• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs loop invariant code motion, attempting to remove as much
11 // code from the body of a loop as possible.  It does this by either hoisting
12 // code into the preheader block, or by sinking code to the exit blocks if it is
13 // safe.  This pass also promotes must-aliased memory locations in the loop to
14 // live in registers, thus hoisting and sinking "invariant" loads and stores.
15 //
16 // This pass uses alias analysis for two purposes:
17 //
18 //  1. Moving loop invariant loads and calls out of loops.  If we can determine
19 //     that a load or call inside of a loop never aliases anything stored to,
20 //     we can hoist it or sink it like any other instruction.
21 //  2. Scalar Promotion of Memory - If there is a store instruction inside of
22 //     the loop, we try to move the store to happen AFTER the loop instead of
23 //     inside of the loop.  This can only happen if a few conditions are true:
24 //       A. The pointer stored through is loop invariant
25 //       B. There are no stores or loads in the loop which _may_ alias the
26 //          pointer.  There are no calls in the loop which mod/ref the pointer.
27 //     If these conditions are true, we can promote the loads and stores in the
28 //     loop of the pointer to use a temporary alloca'd variable.  We then use
29 //     the SSAUpdater to construct the appropriate SSA form for the value.
30 //
31 //===----------------------------------------------------------------------===//
32 
33 #define DEBUG_TYPE "licm"
34 #include "llvm/Transforms/Scalar.h"
35 #include "llvm/Constants.h"
36 #include "llvm/DerivedTypes.h"
37 #include "llvm/IntrinsicInst.h"
38 #include "llvm/Instructions.h"
39 #include "llvm/LLVMContext.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/AliasSetTracker.h"
42 #include "llvm/Analysis/ConstantFolding.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/LoopPass.h"
45 #include "llvm/Analysis/Dominators.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/SSAUpdater.h"
48 #include "llvm/Support/CFG.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/ADT/Statistic.h"
53 #include <algorithm>
54 using namespace llvm;
55 
56 STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
57 STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
58 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
59 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
60 STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
61 
62 static cl::opt<bool>
63 DisablePromotion("disable-licm-promotion", cl::Hidden,
64                  cl::desc("Disable memory promotion in LICM pass"));
65 
66 namespace {
67   struct LICM : public LoopPass {
68     static char ID; // Pass identification, replacement for typeid
LICM__anonee57646f0111::LICM69     LICM() : LoopPass(ID) {
70       initializeLICMPass(*PassRegistry::getPassRegistry());
71     }
72 
73     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
74 
75     /// This transformation requires natural loop information & requires that
76     /// loop preheaders be inserted into the CFG...
77     ///
getAnalysisUsage__anonee57646f0111::LICM78     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
79       AU.setPreservesCFG();
80       AU.addRequired<DominatorTree>();
81       AU.addRequired<LoopInfo>();
82       AU.addRequiredID(LoopSimplifyID);
83       AU.addRequired<AliasAnalysis>();
84       AU.addPreserved<AliasAnalysis>();
85       AU.addPreserved("scalar-evolution");
86       AU.addPreservedID(LoopSimplifyID);
87     }
88 
doFinalization__anonee57646f0111::LICM89     bool doFinalization() {
90       assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
91       return false;
92     }
93 
94   private:
95     AliasAnalysis *AA;       // Current AliasAnalysis information
96     LoopInfo      *LI;       // Current LoopInfo
97     DominatorTree *DT;       // Dominator Tree for the current Loop.
98 
99     // State that is updated as we process loops.
100     bool Changed;            // Set to true when we change anything.
101     BasicBlock *Preheader;   // The preheader block of the current loop...
102     Loop *CurLoop;           // The current loop we are working on...
103     AliasSetTracker *CurAST; // AliasSet information for the current loop...
104     DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
105 
106     /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
107     void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
108 
109     /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
110     /// set.
