• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- InstCombinePHI.cpp -------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitPHINode function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Transforms/Utils/Local.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/PatternMatch.h"
21 using namespace llvm;
22 using namespace llvm::PatternMatch;
23 
24 #define DEBUG_TYPE "instcombine"
25 
26 static cl::opt<unsigned>
27 MaxNumPhis("instcombine-max-num-phis", cl::init(512),
28            cl::desc("Maximum number phis to handle in intptr/ptrint folding"));
29 
30 /// The PHI arguments will be folded into a single operation with a PHI node
31 /// as input. The debug location of the single operation will be the merged
32 /// locations of the original PHI node arguments.
PHIArgMergedDebugLoc(Instruction * Inst,PHINode & PN)33 void InstCombiner::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) {
34   auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
35   Inst->setDebugLoc(FirstInst->getDebugLoc());
36   // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc
37   // will be inefficient.
38   assert(!isa<CallInst>(Inst));
39 
40   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
41     auto *I = cast<Instruction>(PN.getIncomingValue(i));
42     Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc());
43   }
44 }
45 
46 // Replace Integer typed PHI PN if the PHI's value is used as a pointer value.
47 // If there is an existing pointer typed PHI that produces the same value as PN,
48 // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new
49 // PHI node:
50 //
51 // Case-1:
52 // bb1:
53 //     int_init = PtrToInt(ptr_init)
54 //     br label %bb2
55 // bb2:
56 //    int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
57 //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
58 //    ptr_val2 = IntToPtr(int_val)
59 //    ...
60 //    use(ptr_val2)
61 //    ptr_val_inc = ...
62 //    inc_val_inc = PtrToInt(ptr_val_inc)
63 //
64 // ==>
65 // bb1:
66 //     br label %bb2
67 // bb2:
68 //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
69 //    ...
70 //    use(ptr_val)
71 //    ptr_val_inc = ...
72 //
73 // Case-2:
74 // bb1:
75 //    int_ptr = BitCast(ptr_ptr)
76 //    int_init = Load(int_ptr)
77 //    br label %bb2
78 // bb2:
79 //    int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
80 //    ptr_val2 = IntToPtr(int_val)
81 //    ...
82 //    use(ptr_val2)
83 //    ptr_val_inc = ...
84 //    inc_val_inc = PtrToInt(ptr_val_inc)
85 // ==>
86 // bb1:
87 //    ptr_init = Load(ptr_ptr)
88 //    br label %bb2
89 // bb2:
90 //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
91 //    ...
92 //    use(ptr_val)
93 //    ptr_val_inc = ...
94 //    ...
95 //
FoldIntegerTypedPHI(PHINode & PN)96 Instruction *InstCombiner::FoldIntegerTypedPHI(PHINode &PN) {
97   if (!PN.getType()->isIntegerTy())
98     return nullptr;
99   if (!PN.hasOneUse())
100     return nullptr;
101 
102   auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back());
103   if (!IntToPtr)
104     return nullptr;
105 
106   // Check if the pointer is actually used as pointer:
107   auto HasPointerUse = [](Instruction *IIP) {
108     for (User *U : IIP->users()) {
109       Value *Ptr = nullptr;
110       if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) {
111         Ptr = LoadI->getPointerOperand();
112       } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
113         Ptr = SI->getPointerOperand();
114       } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) {
115         Ptr = GI->getPointerOperand();
116       }
117 
118       if (Ptr && Ptr == IIP)
119         return true;
120     }
121     return false;
122   };
123 
124   if (!HasPointerUse(IntToPtr))
125     return nullptr;
126 
127   if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) !=
128       DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType()))
129     return nullptr;
130 
131   SmallVector<Value *, 4> AvailablePtrVals;
132   for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
133     Value *Arg = PN.getIncomingValue(i);
134 
135     // First look backward:
136     if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) {
137       AvailablePtrVals.emplace_back(PI->getOperand(0));
138       continue;
139     }
140 
141     // Next look forward:
142     Value *ArgIntToPtr = nullptr;
143     for (User *U : Arg->users()) {
144       if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() &&
145           (DT.dominates(cast<Instruction>(U), PN.getIncomingBlock(i)) ||
146            cast<Instruction>(U)->getParent() == PN.getIncomingBlock(i))) {
147         ArgIntToPtr = U;
148         break;
149       }
150     }
151 
152     if (ArgIntToPtr) {
153       AvailablePtrVals.emplace_back(ArgIntToPtr);
154       continue;
155     }
156 
157     // If Arg is defined by a PHI, allow it. This will also create
158     // more opportunities iteratively.
159     if (isa<PHINode>(Arg)) {
160       AvailablePtrVals.emplace_back(Arg);
161       continue;
162     }
163 
164     // For a single use integer load:
165     auto *LoadI = dyn_cast<LoadInst>(Arg);
166     if (!LoadI)
167       return nullptr;
168 
169     if (!LoadI->hasOneUse())
170       return nullptr;
171 
172     // Push the integer typed Load instruction into the available
173     // value set, and fix it up later when the pointer typed PHI
174     // is synthesized.
