1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "time_utils.h"
18
19 #include <inttypes.h>
20 #include <stdio.h>
21
22 #include <limits>
23 #include <sstream>
24
25 #include "android-base/stringprintf.h"
26
27 #include "logging.h"
28
29 #if defined(__APPLE__)
30 #include <sys/time.h>
31 #endif
32
33 namespace art {
34
35 namespace {
36
37 #if !defined(__linux__)
GetTimeOfDay(struct timeval * tv,struct timezone * tz)38 int GetTimeOfDay(struct timeval* tv, struct timezone* tz) {
39 #ifdef _WIN32
40 return mingw_gettimeofday(tv, tz);
41 #else
42 return gettimeofday(tv, tz);
43 #endif
44 }
45 #endif
46
47 } // namespace
48
49 using android::base::StringPrintf;
50
PrettyDuration(uint64_t nano_duration,size_t max_fraction_digits)51 std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits) {
52 if (nano_duration == 0) {
53 return "0";
54 } else {
55 return FormatDuration(nano_duration, GetAppropriateTimeUnit(nano_duration),
56 max_fraction_digits);
57 }
58 }
59
GetAppropriateTimeUnit(uint64_t nano_duration)60 TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration) {
61 const uint64_t one_sec = 1000 * 1000 * 1000;
62 const uint64_t one_ms = 1000 * 1000;
63 const uint64_t one_us = 1000;
64 if (nano_duration >= one_sec) {
65 return kTimeUnitSecond;
66 } else if (nano_duration >= one_ms) {
67 return kTimeUnitMillisecond;
68 } else if (nano_duration >= one_us) {
69 return kTimeUnitMicrosecond;
70 } else {
71 return kTimeUnitNanosecond;
72 }
73 }
74
GetNsToTimeUnitDivisor(TimeUnit time_unit)75 uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit) {
76 const uint64_t one_sec = 1000 * 1000 * 1000;
77 const uint64_t one_ms = 1000 * 1000;
78 const uint64_t one_us = 1000;
79
80 switch (time_unit) {
81 case kTimeUnitSecond:
82 return one_sec;
83 case kTimeUnitMillisecond:
84 return one_ms;
85 case kTimeUnitMicrosecond:
86 return one_us;
87 case kTimeUnitNanosecond:
88 return 1;
89 }
90 return 0;
91 }
92
FormatDuration(uint64_t nano_duration,TimeUnit time_unit,size_t max_fraction_digits)93 std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit,
94 size_t max_fraction_digits) {
95 const char* unit = nullptr;
96 uint64_t divisor = GetNsToTimeUnitDivisor(time_unit);
97 switch (time_unit) {
98 case kTimeUnitSecond:
99 unit = "s";
100 break;
101 case kTimeUnitMillisecond:
102 unit = "ms";
103 break;
104 case kTimeUnitMicrosecond:
105 unit = "us";
106 break;
107 case kTimeUnitNanosecond:
108 unit = "ns";
109 break;
110 }
111 const uint64_t whole_part = nano_duration / divisor;
112 uint64_t fractional_part = nano_duration % divisor;
113 if (fractional_part == 0) {
114 return StringPrintf("%" PRIu64 "%s", whole_part, unit);
115 } else {
116 static constexpr size_t kMaxDigits = 30;
117 size_t avail_digits = kMaxDigits;
118 char fraction_buffer[kMaxDigits];
119 char* ptr = fraction_buffer;
120 uint64_t multiplier = 10;
121 // This infinite loops if fractional part is 0.
