• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 ///
12 /// This file provides internal interfaces used to implement the InstCombine.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
18 
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/TargetFolder.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstVisitor.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Use.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/KnownBits.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
44 #include <cassert>
45 #include <cstdint>
46 
47 #define DEBUG_TYPE "instcombine"
48 
49 namespace llvm {
50 
51 class APInt;
52 class AssumptionCache;
53 class CallSite;
54 class DataLayout;
55 class DominatorTree;
56 class GEPOperator;
57 class GlobalVariable;
58 class LoopInfo;
59 class OptimizationRemarkEmitter;
60 class TargetLibraryInfo;
61 class User;
62 
63 /// Assign a complexity or rank value to LLVM Values. This is used to reduce
64 /// the amount of pattern matching needed for compares and commutative
65 /// instructions. For example, if we have:
66 ///   icmp ugt X, Constant
67 /// or
68 ///   xor (add X, Constant), cast Z
69 ///
70 /// We do not have to consider the commuted variants of these patterns because
71 /// canonicalization based on complexity guarantees the above ordering.
72 ///
73 /// This routine maps IR values to various complexity ranks:
74 ///   0 -> undef
75 ///   1 -> Constants
76 ///   2 -> Other non-instructions
77 ///   3 -> Arguments
78 ///   4 -> Cast and (f)neg/not instructions
79 ///   5 -> Other instructions
getComplexity(Value * V)80 static inline unsigned getComplexity(Value *V) {
81   if (isa<Instruction>(V)) {
82     if (isa<CastInst>(V) || BinaryOperator::isNeg(V) ||
83         BinaryOperator::isFNeg(V) || BinaryOperator::isNot(V))
84       return 4;
85     return 5;
86   }
87   if (isa<Argument>(V))
88     return 3;
89   return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
90 }
91 
92 /// Predicate canonicalization reduces the number of patterns that need to be
93 /// matched by other transforms. For example, we may swap the operands of a
94 /// conditional branch or select to create a compare with a canonical (inverted)
95 /// predicate which is then more likely to be matched with other values.
isCanonicalPredicate(CmpInst::Predicate Pred)96 static inline bool isCanonicalPredicate(CmpInst::Predicate Pred) {
97   switch (Pred) {
98   case CmpInst::ICMP_NE:
99   case CmpInst::ICMP_ULE:
100   case CmpInst::ICMP_SLE:
101   case CmpInst::ICMP_UGE:
102   case CmpInst::ICMP_SGE:
103   // TODO: There are 16 FCMP predicates. Should others be (not) canonical?
104   case CmpInst::FCMP_ONE:
105   case CmpInst::FCMP_OLE:
106   case CmpInst::FCMP_OGE:
107     return false;
108   default:
109     return true;
110   }
111 }
112 
113 /// Return the source operand of a potentially bitcasted value while optionally
114 /// checking if it has one use. If there is no bitcast or the one use check is
115 /// not met, return the input value itself.
116 static inline Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) {
117   if (auto *BitCast = dyn_cast<BitCastInst>(V))
118     if (!OneUseOnly || BitCast->hasOneUse())
119       return BitCast->getOperand(0);
120 
121   // V is not a bitcast or V has more than one use and OneUseOnly is true.
122   return V;
123 }
124 
125 /// Add one to a Constant
AddOne(Constant * C)126 static inline Constant *AddOne(Constant *C) {
127   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
128 }
129 
130 /// Subtract one from a Constant
SubOne(Constant * C)131 static inline Constant *SubOne(Constant *C) {
132   return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
133 }
134 
135 /// Return true if the specified value is free to invert (apply ~ to).
136 /// This happens in cases where the ~ can be eliminated.  If WillInvertAllUses
137 /// is true, work under the assumption that the caller intends to remove all
138 /// uses of V and only keep uses of ~V.
IsFreeToInvert(Value * V,bool WillInvertAllUses)139 static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) {
140   // ~(~(X)) -> X.
141   if (BinaryOperator::isNot(V))
142     return true;
143 
144   // Constants can be considered to be not'ed values.
145   if (isa<ConstantInt>(V))
146     return true;
147 
148   // A vector of constant integers can be inverted easily.