175     AvailablePtrVals.emplace_back(LoadI);
176   }
177 
178   // Now search for a matching PHI
179   auto *BB = PN.getParent();
180   assert(AvailablePtrVals.size() == PN.getNumIncomingValues() &&
181          "Not enough available ptr typed incoming values");
182   PHINode *MatchingPtrPHI = nullptr;
183   unsigned NumPhis = 0;
184   for (auto II = BB->begin(), EI = BasicBlock::iterator(BB->getFirstNonPHI());
185        II != EI; II++, NumPhis++) {
186     // FIXME: consider handling this in AggressiveInstCombine
187     if (NumPhis > MaxNumPhis)
188       return nullptr;
189     PHINode *PtrPHI = dyn_cast<PHINode>(II);
190     if (!PtrPHI || PtrPHI == &PN || PtrPHI->getType() != IntToPtr->getType())
191       continue;
192     MatchingPtrPHI = PtrPHI;
193     for (unsigned i = 0; i != PtrPHI->getNumIncomingValues(); ++i) {
194       if (AvailablePtrVals[i] !=
195           PtrPHI->getIncomingValueForBlock(PN.getIncomingBlock(i))) {
196         MatchingPtrPHI = nullptr;
197         break;
198       }
199     }
200 
201     if (MatchingPtrPHI)
202       break;
203   }
204 
205   if (MatchingPtrPHI) {
206     assert(MatchingPtrPHI->getType() == IntToPtr->getType() &&
207            "Phi's Type does not match with IntToPtr");
208     // The PtrToCast + IntToPtr will be simplified later
209     return CastInst::CreateBitOrPointerCast(MatchingPtrPHI,
210                                             IntToPtr->getOperand(0)->getType());
211   }
212 
213   // If it requires a conversion for every PHI operand, do not do it.
214   if (std::all_of(AvailablePtrVals.begin(), AvailablePtrVals.end(),
215                   [&](Value *V) {
216                     return (V->getType() != IntToPtr->getType()) ||
217                            isa<IntToPtrInst>(V);
218                   }))
219     return nullptr;
220 
221   // If any of the operand that requires casting is a terminator
222   // instruction, do not do it.
223   if (std::any_of(AvailablePtrVals.begin(), AvailablePtrVals.end(),
224                   [&](Value *V) {
225                     return (V->getType() != IntToPtr->getType()) &&
226                            isa<TerminatorInst>(V);
227                   }))
228     return nullptr;
229 
230   PHINode *NewPtrPHI = PHINode::Create(
231       IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr");
232 
233   InsertNewInstBefore(NewPtrPHI, PN);
234   SmallDenseMap<Value *, Instruction *> Casts;
235   for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
236     auto *IncomingBB = PN.getIncomingBlock(i);
237     auto *IncomingVal = AvailablePtrVals[i];
238 
239     if (IncomingVal->getType() == IntToPtr->getType()) {
240       NewPtrPHI->addIncoming(IncomingVal, IncomingBB);
241       continue;
242     }
243 
244 #ifndef NDEBUG
245     LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal);
246     assert((isa<PHINode>(IncomingVal) ||
247             IncomingVal->getType()->isPointerTy() ||
248             (LoadI && LoadI->hasOneUse())) &&
249            "Can not replace LoadInst with multiple uses");
250 #endif
251     // Need to insert a BitCast.
252     // For an integer Load instruction with a single use, the load + IntToPtr
253     // cast will be simplified into a pointer load:
254     // %v = load i64, i64* %a.ip, align 8
255     // %v.cast = inttoptr i64 %v to float **
256     // ==>
257     // %v.ptrp = bitcast i64 * %a.ip to float **
258     // %v.cast = load float *, float ** %v.ptrp, align 8
259     Instruction *&CI = Casts[IncomingVal];
260     if (!CI) {
261       CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(),
262                                             IncomingVal->getName() + ".ptr");
263       if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) {
264         BasicBlock::iterator InsertPos(IncomingI);
265         InsertPos++;
266         if (isa<PHINode>(IncomingI))
267           InsertPos = IncomingI->getParent()->getFirstInsertionPt();
268         InsertNewInstBefore(CI, *InsertPos);
269       } else {
270         auto *InsertBB = &IncomingBB->getParent()->getEntryBlock();
271         InsertNewInstBefore(CI, *InsertBB->getFirstInsertionPt());
272       }
273     }
274     NewPtrPHI->addIncoming(CI, IncomingBB);
275   }
276 
277   // The PtrToCast + IntToPtr will be simplified later
278   return CastInst::CreateBitOrPointerCast(NewPtrPHI,
279                                           IntToPtr->getOperand(0)->getType());
280 }
281 
282 /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
283 /// adds all have a single use, turn this into a phi and a single binop.
FoldPHIArgBinOpIntoPHI(PHINode & PN)284 Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
285   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
286   assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
287   unsigned Opc = FirstInst->getOpcode();
288   Value *LHSVal = FirstInst->getOperand(0);
289   Value *RHSVal = FirstInst->getOperand(1);
290 
291   Type *LHSType = LHSVal->getType();
292   Type *RHSType = RHSVal->getType();
293 
294   // Scan to see if all operands are the same opcode, and all have one use.
295   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
296     Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
297     if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
298         // Verify type of the LHS matches so we don't fold cmp's of different
299         // types.
300         I->getOperand(0)->getType() != LHSType ||
301         I->getOperand(1)->getType() != RHSType)
302       return nullptr;
303 
304     // If they are CmpInst instructions, check their predicates
305     if (CmpInst *CI = dyn_cast<CmpInst>(I))
306       if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
307         return nullptr;
308 
309     // Keep track of which operand needs a phi node.
310     if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
311     if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
312   }
313 
314   // If both LHS and RHS would need a PHI, don't do this transformation,
315   // because it would increase the number of PHIs entering the block,
316   // which leads to higher register pressure. This is especially
317   // bad when the PHIs are in the header of a loop.
318   if (!LHSVal && !RHSVal)
319     return nullptr;
320 
321   // Otherwise, this is safe to transform!
322 
323   Value *InLHS = FirstInst->getOperand(0);
324   Value *InRHS = FirstInst->getOperand(1);
325   PHINode *NewLHS = nullptr, *NewRHS = nullptr;
326   if (!LHSVal) {
327     NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
328                              FirstInst->getOperand(0)->getName() + ".pn");
329     NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
330     InsertNewInstBefore(NewLHS, PN);
331     LHSVal = NewLHS;
332   }
333 
334   if (!RHSVal) {
335     NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
336                              FirstInst->getOperand(1)->getName() + ".pn");
337     NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
338     InsertNewInstBefore(NewRHS, PN);
339     RHSVal = NewRHS;
340   }
341 
342   // Add all operands to the new PHIs.
