1 //===- InstCombinePHI.cpp -------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitPHINode function.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Transforms/Utils/Local.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/PatternMatch.h"
21 using namespace llvm;
22 using namespace llvm::PatternMatch;
23
24 #define DEBUG_TYPE "instcombine"
25
26 static cl::opt<unsigned>
27 MaxNumPhis("instcombine-max-num-phis", cl::init(512),
28 cl::desc("Maximum number phis to handle in intptr/ptrint folding"));
29
30 /// The PHI arguments will be folded into a single operation with a PHI node
31 /// as input. The debug location of the single operation will be the merged
32 /// locations of the original PHI node arguments.
PHIArgMergedDebugLoc(Instruction * Inst,PHINode & PN)33 void InstCombiner::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) {
34 auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
35 Inst->setDebugLoc(FirstInst->getDebugLoc());
36 // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc
37 // will be inefficient.
38 assert(!isa<CallInst>(Inst));
39
40 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
41 auto *I = cast<Instruction>(PN.getIncomingValue(i));
42 Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc());
43 }
44 }
45
46 // Replace Integer typed PHI PN if the PHI's value is used as a pointer value.
47 // If there is an existing pointer typed PHI that produces the same value as PN,
48 // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new
49 // PHI node:
50 //
51 // Case-1:
52 // bb1:
53 // int_init = PtrToInt(ptr_init)
54 // br label %bb2
55 // bb2:
56 // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
57 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
58 // ptr_val2 = IntToPtr(int_val)
59 // ...
60 // use(ptr_val2)
61 // ptr_val_inc = ...
62 // inc_val_inc = PtrToInt(ptr_val_inc)
63 //
64 // ==>
65 // bb1:
66 // br label %bb2
67 // bb2:
68 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
69 // ...
70 // use(ptr_val)
71 // ptr_val_inc = ...
72 //
73 // Case-2:
74 // bb1:
75 // int_ptr = BitCast(ptr_ptr)
76 // int_init = Load(int_ptr)
77 // br label %bb2
78 // bb2:
79 // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
80 // ptr_val2 = IntToPtr(int_val)
81 // ...
82 // use(ptr_val2)
83 // ptr_val_inc = ...
84 // inc_val_inc = PtrToInt(ptr_val_inc)
85 // ==>
86 // bb1:
87 // ptr_init = Load(ptr_ptr)
88 // br label %bb2
89 // bb2:
90 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
91 // ...
92 // use(ptr_val)
93 // ptr_val_inc = ...
94 // ...
95 //
FoldIntegerTypedPHI(PHINode & PN)96 Instruction *InstCombiner::FoldIntegerTypedPHI(PHINode &PN) {
97 if (!PN.getType()->isIntegerTy())
98 return nullptr;
99 if (!PN.hasOneUse())
100 return nullptr;
101
102 auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back());
103 if (!IntToPtr)
104 return nullptr;
105
106 // Check if the pointer is actually used as pointer:
107 auto HasPointerUse = [](Instruction *IIP) {
108 for (User *U : IIP->users()) {
109 Value *Ptr = nullptr;
110 if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) {
111 Ptr = LoadI->getPointerOperand();
112 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
113 Ptr = SI->getPointerOperand();
114 } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) {
115 Ptr = GI->getPointerOperand();
116 }
117
118 if (Ptr && Ptr == IIP)
119 return true;
120 }
121 return false;
122 };
123
124 if (!HasPointerUse(IntToPtr))
125 return nullptr;
126
127 if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) !=
128 DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType()))
129 return nullptr;
130
131 SmallVector<Value *, 4> AvailablePtrVals;
132 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
133 Value *Arg = PN.getIncomingValue(i);
134
135 // First look backward:
136 if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) {
137 AvailablePtrVals.emplace_back(PI->getOperand(0));
138 continue;
139 }
140
141 // Next look forward:
142 Value *ArgIntToPtr = nullptr;
143 for (User *U : Arg->users()) {
144 if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() &&
145 (DT.dominates(cast<Instruction>(U), PN.getIncomingBlock(i)) ||
146 cast<Instruction>(U)->getParent() == PN.getIncomingBlock(i))) {
147 ArgIntToPtr = U;
148 break;
149 }
150 }
151
152 if (ArgIntToPtr) {
153 AvailablePtrVals.emplace_back(ArgIntToPtr);
154 continue;
155 }
156
157 // If Arg is defined by a PHI, allow it. This will also create
158 // more opportunities iteratively.
159 if (isa<PHINode>(Arg)) {
160 AvailablePtrVals.emplace_back(Arg);
161 continue;
162 }
163
164 // For a single use integer load:
165 auto *LoadI = dyn_cast<LoadInst>(Arg);
166 if (!LoadI)
167 return nullptr;
168
169 if (!LoadI->hasOneUse())
170 return nullptr;
171
172 // Push the integer typed Load instruction into the available
173 // value set, and fix it up later when the pointer typed PHI
174 // is synthesized.