149   if (V->getType()->isVectorTy() && isa<Constant>(V)) {
150     unsigned NumElts = V->getType()->getVectorNumElements();
151     for (unsigned i = 0; i != NumElts; ++i) {
152       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
153       if (!Elt)
154         return false;
155 
156       if (isa<UndefValue>(Elt))
157         continue;
158 
159       if (!isa<ConstantInt>(Elt))
160         return false;
161     }
162     return true;
163   }
164 
165   // Compares can be inverted if all of their uses are being modified to use the
166   // ~V.
167   if (isa<CmpInst>(V))
168     return WillInvertAllUses;
169 
170   // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
171   // - Constant) - A` if we are willing to invert all of the uses.
172   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
173     if (BO->getOpcode() == Instruction::Add ||
174         BO->getOpcode() == Instruction::Sub)
175       if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
176         return WillInvertAllUses;
177 
178   return false;
179 }
180 
181 /// Specific patterns of overflow check idioms that we match.
182 enum OverflowCheckFlavor {
183   OCF_UNSIGNED_ADD,
184   OCF_SIGNED_ADD,
185   OCF_UNSIGNED_SUB,
186   OCF_SIGNED_SUB,
187   OCF_UNSIGNED_MUL,
188   OCF_SIGNED_MUL,
189 
190   OCF_INVALID
191 };
192 
193 /// Returns the OverflowCheckFlavor corresponding to a overflow_with_op
194 /// intrinsic.
195 static inline OverflowCheckFlavor
IntrinsicIDToOverflowCheckFlavor(unsigned ID)196 IntrinsicIDToOverflowCheckFlavor(unsigned ID) {
197   switch (ID) {
198   default:
199     return OCF_INVALID;
200   case Intrinsic::uadd_with_overflow:
201     return OCF_UNSIGNED_ADD;
202   case Intrinsic::sadd_with_overflow:
203     return OCF_SIGNED_ADD;
204   case Intrinsic::usub_with_overflow:
205     return OCF_UNSIGNED_SUB;
206   case Intrinsic::ssub_with_overflow:
207     return OCF_SIGNED_SUB;
208   case Intrinsic::umul_with_overflow:
209     return OCF_UNSIGNED_MUL;
210   case Intrinsic::smul_with_overflow:
211     return OCF_SIGNED_MUL;
212   }
213 }
214 
215 /// Some binary operators require special handling to avoid poison and undefined
216 /// behavior. If a constant vector has undef elements, replace those undefs with
217 /// identity constants if possible because those are always safe to execute.
218 /// If no identity constant exists, replace undef with some other safe constant.
getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode,Constant * In,bool IsRHSConstant)219 static inline Constant *getSafeVectorConstantForBinop(
220       BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant) {
221   assert(In->getType()->isVectorTy() && "Not expecting scalars here");
222 
223   Type *EltTy = In->getType()->getVectorElementType();
224   auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant);
225   if (!SafeC) {
226     // TODO: Should this be available as a constant utility function? It is
227     // similar to getBinOpAbsorber().
228     if (IsRHSConstant) {
229       switch (Opcode) {
230       case Instruction::SRem: // X % 1 = 0
231       case Instruction::URem: // X %u 1 = 0
232         SafeC = ConstantInt::get(EltTy, 1);
233         break;
234       case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe)
235         SafeC = ConstantFP::get(EltTy, 1.0);
236         break;
237       default:
238         llvm_unreachable("Only rem opcodes have no identity constant for RHS");
239       }
240     } else {
241       switch (Opcode) {
242       case Instruction::Shl:  // 0 << X = 0
243       case Instruction::LShr: // 0 >>u X = 0
244       case Instruction::AShr: // 0 >> X = 0
245       case Instruction::SDiv: // 0 / X = 0
246       case Instruction::UDiv: // 0 /u X = 0
247       case Instruction::SRem: // 0 % X = 0
248       case Instruction::URem: // 0 %u X = 0
249       case Instruction::Sub:  // 0 - X (doesn't simplify, but it is safe)
250       case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe)
251       case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe)
252       case Instruction::FRem: // 0.0 % X = 0
253         SafeC = Constant::getNullValue(EltTy);
254         break;
255       default:
256         llvm_unreachable("Expected to find identity constant for opcode");
257       }
258     }
259   }
260   assert(SafeC && "Must have safe constant for binop");
261   unsigned NumElts = In->getType()->getVectorNumElements();
262   SmallVector<Constant *, 16> Out(NumElts);
263   for (unsigned i = 0; i != NumElts; ++i) {
264     Constant *C = In->getAggregateElement(i);
265     Out[i] = isa<UndefValue>(C) ? SafeC : C;
266   }
267   return ConstantVector::get(Out);
268 }
269 
270 /// The core instruction combiner logic.
