• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/obj.h>
58 
59 #include <inttypes.h>
60 #include <limits.h>
61 #include <string.h>
62 
63 #include <openssl/asn1.h>
64 #include <openssl/buf.h>
65 #include <openssl/bytestring.h>
66 #include <openssl/err.h>
67 #include <openssl/lhash.h>
68 #include <openssl/mem.h>
69 #include <openssl/thread.h>
70 
71 #include "obj_dat.h"
72 #include "../internal.h"
73 
74 
75 DEFINE_LHASH_OF(ASN1_OBJECT)
76 
77 static struct CRYPTO_STATIC_MUTEX global_added_lock = CRYPTO_STATIC_MUTEX_INIT;
78 // These globals are protected by |global_added_lock|.
79 static LHASH_OF(ASN1_OBJECT) *global_added_by_data = NULL;
80 static LHASH_OF(ASN1_OBJECT) *global_added_by_nid = NULL;
81 static LHASH_OF(ASN1_OBJECT) *global_added_by_short_name = NULL;
82 static LHASH_OF(ASN1_OBJECT) *global_added_by_long_name = NULL;
83 
84 static struct CRYPTO_STATIC_MUTEX global_next_nid_lock =
85     CRYPTO_STATIC_MUTEX_INIT;
86 static unsigned global_next_nid = NUM_NID;
87 
obj_next_nid(void)88 static int obj_next_nid(void) {
89   int ret;
90 
91   CRYPTO_STATIC_MUTEX_lock_write(&global_next_nid_lock);
92   ret = global_next_nid++;
93   CRYPTO_STATIC_MUTEX_unlock_write(&global_next_nid_lock);
94 
95   return ret;
96 }
97 
OBJ_dup(const ASN1_OBJECT * o)98 ASN1_OBJECT *OBJ_dup(const ASN1_OBJECT *o) {
99   ASN1_OBJECT *r;
100   unsigned char *data = NULL;
101   char *sn = NULL, *ln = NULL;
102 
103   if (o == NULL) {
104     return NULL;
105   }
106 
107   if (!(o->flags & ASN1_OBJECT_FLAG_DYNAMIC)) {
108     // TODO(fork): this is a little dangerous.
109     return (ASN1_OBJECT *)o;
110   }
111 
112   r = ASN1_OBJECT_new();
113   if (r == NULL) {
114     OPENSSL_PUT_ERROR(OBJ, ERR_R_ASN1_LIB);
115     return NULL;
116   }
117   r->ln = r->sn = NULL;
118 
119   data = OPENSSL_malloc(o->length);
120   if (data == NULL) {
121     goto err;
122   }
123   if (o->data != NULL) {
124     OPENSSL_memcpy(data, o->data, o->length);
125   }
126 
127   // once data is attached to an object, it remains const
128   r->data = data;
129   r->length = o->length;
130   r->nid = o->nid;
131 
132   if (o->ln != NULL) {
133     ln = OPENSSL_strdup(o->ln);
134     if (ln == NULL) {
135       goto err;
136     }
137   }
138 
139   if (o->sn != NULL) {
140     sn = OPENSSL_strdup(o->sn);
141     if (sn == NULL) {
142       goto err;
143     }
144   }
145 
146   r->sn = sn;
147   r->ln = ln;
148 
149   r->flags =
150       o->flags | (ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
151                   ASN1_OBJECT_FLAG_DYNAMIC_DATA);
152   return r;
153 
154 err:
155   OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE);
156   OPENSSL_free(ln);
157   OPENSSL_free(sn);
158   OPENSSL_free(data);
159   OPENSSL_free(r);
160   return NULL;
161 }
162 
OBJ_cmp(const ASN1_OBJECT * a,const ASN1_OBJECT * b)163 int OBJ_cmp(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
164   int ret;
165 
166   ret = a->length - b->length;
167   if (ret) {
168     return ret;
169   }
170   return OPENSSL_memcmp(a->data, b->data, a->length);
171 }
172 
OBJ_get0_data(const ASN1_OBJECT * obj)173 const uint8_t *OBJ_get0_data(const ASN1_OBJECT *obj) {
174   if (obj == NULL) {
175     return NULL;
176   }
177 
178   return obj->data;
179 }
180 
OBJ_length(const ASN1_OBJECT * obj)181 size_t OBJ_length(const ASN1_OBJECT *obj) {
182   if (obj == NULL || obj->length < 0) {
183     return 0;
184   }
185 
186   return (size_t)obj->length;
187 }
188 
189 // obj_cmp is called to search the kNIDsInOIDOrder array. The |key| argument is
190 // an |ASN1_OBJECT|* that we're looking for and |element| is a pointer to an
191 // unsigned int in the array.