343   if (NewLHS || NewRHS) {
344     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
345       Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
346       if (NewLHS) {
347         Value *NewInLHS = InInst->getOperand(0);
348         NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
349       }
350       if (NewRHS) {
351         Value *NewInRHS = InInst->getOperand(1);
352         NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
353       }
354     }
355   }
356 
357   if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
358     CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
359                                      LHSVal, RHSVal);
360     PHIArgMergedDebugLoc(NewCI, PN);
361     return NewCI;
362   }
363 
364   BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
365   BinaryOperator *NewBinOp =
366     BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
367 
368   NewBinOp->copyIRFlags(PN.getIncomingValue(0));
369 
370   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i)
371     NewBinOp->andIRFlags(PN.getIncomingValue(i));
372 
373   PHIArgMergedDebugLoc(NewBinOp, PN);
374   return NewBinOp;
375 }
376 
FoldPHIArgGEPIntoPHI(PHINode & PN)377 Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
378   GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
379 
380   SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
381                                         FirstInst->op_end());
382   // This is true if all GEP bases are allocas and if all indices into them are
383   // constants.
384   bool AllBasePointersAreAllocas = true;
385 
386   // We don't want to replace this phi if the replacement would require
387   // more than one phi, which leads to higher register pressure. This is
388   // especially bad when the PHIs are in the header of a loop.
389   bool NeededPhi = false;
390 
391   bool AllInBounds = true;
392 
393   // Scan to see if all operands are the same opcode, and all have one use.
394   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
395     GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
396     if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
397       GEP->getNumOperands() != FirstInst->getNumOperands())
398       return nullptr;
399 
400     AllInBounds &= GEP->isInBounds();
401 
402     // Keep track of whether or not all GEPs are of alloca pointers.
403     if (AllBasePointersAreAllocas &&
404         (!isa<AllocaInst>(GEP->getOperand(0)) ||
405          !GEP->hasAllConstantIndices()))
406       AllBasePointersAreAllocas = false;
407 
408     // Compare the operand lists.
409     for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
410       if (FirstInst->getOperand(op) == GEP->getOperand(op))
411         continue;
412 
413       // Don't merge two GEPs when two operands differ (introducing phi nodes)
414       // if one of the PHIs has a constant for the index.  The index may be
415       // substantially cheaper to compute for the constants, so making it a
416       // variable index could pessimize the path.  This also handles the case
417       // for struct indices, which must always be constant.
418       if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
419           isa<ConstantInt>(GEP->getOperand(op)))
420         return nullptr;
421 
422       if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
423         return nullptr;
424 
425       // If we already needed a PHI for an earlier operand, and another operand
426       // also requires a PHI, we'd be introducing more PHIs than we're
427       // eliminating, which increases register pressure on entry to the PHI's
428       // block.
429       if (NeededPhi)
430         return nullptr;
431 
432       FixedOperands[op] = nullptr;  // Needs a PHI.
433       NeededPhi = true;
434     }
435   }
436 
437   // If all of the base pointers of the PHI'd GEPs are from allocas, don't
438   // bother doing this transformation.  At best, this will just save a bit of
439   // offset calculation, but all the predecessors will have to materialize the
440   // stack address into a register anyway.  We'd actually rather *clone* the
441   // load up into the predecessors so that we have a load of a gep of an alloca,
442   // which can usually all be folded into the load.
443   if (AllBasePointersAreAllocas)
444     return nullptr;
445 
446   // Otherwise, this is safe to transform.  Insert PHI nodes for each operand
447   // that is variable.
448   SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
449 
450   bool HasAnyPHIs = false;
451   for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
452     if (FixedOperands[i]) continue;  // operand doesn't need a phi.
453     Value *FirstOp = FirstInst->getOperand(i);
454     PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
455                                      FirstOp->getName()+".pn");
456     InsertNewInstBefore(NewPN, PN);
457 
458     NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
459     OperandPhis[i] = NewPN;
460     FixedOperands[i] = NewPN;
461     HasAnyPHIs = true;
462   }
463 
464 
465   // Add all operands to the new PHIs.
466   if (HasAnyPHIs) {
467     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
468       GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
469       BasicBlock *InBB = PN.getIncomingBlock(i);
470 
471       for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
472         if (PHINode *OpPhi = OperandPhis[op])
473           OpPhi->addIncoming(InGEP->getOperand(op), InBB);
474     }
475   }
476 
477   Value *Base = FixedOperands[0];
478   GetElementPtrInst *NewGEP =
479       GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
480                                 makeArrayRef(FixedOperands).slice(1));
481   if (AllInBounds) NewGEP->setIsInBounds();
482   PHIArgMergedDebugLoc(NewGEP, PN);
483   return NewGEP;
484 }
485 
486 
487 /// Return true if we know that it is safe to sink the load out of the block
488 /// that defines it. This means that it must be obvious the value of the load is
489 /// not changed from the point of the load to the end of the block it is in.
490 ///
491 /// Finally, it is safe, but not profitable, to sink a load targeting a
492 /// non-address-taken alloca.  Doing so will cause us to not promote the alloca
493 /// to a register.
isSafeAndProfitableToSinkLoad(LoadInst * L)494 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
495   BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end();
496 
497   for (++BBI; BBI != E; ++BBI)
498     if (BBI->mayWriteToMemory())
499       return false;
500 
501   // Check for non-address taken alloca.  If not address-taken already, it isn't
502   // profitable to do this xform.
503   if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
504     bool isAddressTaken = false;
505     for (User *U : AI->users()) {
506       if (isa<LoadInst>(U)) continue;
507       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
508         // If storing TO the alloca, then the address isn't taken.