271 ///
272 /// This class provides both the logic to recursively visit instructions and
273 /// combine them.
274 class LLVM_LIBRARY_VISIBILITY InstCombiner
275     : public InstVisitor<InstCombiner, Instruction *> {
276   // FIXME: These members shouldn't be public.
277 public:
278   /// A worklist of the instructions that need to be simplified.
279   InstCombineWorklist &Worklist;
280 
281   /// An IRBuilder that automatically inserts new instructions into the
282   /// worklist.
283   using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
284   BuilderTy &Builder;
285 
286 private:
287   // Mode in which we are running the combiner.
288   const bool MinimizeSize;
289 
290   /// Enable combines that trigger rarely but are costly in compiletime.
291   const bool ExpensiveCombines;
292 
293   AliasAnalysis *AA;
294 
295   // Required analyses.
296   AssumptionCache &AC;
297   TargetLibraryInfo &TLI;
298   DominatorTree &DT;
299   const DataLayout &DL;
300   const SimplifyQuery SQ;
301   OptimizationRemarkEmitter &ORE;
302 
303   // Optional analyses. When non-null, these can both be used to do better
304   // combining and will be updated to reflect any changes.
305   LoopInfo *LI;
306 
307   bool MadeIRChange = false;
308 
309 public:
InstCombiner(InstCombineWorklist & Worklist,BuilderTy & Builder,bool MinimizeSize,bool ExpensiveCombines,AliasAnalysis * AA,AssumptionCache & AC,TargetLibraryInfo & TLI,DominatorTree & DT,OptimizationRemarkEmitter & ORE,const DataLayout & DL,LoopInfo * LI)310   InstCombiner(InstCombineWorklist &Worklist, BuilderTy &Builder,
311                bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA,
312                AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
313                OptimizationRemarkEmitter &ORE, const DataLayout &DL,
314                LoopInfo *LI)
315       : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
316         ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT),
317         DL(DL), SQ(DL, &TLI, &DT, &AC), ORE(ORE), LI(LI) {}
318 
319   /// Run the combiner over the entire worklist until it is empty.
320   ///
321   /// \returns true if the IR is changed.
322   bool run();
323 
getAssumptionCache()324   AssumptionCache &getAssumptionCache() const { return AC; }
325 
getDataLayout()326   const DataLayout &getDataLayout() const { return DL; }
327 
getDominatorTree()328   DominatorTree &getDominatorTree() const { return DT; }
329 
getLoopInfo()330   LoopInfo *getLoopInfo() const { return LI; }
331 
getTargetLibraryInfo()332   TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; }
333 
334   // Visitation implementation - Implement instruction combining for different
335   // instruction types.  The semantics are as follows:
336   // Return Value:
337   //    null        - No change was made
338   //     I          - Change was made, I is still valid, I may be dead though
339   //   otherwise    - Change was made, replace I with returned instruction
340   //
341   Instruction *visitAdd(BinaryOperator &I);
342   Instruction *visitFAdd(BinaryOperator &I);
343   Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
344   Instruction *visitSub(BinaryOperator &I);
345   Instruction *visitFSub(BinaryOperator &I);
346   Instruction *visitMul(BinaryOperator &I);
347   Instruction *visitFMul(BinaryOperator &I);
348   Instruction *visitURem(BinaryOperator &I);
349   Instruction *visitSRem(BinaryOperator &I);
350   Instruction *visitFRem(BinaryOperator &I);
351   bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
352   Instruction *commonRemTransforms(BinaryOperator &I);
353   Instruction *commonIRemTransforms(BinaryOperator &I);
354   Instruction *commonDivTransforms(BinaryOperator &I);
355   Instruction *commonIDivTransforms(BinaryOperator &I);
356   Instruction *visitUDiv(BinaryOperator &I);
357   Instruction *visitSDiv(BinaryOperator &I);
358   Instruction *visitFDiv(BinaryOperator &I);
