• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_
18 #define ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_
19 
20 #include "code_generator.h"
21 #include "instruction_simplifier_shared.h"
22 #include "locations.h"
23 #include "nodes.h"
24 #include "utils/arm64/assembler_arm64.h"
25 
26 // TODO(VIXL): Make VIXL compile with -Wshadow.
27 #pragma GCC diagnostic push
28 #pragma GCC diagnostic ignored "-Wshadow"
29 #include "aarch64/disasm-aarch64.h"
30 #include "aarch64/macro-assembler-aarch64.h"
31 #include "aarch64/simulator-aarch64.h"
32 #pragma GCC diagnostic pop
33 
34 namespace art {
35 
36 using helpers::CanFitInShifterOperand;
37 using helpers::HasShifterOperand;
38 
39 namespace arm64 {
40 namespace helpers {
41 
42 // Convenience helpers to ease conversion to and from VIXL operands.
43 static_assert((SP == 31) && (WSP == 31) && (XZR == 32) && (WZR == 32),
44               "Unexpected values for register codes.");
45 
VIXLRegCodeFromART(int code)46 inline int VIXLRegCodeFromART(int code) {
47   if (code == SP) {
48     return vixl::aarch64::kSPRegInternalCode;
49   }
50   if (code == XZR) {
51     return vixl::aarch64::kZeroRegCode;
52   }
53   return code;
54 }
55 
ARTRegCodeFromVIXL(int code)56 inline int ARTRegCodeFromVIXL(int code) {
57   if (code == vixl::aarch64::kSPRegInternalCode) {
58     return SP;
59   }
60   if (code == vixl::aarch64::kZeroRegCode) {
61     return XZR;
62   }
63   return code;
64 }
65 
XRegisterFrom(Location location)66 inline vixl::aarch64::Register XRegisterFrom(Location location) {
67   DCHECK(location.IsRegister()) << location;
68   return vixl::aarch64::Register::GetXRegFromCode(VIXLRegCodeFromART(location.reg()));
69 }
70 
WRegisterFrom(Location location)71 inline vixl::aarch64::Register WRegisterFrom(Location location) {
72   DCHECK(location.IsRegister()) << location;
73   return vixl::aarch64::Register::GetWRegFromCode(VIXLRegCodeFromART(location.reg()));
74 }
75 
RegisterFrom(Location location,DataType::Type type)76 inline vixl::aarch64::Register RegisterFrom(Location location, DataType::Type type) {
77   DCHECK(type != DataType::Type::kVoid && !DataType::IsFloatingPointType(type)) << type;
78   return type == DataType::Type::kInt64 ? XRegisterFrom(location) : WRegisterFrom(location);
79 }
80 
OutputRegister(HInstruction * instr)81 inline vixl::aarch64::Register OutputRegister(HInstruction* instr) {
82   return RegisterFrom(instr->GetLocations()->Out(), instr->GetType());
83 }
84 
InputRegisterAt(HInstruction * instr,int input_index)85 inline vixl::aarch64::Register InputRegisterAt(HInstruction* instr, int input_index) {
86   return RegisterFrom(instr->GetLocations()->InAt(input_index),
87                       instr->InputAt(input_index)->GetType());
88 }
89 
DRegisterFrom(Location location)90 inline vixl::aarch64::FPRegister DRegisterFrom(Location location) {
91   DCHECK(location.IsFpuRegister()) << location;
92   return vixl::aarch64::FPRegister::GetDRegFromCode(location.reg());
93 }
94 
QRegisterFrom(Location location)95 inline vixl::aarch64::FPRegister QRegisterFrom(Location location) {
96   DCHECK(location.IsFpuRegister()) << location;
97   return vixl::aarch64::FPRegister::GetQRegFromCode(location.reg());
98 }
99 
VRegisterFrom(Location location)100 inline vixl::aarch64::FPRegister VRegisterFrom(Location location) {
101   DCHECK(location.IsFpuRegister()) << location;
102   return vixl::aarch64::FPRegister::GetVRegFromCode(location.reg());
103 }
104 
SRegisterFrom(Location location)105 inline vixl::aarch64::FPRegister SRegisterFrom(Location location) {
106   DCHECK(location.IsFpuRegister()) << location;
107   return vixl::aarch64::FPRegister::GetSRegFromCode(location.reg());
108 }
109 
FPRegisterFrom(Location location,DataType::Type type)110 inline vixl::aarch64::FPRegister FPRegisterFrom(Location location, DataType::Type type) {
111   DCHECK(DataType::IsFloatingPointType(type)) << type;
112   return type == DataType::Type::kFloat64 ? DRegisterFrom(location) : SRegisterFrom(location);
113 }