111     void deleteAnalysisValue(Value *V, Loop *L);
112 
113     /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
114     /// dominated by the specified block, and that are in the current loop) in
115     /// reverse depth first order w.r.t the DominatorTree.  This allows us to
116     /// visit uses before definitions, allowing us to sink a loop body in one
117     /// pass without iteration.
118     ///
119     void SinkRegion(DomTreeNode *N);
120 
121     /// HoistRegion - Walk the specified region of the CFG (defined by all
122     /// blocks dominated by the specified block, and that are in the current
123     /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
124     /// visit definitions before uses, allowing us to hoist a loop body in one
125     /// pass without iteration.
126     ///
127     void HoistRegion(DomTreeNode *N);
128 
129     /// inSubLoop - Little predicate that returns true if the specified basic
130     /// block is in a subloop of the current one, not the current one itself.
131     ///
inSubLoop__anonee57646f0111::LICM132     bool inSubLoop(BasicBlock *BB) {
133       assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
134       return LI->getLoopFor(BB) != CurLoop;
135     }
136 
137     /// sink - When an instruction is found to only be used outside of the loop,
138     /// this function moves it to the exit blocks and patches up SSA form as
139     /// needed.
140     ///
141     void sink(Instruction &I);
142 
143     /// hoist - When an instruction is found to only use loop invariant operands
144     /// that is safe to hoist, this instruction is called to do the dirty work.
145     ///
146     void hoist(Instruction &I);
147 
148     /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
149     /// is not a trapping instruction or if it is a trapping instruction and is
150     /// guaranteed to execute.
151     ///
152     bool isSafeToExecuteUnconditionally(Instruction &I);
153 
154     /// isGuaranteedToExecute - Check that the instruction is guaranteed to
155     /// execute.
156     ///
157     bool isGuaranteedToExecute(Instruction &I);
158 
159     /// pointerInvalidatedByLoop - Return true if the body of this loop may
160     /// store into the memory location pointed to by V.
161     ///
pointerInvalidatedByLoop__anonee57646f0111::LICM162     bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
163                                   const MDNode *TBAAInfo) {
164       // Check to see if any of the basic blocks in CurLoop invalidate *V.
165       return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod();
166     }
167 
168     bool canSinkOrHoistInst(Instruction &I);
169     bool isNotUsedInLoop(Instruction &I);
170 
171     void PromoteAliasSet(AliasSet &AS);
172   };
173 }
174 
175 char LICM::ID = 0;
176 INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)177 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
178 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
179 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
180 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
181 INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false)
182 
183 Pass *llvm::createLICMPass() { return new LICM(); }
184 
185 /// Hoist expressions out of the specified loop. Note, alias info for inner
186 /// loop is not preserved so it is not a good idea to run LICM multiple
187 /// times on one loop.
188 ///
runOnLoop(Loop * L,LPPassManager & LPM)189 bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
190   Changed = false;
191 
192   // Get our Loop and Alias Analysis information...
193   LI = &getAnalysis<LoopInfo>();
194   AA = &getAnalysis<AliasAnalysis>();
195   DT = &getAnalysis<DominatorTree>();
196 
197   CurAST = new AliasSetTracker(*AA);
198   // Collect Alias info from subloops.
199   for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
200        LoopItr != LoopItrE; ++LoopItr) {
201     Loop *InnerL = *LoopItr;
202     AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
203     assert(InnerAST && "Where is my AST?");
204 
205     // What if InnerLoop was modified by other passes ?
206     CurAST->add(*InnerAST);
207 
208     // Once we've incorporated the inner loop's AST into ours, we don't need the
209     // subloop's anymore.
210     delete InnerAST;
211     LoopToAliasSetMap.erase(InnerL);
212   }
213 
214   CurLoop = L;
215 
216   // Get the preheader block to move instructions into...
217   Preheader = L->getLoopPreheader();
218 
219   // Loop over the body of this loop, looking for calls, invokes, and stores.
220   // Because subloops have already been incorporated into AST, we skip blocks in
221   // subloops.