359   Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
360   Instruction *visitAnd(BinaryOperator &I);
361   Instruction *visitOr(BinaryOperator &I);
362   Instruction *visitXor(BinaryOperator &I);
363   Instruction *visitShl(BinaryOperator &I);
364   Instruction *visitAShr(BinaryOperator &I);
365   Instruction *visitLShr(BinaryOperator &I);
366   Instruction *commonShiftTransforms(BinaryOperator &I);
367   Instruction *visitFCmpInst(FCmpInst &I);
368   Instruction *visitICmpInst(ICmpInst &I);
369   Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
370                                    BinaryOperator &I);
371   Instruction *commonCastTransforms(CastInst &CI);
372   Instruction *commonPointerCastTransforms(CastInst &CI);
373   Instruction *visitTrunc(TruncInst &CI);
374   Instruction *visitZExt(ZExtInst &CI);
375   Instruction *visitSExt(SExtInst &CI);
376   Instruction *visitFPTrunc(FPTruncInst &CI);
377   Instruction *visitFPExt(CastInst &CI);
378   Instruction *visitFPToUI(FPToUIInst &FI);
379   Instruction *visitFPToSI(FPToSIInst &FI);
380   Instruction *visitUIToFP(CastInst &CI);
381   Instruction *visitSIToFP(CastInst &CI);
382   Instruction *visitPtrToInt(PtrToIntInst &CI);
383   Instruction *visitIntToPtr(IntToPtrInst &CI);
384   Instruction *visitBitCast(BitCastInst &CI);
385   Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
386   Instruction *FoldItoFPtoI(Instruction &FI);
387   Instruction *visitSelectInst(SelectInst &SI);
388   Instruction *visitCallInst(CallInst &CI);
389   Instruction *visitInvokeInst(InvokeInst &II);
390 
391   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
392   Instruction *visitPHINode(PHINode &PN);
393   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
394   Instruction *visitAllocaInst(AllocaInst &AI);
395   Instruction *visitAllocSite(Instruction &FI);
396   Instruction *visitFree(CallInst &FI);
397   Instruction *visitLoadInst(LoadInst &LI);
398   Instruction *visitStoreInst(StoreInst &SI);
399   Instruction *visitBranchInst(BranchInst &BI);
400   Instruction *visitFenceInst(FenceInst &FI);
401   Instruction *visitSwitchInst(SwitchInst &SI);
402   Instruction *visitReturnInst(ReturnInst &RI);
403   Instruction *visitInsertValueInst(InsertValueInst &IV);
404   Instruction *visitInsertElementInst(InsertElementInst &IE);
405   Instruction *visitExtractElementInst(ExtractElementInst &EI);
406   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
407   Instruction *visitExtractValueInst(ExtractValueInst &EV);
408   Instruction *visitLandingPadInst(LandingPadInst &LI);
409   Instruction *visitVAStartInst(VAStartInst &I);
410   Instruction *visitVACopyInst(VACopyInst &I);
411 
412   /// Specify what to return for unhandled instructions.
visitInstruction(Instruction & I)413   Instruction *visitInstruction(Instruction &I) { return nullptr; }
414 
415   /// True when DB dominates all uses of DI except UI.
416   /// UI must be in the same block as DI.
417   /// The routine checks that the DI parent and DB are different.
418   bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
419                         const BasicBlock *DB) const;
420 
421   /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
422   bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
423                                  const unsigned SIOpd);
424 
425   /// Try to replace instruction \p I with value \p V which are pointers
426   /// in different address space.
427   /// \return true if successful.
428   bool replacePointer(Instruction &I, Value *V);
429 
430 private:
431   bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
432   bool shouldChangeType(Type *From, Type *To) const;
433   Value *dyn_castNegVal(Value *V) const;
434   Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
435                             SmallVectorImpl<Value *> &NewIndices);
436 
437   /// Classify whether a cast is worth optimizing.