114 
OutputFPRegister(HInstruction * instr)115 inline vixl::aarch64::FPRegister OutputFPRegister(HInstruction* instr) {
116   return FPRegisterFrom(instr->GetLocations()->Out(), instr->GetType());
117 }
118 
InputFPRegisterAt(HInstruction * instr,int input_index)119 inline vixl::aarch64::FPRegister InputFPRegisterAt(HInstruction* instr, int input_index) {
120   return FPRegisterFrom(instr->GetLocations()->InAt(input_index),
121                         instr->InputAt(input_index)->GetType());
122 }
123 
CPURegisterFrom(Location location,DataType::Type type)124 inline vixl::aarch64::CPURegister CPURegisterFrom(Location location, DataType::Type type) {
125   return DataType::IsFloatingPointType(type)
126       ? vixl::aarch64::CPURegister(FPRegisterFrom(location, type))
127       : vixl::aarch64::CPURegister(RegisterFrom(location, type));
128 }
129 
OutputCPURegister(HInstruction * instr)130 inline vixl::aarch64::CPURegister OutputCPURegister(HInstruction* instr) {
131   return DataType::IsFloatingPointType(instr->GetType())
132       ? static_cast<vixl::aarch64::CPURegister>(OutputFPRegister(instr))
133       : static_cast<vixl::aarch64::CPURegister>(OutputRegister(instr));
134 }
135 
InputCPURegisterAt(HInstruction * instr,int index)136 inline vixl::aarch64::CPURegister InputCPURegisterAt(HInstruction* instr, int index) {
137   return DataType::IsFloatingPointType(instr->InputAt(index)->GetType())
138       ? static_cast<vixl::aarch64::CPURegister>(InputFPRegisterAt(instr, index))
139       : static_cast<vixl::aarch64::CPURegister>(InputRegisterAt(instr, index));
140 }
141 
InputCPURegisterOrZeroRegAt(HInstruction * instr,int index)142 inline vixl::aarch64::CPURegister InputCPURegisterOrZeroRegAt(HInstruction* instr,
143                                                                      int index) {
144   HInstruction* input = instr->InputAt(index);
145   DataType::Type input_type = input->GetType();
146   if (input->IsConstant() && input->AsConstant()->IsZeroBitPattern()) {
147     return (DataType::Size(input_type) >= vixl::aarch64::kXRegSizeInBytes)
148         ? vixl::aarch64::Register(vixl::aarch64::xzr)
149         : vixl::aarch64::Register(vixl::aarch64::wzr);
150   }
151   return InputCPURegisterAt(instr, index);
152 }
153 
Int64FromLocation(Location location)154 inline int64_t Int64FromLocation(Location location) {
155   return Int64FromConstant(location.GetConstant());
156 }
157 
OperandFrom(Location location,DataType::Type type)158 inline vixl::aarch64::Operand OperandFrom(Location location, DataType::Type type) {
159   if (location.IsRegister()) {
160     return vixl::aarch64::Operand(RegisterFrom(location, type));
161   } else {
162     return vixl::aarch64::Operand(Int64FromLocation(location));
163   }
164 }
165 
InputOperandAt(HInstruction * instr,int input_index)166 inline vixl::aarch64::Operand InputOperandAt(HInstruction* instr, int input_index) {
167   return OperandFrom(instr->GetLocations()->InAt(input_index),
168                      instr->InputAt(input_index)->GetType());
169 }
170 
StackOperandFrom(Location location)171 inline vixl::aarch64::MemOperand StackOperandFrom(Location location) {
172   return vixl::aarch64::MemOperand(vixl::aarch64::sp, location.GetStackIndex());
173 }
174 
175 inline vixl::aarch64::MemOperand HeapOperand(const vixl::aarch64::Register& base,
176                                                     size_t offset = 0) {
177   // A heap reference must be 32bit, so fit in a W register.
178   DCHECK(base.IsW());
179   return vixl::aarch64::MemOperand(base.X(), offset);
180 }
181 
182 inline vixl::aarch64::MemOperand HeapOperand(const vixl::aarch64::Register& base,
183                                                     const vixl::aarch64::Register& regoffset,
184                                                     vixl::aarch64::Shift shift = vixl::aarch64::LSL,
185                                                     unsigned shift_amount = 0) {
186   // A heap reference must be 32bit, so fit in a W register.