obj_cmp(const void * key,const void * element)192 static int obj_cmp(const void *key, const void *element) {
193   unsigned nid = *((const unsigned*) element);
194   const ASN1_OBJECT *a = key;
195   const ASN1_OBJECT *b = &kObjects[nid];
196 
197   if (a->length < b->length) {
198     return -1;
199   } else if (a->length > b->length) {
200     return 1;
201   }
202   return OPENSSL_memcmp(a->data, b->data, a->length);
203 }
204 
OBJ_obj2nid(const ASN1_OBJECT * obj)205 int OBJ_obj2nid(const ASN1_OBJECT *obj) {
206   const unsigned int *nid_ptr;
207 
208   if (obj == NULL) {
209     return NID_undef;
210   }
211 
212   if (obj->nid != 0) {
213     return obj->nid;
214   }
215 
216   CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
217   if (global_added_by_data != NULL) {
218     ASN1_OBJECT *match;
219 
220     match = lh_ASN1_OBJECT_retrieve(global_added_by_data, obj);
221     if (match != NULL) {
222       CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
223       return match->nid;
224     }
225   }
226   CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
227 
228   nid_ptr = bsearch(obj, kNIDsInOIDOrder, OPENSSL_ARRAY_SIZE(kNIDsInOIDOrder),
229                     sizeof(kNIDsInOIDOrder[0]), obj_cmp);
230   if (nid_ptr == NULL) {
231     return NID_undef;
232   }
233 
234   return kObjects[*nid_ptr].nid;
235 }
236 
OBJ_cbs2nid(const CBS * cbs)237 int OBJ_cbs2nid(const CBS *cbs) {
238   if (CBS_len(cbs) > INT_MAX) {
239     return NID_undef;
240   }
241 
242   ASN1_OBJECT obj;
243   OPENSSL_memset(&obj, 0, sizeof(obj));
244   obj.data = CBS_data(cbs);
245   obj.length = (int)CBS_len(cbs);
246 
247   return OBJ_obj2nid(&obj);
248 }
249 
250 // short_name_cmp is called to search the kNIDsInShortNameOrder array. The
251 // |key| argument is name that we're looking for and |element| is a pointer to
252 // an unsigned int in the array.
short_name_cmp(const void * key,const void * element)253 static int short_name_cmp(const void *key, const void *element) {
254   const char *name = (const char *) key;
255   unsigned nid = *((unsigned*) element);
256 
257   return strcmp(name, kObjects[nid].sn);
258 }
259 
OBJ_sn2nid(const char * short_name)260 int OBJ_sn2nid(const char *short_name) {
261   const unsigned int *nid_ptr;
262 
263   CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
264   if (global_added_by_short_name != NULL) {
265     ASN1_OBJECT *match, template;
266 
267     template.sn = short_name;
268     match = lh_ASN1_OBJECT_retrieve(global_added_by_short_name, &template);
269     if (match != NULL) {
270       CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
271       return match->nid;
272     }
273   }
274   CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
275 
276   nid_ptr = bsearch(short_name, kNIDsInShortNameOrder,
277                     OPENSSL_ARRAY_SIZE(kNIDsInShortNameOrder),
278                     sizeof(kNIDsInShortNameOrder[0]), short_name_cmp);
279   if (nid_ptr == NULL) {
280     return NID_undef;
281   }
282 
283   return kObjects[*nid_ptr].nid;
284 }
285 
286 // long_name_cmp is called to search the kNIDsInLongNameOrder array. The
287 // |key| argument is name that we're looking for and |element| is a pointer to
288 // an unsigned int in the array.