222   //
223   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
224        I != E; ++I) {
225     BasicBlock *BB = *I;
226     if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops.
227       CurAST->add(*BB);                 // Incorporate the specified basic block
228   }
229 
230   // We want to visit all of the instructions in this loop... that are not parts
231   // of our subloops (they have already had their invariants hoisted out of
232   // their loop, into this loop, so there is no need to process the BODIES of
233   // the subloops).
234   //
235   // Traverse the body of the loop in depth first order on the dominator tree so
236   // that we are guaranteed to see definitions before we see uses.  This allows
237   // us to sink instructions in one pass, without iteration.  After sinking
238   // instructions, we perform another pass to hoist them out of the loop.
239   //
240   if (L->hasDedicatedExits())
241     SinkRegion(DT->getNode(L->getHeader()));
242   if (Preheader)
243     HoistRegion(DT->getNode(L->getHeader()));
244 
245   // Now that all loop invariants have been removed from the loop, promote any
246   // memory references to scalars that we can.
247   if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
248     // Loop over all of the alias sets in the tracker object.
249     for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
250          I != E; ++I)
251       PromoteAliasSet(*I);
252   }
253 
254   // Clear out loops state information for the next iteration
255   CurLoop = 0;
256   Preheader = 0;
257 
258   // If this loop is nested inside of another one, save the alias information
259   // for when we process the outer loop.
260   if (L->getParentLoop())
261     LoopToAliasSetMap[L] = CurAST;
262   else
263     delete CurAST;
264   return Changed;
265 }
266 
267 /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
268 /// dominated by the specified block, and that are in the current loop) in
269 /// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
270 /// uses before definitions, allowing us to sink a loop body in one pass without
271 /// iteration.
272 ///
SinkRegion(DomTreeNode * N)273 void LICM::SinkRegion(DomTreeNode *N) {
274   assert(N != 0 && "Null dominator tree node?");
275   BasicBlock *BB = N->getBlock();
276 
277   // If this subregion is not in the top level loop at all, exit.
278   if (!CurLoop->contains(BB)) return;
279 
280   // We are processing blocks in reverse dfo, so process children first.
281   const std::vector<DomTreeNode*> &Children = N->getChildren();
282   for (unsigned i = 0, e = Children.size(); i != e; ++i)
283     SinkRegion(Children[i]);
284 
285   // Only need to process the contents of this block if it is not part of a
286   // subloop (which would already have been processed).
287   if (inSubLoop(BB)) return;
288 
289   for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
290     Instruction &I = *--II;
291 
292     // If the instruction is dead, we would try to sink it because it isn't used
293     // in the loop, instead, just delete it.
294     if (isInstructionTriviallyDead(&I)) {
295       DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
296       ++II;
297       CurAST->deleteValue(&I);
298       I.eraseFromParent();
299       Changed = true;
300       continue;
301     }
302 
303     // Check to see if we can sink this instruction to the exit blocks
304     // of the loop.  We can do this if the all users of the instruction are
305     // outside of the loop.  In this case, it doesn't even matter if the
306     // operands of the instruction are loop invariant.
307     //
308     if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
309       ++II;
310       sink(I);
311     }
312   }
313 }
314 
315 /// HoistRegion - Walk the specified region of the CFG (defined by all blocks
316 /// dominated by the specified block, and that are in the current loop) in depth
317 /// first order w.r.t the DominatorTree.  This allows us to visit definitions
318 /// before uses, allowing us to hoist a loop body in one pass without iteration.
319 ///
HoistRegion(DomTreeNode * N)320 void LICM::HoistRegion(DomTreeNode *N) {
321   assert(N != 0 && "Null dominator tree node?");
322   BasicBlock *BB = N->getBlock();
323 
324   // If this subregion is not in the top level loop at all, exit.
325   if (!CurLoop->contains(BB)) return;
326 
327   // Only need to process the contents of this block if it is not part of a
328   // subloop (which would already have been processed).