438   ///
439   /// This is a helper to decide whether the simplification of
440   /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
441   ///
442   /// \param CI The cast we are interested in.
443   ///
444   /// \return true if this cast actually results in any code being generated and
445   /// if it cannot already be eliminated by some other transformation.
446   bool shouldOptimizeCast(CastInst *CI);
447 
448   /// Try to optimize a sequence of instructions checking if an operation
449   /// on LHS and RHS overflows.
450   ///
451   /// If this overflow check is done via one of the overflow check intrinsics,
452   /// then CtxI has to be the call instruction calling that intrinsic.  If this
453   /// overflow check is done by arithmetic followed by a compare, then CtxI has
454   /// to be the arithmetic instruction.
455   ///
456   /// If a simplification is possible, stores the simplified result of the
457   /// operation in OperationResult and result of the overflow check in
458   /// OverflowResult, and return true.  If no simplification is possible,
459   /// returns false.
460   bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS,
461                              Instruction &CtxI, Value *&OperationResult,
462                              Constant *&OverflowResult);
463 
464   Instruction *visitCallSite(CallSite CS);
465   Instruction *tryOptimizeCall(CallInst *CI);
466   bool transformConstExprCastCall(CallSite CS);
467   Instruction *transformCallThroughTrampoline(CallSite CS,
468                                               IntrinsicInst *Tramp);
469 
470   /// Transform (zext icmp) to bitwise / integer operations in order to
471   /// eliminate it.
472   ///
473   /// \param ICI The icmp of the (zext icmp) pair we are interested in.
474   /// \parem CI The zext of the (zext icmp) pair we are interested in.
475   /// \param DoTransform Pass false to just test whether the given (zext icmp)
476   /// would be transformed. Pass true to actually perform the transformation.
477   ///
478   /// \return null if the transformation cannot be performed. If the
479   /// transformation can be performed the new instruction that replaces the
480   /// (zext icmp) pair will be returned (if \p DoTransform is false the
481   /// unmodified \p ICI will be returned in this case).
482   Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
483                                  bool DoTransform = true);
484 
485   Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
486 
willNotOverflowSignedAdd(const Value * LHS,const Value * RHS,const Instruction & CxtI)487   bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
488                                 const Instruction &CxtI) const {
489     return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
490            OverflowResult::NeverOverflows;
491   }
492 
willNotOverflowUnsignedAdd(const Value * LHS,const Value * RHS,const Instruction & CxtI)493   bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
494                                   const Instruction &CxtI) const {
495     return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
496            OverflowResult::NeverOverflows;
497   }
498 
willNotOverflowSignedSub(const Value * LHS,const Value * RHS,const Instruction & CxtI)499   bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
500                                 const Instruction &CxtI) const {
501     return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
502            OverflowResult::NeverOverflows;
503   }
504 
willNotOverflowUnsignedSub(const Value * LHS,const Value * RHS,const Instruction & CxtI)505   bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
506                                   const Instruction &CxtI) const {
507     return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
508            OverflowResult::NeverOverflows;
509   }
510 
willNotOverflowSignedMul(const Value * LHS,const Value * RHS,const Instruction & CxtI)511   bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
512                                 const Instruction &CxtI) const {
513     return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
514            OverflowResult::NeverOverflows;
515   }
516 
willNotOverflowUnsignedMul(const Value * LHS,const Value * RHS,const Instruction & CxtI)517   bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
518                                   const Instruction &CxtI) const {
519     return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
520            OverflowResult::NeverOverflows;
521   }
522 
523   Value *EmitGEPOffset(User *GEP);
524   Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
525   Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
526   Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
527   Instruction *narrowBinOp(TruncInst &Trunc);
528   Instruction *narrowMaskedBinOp(BinaryOperator &And);
529   Instruction *narrowRotate(TruncInst &Trunc);
530   Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
531 
532   /// Determine if a pair of casts can be replaced by a single cast.
533   ///
534   /// \param CI1 The first of a pair of casts.
535   /// \param CI2 The second of a pair of casts.