long_name_cmp(const void * key,const void * element)289 static int long_name_cmp(const void *key, const void *element) {
290   const char *name = (const char *) key;
291   unsigned nid = *((unsigned*) element);
292 
293   return strcmp(name, kObjects[nid].ln);
294 }
295 
OBJ_ln2nid(const char * long_name)296 int OBJ_ln2nid(const char *long_name) {
297   const unsigned int *nid_ptr;
298 
299   CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
300   if (global_added_by_long_name != NULL) {
301     ASN1_OBJECT *match, template;
302 
303     template.ln = long_name;
304     match = lh_ASN1_OBJECT_retrieve(global_added_by_long_name, &template);
305     if (match != NULL) {
306       CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
307       return match->nid;
308     }
309   }
310   CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
311 
312   nid_ptr = bsearch(long_name, kNIDsInLongNameOrder,
313                     OPENSSL_ARRAY_SIZE(kNIDsInLongNameOrder),
314                     sizeof(kNIDsInLongNameOrder[0]), long_name_cmp);
315   if (nid_ptr == NULL) {
316     return NID_undef;
317   }
318 
319   return kObjects[*nid_ptr].nid;
320 }
321 
OBJ_txt2nid(const char * s)322 int OBJ_txt2nid(const char *s) {
323   ASN1_OBJECT *obj;
324   int nid;
325 
326   obj = OBJ_txt2obj(s, 0 /* search names */);
327   nid = OBJ_obj2nid(obj);
328   ASN1_OBJECT_free(obj);
329   return nid;
330 }
331 
OBJ_nid2cbb(CBB * out,int nid)332 OPENSSL_EXPORT int OBJ_nid2cbb(CBB *out, int nid) {
333   const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
334   CBB oid;
335 
336   if (obj == NULL ||
337       !CBB_add_asn1(out, &oid, CBS_ASN1_OBJECT) ||
338       !CBB_add_bytes(&oid, obj->data, obj->length) ||
339       !CBB_flush(out)) {
340     return 0;
341   }
342 
343   return 1;
344 }
345 
OBJ_nid2obj(int nid)346 const ASN1_OBJECT *OBJ_nid2obj(int nid) {
347   if (nid >= 0 && nid < NUM_NID) {
348     if (nid != NID_undef && kObjects[nid].nid == NID_undef) {
349       goto err;
350     }
351     return &kObjects[nid];
352   }
353 
354   CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
355   if (global_added_by_nid != NULL) {
356     ASN1_OBJECT *match, template;
357 
358     template.nid = nid;
359     match = lh_ASN1_OBJECT_retrieve(global_added_by_nid, &template);
360     if (match != NULL) {
361       CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
362       return match;
363     }
364   }
365   CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
366 
367 err:
368   OPENSSL_PUT_ERROR(OBJ, OBJ_R_UNKNOWN_NID);
369   return NULL;
370 }
371 
OBJ_nid2sn(int nid)372 const char *OBJ_nid2sn(int nid) {
373   const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
374   if (obj == NULL) {
375     return NULL;
376   }
377 
378   return obj->sn;
379 }
380 
OBJ_nid2ln(int nid)381 const char *OBJ_nid2ln(int nid) {
382   const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
383   if (obj == NULL) {
384     return NULL;
385   }
386 
387   return obj->ln;
388 }
389 
create_object_with_text_oid(int (* get_nid)(void),const char * oid,const char * short_name,const char * long_name)390 static ASN1_OBJECT *create_object_with_text_oid(int (*get_nid)(void),
391                                                 const char *oid,
392                                                 const char *short_name,
393                                                 const char *long_name) {
394   uint8_t *buf;
395   size_t len;
396   CBB cbb;
397   if (!CBB_init(&cbb, 32) ||
398       !CBB_add_asn1_oid_from_text(&cbb, oid, strlen(oid)) ||
399       !CBB_finish(&cbb, &buf, &len)) {
400     OPENSSL_PUT_ERROR(OBJ, OBJ_R_INVALID_OID_STRING);
401     CBB_cleanup(&cbb);
402     return NULL;
403   }
404 
405   ASN1_OBJECT *ret = ASN1_OBJECT_create(get_nid ? get_nid() : NID_undef, buf,
406                                         len, short_name, long_name);
407   OPENSSL_free(buf);
408   return ret;
409 }
410 
OBJ_txt2obj(const char * s,int dont_search_names)411 ASN1_OBJECT *OBJ_txt2obj(const char *s, int dont_search_names) {
412   if (!dont_search_names) {
413     int nid = OBJ_sn2nid(s);
414     if (nid == NID_undef) {
415       nid = OBJ_ln2nid(s);
416     }
417 
418     if (nid != NID_undef) {
419       return (ASN1_OBJECT*) OBJ_nid2obj(nid);
420     }
421   }
422 
423   return create_object_with_text_oid(NULL, s, NULL, NULL);
424 }
425 
strlcpy_int(char * dst,const char * src,int dst_size)426 static int strlcpy_int(char *dst, const char *src, int dst_size) {
427   size_t ret = BUF_strlcpy(dst, src, dst_size < 0 ? 0 : (size_t)dst_size);
428   if (ret > INT_MAX) {
429     OPENSSL_PUT_ERROR(OBJ, ERR_R_OVERFLOW);
430     return -1;
431   }
432   return (int)ret;
433 }
434 
OBJ_obj2txt(char * out,int out_len,const ASN1_OBJECT * obj,int always_return_oid)435 int OBJ_obj2txt(char *out, int out_len, const ASN1_OBJECT *obj,
436                 int always_return_oid) {
437   // Python depends on the empty OID successfully encoding as the empty
438   // string.