509         if (SI->getOperand(1) == AI) continue;
510       }
511       isAddressTaken = true;
512       break;
513     }
514 
515     if (!isAddressTaken && AI->isStaticAlloca())
516       return false;
517   }
518 
519   // If this load is a load from a GEP with a constant offset from an alloca,
520   // then we don't want to sink it.  In its present form, it will be
521   // load [constant stack offset].  Sinking it will cause us to have to
522   // materialize the stack addresses in each predecessor in a register only to
523   // do a shared load from register in the successor.
524   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
525     if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
526       if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
527         return false;
528 
529   return true;
530 }
531 
FoldPHIArgLoadIntoPHI(PHINode & PN)532 Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
533   LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
534 
535   // FIXME: This is overconservative; this transform is allowed in some cases
536   // for atomic operations.
537   if (FirstLI->isAtomic())
538     return nullptr;
539 
540   // When processing loads, we need to propagate two bits of information to the
541   // sunk load: whether it is volatile, and what its alignment is.  We currently
542   // don't sink loads when some have their alignment specified and some don't.
543   // visitLoadInst will propagate an alignment onto the load when TD is around,
544   // and if TD isn't around, we can't handle the mixed case.
545   bool isVolatile = FirstLI->isVolatile();
546   unsigned LoadAlignment = FirstLI->getAlignment();
547   unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
548 
549   // We can't sink the load if the loaded value could be modified between the
550   // load and the PHI.
551   if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
552       !isSafeAndProfitableToSinkLoad(FirstLI))
553     return nullptr;
554 
555   // If the PHI is of volatile loads and the load block has multiple
556   // successors, sinking it would remove a load of the volatile value from
557   // the path through the other successor.
558   if (isVolatile &&
559       FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
560     return nullptr;
561 
562   // Check to see if all arguments are the same operation.
563   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
564     LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
565     if (!LI || !LI->hasOneUse())
566       return nullptr;
567 
568     // We can't sink the load if the loaded value could be modified between
569     // the load and the PHI.
570     if (LI->isVolatile() != isVolatile ||
571         LI->getParent() != PN.getIncomingBlock(i) ||
572         LI->getPointerAddressSpace() != LoadAddrSpace ||
573         !isSafeAndProfitableToSinkLoad(LI))
574       return nullptr;
575 
576     // If some of the loads have an alignment specified but not all of them,
577     // we can't do the transformation.
578     if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
579       return nullptr;
580 
581     LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
582 
583     // If the PHI is of volatile loads and the load block has multiple
584     // successors, sinking it would remove a load of the volatile value from
585     // the path through the other successor.
586     if (isVolatile &&
587         LI->getParent()->getTerminator()->getNumSuccessors() != 1)
588       return nullptr;
589   }
590 
591   // Okay, they are all the same operation.  Create a new PHI node of the
592   // correct type, and PHI together all of the LHS's of the instructions.
593   PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
594                                    PN.getNumIncomingValues(),
595                                    PN.getName()+".in");
596 
597   Value *InVal = FirstLI->getOperand(0);
598   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
599   LoadInst *NewLI = new LoadInst(NewPN, "", isVolatile, LoadAlignment);
600 
601   unsigned KnownIDs[] = {
602     LLVMContext::MD_tbaa,
603     LLVMContext::MD_range,
604     LLVMContext::MD_invariant_load,
605     LLVMContext::MD_alias_scope,
606     LLVMContext::MD_noalias,
607     LLVMContext::MD_nonnull,
608     LLVMContext::MD_align,
609     LLVMContext::MD_dereferenceable,
610     LLVMContext::MD_dereferenceable_or_null,
611   };
612 
613   for (unsigned ID : KnownIDs)
614     NewLI->setMetadata(ID, FirstLI->getMetadata(ID));
615 
616   // Add all operands to the new PHI and combine TBAA metadata.
617   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
618     LoadInst *LI = cast<LoadInst>(PN.getIncomingValue(i));
619     combineMetadata(NewLI, LI, KnownIDs);
620     Value *NewInVal = LI->getOperand(0);
621     if (NewInVal != InVal)
622       InVal = nullptr;
623     NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
624   }
625 
626   if (InVal) {
627     // The new PHI unions all of the same values together.  This is really
628     // common, so we handle it intelligently here for compile-time speed.
629     NewLI->setOperand(0, InVal);
630     delete NewPN;
631   } else {
632     InsertNewInstBefore(NewPN, PN);
633   }
634 
635   // If this was a volatile load that we are merging, make sure to loop through
636   // and mark all the input loads as non-volatile.  If we don't do this, we will
637   // insert a new volatile load and the old ones will not be deletable.
638   if (isVolatile)
639     for (Value *IncValue : PN.incoming_values())
640       cast<LoadInst>(IncValue)->setVolatile(false);
641 
642   PHIArgMergedDebugLoc(NewLI, PN);
643   return NewLI;
644 }
645 
646 /// TODO: This function could handle other cast types, but then it might
647 /// require special-casing a cast from the 'i1' type. See the comment in
648 /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
FoldPHIArgZextsIntoPHI(PHINode & Phi)649 Instruction *InstCombiner::FoldPHIArgZextsIntoPHI(PHINode &Phi) {
650   // We cannot create a new instruction after the PHI if the terminator is an
651   // EHPad because there is no valid insertion point.
652   if (TerminatorInst *TI = Phi.getParent()->getTerminator())
653     if (TI->isEHPad())
654       return nullptr;
655 
656   // Early exit for the common case of a phi with two operands. These are
657   // handled elsewhere. See the comment below where we check the count of zexts
658   // and constants for more details.
659   unsigned NumIncomingValues = Phi.getNumIncomingValues();
660   if (NumIncomingValues < 3)
661     return nullptr;
662 
663   // Find the narrower type specified by the first zext.
