function and update all machine operands that use frame
1296 // indices to use the remapped frame index.
1297 expungeSlotMap(SlotRemap, NumSlots);
1298 remapInstructions(SlotRemap);
1299
1300 return removeAllMarkers();
1301 }
1302