175 AvailablePtrVals.emplace_back(LoadI);
176 }
177
178 // Now search for a matching PHI
179 auto *BB = PN.getParent();
180 assert(AvailablePtrVals.size() == PN.getNumIncomingValues() &&
181 "Not enough available ptr typed incoming values");
182 PHINode *MatchingPtrPHI = nullptr;
183 unsigned NumPhis = 0;
184 for (auto II = BB->begin(), EI = BasicBlock::iterator(BB->getFirstNonPHI());
185 II != EI; II++, NumPhis++) {
186 // FIXME: consider handling this in AggressiveInstCombine
187 if (NumPhis > MaxNumPhis)
188 return nullptr;
189 PHINode *PtrPHI = dyn_cast<PHINode>(II);
190 if (!PtrPHI || PtrPHI == &PN || PtrPHI->getType() != IntToPtr->getType())
191 continue;
192 MatchingPtrPHI = PtrPHI;
193 for (unsigned i = 0; i != PtrPHI->getNumIncomingValues(); ++i) {
194 if (AvailablePtrVals[i] !=
195 PtrPHI->getIncomingValueForBlock(PN.getIncomingBlock(i))) {
196 MatchingPtrPHI = nullptr;
197 break;
198 }
199 }
200
201 if (MatchingPtrPHI)
202 break;
203 }
204
205 if (MatchingPtrPHI) {
206 assert(MatchingPtrPHI->getType() == IntToPtr->getType() &&
207 "Phi's Type does not match with IntToPtr");
208 // The PtrToCast + IntToPtr will be simplified later
209 return CastInst::CreateBitOrPointerCast(MatchingPtrPHI,
210 IntToPtr->getOperand(0)->getType());
211 }
212
213 // If it requires a conversion for every PHI operand, do not do it.
214 if (std::all_of(AvailablePtrVals.begin(), AvailablePtrVals.end(),
215 [&](Value *V) {
216 return (V->getType() != IntToPtr->getType()) ||
217 isa<IntToPtrInst>(V);
218 }))
219 return nullptr;
220
221 // If any of the operand that requires casting is a terminator
222 // instruction, do not do it.
223 if (std::any_of(AvailablePtrVals.begin(), AvailablePtrVals.end(),
224 [&](Value *V) {
225 return (V->getType() != IntToPtr->getType()) &&
226 isa<TerminatorInst>(V);
227 }))
228 return nullptr;
229
230 PHINode *NewPtrPHI = PHINode::Create(
231 IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr");
232
233 InsertNewInstBefore(NewPtrPHI, PN);
234 SmallDenseMap<Value *, Instruction *> Casts;
235 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
236 auto *IncomingBB = PN.getIncomingBlock(i);
237 auto *IncomingVal = AvailablePtrVals[i];
238
239 if (IncomingVal->getType() == IntToPtr->getType()) {
240 NewPtrPHI->addIncoming(IncomingVal, IncomingBB);
241 continue;
242 }
243
244 #ifndef NDEBUG
245 LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal);
246 assert((isa<PHINode>(IncomingVal) ||
247 IncomingVal->getType()->isPointerTy() ||
248 (LoadI && LoadI->hasOneUse())) &&
249 "Can not replace LoadInst with multiple uses");
250 #endif
251 // Need to insert a BitCast.
252 // For an integer Load instruction with a single use, the load + IntToPtr
253 // cast will be simplified into a pointer load:
254 // %v = load i64, i64* %a.ip, align 8
255 // %v.cast = inttoptr i64 %v to float **
256 // ==>
257 // %v.ptrp = bitcast i64 * %a.ip to float **
258 // %v.cast = load float *, float ** %v.ptrp, align 8
259 Instruction *&CI = Casts[IncomingVal];
260 if (!CI) {
261 CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(),
262 IncomingVal->getName() + ".ptr");
263 if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) {
264 BasicBlock::iterator InsertPos(IncomingI);
265 InsertPos++;
266 if (isa<PHINode>(IncomingI))
267 InsertPos = IncomingI->getParent()->getFirstInsertionPt();
268 InsertNewInstBefore(CI, *InsertPos);
269 } else {
270 auto *InsertBB = &IncomingBB->getParent()->getEntryBlock();
271 InsertNewInstBefore(CI, *InsertBB->getFirstInsertionPt());
272 }
273 }
274 NewPtrPHI->addIncoming(CI, IncomingBB);
275 }
276
277 // The PtrToCast + IntToPtr will be simplified later
278 return CastInst::CreateBitOrPointerCast(NewPtrPHI,
279 IntToPtr->getOperand(0)->getType());
280 }
281
282 /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
283 /// adds all have a single use, turn this into a phi and a single binop.
FoldPHIArgBinOpIntoPHI(PHINode & PN)284 Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
285 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
286 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
287 unsigned Opc = FirstInst->getOpcode();
288 Value *LHSVal = FirstInst->getOperand(0);
289 Value *RHSVal = FirstInst->getOperand(1);
290
291 Type *LHSType = LHSVal->getType();
292 Type *RHSType = RHSVal->getType();
293
294 // Scan to see if all operands are the same opcode, and all have one use.
295 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
296 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
297 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
298 // Verify type of the LHS matches so we don't fold cmp's of different
299 // types.
300 I->getOperand(0)->getType() != LHSType ||
301 I->getOperand(1)->getType() != RHSType)
302 return nullptr;
303
304 // If they are CmpInst instructions, check their predicates
305 if (CmpInst *CI = dyn_cast<CmpInst>(I))
306 if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
307 return nullptr;
308
309 // Keep track of which operand needs a phi node.
310 if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
311 if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
312 }
313
314 // If both LHS and RHS would need a PHI, don't do this transformation,
315 // because it would increase the number of PHIs entering the block,
316 // which leads to higher register pressure. This is especially
317 // bad when the PHIs are in the header of a loop.
318 if (!LHSVal && !RHSVal)
319 return nullptr;
320
321 // Otherwise, this is safe to transform!
322
323 Value *InLHS = FirstInst->getOperand(0);
324 Value *InRHS = FirstInst->getOperand(1);
325 PHINode *NewLHS = nullptr, *NewRHS = nullptr;
326 if (!LHSVal) {
327 NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
328 FirstInst->getOperand(0)->getName() + ".pn");
329 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
330 InsertNewInstBefore(NewLHS, PN);
331 LHSVal = NewLHS;
332 }
333
334 if (!RHSVal) {
335 NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
336 FirstInst->getOperand(1)->getName() + ".pn");
337 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
338 InsertNewInstBefore(NewRHS, PN);
339 RHSVal = NewRHS;
340 }
341
342 // Add all operands to the new PHIs.