536   ///
537   /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
538   /// Instruction::CastOps value for a cast that can replace the pair, casting
539   /// CI1->getSrcTy() to CI2->getDstTy().
540   ///
541   /// \see CastInst::isEliminableCastPair
542   Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
543                                             const CastInst *CI2);
544 
545   Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
546   Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
547   Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS);
548 
549   /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
550   /// NOTE: Unlike most of instcombine, this returns a Value which should
551   /// already be inserted into the function.
552   Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);
553 
554   Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
555                                        bool JoinedByAnd, Instruction &CxtI);
556 public:
557   /// Inserts an instruction \p New before instruction \p Old
558   ///
559   /// Also adds the new instruction to the worklist and returns \p New so that
560   /// it is suitable for use as the return from the visitation patterns.
InsertNewInstBefore(Instruction * New,Instruction & Old)561   Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
562     assert(New && !New->getParent() &&
563            "New instruction already inserted into a basic block!");
564     BasicBlock *BB = Old.getParent();
565     BB->getInstList().insert(Old.getIterator(), New); // Insert inst
566     Worklist.Add(New);
567     return New;
568   }
569 
570   /// Same as InsertNewInstBefore, but also sets the debug loc.
InsertNewInstWith(Instruction * New,Instruction & Old)571   Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
572     New->setDebugLoc(Old.getDebugLoc());
573     return InsertNewInstBefore(New, Old);
574   }
575 
576   /// A combiner-aware RAUW-like routine.
577   ///
578   /// This method is to be used when an instruction is found to be dead,
579   /// replaceable with another preexisting expression. Here we add all uses of
580   /// I to the worklist, replace all uses of I with the new value, then return
581   /// I, so that the inst combiner will know that I was modified.
replaceInstUsesWith(Instruction & I,Value * V)582   Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
583     // If there are no uses to replace, then we return nullptr to indicate that
584     // no changes were made to the program.
585     if (I.use_empty()) return nullptr;
586 
587     Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
588 
589     // If we are replacing the instruction with itself, this must be in a
590     // segment of unreachable code, so just clobber the instruction.
591     if (&I == V)
592       V = UndefValue::get(I.getType());
593 
594     LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
595                       << "    with " << *V << '\n');
596 
597     I.replaceAllUsesWith(V);
598     return &I;
599   }
600 
601   /// Creates a result tuple for an overflow intrinsic \p II with a given
602   /// \p Result and a constant \p Overflow value.
CreateOverflowTuple(IntrinsicInst * II,Value * Result,Constant * Overflow)603   Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
604                                    Constant *Overflow) {
605     Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
606     StructType *ST = cast<StructType>(II->getType());
607     Constant *Struct = ConstantStruct::get(ST, V);
608     return InsertValueInst::Create(Struct, Result, 0);
609   }
610 
611   /// Combiner aware instruction erasure.
612   ///
613   /// When dealing with an instruction that has side effects or produces a void
614   /// value, we can't rely on DCE to delete the instruction. Instead, visit
615   /// methods should return the value returned by this function.
eraseInstFromFunction(Instruction & I)616   Instruction *eraseInstFromFunction(Instruction &I) {
617     LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
618     assert(I.use_empty() && "Cannot erase instruction that is used!");
619     salvageDebugInfo(I);
620 
621     // Make sure that we reprocess all operands now that we reduced their
622     // use counts.