664   Type *NarrowType = nullptr;
665   for (Value *V : Phi.incoming_values()) {
666     if (auto *Zext = dyn_cast<ZExtInst>(V)) {
667       NarrowType = Zext->getSrcTy();
668       break;
669     }
670   }
671   if (!NarrowType)
672     return nullptr;
673 
674   // Walk the phi operands checking that we only have zexts or constants that
675   // we can shrink for free. Store the new operands for the new phi.
676   SmallVector<Value *, 4> NewIncoming;
677   unsigned NumZexts = 0;
678   unsigned NumConsts = 0;
679   for (Value *V : Phi.incoming_values()) {
680     if (auto *Zext = dyn_cast<ZExtInst>(V)) {
681       // All zexts must be identical and have one use.
682       if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUse())
683         return nullptr;
684       NewIncoming.push_back(Zext->getOperand(0));
685       NumZexts++;
686     } else if (auto *C = dyn_cast<Constant>(V)) {
687       // Make sure that constants can fit in the new type.
688       Constant *Trunc = ConstantExpr::getTrunc(C, NarrowType);
689       if (ConstantExpr::getZExt(Trunc, C->getType()) != C)
690         return nullptr;
691       NewIncoming.push_back(Trunc);
692       NumConsts++;
693     } else {
694       // If it's not a cast or a constant, bail out.
695       return nullptr;
696     }
697   }
698 
699   // The more common cases of a phi with no constant operands or just one
700   // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi()
701   // respectively. foldOpIntoPhi() wants to do the opposite transform that is
702   // performed here. It tries to replicate a cast in the phi operand's basic
703   // block to expose other folding opportunities. Thus, InstCombine will
704   // infinite loop without this check.
705   if (NumConsts == 0 || NumZexts < 2)
706     return nullptr;
707 
708   // All incoming values are zexts or constants that are safe to truncate.
709   // Create a new phi node of the narrow type, phi together all of the new
710   // operands, and zext the result back to the original type.
711   PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
712                                     Phi.getName() + ".shrunk");
713   for (unsigned i = 0; i != NumIncomingValues; ++i)
714     NewPhi->addIncoming(NewIncoming[i], Phi.getIncomingBlock(i));
715 
716   InsertNewInstBefore(NewPhi, Phi);
717   return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
718 }
719 
720 /// If all operands to a PHI node are the same "unary" operator and they all are
721 /// only used by the PHI, PHI together their inputs, and do the operation once,
722 /// to the result of the PHI.
FoldPHIArgOpIntoPHI(PHINode & PN)723 Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
724   // We cannot create a new instruction after the PHI if the terminator is an
725   // EHPad because there is no valid insertion point.
726   if (TerminatorInst *TI = PN.getParent()->getTerminator())
727     if (TI->isEHPad())
728       return nullptr;
729 
730   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
731 
732   if (isa<GetElementPtrInst>(FirstInst))
733     return FoldPHIArgGEPIntoPHI(PN);
734   if (isa<LoadInst>(FirstInst))
735     return FoldPHIArgLoadIntoPHI(PN);
736 
737   // Scan the instruction, looking for input operations that can be folded away.
738   // If all input operands to the phi are the same instruction (e.g. a cast from
739   // the same type or "+42") we can pull the operation through the PHI, reducing
740   // code size and simplifying code.
741   Constant *ConstantOp = nullptr;
742   Type *CastSrcTy = nullptr;
743 
744   if (isa<CastInst>(FirstInst)) {
745     CastSrcTy = FirstInst->getOperand(0)->getType();
746 
747     // Be careful about transforming integer PHIs.  We don't want to pessimize
748     // the code by turning an i32 into an i1293.
749     if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
750       if (!shouldChangeType(PN.getType(), CastSrcTy))
751         return nullptr;
752     }
753   } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
754     // Can fold binop, compare or shift here if the RHS is a constant,
755     // otherwise call FoldPHIArgBinOpIntoPHI.
756     ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
757     if (!ConstantOp)
758       return FoldPHIArgBinOpIntoPHI(PN);
759   } else {
760     return nullptr;  // Cannot fold this operation.
761   }
762 
763   // Check to see if all arguments are the same operation.
764   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
765     Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
766     if (!I || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
767       return nullptr;
768     if (CastSrcTy) {
769       if (I->getOperand(0)->getType() != CastSrcTy)
770         return nullptr;  // Cast operation must match.
771     } else if (I->getOperand(1) != ConstantOp) {
772       return nullptr;
773     }
774   }
775 
776   // Okay, they are all the same operation.  Create a new PHI node of the
777   // correct type, and PHI together all of the LHS's of the instructions.
778   PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
779                                    PN.getNumIncomingValues(),
780                                    PN.getName()+".in");
781 
782   Value *InVal = FirstInst->getOperand(0);
783   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
784 
785   // Add all operands to the new PHI.
786   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
787     Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
788     if (NewInVal != InVal)
789       InVal = nullptr;
790     NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
791   }
792 
793   Value *PhiVal;
794   if (InVal) {
795     // The new PHI unions all of the same values together.  This is really
796     // common, so we handle it intelligently here for compile-time speed.
797     PhiVal = InVal;
798     delete NewPN;
799   } else {
800     InsertNewInstBefore(NewPN, PN);
801     PhiVal = NewPN;
802   }
803 
804   // Insert and return the new operation.
805   if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
806     CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
807                                        PN.getType());
808     PHIArgMergedDebugLoc(NewCI, PN);
809     return NewCI;
810   }
811 
812   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
813     BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
814     BinOp->copyIRFlags(PN.getIncomingValue(0));
815 
816     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i)
817       BinOp->andIRFlags(PN.getIncomingValue(i));
818 
819     PHIArgMergedDebugLoc(BinOp, PN);
820     return BinOp;
821   }
822 
823   CmpInst *CIOp = cast<CmpInst>(FirstInst);
824   CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
825                                    PhiVal, ConstantOp);
826   PHIArgMergedDebugLoc(NewCI, PN);
827   return NewCI;
828 }
829 
830 /// Return true if this PHI node is only used by a PHI node cycle that is dead.