343 if (NewLHS || NewRHS) {
344 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
345 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
346 if (NewLHS) {
347 Value *NewInLHS = InInst->getOperand(0);
348 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
349 }
350 if (NewRHS) {
351 Value *NewInRHS = InInst->getOperand(1);
352 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
353 }
354 }
355 }
356
357 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
358 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
359 LHSVal, RHSVal);
360 PHIArgMergedDebugLoc(NewCI, PN);
361 return NewCI;
362 }
363
364 BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
365 BinaryOperator *NewBinOp =
366 BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
367
368 NewBinOp->copyIRFlags(PN.getIncomingValue(0));
369
370 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i)
371 NewBinOp->andIRFlags(PN.getIncomingValue(i));
372
373 PHIArgMergedDebugLoc(NewBinOp, PN);
374 return NewBinOp;
375 }
376
FoldPHIArgGEPIntoPHI(PHINode & PN)377 Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
378 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
379
380 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
381 FirstInst->op_end());
382 // This is true if all GEP bases are allocas and if all indices into them are
383 // constants.
384 bool AllBasePointersAreAllocas = true;
385
386 // We don't want to replace this phi if the replacement would require
387 // more than one phi, which leads to higher register pressure. This is
388 // especially bad when the PHIs are in the header of a loop.
389 bool NeededPhi = false;
390
391 bool AllInBounds = true;
392
393 // Scan to see if all operands are the same opcode, and all have one use.
394 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
395 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
396 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
397 GEP->getNumOperands() != FirstInst->getNumOperands())
398 return nullptr;
399
400 AllInBounds &= GEP->isInBounds();
401
402 // Keep track of whether or not all GEPs are of alloca pointers.
403 if (AllBasePointersAreAllocas &&
404 (!isa<AllocaInst>(GEP->getOperand(0)) ||
405 !GEP->hasAllConstantIndices()))
406 AllBasePointersAreAllocas = false;
407
408 // Compare the operand lists.
409 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
410 if (FirstInst->getOperand(op) == GEP->getOperand(op))
411 continue;
412
413 // Don't merge two GEPs when two operands differ (introducing phi nodes)
414 // if one of the PHIs has a constant for the index. The index may be
415 // substantially cheaper to compute for the constants, so making it a
416 // variable index could pessimize the path. This also handles the case
417 // for struct indices, which must always be constant.
418 if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
419 isa<ConstantInt>(GEP->getOperand(op)))
420 return nullptr;
421
422 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
423 return nullptr;
424
425 // If we already needed a PHI for an earlier operand, and another operand
426 // also requires a PHI, we'd be introducing more PHIs than we're
427 // eliminating, which increases register pressure on entry to the PHI's
428 // block.
429 if (NeededPhi)
430 return nullptr;
431
432 FixedOperands[op] = nullptr; // Needs a PHI.
433 NeededPhi = true;
434 }
435 }
436
437 // If all of the base pointers of the PHI'd GEPs are from allocas, don't
438 // bother doing this transformation. At best, this will just save a bit of
439 // offset calculation, but all the predecessors will have to materialize the
440 // stack address into a register anyway. We'd actually rather *clone* the
441 // load up into the predecessors so that we have a load of a gep of an alloca,
442 // which can usually all be folded into the load.
443 if (AllBasePointersAreAllocas)
444 return nullptr;
445
446 // Otherwise, this is safe to transform. Insert PHI nodes for each operand
447 // that is variable.
448 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
449
450 bool HasAnyPHIs = false;
451 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
452 if (FixedOperands[i]) continue; // operand doesn't need a phi.
453 Value *FirstOp = FirstInst->getOperand(i);
454 PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
455 FirstOp->getName()+".pn");
456 InsertNewInstBefore(NewPN, PN);
457
458 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
459 OperandPhis[i] = NewPN;
460 FixedOperands[i] = NewPN;
461 HasAnyPHIs = true;
462 }
463
464
465 // Add all operands to the new PHIs.
466 if (HasAnyPHIs) {
467 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
468 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
469 BasicBlock *InBB = PN.getIncomingBlock(i);
470
471 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
472 if (PHINode *OpPhi = OperandPhis[op])
473 OpPhi->addIncoming(InGEP->getOperand(op), InBB);
474 }
475 }
476
477 Value *Base = FixedOperands[0];
478 GetElementPtrInst *NewGEP =
479 GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
480 makeArrayRef(FixedOperands).slice(1));
481 if (AllInBounds) NewGEP->setIsInBounds();
482 PHIArgMergedDebugLoc(NewGEP, PN);
483 return NewGEP;
484 }
485
486
487 /// Return true if we know that it is safe to sink the load out of the block
488 /// that defines it. This means that it must be obvious the value of the load is
489 /// not changed from the point of the load to the end of the block it is in.
490 ///
491 /// Finally, it is safe, but not profitable, to sink a load targeting a
492 /// non-address-taken alloca. Doing so will cause us to not promote the alloca
493 /// to a register.
isSafeAndProfitableToSinkLoad(LoadInst * L)494 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
495 BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end();
496
497 for (++BBI; BBI != E; ++BBI)
498 if (BBI->mayWriteToMemory())
499 return false;
500
501 // Check for non-address taken alloca. If not address-taken already, it isn't
502 // profitable to do this xform.
503 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
504 bool isAddressTaken = false;
505 for (User *U : AI->users()) {
506 if (isa<LoadInst>(U)) continue;
507 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
508 // If storing TO the alloca, then the address isn't taken.