187   DCHECK(base.IsW());
188   return vixl::aarch64::MemOperand(base.X(), regoffset, shift, shift_amount);
189 }
190 
HeapOperand(const vixl::aarch64::Register & base,Offset offset)191 inline vixl::aarch64::MemOperand HeapOperand(const vixl::aarch64::Register& base,
192                                                     Offset offset) {
193   return HeapOperand(base, offset.SizeValue());
194 }
195 
HeapOperandFrom(Location location,Offset offset)196 inline vixl::aarch64::MemOperand HeapOperandFrom(Location location, Offset offset) {
197   return HeapOperand(RegisterFrom(location, DataType::Type::kReference), offset);
198 }
199 
LocationFrom(const vixl::aarch64::Register & reg)200 inline Location LocationFrom(const vixl::aarch64::Register& reg) {
201   return Location::RegisterLocation(ARTRegCodeFromVIXL(reg.GetCode()));
202 }
203 
LocationFrom(const vixl::aarch64::FPRegister & fpreg)204 inline Location LocationFrom(const vixl::aarch64::FPRegister& fpreg) {
205   return Location::FpuRegisterLocation(fpreg.GetCode());
206 }
207 
OperandFromMemOperand(const vixl::aarch64::MemOperand & mem_op)208 inline vixl::aarch64::Operand OperandFromMemOperand(
209     const vixl::aarch64::MemOperand& mem_op) {
210   if (mem_op.IsImmediateOffset()) {
211     return vixl::aarch64::Operand(mem_op.GetOffset());
212   } else {
213     DCHECK(mem_op.IsRegisterOffset());
214     if (mem_op.GetExtend() != vixl::aarch64::NO_EXTEND) {
215       return vixl::aarch64::Operand(mem_op.GetRegisterOffset(),
216                                     mem_op.GetExtend(),
217                                     mem_op.GetShiftAmount());
218     } else if (mem_op.GetShift() != vixl::aarch64::NO_SHIFT) {
219       return vixl::aarch64::Operand(mem_op.GetRegisterOffset(),
220                                     mem_op.GetShift(),
221                                     mem_op.GetShiftAmount());
222     } else {
223       LOG(FATAL) << "Should not reach here";
224       UNREACHABLE();
225     }
226   }
227 }
228 
AddSubCanEncodeAsImmediate(int64_t value)229 inline bool AddSubCanEncodeAsImmediate(int64_t value) {
230   // If `value` does not fit but `-value` does, VIXL will automatically use
231   // the 'opposite' instruction.
232   return vixl::aarch64::Assembler::IsImmAddSub(value)
233       || vixl::aarch64::Assembler::IsImmAddSub(-value);
234 }
235 
Arm64CanEncodeConstantAsImmediate(HConstant * constant,HInstruction * instr)236 inline bool Arm64CanEncodeConstantAsImmediate(HConstant* constant, HInstruction* instr) {
237   int64_t value = CodeGenerator::GetInt64ValueOf(constant);
238 
239   // TODO: Improve this when IsSIMDConstantEncodable method is implemented in VIXL.
240   if (instr->IsVecReplicateScalar()) {
241     if (constant->IsLongConstant()) {
242       return false;
243     } else if (constant->IsFloatConstant()) {
244       return vixl::aarch64::Assembler::IsImmFP32(constant->AsFloatConstant()->GetValue());
245     } else if (constant->IsDoubleConstant()) {
246       return vixl::aarch64::Assembler::IsImmFP64(constant->AsDoubleConstant()->GetValue());
247     }
248     return IsUint<8>(value);
249   }
250 
251   // Code generation for Min/Max:
252   //    Cmp left_op, right_op
253   //    Csel dst, left_op, right_op, cond
254   if (instr->IsMin() || instr->IsMax()) {
255     if (constant->GetUses().HasExactlyOneElement()) {
256       // If value can be encoded as immediate for the Cmp, then let VIXL handle
257       // the constant generation for the Csel.
258       return AddSubCanEncodeAsImmediate(value);
259     }
260     // These values are encodable as immediates for Cmp and VIXL will use csinc and csinv
261     // with the zr register as right_op, hence no constant generation is required.
262     return constant->IsZeroBitPattern() || constant->IsOne() || constant->IsMinusOne();
263   }
264 
265   // For single uses we let VIXL handle the constant generation since it will
266   // use registers that are not managed by the register allocator (wip0, wip1).
267   if (constant->GetUses().HasExactlyOneElement()) {
268     return true;
269   }
270 
271   // Our code generator ensures shift distances are within an encodable range.
272   if (instr->IsRor()) {
273     return true;
274   }
275 
276   if (instr->IsAnd() || instr->IsOr() || instr->IsXor()) {
277     // Uses logical operations.
278     return vixl::aarch64::Assembler::IsImmLogical(value, vixl::aarch64::kXRegSize);
279   } else if (instr->IsNeg()) {
280     // Uses mov -immediate.