DeadPHICycle(PHINode * PN,SmallPtrSetImpl<PHINode * > & PotentiallyDeadPHIs)831 static bool DeadPHICycle(PHINode *PN,
832                          SmallPtrSetImpl<PHINode*> &PotentiallyDeadPHIs) {
833   if (PN->use_empty()) return true;
834   if (!PN->hasOneUse()) return false;
835 
836   // Remember this node, and if we find the cycle, return.
837   if (!PotentiallyDeadPHIs.insert(PN).second)
838     return true;
839 
840   // Don't scan crazily complex things.
841   if (PotentiallyDeadPHIs.size() == 16)
842     return false;
843 
844   if (PHINode *PU = dyn_cast<PHINode>(PN->user_back()))
845     return DeadPHICycle(PU, PotentiallyDeadPHIs);
846 
847   return false;
848 }
849 
850 /// Return true if this phi node is always equal to NonPhiInVal.
851 /// This happens with mutually cyclic phi nodes like:
852 ///   z = some value; x = phi (y, z); y = phi (x, z)
PHIsEqualValue(PHINode * PN,Value * NonPhiInVal,SmallPtrSetImpl<PHINode * > & ValueEqualPHIs)853 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
854                            SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) {
855   // See if we already saw this PHI node.
856   if (!ValueEqualPHIs.insert(PN).second)
857     return true;
858 
859   // Don't scan crazily complex things.
860   if (ValueEqualPHIs.size() == 16)
861     return false;
862 
863   // Scan the operands to see if they are either phi nodes or are equal to
864   // the value.
865   for (Value *Op : PN->incoming_values()) {
866     if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
867       if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
868         return false;
869     } else if (Op != NonPhiInVal)
870       return false;
871   }
872 
873   return true;
874 }
875 
876 /// Return an existing non-zero constant if this phi node has one, otherwise
877 /// return constant 1.
GetAnyNonZeroConstInt(PHINode & PN)878 static ConstantInt *GetAnyNonZeroConstInt(PHINode &PN) {
879   assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi");
880   for (Value *V : PN.operands())
881     if (auto *ConstVA = dyn_cast<ConstantInt>(V))
882       if (!ConstVA->isZero())
883         return ConstVA;
884   return ConstantInt::get(cast<IntegerType>(PN.getType()), 1);
885 }
886 
887 namespace {
888 struct PHIUsageRecord {
889   unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on)
890   unsigned Shift;     // The amount shifted.
891   Instruction *Inst;  // The trunc instruction.
892 
PHIUsageRecord__anonaa4252370411::PHIUsageRecord893   PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
894     : PHIId(pn), Shift(Sh), Inst(User) {}
895 
operator <__anonaa4252370411::PHIUsageRecord896   bool operator<(const PHIUsageRecord &RHS) const {
897     if (PHIId < RHS.PHIId) return true;
898     if (PHIId > RHS.PHIId) return false;
899     if (Shift < RHS.Shift) return true;
900     if (Shift > RHS.Shift) return false;
901     return Inst->getType()->getPrimitiveSizeInBits() <
902            RHS.Inst->getType()->getPrimitiveSizeInBits();
903   }
904 };
905 
906 struct LoweredPHIRecord {
907   PHINode *PN;        // The PHI that was lowered.
908   unsigned Shift;     // The amount shifted.
909   unsigned Width;     // The width extracted.
910 
LoweredPHIRecord__anonaa4252370411::LoweredPHIRecord911   LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
912     : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
913 
914   // Ctor form used by DenseMap.
LoweredPHIRecord__anonaa4252370411::LoweredPHIRecord915   LoweredPHIRecord(PHINode *pn, unsigned Sh)
916     : PN(pn), Shift(Sh), Width(0) {}
917 };
918 }
919 
920 namespace llvm {
921   template<>
922   struct DenseMapInfo<LoweredPHIRecord> {
getEmptyKeyllvm::DenseMapInfo923     static inline LoweredPHIRecord getEmptyKey() {
924       return LoweredPHIRecord(nullptr, 0);
925     }
getTombstoneKeyllvm::DenseMapInfo926     static inline LoweredPHIRecord getTombstoneKey() {
927       return LoweredPHIRecord(nullptr, 1);
928     }
getHashValuellvm::DenseMapInfo929     static unsigned getHashValue(const LoweredPHIRecord &Val) {
930       return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
931              (Val.Width>>3);
932     }
isEqualllvm::DenseMapInfo933     static bool isEqual(const LoweredPHIRecord &LHS,
934                         const LoweredPHIRecord &RHS) {
935       return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
936              LHS.Width == RHS.Width;
937     }
938   };
939 }
940 
941 
942 /// This is an integer PHI and we know that it has an illegal type: see if it is
943 /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
944 /// the various pieces being extracted. This sort of thing is introduced when
945 /// SROA promotes an aggregate to large integer values.
946 ///
947 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
948 /// inttoptr.  We should produce new PHIs in the right type.
949 ///
SliceUpIllegalIntegerPHI(PHINode & FirstPhi)950 Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
951   // PHIUsers - Keep track of all of the truncated values extracted from a set
952   // of PHIs, along with their offset.  These are the things we want to rewrite.
953   SmallVector<PHIUsageRecord, 16> PHIUsers;
954 
955   // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
956   // nodes which are extracted from. PHIsToSlice is a set we use to avoid
957   // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
958   // check the uses of (to ensure they are all extracts).
959   SmallVector<PHINode*, 8> PHIsToSlice;
960   SmallPtrSet<PHINode*, 8> PHIsInspected;
961 
962   PHIsToSlice.push_back(&FirstPhi);
963   PHIsInspected.insert(&FirstPhi);
964 
965   for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
966     PHINode *PN = PHIsToSlice[PHIId];
967 
968     // Scan the input list of the PHI.  If any input is an invoke, and if the
969     // input is defined in the predecessor, then we won't be split the critical
970     // edge which is required to insert a truncate.  Because of this, we have to
971     // bail out.