623     if (I.getNumOperands() < 8) {
624       for (Use &Operand : I.operands())
625         if (auto *Inst = dyn_cast<Instruction>(Operand))
626           Worklist.Add(Inst);
627     }
628     Worklist.Remove(&I);
629     I.eraseFromParent();
630     MadeIRChange = true;
631     return nullptr; // Don't do anything with FI
632   }
633 
computeKnownBits(const Value * V,KnownBits & Known,unsigned Depth,const Instruction * CxtI)634   void computeKnownBits(const Value *V, KnownBits &Known,
635                         unsigned Depth, const Instruction *CxtI) const {
636     llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
637   }
638 
computeKnownBits(const Value * V,unsigned Depth,const Instruction * CxtI)639   KnownBits computeKnownBits(const Value *V, unsigned Depth,
640                              const Instruction *CxtI) const {
641     return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
642   }
643 
644   bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
645                               unsigned Depth = 0,
646                               const Instruction *CxtI = nullptr) {
647     return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
648   }
649 
650   bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
651                          const Instruction *CxtI = nullptr) const {
652     return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
653   }
654 
655   unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
656                               const Instruction *CxtI = nullptr) const {
657     return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
658   }
659 
computeOverflowForUnsignedMul(const Value * LHS,const Value * RHS,const Instruction * CxtI)660   OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
661                                                const Value *RHS,
662                                                const Instruction *CxtI) const {
663     return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
664   }
665 
computeOverflowForSignedMul(const Value * LHS,const Value * RHS,const Instruction * CxtI)666   OverflowResult computeOverflowForSignedMul(const Value *LHS,
667 	                                         const Value *RHS,
668                                              const Instruction *CxtI) const {
669     return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
670   }
671 
computeOverflowForUnsignedAdd(const Value * LHS,const Value * RHS,const Instruction * CxtI)672   OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
673                                                const Value *RHS,
674                                                const Instruction *CxtI) const {
675     return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
676   }
677 
computeOverflowForSignedAdd(const Value * LHS,const Value * RHS,const Instruction * CxtI)678   OverflowResult computeOverflowForSignedAdd(const Value *LHS,
679                                              const Value *RHS,
680                                              const Instruction *CxtI) const {
681     return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
682   }
683 
computeOverflowForUnsignedSub(const Value * LHS,const Value * RHS,const Instruction * CxtI)684   OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
685                                                const Value *RHS,
686                                                const Instruction *CxtI) const {
687     return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
688   }
689 
computeOverflowForSignedSub(const Value * LHS,const Value * RHS,const Instruction * CxtI)690   OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
691                                              const Instruction *CxtI) const {
692     return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
693   }
694 
695   /// Maximum size of array considered when transforming.
696   uint64_t MaxArraySizeForCombine;
697 
698 private:
699   /// Performs a few simplifications for operators which are associative
700   /// or commutative.
701   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
702 
703   /// Tries to simplify binary operations which some other binary
704   /// operation distributes over.
705   ///
706   /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
707   /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
708   /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
709   /// value, or null if it didn't simplify.
710   Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
711 
712   /// Tries to simplify add operations using the definition of remainder.
713   ///
714   /// The definition of remainder is X % C = X - (X / C ) * C. The add
715   /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
716   /// X % (C0 * C1)
717   Value *SimplifyAddWithRemainder(BinaryOperator &I);
718 
719   // Binary Op helper for select operations where the expression can be
720   // efficiently reorganized.
721   Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
722                                         Value *RHS);
723 
724   /// This tries to simplify binary operations by factorizing out common terms
725   /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
726   Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
727                           Value *, Value *, Value *);
728 
729   /// Match a select chain which produces one of three values based on whether
730   /// the LHS is less than, equal to, or greater than RHS respectively.
731   /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
732   /// Equal and Greater values are saved in the matching process and returned to
733   /// the caller.
734   bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
735                                ConstantInt *&Less, ConstantInt *&Equal,
736                                ConstantInt *&Greater);
737 
738   /// Attempts to replace V with a simpler value based on the demanded
739   /// bits.
740   Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
741                                  unsigned Depth, Instruction *CxtI);
742   bool SimplifyDemandedBits(Instruction *I, unsigned Op,
743                             const APInt &DemandedMask, KnownBits &Known,
744                             unsigned Depth = 0);
745 
746   /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
747   /// bits. It also tries to handle simplifications that can be done based on
748   /// DemandedMask, but without modifying the Instruction.
749   Value *SimplifyMultipleUseDemandedBits(Instruction *I,
750                                          const APInt &DemandedMask,
751                                          KnownBits &Known,
752                                          unsigned Depth, Instruction *CxtI);
753 
754   /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
755   /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
756   Value *simplifyShrShlDemandedBits(
757       Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
758       const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
759 
760   /// Tries to simplify operands to an integer instruction based on its
761   /// demanded bits.