329   if (!inSubLoop(BB))
330     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
331       Instruction &I = *II++;
332 
333       // Try constant folding this instruction.  If all the operands are
334       // constants, it is technically hoistable, but it would be better to just
335       // fold it.
336       if (Constant *C = ConstantFoldInstruction(&I)) {
337         DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C << '\n');
338         CurAST->copyValue(&I, C);
339         CurAST->deleteValue(&I);
340         I.replaceAllUsesWith(C);
341         I.eraseFromParent();
342         continue;
343       }
344 
345       // Try hoisting the instruction out to the preheader.  We can only do this
346       // if all of the operands of the instruction are loop invariant and if it
347       // is safe to hoist the instruction.
348       //
349       if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) &&
350           isSafeToExecuteUnconditionally(I))
351         hoist(I);
352     }
353 
354   const std::vector<DomTreeNode*> &Children = N->getChildren();
355   for (unsigned i = 0, e = Children.size(); i != e; ++i)
356     HoistRegion(Children[i]);
357 }
358 
359 /// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
360 /// instruction.
361 ///
canSinkOrHoistInst(Instruction & I)362 bool LICM::canSinkOrHoistInst(Instruction &I) {
363   // Loads have extra constraints we have to verify before we can hoist them.
364   if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
365     if (!LI->isUnordered())
366       return false;        // Don't hoist volatile/atomic loads!
367 
368     // Loads from constant memory are always safe to move, even if they end up
369     // in the same alias set as something that ends up being modified.
370     if (AA->pointsToConstantMemory(LI->getOperand(0)))
371       return true;
372 
373     // Don't hoist loads which have may-aliased stores in loop.
374     uint64_t Size = 0;
375     if (LI->getType()->isSized())
376       Size = AA->getTypeStoreSize(LI->getType());
377     return !pointerInvalidatedByLoop(LI->getOperand(0), Size,
378                                      LI->getMetadata(LLVMContext::MD_tbaa));
379   } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
380     // Don't sink or hoist dbg info; it's legal, but not useful.
381     if (isa<DbgInfoIntrinsic>(I))
382       return false;
383 
384     // Handle simple cases by querying alias analysis.
385     AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
386     if (Behavior == AliasAnalysis::DoesNotAccessMemory)
387       return true;
388     if (AliasAnalysis::onlyReadsMemory(Behavior)) {
389       // If this call only reads from memory and there are no writes to memory
390       // in the loop, we can hoist or sink the call as appropriate.
391       bool FoundMod = false;
392       for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
393            I != E; ++I) {
394         AliasSet &AS = *I;
395         if (!AS.isForwardingAliasSet() && AS.isMod()) {
396           FoundMod = true;
397           break;
398         }
399       }
400       if (!FoundMod) return true;
401     }
402 
403     // FIXME: This should use mod/ref information to see if we can hoist or sink
404     // the call.
405 
406     return false;
407   }
408 
409   // Otherwise these instructions are hoistable/sinkable
410   return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
411          isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
412          isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
413          isa<ShuffleVectorInst>(I);
414 }
415 
416 /// isNotUsedInLoop - Return true if the only users of this instruction are
417 /// outside of the loop.  If this is true, we can sink the instruction to the
418 /// exit blocks of the loop.
419 ///
isNotUsedInLoop(Instruction & I)420 bool LICM::isNotUsedInLoop(Instruction &I) {
421   for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
422     Instruction *User = cast<Instruction>(*UI);
423     if (PHINode *PN = dyn_cast<PHINode>(User)) {
424       // PHI node uses occur in predecessor blocks!
425       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
426         if (PN->getIncomingValue(i) == &I)
427           if (CurLoop->contains(PN->getIncomingBlock(i)))
428             return false;
429     } else if (CurLoop->contains(User)) {
430       return false;
431     }
432   }
433   return true;
434 }
435 
436 
437 /// sink - When an instruction is found to only be used outside of the loop,
438 /// this function moves it to the exit blocks and patches up SSA form as needed.