509 if (SI->getOperand(1) == AI) continue;
510 }
511 isAddressTaken = true;
512 break;
513 }
514
515 if (!isAddressTaken && AI->isStaticAlloca())
516 return false;
517 }
518
519 // If this load is a load from a GEP with a constant offset from an alloca,
520 // then we don't want to sink it. In its present form, it will be
521 // load [constant stack offset]. Sinking it will cause us to have to
522 // materialize the stack addresses in each predecessor in a register only to
523 // do a shared load from register in the successor.
524 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
525 if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
526 if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
527 return false;
528
529 return true;
530 }
531
FoldPHIArgLoadIntoPHI(PHINode & PN)532 Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
533 LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
534
535 // FIXME: This is overconservative; this transform is allowed in some cases
536 // for atomic operations.
537 if (FirstLI->isAtomic())
538 return nullptr;
539
540 // When processing loads, we need to propagate two bits of information to the
541 // sunk load: whether it is volatile, and what its alignment is. We currently
542 // don't sink loads when some have their alignment specified and some don't.
543 // visitLoadInst will propagate an alignment onto the load when TD is around,
544 // and if TD isn't around, we can't handle the mixed case.
545 bool isVolatile = FirstLI->isVolatile();
546 unsigned LoadAlignment = FirstLI->getAlignment();
547 unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
548
549 // We can't sink the load if the loaded value could be modified between the
550 // load and the PHI.
551 if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
552 !isSafeAndProfitableToSinkLoad(FirstLI))
553 return nullptr;
554
555 // If the PHI is of volatile loads and the load block has multiple
556 // successors, sinking it would remove a load of the volatile value from
557 // the path through the other successor.
558 if (isVolatile &&
559 FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
560 return nullptr;
561
562 // Check to see if all arguments are the same operation.
563 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
564 LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
565 if (!LI || !LI->hasOneUse())
566 return nullptr;
567
568 // We can't sink the load if the loaded value could be modified between
569 // the load and the PHI.
570 if (LI->isVolatile() != isVolatile ||
571 LI->getParent() != PN.getIncomingBlock(i) ||
572 LI->getPointerAddressSpace() != LoadAddrSpace ||
573 !isSafeAndProfitableToSinkLoad(LI))
574 return nullptr;
575
576 // If some of the loads have an alignment specified but not all of them,
577 // we can't do the transformation.
578 if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
579 return nullptr;
580
581 LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
582
583 // If the PHI is of volatile loads and the load block has multiple
584 // successors, sinking it would remove a load of the volatile value from
585 // the path through the other successor.
586 if (isVolatile &&
587 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
588 return nullptr;
589 }
590
591 // Okay, they are all the same operation. Create a new PHI node of the
592 // correct type, and PHI together all of the LHS's of the instructions.
593 PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
594 PN.getNumIncomingValues(),
595 PN.getName()+".in");
596
597 Value *InVal = FirstLI->getOperand(0);
598 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
599 LoadInst *NewLI = new LoadInst(NewPN, "", isVolatile, LoadAlignment);
600
601 unsigned KnownIDs[] = {
602 LLVMContext::MD_tbaa,
603 LLVMContext::MD_range,
604 LLVMContext::MD_invariant_load,
605 LLVMContext::MD_alias_scope,
606 LLVMContext::MD_noalias,
607 LLVMContext::MD_nonnull,
608 LLVMContext::MD_align,
609 LLVMContext::MD_dereferenceable,
610 LLVMContext::MD_dereferenceable_or_null,
611 };
612
613 for (unsigned ID : KnownIDs)
614 NewLI->setMetadata(ID, FirstLI->getMetadata(ID));
615
616 // Add all operands to the new PHI and combine TBAA metadata.
617 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
618 LoadInst *LI = cast<LoadInst>(PN.getIncomingValue(i));
619 combineMetadata(NewLI, LI, KnownIDs);
620 Value *NewInVal = LI->getOperand(0);
621 if (NewInVal != InVal)
622 InVal = nullptr;
623 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
624 }
625
626 if (InVal) {
627 // The new PHI unions all of the same values together. This is really
628 // common, so we handle it intelligently here for compile-time speed.
629 NewLI->setOperand(0, InVal);
630 delete NewPN;
631 } else {
632 InsertNewInstBefore(NewPN, PN);
633 }
634
635 // If this was a volatile load that we are merging, make sure to loop through
636 // and mark all the input loads as non-volatile. If we don't do this, we will
637 // insert a new volatile load and the old ones will not be deletable.
638 if (isVolatile)
639 for (Value *IncValue : PN.incoming_values())
640 cast<LoadInst>(IncValue)->setVolatile(false);
641
642 PHIArgMergedDebugLoc(NewLI, PN);
643 return NewLI;
644 }
645
646 /// TODO: This function could handle other cast types, but then it might
647 /// require special-casing a cast from the 'i1' type. See the comment in
648 /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
FoldPHIArgZextsIntoPHI(PHINode & Phi)649 Instruction *InstCombiner::FoldPHIArgZextsIntoPHI(PHINode &Phi) {
650 // We cannot create a new instruction after the PHI if the terminator is an
651 // EHPad because there is no valid insertion point.
652 if (TerminatorInst *TI = Phi.getParent()->getTerminator())
653 if (TI->isEHPad())
654 return nullptr;
655
656 // Early exit for the common case of a phi with two operands. These are
657 // handled elsewhere. See the comment below where we check the count of zexts
658 // and constants for more details.
659 unsigned NumIncomingValues = Phi.getNumIncomingValues();
660 if (NumIncomingValues < 3)
661 return nullptr;
662
663 // Find the narrower type specified by the first zext.