972     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
973       InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
974       if (!II) continue;
975       if (II->getParent() != PN->getIncomingBlock(i))
976         continue;
977 
978       // If we have a phi, and if it's directly in the predecessor, then we have
979       // a critical edge where we need to put the truncate.  Since we can't
980       // split the edge in instcombine, we have to bail out.
981       return nullptr;
982     }
983 
984     for (User *U : PN->users()) {
985       Instruction *UserI = cast<Instruction>(U);
986 
987       // If the user is a PHI, inspect its uses recursively.
988       if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
989         if (PHIsInspected.insert(UserPN).second)
990           PHIsToSlice.push_back(UserPN);
991         continue;
992       }
993 
994       // Truncates are always ok.
995       if (isa<TruncInst>(UserI)) {
996         PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
997         continue;
998       }
999 
1000       // Otherwise it must be a lshr which can only be used by one trunc.
1001       if (UserI->getOpcode() != Instruction::LShr ||
1002           !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
1003           !isa<ConstantInt>(UserI->getOperand(1)))
1004         return nullptr;
1005 
1006       unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
1007       PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
1008     }
1009   }
1010 
1011   // If we have no users, they must be all self uses, just nuke the PHI.
1012   if (PHIUsers.empty())
1013     return replaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
1014 
1015   // If this phi node is transformable, create new PHIs for all the pieces
1016   // extracted out of it.  First, sort the users by their offset and size.
1017   array_pod_sort(PHIUsers.begin(), PHIUsers.end());
1018 
1019   LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
1020              for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) dbgs()
1021              << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] << '\n';);
1022 
1023   // PredValues - This is a temporary used when rewriting PHI nodes.  It is
1024   // hoisted out here to avoid construction/destruction thrashing.
1025   DenseMap<BasicBlock*, Value*> PredValues;
1026 
1027   // ExtractedVals - Each new PHI we introduce is saved here so we don't
1028   // introduce redundant PHIs.
1029   DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
1030 
1031   for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
1032     unsigned PHIId = PHIUsers[UserI].PHIId;
1033     PHINode *PN = PHIsToSlice[PHIId];
1034     unsigned Offset = PHIUsers[UserI].Shift;
1035     Type *Ty = PHIUsers[UserI].Inst->getType();
1036 
1037     PHINode *EltPHI;
1038 
1039     // If we've already lowered a user like this, reuse the previously lowered
1040     // value.
1041     if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
1042 
1043       // Otherwise, Create the new PHI node for this user.
1044       EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
1045                                PN->getName()+".off"+Twine(Offset), PN);
1046       assert(EltPHI->getType() != PN->getType() &&
1047              "Truncate didn't shrink phi?");
1048 
1049       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1050         BasicBlock *Pred = PN->getIncomingBlock(i);
1051         Value *&PredVal = PredValues[Pred];
1052 
1053         // If we already have a value for this predecessor, reuse it.
1054         if (PredVal) {
1055           EltPHI->addIncoming(PredVal, Pred);
1056           continue;
1057         }
1058 
1059         // Handle the PHI self-reuse case.
1060         Value *InVal = PN->getIncomingValue(i);
1061         if (InVal == PN) {
1062           PredVal = EltPHI;
1063           EltPHI->addIncoming(PredVal, Pred);
1064           continue;
1065         }
1066 
1067         if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
1068           // If the incoming value was a PHI, and if it was one of the PHIs we
1069           // already rewrote it, just use the lowered value.
1070           if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
1071             PredVal = Res;
1072             EltPHI->addIncoming(PredVal, Pred);
1073             continue;
1074           }
1075         }
1076 
1077         // Otherwise, do an extract in the predecessor.
1078         Builder.SetInsertPoint(Pred->getTerminator());
1079         Value *Res = InVal;
1080         if (Offset)
1081           Res = Builder.CreateLShr(Res, ConstantInt::get(InVal->getType(),
1082                                                           Offset), "extract");
1083         Res = Builder.CreateTrunc(Res, Ty, "extract.t");
1084         PredVal = Res;
1085         EltPHI->addIncoming(Res, Pred);
1086 
1087         // If the incoming value was a PHI, and if it was one of the PHIs we are
1088         // rewriting, we will ultimately delete the code we inserted.  This
1089         // means we need to revisit that PHI to make sure we extract out the
1090         // needed piece.
1091         if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
1092           if (PHIsInspected.count(OldInVal)) {
1093             unsigned RefPHIId =
1094                 find(PHIsToSlice, OldInVal) - PHIsToSlice.begin();
1095             PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
1096                                               cast<Instruction>(Res)));
1097             ++UserE;
1098           }
1099       }
1100       PredValues.clear();
1101 
1102       LLVM_DEBUG(dbgs() << "  Made element PHI for offset " << Offset << ": "
1103                         << *EltPHI << '\n');
1104       ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
1105     }
1106 
1107     // Replace the use of this piece with the PHI node.
1108     replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
1109   }
1110 
1111   // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
1112   // with undefs.
1113   Value *Undef = UndefValue::get(FirstPhi.getType());
1114   for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
1115     replaceInstUsesWith(*PHIsToSlice[i], Undef);
1116   return replaceInstUsesWith(FirstPhi, Undef);
1117 }
1118 
1119 // PHINode simplification
1120 //
visitPHINode(PHINode & PN)1121 Instruction *InstCombiner::visitPHINode(PHINode &PN) {
1122   if (Value *V = SimplifyInstruction(&PN, SQ.getWithInstruction(&PN)))
1123     return replaceInstUsesWith(PN, V);
1124 
1125   if (Instruction *Result = FoldPHIArgZextsIntoPHI(PN))
1126     return Result;
1127 
1128   // If all PHI operands are the same operation, pull them through the PHI,
1129   // reducing code size.