439 /// This method is guaranteed to remove the original instruction from its
440 /// position, and may either delete it or move it to outside of the loop.
441 ///
sink(Instruction & I)442 void LICM::sink(Instruction &I) {
443   DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
444 
445   SmallVector<BasicBlock*, 8> ExitBlocks;
446   CurLoop->getUniqueExitBlocks(ExitBlocks);
447 
448   if (isa<LoadInst>(I)) ++NumMovedLoads;
449   else if (isa<CallInst>(I)) ++NumMovedCalls;
450   ++NumSunk;
451   Changed = true;
452 
453   // The case where there is only a single exit node of this loop is common
454   // enough that we handle it as a special (more efficient) case.  It is more
455   // efficient to handle because there are no PHI nodes that need to be placed.
456   if (ExitBlocks.size() == 1) {
457     if (!DT->dominates(I.getParent(), ExitBlocks[0])) {
458       // Instruction is not used, just delete it.
459       CurAST->deleteValue(&I);
460       // If I has users in unreachable blocks, eliminate.
461       // If I is not void type then replaceAllUsesWith undef.
462       // This allows ValueHandlers and custom metadata to adjust itself.
463       if (!I.use_empty())
464         I.replaceAllUsesWith(UndefValue::get(I.getType()));
465       I.eraseFromParent();
466     } else {
467       // Move the instruction to the start of the exit block, after any PHI
468       // nodes in it.
469       I.moveBefore(ExitBlocks[0]->getFirstInsertionPt());
470 
471       // This instruction is no longer in the AST for the current loop, because
472       // we just sunk it out of the loop.  If we just sunk it into an outer
473       // loop, we will rediscover the operation when we process it.
474       CurAST->deleteValue(&I);
475     }
476     return;
477   }
478 
479   if (ExitBlocks.empty()) {
480     // The instruction is actually dead if there ARE NO exit blocks.
481     CurAST->deleteValue(&I);
482     // If I has users in unreachable blocks, eliminate.
483     // If I is not void type then replaceAllUsesWith undef.
484     // This allows ValueHandlers and custom metadata to adjust itself.
485     if (!I.use_empty())
486       I.replaceAllUsesWith(UndefValue::get(I.getType()));
487     I.eraseFromParent();
488     return;
489   }
490 
491   // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
492   // hard work of inserting PHI nodes as necessary.
493   SmallVector<PHINode*, 8> NewPHIs;
494   SSAUpdater SSA(&NewPHIs);
495 
496   if (!I.use_empty())
497     SSA.Initialize(I.getType(), I.getName());
498 
499   // Insert a copy of the instruction in each exit block of the loop that is
500   // dominated by the instruction.  Each exit block is known to only be in the
501   // ExitBlocks list once.
502   BasicBlock *InstOrigBB = I.getParent();
503   unsigned NumInserted = 0;
504 
505   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
506     BasicBlock *ExitBlock = ExitBlocks[i];
507 
508     if (!DT->dominates(InstOrigBB, ExitBlock))
509       continue;
510 
511     // Insert the code after the last PHI node.
512     BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
513 
514     // If this is the first exit block processed, just move the original
515     // instruction, otherwise clone the original instruction and insert
516     // the copy.
517     Instruction *New;
518     if (NumInserted++ == 0) {
519       I.moveBefore(InsertPt);
520       New = &I;
521     } else {
522       New = I.clone();
523       if (!I.getName().empty())
524         New->setName(I.getName()+".le");
525       ExitBlock->getInstList().insert(InsertPt, New);
526     }
527 
528     // Now that we have inserted the instruction, inform SSAUpdater.
529     if (!I.use_empty())
530       SSA.AddAvailableValue(ExitBlock, New);
531   }
532 
533   // If the instruction doesn't dominate any exit blocks, it must be dead.