664 Type *NarrowType = nullptr;
665 for (Value *V : Phi.incoming_values()) {
666 if (auto *Zext = dyn_cast<ZExtInst>(V)) {
667 NarrowType = Zext->getSrcTy();
668 break;
669 }
670 }
671 if (!NarrowType)
672 return nullptr;
673
674 // Walk the phi operands checking that we only have zexts or constants that
675 // we can shrink for free. Store the new operands for the new phi.
676 SmallVector<Value *, 4> NewIncoming;
677 unsigned NumZexts = 0;
678 unsigned NumConsts = 0;
679 for (Value *V : Phi.incoming_values()) {
680 if (auto *Zext = dyn_cast<ZExtInst>(V)) {
681 // All zexts must be identical and have one use.
682 if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUse())
683 return nullptr;
684 NewIncoming.push_back(Zext->getOperand(0));
685 NumZexts++;
686 } else if (auto *C = dyn_cast<Constant>(V)) {
687 // Make sure that constants can fit in the new type.
688 Constant *Trunc = ConstantExpr::getTrunc(C, NarrowType);
689 if (ConstantExpr::getZExt(Trunc, C->getType()) != C)
690 return nullptr;
691 NewIncoming.push_back(Trunc);
692 NumConsts++;
693 } else {
694 // If it's not a cast or a constant, bail out.
695 return nullptr;
696 }
697 }
698
699 // The more common cases of a phi with no constant operands or just one
700 // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi()
701 // respectively. foldOpIntoPhi() wants to do the opposite transform that is
702 // performed here. It tries to replicate a cast in the phi operand's basic
703 // block to expose other folding opportunities. Thus, InstCombine will
704 // infinite loop without this check.
705 if (NumConsts == 0 || NumZexts < 2)
706 return nullptr;
707
708 // All incoming values are zexts or constants that are safe to truncate.
709 // Create a new phi node of the narrow type, phi together all of the new
710 // operands, and zext the result back to the original type.
711 PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
712 Phi.getName() + ".shrunk");
713 for (unsigned i = 0; i != NumIncomingValues; ++i)
714 NewPhi->addIncoming(NewIncoming[i], Phi.getIncomingBlock(i));
715
716 InsertNewInstBefore(NewPhi, Phi);
717 return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
718 }
719
720 /// If all operands to a PHI node are the same "unary" operator and they all are
721 /// only used by the PHI, PHI together their inputs, and do the operation once,
722 /// to the result of the PHI.
FoldPHIArgOpIntoPHI(PHINode & PN)723 Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
724 // We cannot create a new instruction after the PHI if the terminator is an
725 // EHPad because there is no valid insertion point.
726 if (TerminatorInst *TI = PN.getParent()->getTerminator())
727 if (TI->isEHPad())
728 return nullptr;
729
730 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
731
732 if (isa<GetElementPtrInst>(FirstInst))
733 return FoldPHIArgGEPIntoPHI(PN);
734 if (isa<LoadInst>(FirstInst))
735 return FoldPHIArgLoadIntoPHI(PN);
736
737 // Scan the instruction, looking for input operations that can be folded away.
738 // If all input operands to the phi are the same instruction (e.g. a cast from
739 // the same type or "+42") we can pull the operation through the PHI, reducing
740 // code size and simplifying code.
741 Constant *ConstantOp = nullptr;
742 Type *CastSrcTy = nullptr;
743
744 if (isa<CastInst>(FirstInst)) {
745 CastSrcTy = FirstInst->getOperand(0)->getType();
746
747 // Be careful about transforming integer PHIs. We don't want to pessimize
748 // the code by turning an i32 into an i1293.
749 if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
750 if (!shouldChangeType(PN.getType(), CastSrcTy))
751 return nullptr;
752 }
753 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
754 // Can fold binop, compare or shift here if the RHS is a constant,
755 // otherwise call FoldPHIArgBinOpIntoPHI.
756 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
757 if (!ConstantOp)
758 return FoldPHIArgBinOpIntoPHI(PN);
759 } else {
760 return nullptr; // Cannot fold this operation.
761 }
762
763 // Check to see if all arguments are the same operation.
764 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
765 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
766 if (!I || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
767 return nullptr;
768 if (CastSrcTy) {
769 if (I->getOperand(0)->getType() != CastSrcTy)
770 return nullptr; // Cast operation must match.
771 } else if (I->getOperand(1) != ConstantOp) {
772 return nullptr;
773 }
774 }
775
776 // Okay, they are all the same operation. Create a new PHI node of the
777 // correct type, and PHI together all of the LHS's of the instructions.
778 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
779 PN.getNumIncomingValues(),
780 PN.getName()+".in");
781
782 Value *InVal = FirstInst->getOperand(0);
783 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
784
785 // Add all operands to the new PHI.
786 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
787 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
788 if (NewInVal != InVal)
789 InVal = nullptr;
790 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
791 }
792
793 Value *PhiVal;
794 if (InVal) {
795 // The new PHI unions all of the same values together. This is really
796 // common, so we handle it intelligently here for compile-time speed.
797 PhiVal = InVal;
798 delete NewPN;
799 } else {
800 InsertNewInstBefore(NewPN, PN);
801 PhiVal = NewPN;
802 }
803
804 // Insert and return the new operation.
805 if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
806 CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
807 PN.getType());
808 PHIArgMergedDebugLoc(NewCI, PN);
809 return NewCI;
810 }
811
812 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
813 BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
814 BinOp->copyIRFlags(PN.getIncomingValue(0));
815
816 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i)
817 BinOp->andIRFlags(PN.getIncomingValue(i));
818
819 PHIArgMergedDebugLoc(BinOp, PN);
820 return BinOp;
821 }
822
823 CmpInst *CIOp = cast<CmpInst>(FirstInst);
824 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
825 PhiVal, ConstantOp);
826 PHIArgMergedDebugLoc(NewCI, PN);
827 return NewCI;
828 }
829
830 /// Return true if this PHI node is only used by a PHI node cycle that is dead.