281     return vixl::aarch64::Assembler::IsImmMovn(value, vixl::aarch64::kXRegSize);
282   } else {
283     DCHECK(instr->IsAdd() ||
284            instr->IsIntermediateAddress() ||
285            instr->IsBoundsCheck() ||
286            instr->IsCompare() ||
287            instr->IsCondition() ||
288            instr->IsSub())
289         << instr->DebugName();
290     // Uses aliases of ADD/SUB instructions.
291     return AddSubCanEncodeAsImmediate(value);
292   }
293 }
294 
ARM64EncodableConstantOrRegister(HInstruction * constant,HInstruction * instr)295 inline Location ARM64EncodableConstantOrRegister(HInstruction* constant,
296                                                         HInstruction* instr) {
297   if (constant->IsConstant()
298       && Arm64CanEncodeConstantAsImmediate(constant->AsConstant(), instr)) {
299     return Location::ConstantLocation(constant->AsConstant());
300   }
301 
302   return Location::RequiresRegister();
303 }
304 
305 // Check if registers in art register set have the same register code in vixl. If the register
306 // codes are same, we can initialize vixl register list simply by the register masks. Currently,
307 // only SP/WSP and ZXR/WZR codes are different between art and vixl.
308 // Note: This function is only used for debug checks.
ArtVixlRegCodeCoherentForRegSet(uint32_t art_core_registers,size_t num_core,uint32_t art_fpu_registers,size_t num_fpu)309 inline bool ArtVixlRegCodeCoherentForRegSet(uint32_t art_core_registers,
310                                             size_t num_core,
311                                             uint32_t art_fpu_registers,
312                                             size_t num_fpu) {
313   // The register masks won't work if the number of register is larger than 32.
314   DCHECK_GE(sizeof(art_core_registers) * 8, num_core);
315   DCHECK_GE(sizeof(art_fpu_registers) * 8, num_fpu);
316   for (size_t art_reg_code = 0;  art_reg_code < num_core; ++art_reg_code) {
317     if (RegisterSet::Contains(art_core_registers, art_reg_code)) {
318       if (art_reg_code != static_cast<size_t>(VIXLRegCodeFromART(art_reg_code))) {
319         return false;
320       }
321     }
322   }
323   // There is no register code translation for float registers.
324   return true;
325 }
326 
ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind)327 inline vixl::aarch64::Shift ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind) {
328   switch (op_kind) {
329     case HDataProcWithShifterOp::kASR: return vixl::aarch64::ASR;
330     case HDataProcWithShifterOp::kLSL: return vixl::aarch64::LSL;
331     case HDataProcWithShifterOp::kLSR: return vixl::aarch64::LSR;
332     default:
333       LOG(FATAL) << "Unexpected op kind " << op_kind;
334       UNREACHABLE();
335       return vixl::aarch64::NO_SHIFT;
336   }
337 }
338 
ExtendFromOpKind(HDataProcWithShifterOp::OpKind op_kind)339 inline vixl::aarch64::Extend ExtendFromOpKind(HDataProcWithShifterOp::OpKind op_kind) {
340   switch (op_kind) {
341     case HDataProcWithShifterOp::kUXTB: return vixl::aarch64::UXTB;
342     case HDataProcWithShifterOp::kUXTH: return vixl::aarch64::UXTH;
343     case HDataProcWithShifterOp::kUXTW: return vixl::aarch64::UXTW;
344     case HDataProcWithShifterOp::kSXTB: return vixl::aarch64::SXTB;
345     case HDataProcWithShifterOp::kSXTH: return vixl::aarch64::SXTH;
346     case HDataProcWithShifterOp::kSXTW: return vixl::aarch64::SXTW;
347     default:
348       LOG(FATAL) << "Unexpected op kind " << op_kind;
349       UNREACHABLE();
350       return vixl::aarch64::NO_EXTEND;
351   }
352 }
353 
ShifterOperandSupportsExtension(HInstruction * instruction)354 inline bool ShifterOperandSupportsExtension(HInstruction* instruction) {
355   DCHECK(HasShifterOperand(instruction, InstructionSet::kArm64));
356   // Although the `neg` instruction is an alias of the `sub` instruction, `HNeg`
357   // does *not* support extension. This is because the `extended register` form
358   // of the `sub` instruction interprets the left register with code 31 as the
359   // stack pointer and not the zero register. (So does the `immediate` form.) In
360   // the other form `shifted register, the register with code 31 is interpreted
361   // as the zero register.
362   return instruction->IsAdd() || instruction->IsSub();
363 }
364 
IsConstantZeroBitPattern(const HInstruction * instruction)365 inline bool IsConstantZeroBitPattern(const HInstruction* instruction) {
366   return instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern();
367 }
368 
369 }  // namespace helpers
370 }  // namespace arm64
371 }  // namespace art
372 
373 #endif  // ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_
374