534   if (NumInserted == 0) {
535     CurAST->deleteValue(&I);
536     if (!I.use_empty())
537       I.replaceAllUsesWith(UndefValue::get(I.getType()));
538     I.eraseFromParent();
539     return;
540   }
541 
542   // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
543   for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
544     // Grab the use before incrementing the iterator.
545     Use &U = UI.getUse();
546     // Increment the iterator before removing the use from the list.
547     ++UI;
548     SSA.RewriteUseAfterInsertions(U);
549   }
550 
551   // Update CurAST for NewPHIs if I had pointer type.
552   if (I.getType()->isPointerTy())
553     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
554       CurAST->copyValue(&I, NewPHIs[i]);
555 
556   // Finally, remove the instruction from CurAST.  It is no longer in the loop.
557   CurAST->deleteValue(&I);
558 }
559 
560 /// hoist - When an instruction is found to only use loop invariant operands
561 /// that is safe to hoist, this instruction is called to do the dirty work.
562 ///
hoist(Instruction & I)563 void LICM::hoist(Instruction &I) {
564   DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
565         << I << "\n");
566 
567   // Move the new node to the Preheader, before its terminator.
568   I.moveBefore(Preheader->getTerminator());
569 
570   if (isa<LoadInst>(I)) ++NumMovedLoads;
571   else if (isa<CallInst>(I)) ++NumMovedCalls;
572   ++NumHoisted;
573   Changed = true;
574 }
575 
576 /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
577 /// not a trapping instruction or if it is a trapping instruction and is
578 /// guaranteed to execute.
579 ///
isSafeToExecuteUnconditionally(Instruction & Inst)580 bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
581   // If it is not a trapping instruction, it is always safe to hoist.
582   if (Inst.isSafeToSpeculativelyExecute())
583     return true;
584 
585   return isGuaranteedToExecute(Inst);
586 }
587 
isGuaranteedToExecute(Instruction & Inst)588 bool LICM::isGuaranteedToExecute(Instruction &Inst) {
589   // Otherwise we have to check to make sure that the instruction dominates all
590   // of the exit blocks.  If it doesn't, then there is a path out of the loop
591   // which does not execute this instruction, so we can't hoist it.
592 
593   // If the instruction is in the header block for the loop (which is very
594   // common), it is always guaranteed to dominate the exit blocks.  Since this
595   // is a common case, and can save some work, check it now.
596   if (Inst.getParent() == CurLoop->getHeader())
597     return true;
598 
599   // Get the exit blocks for the current loop.
600   SmallVector<BasicBlock*, 8> ExitBlocks;
601   CurLoop->getExitBlocks(ExitBlocks);
602 
603   // Verify that the block dominates each of the exit blocks of the loop.
604   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
605     if (!DT->dominates(Inst.getParent(), ExitBlocks[i]))
606       return false;
607 
608   return true;
609 }
610 
611 namespace {
612   class LoopPromoter : public LoadAndStorePromoter {
613     Value *SomePtr;  // Designated pointer to store to.
614     SmallPtrSet<Value*, 4> &PointerMustAliases;
615     SmallVectorImpl<BasicBlock*> &LoopExitBlocks;
616     AliasSetTracker &AST;
617     DebugLoc DL;
618     int Alignment;
619   public:
LoopPromoter(Value * SP,const SmallVectorImpl<Instruction * > & Insts,SSAUpdater & S,SmallPtrSet<Value *,4> & PMA,SmallVectorImpl<BasicBlock * > & LEB,AliasSetTracker & ast,DebugLoc dl,int alignment)620     LoopPromoter(Value *SP,
621                  const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
622                  SmallPtrSet<Value*, 4> &PMA,
623                  SmallVectorImpl<BasicBlock*> &LEB, AliasSetTracker &ast,
624                  DebugLoc dl, int alignment)
625       : LoadAndStorePromoter(Insts, S), SomePtr(SP),
626         PointerMustAliases(PMA), LoopExitBlocks(LEB), AST(ast), DL(dl),
627         Alignment(alignment) {}
628 
isInstInList(Instruction * I,const SmallVectorImpl<Instruction * > &) const629     virtual bool isInstInList(Instruction *I,
630                               const SmallVectorImpl<Instruction*> &) const {
631       Value *Ptr;
632       if (LoadInst *LI = dyn_cast<LoadInst>(I))
633         Ptr = LI->getOperand(0);
634       else
635         Ptr = cast<StoreInst>(I)->getPointerOperand();
636       return PointerMustAliases.count(Ptr);
637     }
638 
doExtraRewritesBeforeFinalDeletion() const639     virtual void doExtraRewritesBeforeFinalDeletion() const {
640       // Insert stores after in the loop exit blocks.  Each exit block gets a
641       // store of the live-out values that feed them.  Since we've already told
642       // the SSA updater about the defs in the loop and the preheader
643       // definition, it is all set and we can start using it.