DeadPHICycle(PHINode * PN,SmallPtrSetImpl<PHINode * > & PotentiallyDeadPHIs)831 static bool DeadPHICycle(PHINode *PN,
832 SmallPtrSetImpl<PHINode*> &PotentiallyDeadPHIs) {
833 if (PN->use_empty()) return true;
834 if (!PN->hasOneUse()) return false;
835
836 // Remember this node, and if we find the cycle, return.
837 if (!PotentiallyDeadPHIs.insert(PN).second)
838 return true;
839
840 // Don't scan crazily complex things.
841 if (PotentiallyDeadPHIs.size() == 16)
842 return false;
843
844 if (PHINode *PU = dyn_cast<PHINode>(PN->user_back()))
845 return DeadPHICycle(PU, PotentiallyDeadPHIs);
846
847 return false;
848 }
849
850 /// Return true if this phi node is always equal to NonPhiInVal.
851 /// This happens with mutually cyclic phi nodes like:
852 /// z = some value; x = phi (y, z); y = phi (x, z)
PHIsEqualValue(PHINode * PN,Value * NonPhiInVal,SmallPtrSetImpl<PHINode * > & ValueEqualPHIs)853 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
854 SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) {
855 // See if we already saw this PHI node.
856 if (!ValueEqualPHIs.insert(PN).second)
857 return true;
858
859 // Don't scan crazily complex things.
860 if (ValueEqualPHIs.size() == 16)
861 return false;
862
863 // Scan the operands to see if they are either phi nodes or are equal to
864 // the value.
865 for (Value *Op : PN->incoming_values()) {
866 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
867 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
868 return false;
869 } else if (Op != NonPhiInVal)
870 return false;
871 }
872
873 return true;
874 }
875
876 /// Return an existing non-zero constant if this phi node has one, otherwise
877 /// return constant 1.
GetAnyNonZeroConstInt(PHINode & PN)878 static ConstantInt *GetAnyNonZeroConstInt(PHINode &PN) {
879 assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi");
880 for (Value *V : PN.operands())
881 if (auto *ConstVA = dyn_cast<ConstantInt>(V))
882 if (!ConstVA->isZero())
883 return ConstVA;
884 return ConstantInt::get(cast<IntegerType>(PN.getType()), 1);
885 }
886
887 namespace {
888 struct PHIUsageRecord {
889 unsigned PHIId; // The ID # of the PHI (something determinstic to sort on)
890 unsigned Shift; // The amount shifted.
891 Instruction *Inst; // The trunc instruction.
892
PHIUsageRecord__anonaa4252370411::PHIUsageRecord893 PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
894 : PHIId(pn), Shift(Sh), Inst(User) {}
895
operator <__anonaa4252370411::PHIUsageRecord896 bool operator<(const PHIUsageRecord &RHS) const {
897 if (PHIId < RHS.PHIId) return true;
898 if (PHIId > RHS.PHIId) return false;
899 if (Shift < RHS.Shift) return true;
900 if (Shift > RHS.Shift) return false;
901 return Inst->getType()->getPrimitiveSizeInBits() <
902 RHS.Inst->getType()->getPrimitiveSizeInBits();
903 }
904 };
905
906 struct LoweredPHIRecord {
907 PHINode *PN; // The PHI that was lowered.
908 unsigned Shift; // The amount shifted.
909 unsigned Width; // The width extracted.
910
LoweredPHIRecord__anonaa4252370411::LoweredPHIRecord911 LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
912 : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
913
914 // Ctor form used by DenseMap.
LoweredPHIRecord__anonaa4252370411::LoweredPHIRecord915 LoweredPHIRecord(PHINode *pn, unsigned Sh)
916 : PN(pn), Shift(Sh), Width(0) {}
917 };
918 }
919
920 namespace llvm {
921 template<>
922 struct DenseMapInfo<LoweredPHIRecord> {
getEmptyKeyllvm::DenseMapInfo923 static inline LoweredPHIRecord getEmptyKey() {
924 return LoweredPHIRecord(nullptr, 0);
925 }
getTombstoneKeyllvm::DenseMapInfo926 static inline LoweredPHIRecord getTombstoneKey() {
927 return LoweredPHIRecord(nullptr, 1);
928 }
getHashValuellvm::DenseMapInfo929 static unsigned getHashValue(const LoweredPHIRecord &Val) {
930 return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
931 (Val.Width>>3);
932 }
isEqualllvm::DenseMapInfo933 static bool isEqual(const LoweredPHIRecord &LHS,
934 const LoweredPHIRecord &RHS) {
935 return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
936 LHS.Width == RHS.Width;
937 }
938 };
939 }
940
941
942 /// This is an integer PHI and we know that it has an illegal type: see if it is
943 /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
944 /// the various pieces being extracted. This sort of thing is introduced when
945 /// SROA promotes an aggregate to large integer values.
946 ///
947 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
948 /// inttoptr. We should produce new PHIs in the right type.
949 ///
SliceUpIllegalIntegerPHI(PHINode & FirstPhi)950 Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
951 // PHIUsers - Keep track of all of the truncated values extracted from a set
952 // of PHIs, along with their offset. These are the things we want to rewrite.
953 SmallVector<PHIUsageRecord, 16> PHIUsers;
954
955 // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
956 // nodes which are extracted from. PHIsToSlice is a set we use to avoid
957 // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
958 // check the uses of (to ensure they are all extracts).