122 while (avail_digits > 1 && fractional_part * multiplier < divisor) {
123 multiplier *= 10;
124 *ptr++ = '0';
125 avail_digits--;
126 }
127 snprintf(ptr, avail_digits, "%" PRIu64, fractional_part);
128 fraction_buffer[std::min(kMaxDigits - 1, max_fraction_digits)] = '\0';
129 return StringPrintf("%" PRIu64 ".%s%s", whole_part, fraction_buffer, unit);
130 }
131 }
132
GetIsoDate()133 std::string GetIsoDate() {
134 time_t now = time(nullptr);
135 tm tmbuf;
136 #ifdef _WIN32
137 localtime_s(&tmbuf, &now);
138 tm* ptm = &tmbuf;
139 #else
140 tm* ptm = localtime_r(&now, &tmbuf);
141 #endif
142 return StringPrintf("%04d-%02d-%02d %02d:%02d:%02d",
143 ptm->tm_year + 1900, ptm->tm_mon+1, ptm->tm_mday,
144 ptm->tm_hour, ptm->tm_min, ptm->tm_sec);
145 }
146
MilliTime()147 uint64_t MilliTime() {
148 #if defined(__linux__)
149 timespec now;
150 clock_gettime(CLOCK_MONOTONIC, &now);
151 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_nsec / UINT64_C(1000000);
152 #else
153 timeval now;
154 GetTimeOfDay(&now, nullptr);
155 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_usec / UINT64_C(1000);
156 #endif
157 }
158
MicroTime()159 uint64_t MicroTime() {
160 #if defined(__linux__)
161 timespec now;
162 clock_gettime(CLOCK_MONOTONIC, &now);
163 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
164 #else
165 timeval now;
166 GetTimeOfDay(&now, nullptr);
167 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_usec;
168 #endif
169 }
170
NanoTime()171 uint64_t NanoTime() {
172 #if defined(__linux__)
173 timespec now;
174 clock_gettime(CLOCK_MONOTONIC, &now);
175 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
176 #else
177 timeval now;
178 GetTimeOfDay(&now, nullptr);
179 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_usec * UINT64_C(1000);
180 #endif
181 }
182
ThreadCpuNanoTime()183 uint64_t ThreadCpuNanoTime() {
184 #if defined(__linux__)
185 timespec now;
186 clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now);
187 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
188 #else
189 UNIMPLEMENTED(WARNING);
190 return -1;
191 #endif
192 }
193
ProcessCpuNanoTime()194 uint64_t ProcessCpuNanoTime() {
195 #if defined(__linux__)
196 timespec now;
197 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &now);
198 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
199 #else
200 // We cannot use clock_gettime() here. Return the process wall clock time
201 // (using art::NanoTime, which relies on gettimeofday()) as approximation of
202 // the process CPU time instead.
203 //
204 // Note: clock_gettime() is available from macOS 10.12 (Darwin 16), but we try
205 // to keep things simple here.
206 return NanoTime();
207 #endif
208 }
209
NanoSleep(uint64_t ns)210 void NanoSleep(uint64_t ns) {
211 timespec tm;
212 tm.tv_sec = ns / MsToNs(1000);
213 tm.tv_nsec = ns - static_cast<uint64_t>(tm.tv_sec) * MsToNs(1000);
214 nanosleep(&tm, nullptr);
215 }
216
InitTimeSpec(bool absolute,int clock,int64_t ms,int32_t ns,timespec * ts)217 void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts) {
218 if (absolute) {
219 #if defined(__linux__)
220 clock_gettime(clock, ts);
221 #else
222 UNUSED(clock);
223 timeval tv;
224 GetTimeOfDay(&tv, nullptr);
225 ts->tv_sec = tv.tv_sec;
226 ts->tv_nsec = tv.tv_usec * 1000;
227 #endif
228 } else {
229 ts->tv_sec = 0;
230 ts->tv_nsec = 0;
231 }
232
233 int64_t end_sec = ts->tv_sec + ms / 1000;
234 constexpr int32_t int32_max = std::numeric_limits<int32_t>::max();
235 if (UNLIKELY(end_sec >= int32_max)) {
236 // Either ms was intended to denote an infinite timeout, or we have a
237 // problem. The former generally uses the largest possible millisecond
238 // or nanosecond value. Log only in the latter case.
239 constexpr int64_t int64_max = std::numeric_limits<int64_t>::max();
240 if (ms != int64_max && ms != int64_max / (1000 * 1000)) {
241 LOG(INFO) << "Note: end time exceeds INT32_MAX: " << end_sec;
242 }
243 end_sec = int32_max - 1; // Allow for increment below.
244 }
245 ts->tv_sec = end_sec;
246 ts->tv_nsec = (ts->tv_nsec + (ms % 1000) * 1000000) + ns;
247
248 // Catch rollover.
249 if (ts->tv_nsec >= 1000000000L) {
250 ts->tv_sec++;
251 ts->tv_nsec -= 1000000000L;
252 }
253 }
254
255 } // namespace art
256