644       for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
645         BasicBlock *ExitBlock = LoopExitBlocks[i];
646         Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
647         Instruction *InsertPos = ExitBlock->getFirstInsertionPt();
648         StoreInst *NewSI = new StoreInst(LiveInValue, SomePtr, InsertPos);
649         NewSI->setAlignment(Alignment);
650         NewSI->setDebugLoc(DL);
651       }
652     }
653 
replaceLoadWithValue(LoadInst * LI,Value * V) const654     virtual void replaceLoadWithValue(LoadInst *LI, Value *V) const {
655       // Update alias analysis.
656       AST.copyValue(LI, V);
657     }
instructionDeleted(Instruction * I) const658     virtual void instructionDeleted(Instruction *I) const {
659       AST.deleteValue(I);
660     }
661   };
662 } // end anon namespace
663 
664 /// PromoteAliasSet - Try to promote memory values to scalars by sinking
665 /// stores out of the loop and moving loads to before the loop.  We do this by
666 /// looping over the stores in the loop, looking for stores to Must pointers
667 /// which are loop invariant.
668 ///
PromoteAliasSet(AliasSet & AS)669 void LICM::PromoteAliasSet(AliasSet &AS) {
670   // We can promote this alias set if it has a store, if it is a "Must" alias
671   // set, if the pointer is loop invariant, and if we are not eliminating any
672   // volatile loads or stores.
673   if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
674       AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
675     return;
676 
677   assert(!AS.empty() &&
678          "Must alias set should have at least one pointer element in it!");
679   Value *SomePtr = AS.begin()->getValue();
680 
681   // It isn't safe to promote a load/store from the loop if the load/store is
682   // conditional.  For example, turning:
683   //
684   //    for () { if (c) *P += 1; }
685   //
686   // into:
687   //
688   //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
689   //
690   // is not safe, because *P may only be valid to access if 'c' is true.
691   //
692   // It is safe to promote P if all uses are direct load/stores and if at
693   // least one is guaranteed to be executed.
694   bool GuaranteedToExecute = false;
695 
696   SmallVector<Instruction*, 64> LoopUses;
697   SmallPtrSet<Value*, 4> PointerMustAliases;
698 
699   // We start with an alignment of one and try to find instructions that allow
700   // us to prove better alignment.
701   unsigned Alignment = 1;
702 
703   // Check that all of the pointers in the alias set have the same type.  We
704   // cannot (yet) promote a memory location that is loaded and stored in
705   // different sizes.
706   for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
707     Value *ASIV = ASI->getValue();
708     PointerMustAliases.insert(ASIV);
709 
710     // Check that all of the pointers in the alias set have the same type.  We
711     // cannot (yet) promote a memory location that is loaded and stored in
712     // different sizes.
713     if (SomePtr->getType() != ASIV->getType())
714       return;
715 
716     for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
717          UI != UE; ++UI) {
718       // Ignore instructions that are outside the loop.