959 SmallVector<PHINode*, 8> PHIsToSlice;
960 SmallPtrSet<PHINode*, 8> PHIsInspected;
961
962 PHIsToSlice.push_back(&FirstPhi);
963 PHIsInspected.insert(&FirstPhi);
964
965 for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
966 PHINode *PN = PHIsToSlice[PHIId];
967
968 // Scan the input list of the PHI. If any input is an invoke, and if the
969 // input is defined in the predecessor, then we won't be split the critical
970 // edge which is required to insert a truncate. Because of this, we have to
971 // bail out.
972 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
973 InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
974 if (!II) continue;
975 if (II->getParent() != PN->getIncomingBlock(i))
976 continue;
977
978 // If we have a phi, and if it's directly in the predecessor, then we have
979 // a critical edge where we need to put the truncate. Since we can't
980 // split the edge in instcombine, we have to bail out.
981 return nullptr;
982 }
983
984 for (User *U : PN->users()) {
985 Instruction *UserI = cast<Instruction>(U);
986
987 // If the user is a PHI, inspect its uses recursively.
988 if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
989 if (PHIsInspected.insert(UserPN).second)
990 PHIsToSlice.push_back(UserPN);
991 continue;
992 }
993
994 // Truncates are always ok.
995 if (isa<TruncInst>(UserI)) {
996 PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
997 continue;
998 }
999
1000 // Otherwise it must be a lshr which can only be used by one trunc.
1001 if (UserI->getOpcode() != Instruction::LShr ||
1002 !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
1003 !isa<ConstantInt>(UserI->getOperand(1)))
1004 return nullptr;
1005
1006 unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
1007 PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
1008 }
1009 }
1010
1011 // If we have no users, they must be all self uses, just nuke the PHI.
1012 if (PHIUsers.empty())
1013 return replaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
1014
1015 // If this phi node is transformable, create new PHIs for all the pieces
1016 // extracted out of it. First, sort the users by their offset and size.
1017 array_pod_sort(PHIUsers.begin(), PHIUsers.end());
1018
1019 LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
1020 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) dbgs()
1021 << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] << '\n';);
1022
1023 // PredValues - This is a temporary used when rewriting PHI nodes. It is
1024 // hoisted out here to avoid construction/destruction thrashing.
1025 DenseMap<BasicBlock*, Value*> PredValues;
1026
1027 // ExtractedVals - Each new PHI we introduce is saved here so we don't
1028 // introduce redundant PHIs.
1029 DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
1030
1031 for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
1032 unsigned PHIId = PHIUsers[UserI].PHIId;
1033 PHINode *PN = PHIsToSlice[PHIId];
1034 unsigned Offset = PHIUsers[UserI].Shift;
1035 Type *Ty = PHIUsers[UserI].Inst->getType();
1036
1037 PHINode *EltPHI;
1038
1039 // If we've already lowered a user like this, reuse the previously lowered
1040 // value.
1041 if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
1042
1043 // Otherwise, Create the new PHI node for this user.
1044 EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
1045 PN->getName()+".off"+Twine(Offset), PN);
1046 assert(EltPHI->getType() != PN->getType() &&
1047 "Truncate didn't shrink phi?");
1048
1049 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1050 BasicBlock *Pred = PN->getIncomingBlock(i);
1051 Value *&PredVal = PredValues[Pred];
1052
1053 // If we already have a value for this predecessor, reuse it.
1054 if (PredVal) {
1055 EltPHI->addIncoming(PredVal, Pred);
1056 continue;
1057 }
1058
1059 // Handle the PHI self-reuse case.
1060 Value *InVal = PN->getIncomingValue(i);
1061 if (InVal == PN) {
1062 PredVal = EltPHI;
1063 EltPHI->addIncoming(PredVal, Pred);
1064 continue;
1065 }
1066
1067 if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
1068 // If the incoming value was a PHI, and if it was one of the PHIs we
1069 // already rewrote it, just use the lowered value.
1070 if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
1071 PredVal = Res;
1072 EltPHI->addIncoming(PredVal, Pred);
1073 continue;
1074 }
1075 }
1076
1077 // Otherwise, do an extract in the predecessor.
1078 Builder.SetInsertPoint(Pred->getTerminator());
1079 Value *Res = InVal;
1080 if (Offset)
1081 Res = Builder.CreateLShr(Res, ConstantInt::get(InVal->getType(),
1082 Offset), "extract");
1083 Res = Builder.CreateTrunc(Res, Ty, "extract.t");
1084 PredVal = Res;
1085 EltPHI->addIncoming(Res, Pred);
1086
1087 // If the incoming value was a PHI, and if it was one of the PHIs we are
1088 // rewriting, we will ultimately delete the code we inserted. This
1089 // means we need to revisit that PHI to make sure we extract out the
1090 // needed piece.
1091 if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
1092 if (PHIsInspected.count(OldInVal)) {
1093 unsigned RefPHIId =
1094 find(PHIsToSlice, OldInVal) - PHIsToSlice.begin();
1095 PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
1096 cast<Instruction>(Res)));
1097 ++UserE;
1098 }
1099 }
1100 PredValues.clear();
1101
1102 LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": "
1103 << *EltPHI << '\n');
1104 ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
1105 }
1106
1107 // Replace the use of this piece with the PHI node.
1108 replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
1109 }
1110
1111 // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
1112 // with undefs.
1113 Value *Undef = UndefValue::get(FirstPhi.getType());
1114 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
1115 replaceInstUsesWith(*PHIsToSlice[i], Undef);
1116 return replaceInstUsesWith(FirstPhi, Undef);
1117 }
1118
1119 // PHINode simplification
1120 //
visitPHINode(PHINode & PN)1121 Instruction *InstCombiner::visitPHINode(PHINode &PN) {
1122 if (Value *V = SimplifyInstruction(&PN, SQ.getWithInstruction(&PN)))
1123 return replaceInstUsesWith(PN, V);
1124
1125 if (Instruction *Result = FoldPHIArgZextsIntoPHI(PN))
1126 return Result;
1127
1128 // If all PHI operands are the same operation, pull them through the PHI,
1129 // reducing code size.