439   if (obj == NULL || obj->length == 0) {
440     return strlcpy_int(out, "", out_len);
441   }
442 
443   if (!always_return_oid) {
444     int nid = OBJ_obj2nid(obj);
445     if (nid != NID_undef) {
446       const char *name = OBJ_nid2ln(nid);
447       if (name == NULL) {
448         name = OBJ_nid2sn(nid);
449       }
450       if (name != NULL) {
451         return strlcpy_int(out, name, out_len);
452       }
453     }
454   }
455 
456   CBS cbs;
457   CBS_init(&cbs, obj->data, obj->length);
458   char *txt = CBS_asn1_oid_to_text(&cbs);
459   if (txt == NULL) {
460     if (out_len > 0) {
461       out[0] = '\0';
462     }
463     return -1;
464   }
465 
466   int ret = strlcpy_int(out, txt, out_len);
467   OPENSSL_free(txt);
468   return ret;
469 }
470 
hash_nid(const ASN1_OBJECT * obj)471 static uint32_t hash_nid(const ASN1_OBJECT *obj) {
472   return obj->nid;
473 }
474 
cmp_nid(const ASN1_OBJECT * a,const ASN1_OBJECT * b)475 static int cmp_nid(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
476   return a->nid - b->nid;
477 }
478 
hash_data(const ASN1_OBJECT * obj)479 static uint32_t hash_data(const ASN1_OBJECT *obj) {
480   return OPENSSL_hash32(obj->data, obj->length);
481 }
482 
cmp_data(const ASN1_OBJECT * a,const ASN1_OBJECT * b)483 static int cmp_data(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
484   int i = a->length - b->length;
485   if (i) {
486     return i;
487   }
488   return OPENSSL_memcmp(a->data, b->data, a->length);
489 }
490 
hash_short_name(const ASN1_OBJECT * obj)491 static uint32_t hash_short_name(const ASN1_OBJECT *obj) {
492   return lh_strhash(obj->sn);
493 }
494 
cmp_short_name(const ASN1_OBJECT * a,const ASN1_OBJECT * b)495 static int cmp_short_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
496   return strcmp(a->sn, b->sn);
497 }
498 
hash_long_name(const ASN1_OBJECT * obj)499 static uint32_t hash_long_name(const ASN1_OBJECT *obj) {
500   return lh_strhash(obj->ln);
501 }
502 
cmp_long_name(const ASN1_OBJECT * a,const ASN1_OBJECT * b)503 static int cmp_long_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
504   return strcmp(a->ln, b->ln);
505 }
506 
507 // obj_add_object inserts |obj| into the various global hashes for run-time
508 // added objects. It returns one on success or zero otherwise.
obj_add_object(ASN1_OBJECT * obj)509 static int obj_add_object(ASN1_OBJECT *obj) {
510   int ok;
511   ASN1_OBJECT *old_object;
512 
513   obj->flags &= ~(ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
514                   ASN1_OBJECT_FLAG_DYNAMIC_DATA);
515 
516   CRYPTO_STATIC_MUTEX_lock_write(&global_added_lock);
517   if (global_added_by_nid == NULL) {
518     global_added_by_nid = lh_ASN1_OBJECT_new(hash_nid, cmp_nid);
519     global_added_by_data = lh_ASN1_OBJECT_new(hash_data, cmp_data);
520     global_added_by_short_name = lh_ASN1_OBJECT_new(hash_short_name, cmp_short_name);
521     global_added_by_long_name = lh_ASN1_OBJECT_new(hash_long_name, cmp_long_name);
522   }
523 
524   // We don't pay attention to |old_object| (which contains any previous object
525   // that was evicted from the hashes) because we don't have a reference count
526   // on ASN1_OBJECT values. Also, we should never have duplicates nids and so
527   // should always have objects in |global_added_by_nid|.
528 
529   ok = lh_ASN1_OBJECT_insert(global_added_by_nid, &old_object, obj);
530   if (obj->length != 0 && obj->data != NULL) {
531     ok &= lh_ASN1_OBJECT_insert(global_added_by_data, &old_object, obj);
532   }
533   if (obj->sn != NULL) {
534     ok &= lh_ASN1_OBJECT_insert(global_added_by_short_name, &old_object, obj);
535   }
536   if (obj->ln != NULL) {
537     ok &= lh_ASN1_OBJECT_insert(global_added_by_long_name, &old_object, obj);
538   }
539   CRYPTO_STATIC_MUTEX_unlock_write(&global_added_lock);
540 
541   return ok;
542 }
543 
OBJ_create(const char * oid,const char * short_name,const char * long_name)544 int OBJ_create(const char *oid, const char *short_name, const char *long_name) {
545   ASN1_OBJECT *op =
546       create_object_with_text_oid(obj_next_nid, oid, short_name, long_name);
547   if (op == NULL ||
548       !obj_add_object(op)) {
549     return NID_undef;
550   }
551   return op->nid;
552 }
553 
OBJ_cleanup(void)554 void OBJ_cleanup(void) {}
555