719       Instruction *Use = dyn_cast<Instruction>(*UI);
720       if (!Use || !CurLoop->contains(Use))
721         continue;
722 
723       // If there is an non-load/store instruction in the loop, we can't promote
724       // it.
725       if (LoadInst *load = dyn_cast<LoadInst>(Use)) {
726         assert(!load->isVolatile() && "AST broken");
727         if (!load->isSimple())
728           return;
729       } else if (StoreInst *store = dyn_cast<StoreInst>(Use)) {
730         // Stores *of* the pointer are not interesting, only stores *to* the
731         // pointer.
732         if (Use->getOperand(1) != ASIV)
733           continue;
734         assert(!store->isVolatile() && "AST broken");
735         if (!store->isSimple())
736           return;
737 
738         // Note that we only check GuaranteedToExecute inside the store case
739         // so that we do not introduce stores where they did not exist before
740         // (which would break the LLVM concurrency model).
741 
742         // If the alignment of this instruction allows us to specify a more
743         // restrictive (and performant) alignment and if we are sure this
744         // instruction will be executed, update the alignment.
745         // Larger is better, with the exception of 0 being the best alignment.
746         unsigned InstAlignment = store->getAlignment();
747         if ((InstAlignment > Alignment || InstAlignment == 0)
748             && (Alignment != 0))
749           if (isGuaranteedToExecute(*Use)) {
750             GuaranteedToExecute = true;
751             Alignment = InstAlignment;
752           }
753 
754         if (!GuaranteedToExecute)
755           GuaranteedToExecute = isGuaranteedToExecute(*Use);
756 
757       } else
758         return; // Not a load or store.
759 
760       LoopUses.push_back(Use);
761     }
762   }
763 
764   // If there isn't a guaranteed-to-execute instruction, we can't promote.
765   if (!GuaranteedToExecute)
766     return;
767 
768   // Otherwise, this is safe to promote, lets do it!
769   DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
770   Changed = true;
771   ++NumPromoted;
772 
773   // Grab a debug location for the inserted loads/stores; given that the
774   // inserted loads/stores have little relation to the original loads/stores,
775   // this code just arbitrarily picks a location from one, since any debug
776   // location is better than none.
777   DebugLoc DL = LoopUses[0]->getDebugLoc();
778 
779   SmallVector<BasicBlock*, 8> ExitBlocks;
780   CurLoop->getUniqueExitBlocks(ExitBlocks);
781 
782   // We use the SSAUpdater interface to insert phi nodes as required.
783   SmallVector<PHINode*, 16> NewPHIs;
784   SSAUpdater SSA(&NewPHIs);
785   LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
786                         *CurAST, DL, Alignment);
787 
788   // Set up the preheader to have a definition of the value.  It is the live-out
789   // value from the preheader that uses in the loop will use.
790   LoadInst *PreheaderLoad =
791     new LoadInst(SomePtr, SomePtr->getName()+".promoted",
792                  Preheader->getTerminator());
793   PreheaderLoad->setAlignment(Alignment);
794   PreheaderLoad->setDebugLoc(DL);
795   SSA.AddAvailableValue(Preheader, PreheaderLoad);
796 
797   // Rewrite all the loads in the loop and remember all the definitions from
798   // stores in the loop.
799   Promoter.run(LoopUses);
800 
801   // If the SSAUpdater didn't use the load in the preheader, just zap it now.
802   if (PreheaderLoad->use_empty())
803     PreheaderLoad->eraseFromParent();
804 }
805 
806 
807 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
cloneBasicBlockAnalysis(BasicBlock * From,BasicBlock * To,Loop * L)808 void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
809   AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
810   if (!AST)
811     return;
812 
813   AST->copyValue(From, To);
814 }
815 
816 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
817 /// set.
deleteAnalysisValue(Value * V,Loop * L)818 void LICM::deleteAnalysisValue(Value *V, Loop *L) {
819   AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
820   if (!AST)
821     return;
822 
823   AST->deleteValue(V);
824 }
825