1130 if (isa<Instruction>(PN.getIncomingValue(0)) &&
1131 isa<Instruction>(PN.getIncomingValue(1)) &&
1132 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
1133 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
1134 // FIXME: The hasOneUse check will fail for PHIs that use the value more
1135 // than themselves more than once.
1136 PN.getIncomingValue(0)->hasOneUse())
1137 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
1138 return Result;
1139
1140 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
1141 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
1142 // PHI)... break the cycle.
1143 if (PN.hasOneUse()) {
1144 if (Instruction *Result = FoldIntegerTypedPHI(PN))
1145 return Result;
1146
1147 Instruction *PHIUser = cast<Instruction>(PN.user_back());
1148 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
1149 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
1150 PotentiallyDeadPHIs.insert(&PN);
1151 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
1152 return replaceInstUsesWith(PN, UndefValue::get(PN.getType()));
1153 }
1154
1155 // If this phi has a single use, and if that use just computes a value for
1156 // the next iteration of a loop, delete the phi. This occurs with unused
1157 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
1158 // common case here is good because the only other things that catch this
1159 // are induction variable analysis (sometimes) and ADCE, which is only run
1160 // late.
1161 if (PHIUser->hasOneUse() &&
1162 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
1163 PHIUser->user_back() == &PN) {
1164 return replaceInstUsesWith(PN, UndefValue::get(PN.getType()));
1165 }
1166 // When a PHI is used only to be compared with zero, it is safe to replace
1167 // an incoming value proved as known nonzero with any non-zero constant.
1168 // For example, in the code below, the incoming value %v can be replaced
1169 // with any non-zero constant based on the fact that the PHI is only used to
1170 // be compared with zero and %v is a known non-zero value:
1171 // %v = select %cond, 1, 2
1172 // %p = phi [%v, BB] ...
1173 // icmp eq, %p, 0
1174 auto *CmpInst = dyn_cast<ICmpInst>(PHIUser);
1175 // FIXME: To be simple, handle only integer type for now.
1176 if (CmpInst && isa<IntegerType>(PN.getType()) && CmpInst->isEquality() &&
1177 match(CmpInst->getOperand(1), m_Zero())) {
1178 ConstantInt *NonZeroConst = nullptr;
1179 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1180 Instruction *CtxI = PN.getIncomingBlock(i)->getTerminator();
1181 Value *VA = PN.getIncomingValue(i);
1182 if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) {
1183 if (!NonZeroConst)
1184 NonZeroConst = GetAnyNonZeroConstInt(PN);
1185 PN.setIncomingValue(i, NonZeroConst);
1186 }
1187 }
1188 }
1189 }
1190
1191 // We sometimes end up with phi cycles that non-obviously end up being the
1192 // same value, for example:
1193 // z = some value; x = phi (y, z); y = phi (x, z)
1194 // where the phi nodes don't necessarily need to be in the same block. Do a
1195 // quick check to see if the PHI node only contains a single non-phi value, if
1196 // so, scan to see if the phi cycle is actually equal to that value.
1197 {
1198 unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
1199 // Scan for the first non-phi operand.
1200 while (InValNo != NumIncomingVals &&
1201 isa<PHINode>(PN.getIncomingValue(InValNo)))
1202 ++InValNo;
1203
1204 if (InValNo != NumIncomingVals) {
1205 Value *NonPhiInVal = PN.getIncomingValue(InValNo);
1206
1207 // Scan the rest of the operands to see if there are any conflicts, if so
1208 // there is no need to recursively scan other phis.
1209 for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
1210 Value *OpVal = PN.getIncomingValue(InValNo);
1211 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
1212 break;
1213 }
1214
1215 // If we scanned over all operands, then we have one unique value plus
1216 // phi values. Scan PHI nodes to see if they all merge in each other or
1217 // the value.
1218 if (InValNo == NumIncomingVals) {
1219 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
1220 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
1221 return replaceInstUsesWith(PN, NonPhiInVal);
1222 }
1223 }
1224 }
1225
1226 // If there are multiple PHIs, sort their operands so that they all list
1227 // the blocks in the same order. This will help identical PHIs be eliminated
1228 // by other passes. Other passes shouldn't depend on this for correctness
1229 // however.
1230 PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
1231 if (&PN != FirstPN)
1232 for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
1233 BasicBlock *BBA = PN.getIncomingBlock(i);
1234 BasicBlock *BBB = FirstPN->getIncomingBlock(i);
1235 if (BBA != BBB) {
1236 Value *VA = PN.getIncomingValue(i);
1237 unsigned j = PN.getBasicBlockIndex(BBB);
1238 Value *VB = PN.getIncomingValue(j);
1239 PN.setIncomingBlock(i, BBB);
1240 PN.setIncomingValue(i, VB);
1241 PN.setIncomingBlock(j, BBA);
1242 PN.setIncomingValue(j, VA);
1243 // NOTE: Instcombine normally would want us to "return &PN" if we
1244 // modified any of the operands of an instruction. However, since we
1245 // aren't adding or removing uses (just rearranging them) we don't do
1246 // this in this case.
1247 }
1248 }
1249
1250 // If this is an integer PHI and we know that it has an illegal type, see if
1251 // it is only used by trunc or trunc(lshr) operations. If so, we split the
1252 // PHI into the various pieces being extracted. This sort of thing is
1253 // introduced when SROA promotes an aggregate to a single large integer type.
1254 if (PN.getType()->isIntegerTy() &&
1255 !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
1256 if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
1257 return Res;
1258
1259 return nullptr;
1260 }
1261