762   bool SimplifyDemandedInstructionBits(Instruction &Inst);
763 
764   Value *simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
765                                                APInt DemandedElts,
766                                                int DmaskIdx = -1);
767 
768   Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
769                                     APInt &UndefElts, unsigned Depth = 0);
770 
771   /// Canonicalize the position of binops relative to shufflevector.
772   Instruction *foldShuffledBinop(BinaryOperator &Inst);
773 
774   /// Given a binary operator, cast instruction, or select which has a PHI node
775   /// as operand #0, see if we can fold the instruction into the PHI (which is
776   /// only possible if all operands to the PHI are constants).
777   Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
778 
779   /// Given an instruction with a select as one operand and a constant as the
780   /// other operand, try to fold the binary operator into the select arguments.
781   /// This also works for Cast instructions, which obviously do not have a
782   /// second operand.
783   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
784 
785   /// This is a convenience wrapper function for the above two functions.
786   Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
787 
788   Instruction *foldAddWithConstant(BinaryOperator &Add);
789 
790   /// Try to rotate an operation below a PHI node, using PHI nodes for
791   /// its operands.
792   Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
793   Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
794   Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
795   Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
796   Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN);
797 
798   /// If an integer typed PHI has only one use which is an IntToPtr operation,
799   /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
800   /// insert a new pointer typed PHI and replace the original one.
801   Instruction *FoldIntegerTypedPHI(PHINode &PN);
802 
803   /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
804   /// folded operation.
805   void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
806 
807   Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
808                            ICmpInst::Predicate Cond, Instruction &I);
809   Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
810                              const Value *Other);
811   Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
812                                             GlobalVariable *GV, CmpInst &ICI,
813                                             ConstantInt *AndCst = nullptr);
814   Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
815                                     Constant *RHSC);
816   Instruction *foldICmpAddOpConst(Value *X, ConstantInt *CI,
817                                   ICmpInst::Predicate Pred);
818   Instruction *foldICmpWithCastAndCast(ICmpInst &ICI);
819 
820   Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
821   Instruction *foldICmpWithConstant(ICmpInst &Cmp);
822   Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
823   Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
824   Instruction *foldICmpBinOp(ICmpInst &Cmp);
825   Instruction *foldICmpEquality(ICmpInst &Cmp);
826   Instruction *foldICmpWithZero(ICmpInst &Cmp);
827 
828   Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
829                                       ConstantInt *C);
830   Instruction *foldICmpBitCastConstant(ICmpInst &Cmp, BitCastInst *Bitcast,
831                                        const APInt &C);
832   Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
833                                      const APInt &C);
834   Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
835                                    const APInt &C);
836   Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
837                                    const APInt &C);
838   Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
839                                   const APInt &C);
840   Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
841                                    const APInt &C);
842   Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
843                                    const APInt &C);
844   Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
845                                    const APInt &C);
846   Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
847                                     const APInt &C);
848   Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
849                                    const APInt &C);
850   Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
851                                    const APInt &C);
852   Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
853                                    const APInt &C);
854   Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
855                                      const APInt &C1);
856   Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
857                                 const APInt &C1, const APInt &C2);
858   Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
859                                      const APInt &C2);
860   Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
861                                      const APInt &C2);
862 
863   Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
864                                                  BinaryOperator *BO,
865                                                  const APInt &C);
866   Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, const APInt &C);
867 
868   // Helpers of visitSelectInst().
869   Instruction *foldSelectExtConst(SelectInst &Sel);
870   Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
871   Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
872   Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
873                             Value *A, Value *B, Instruction &Outer,
874                             SelectPatternFlavor SPF2, Value *C);
875   Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
876 
877   Instruction *OptAndOp(BinaryOperator *Op, ConstantInt *OpRHS,
878                         ConstantInt *AndRHS, BinaryOperator &TheAnd);
879 
880   Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
881                          bool isSigned, bool Inside);
882   Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
883   Instruction *MatchBSwap(BinaryOperator &I);
884   bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
885 
886   Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
887   Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
888 
889   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
890 
891   /// Returns a value X such that Val = X * Scale, or null if none.
892   ///
893   /// If the multiplication is known not to overflow then NoSignedWrap is set.
894   Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
895 };
896 
897 } // end namespace llvm
898 
899 #undef DEBUG_TYPE
900 
901 #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
902