1130   if (isa<Instruction>(PN.getIncomingValue(0)) &&
1131       isa<Instruction>(PN.getIncomingValue(1)) &&
1132       cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
1133       cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
1134       // FIXME: The hasOneUse check will fail for PHIs that use the value more
1135       // than themselves more than once.
1136       PN.getIncomingValue(0)->hasOneUse())
1137     if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
1138       return Result;
1139 
1140   // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
1141   // this PHI only has a single use (a PHI), and if that PHI only has one use (a
1142   // PHI)... break the cycle.
1143   if (PN.hasOneUse()) {
1144     if (Instruction *Result = FoldIntegerTypedPHI(PN))
1145       return Result;
1146 
1147     Instruction *PHIUser = cast<Instruction>(PN.user_back());
1148     if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
1149       SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
1150       PotentiallyDeadPHIs.insert(&PN);
1151       if (DeadPHICycle(PU, PotentiallyDeadPHIs))
1152         return replaceInstUsesWith(PN, UndefValue::get(PN.getType()));
1153     }
1154 
1155     // If this phi has a single use, and if that use just computes a value for
1156     // the next iteration of a loop, delete the phi.  This occurs with unused
1157     // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
1158     // common case here is good because the only other things that catch this
1159     // are induction variable analysis (sometimes) and ADCE, which is only run
1160     // late.
1161     if (PHIUser->hasOneUse() &&
1162         (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
1163         PHIUser->user_back() == &PN) {
1164       return replaceInstUsesWith(PN, UndefValue::get(PN.getType()));
1165     }
1166     // When a PHI is used only to be compared with zero, it is safe to replace
1167     // an incoming value proved as known nonzero with any non-zero constant.
1168     // For example, in the code below, the incoming value %v can be replaced
1169     // with any non-zero constant based on the fact that the PHI is only used to
1170     // be compared with zero and %v is a known non-zero value:
1171     // %v = select %cond, 1, 2
1172     // %p = phi [%v, BB] ...
1173     //      icmp eq, %p, 0
1174     auto *CmpInst = dyn_cast<ICmpInst>(PHIUser);
1175     // FIXME: To be simple, handle only integer type for now.
1176     if (CmpInst && isa<IntegerType>(PN.getType()) && CmpInst->isEquality() &&
1177         match(CmpInst->getOperand(1), m_Zero())) {
1178       ConstantInt *NonZeroConst = nullptr;
1179       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1180         Instruction *CtxI = PN.getIncomingBlock(i)->getTerminator();
1181         Value *VA = PN.getIncomingValue(i);
1182         if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) {
1183           if (!NonZeroConst)
1184             NonZeroConst = GetAnyNonZeroConstInt(PN);
1185           PN.setIncomingValue(i, NonZeroConst);
1186         }
1187       }
1188     }
1189   }
1190 
1191   // We sometimes end up with phi cycles that non-obviously end up being the
1192   // same value, for example:
1193   //   z = some value; x = phi (y, z); y = phi (x, z)
1194   // where the phi nodes don't necessarily need to be in the same block.  Do a
1195   // quick check to see if the PHI node only contains a single non-phi value, if
1196   // so, scan to see if the phi cycle is actually equal to that value.
1197   {
1198     unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
1199     // Scan for the first non-phi operand.
1200     while (InValNo != NumIncomingVals &&
1201            isa<PHINode>(PN.getIncomingValue(InValNo)))
1202       ++InValNo;
1203 
1204     if (InValNo != NumIncomingVals) {
1205       Value *NonPhiInVal = PN.getIncomingValue(InValNo);
1206 
1207       // Scan the rest of the operands to see if there are any conflicts, if so
1208       // there is no need to recursively scan other phis.
1209       for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
1210         Value *OpVal = PN.getIncomingValue(InValNo);
1211         if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
1212           break;
1213       }
1214 
1215       // If we scanned over all operands, then we have one unique value plus
1216       // phi values.  Scan PHI nodes to see if they all merge in each other or
1217       // the value.
1218       if (InValNo == NumIncomingVals) {
1219         SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
1220         if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
1221           return replaceInstUsesWith(PN, NonPhiInVal);
1222       }
1223     }
1224   }
1225 
1226   // If there are multiple PHIs, sort their operands so that they all list
1227   // the blocks in the same order. This will help identical PHIs be eliminated
1228   // by other passes. Other passes shouldn't depend on this for correctness
1229   // however.
1230   PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
1231   if (&PN != FirstPN)
1232     for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
1233       BasicBlock *BBA = PN.getIncomingBlock(i);
1234       BasicBlock *BBB = FirstPN->getIncomingBlock(i);
1235       if (BBA != BBB) {
1236         Value *VA = PN.getIncomingValue(i);
1237         unsigned j = PN.getBasicBlockIndex(BBB);
1238         Value *VB = PN.getIncomingValue(j);
1239         PN.setIncomingBlock(i, BBB);
1240         PN.setIncomingValue(i, VB);
1241         PN.setIncomingBlock(j, BBA);
1242         PN.setIncomingValue(j, VA);
1243         // NOTE: Instcombine normally would want us to "return &PN" if we
1244         // modified any of the operands of an instruction.  However, since we
1245         // aren't adding or removing uses (just rearranging them) we don't do
1246         // this in this case.
1247       }
1248     }
1249 
1250   // If this is an integer PHI and we know that it has an illegal type, see if
1251   // it is only used by trunc or trunc(lshr) operations.  If so, we split the
1252   // PHI into the various pieces being extracted.  This sort of thing is
1253   // introduced when SROA promotes an aggregate to a single large integer type.
1254   if (PN.getType()->isIntegerTy() &&
1255       !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
1256     if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
1257       return Res;
1258 
1259   return nullptr;
1260 }
1261