1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the interfaces that X86 uses to lower LLVM code into a 11 // selection DAG. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef X86ISELLOWERING_H 16 #define X86ISELLOWERING_H 17 18 #include "X86Subtarget.h" 19 #include "X86RegisterInfo.h" 20 #include "X86MachineFunctionInfo.h" 21 #include "llvm/Target/TargetLowering.h" 22 #include "llvm/Target/TargetOptions.h" 23 #include "llvm/CodeGen/FastISel.h" 24 #include "llvm/CodeGen/SelectionDAG.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 27 namespace llvm { 28 namespace X86ISD { 29 // X86 Specific DAG Nodes 30 enum NodeType { 31 // Start the numbering where the builtin ops leave off. 32 FIRST_NUMBER = ISD::BUILTIN_OP_END, 33 34 /// BSF - Bit scan forward. 35 /// BSR - Bit scan reverse. 36 BSF, 37 BSR, 38 39 /// SHLD, SHRD - Double shift instructions. These correspond to 40 /// X86::SHLDxx and X86::SHRDxx instructions. 41 SHLD, 42 SHRD, 43 44 /// FAND - Bitwise logical AND of floating point values. This corresponds 45 /// to X86::ANDPS or X86::ANDPD. 46 FAND, 47 48 /// FOR - Bitwise logical OR of floating point values. This corresponds 49 /// to X86::ORPS or X86::ORPD. 50 FOR, 51 52 /// FXOR - Bitwise logical XOR of floating point values. This corresponds 53 /// to X86::XORPS or X86::XORPD. 54 FXOR, 55 56 /// FSRL - Bitwise logical right shift of floating point values. These 57 /// corresponds to X86::PSRLDQ. 58 FSRL, 59 60 /// CALL - These operations represent an abstract X86 call 61 /// instruction, which includes a bunch of information. In particular the 62 /// operands of these node are: 63 /// 64 /// #0 - The incoming token chain 65 /// #1 - The callee 66 /// #2 - The number of arg bytes the caller pushes on the stack. 67 /// #3 - The number of arg bytes the callee pops off the stack. 68 /// #4 - The value to pass in AL/AX/EAX (optional) 69 /// #5 - The value to pass in DL/DX/EDX (optional) 70 /// 71 /// The result values of these nodes are: 72 /// 73 /// #0 - The outgoing token chain 74 /// #1 - The first register result value (optional) 75 /// #2 - The second register result value (optional) 76 /// 77 CALL, 78 79 /// RDTSC_DAG - This operation implements the lowering for 80 /// readcyclecounter 81 RDTSC_DAG, 82 83 /// X86 compare and logical compare instructions. 84 CMP, COMI, UCOMI, 85 86 /// X86 bit-test instructions. 87 BT, 88 89 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS 90 /// operand, usually produced by a CMP instruction. 91 SETCC, 92 93 // Same as SETCC except it's materialized with a sbb and the value is all 94 // one's or all zero's. 95 SETCC_CARRY, // R = carry_bit ? ~0 : 0 96 97 /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD. 98 /// Operands are two FP values to compare; result is a mask of 99 /// 0s or 1s. Generally DTRT for C/C++ with NaNs. 100 FSETCCss, FSETCCsd, 101 102 /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values, 103 /// result in an integer GPR. Needs masking for scalar result. 104 FGETSIGNx86, 105 106 /// X86 conditional moves. Operand 0 and operand 1 are the two values 107 /// to select from. Operand 2 is the condition code, and operand 3 is the 108 /// flag operand produced by a CMP or TEST instruction. It also writes a 109 /// flag result. 110 CMOV, 111 112 /// X86 conditional branches. Operand 0 is the chain operand, operand 1 113 /// is the block to branch if condition is true, operand 2 is the 114 /// condition code, and operand 3 is the flag operand produced by a CMP 115 /// or TEST instruction. 116 BRCOND, 117 118 /// Return with a flag operand. Operand 0 is the chain operand, operand 119 /// 1 is the number of bytes of stack to pop. 120 RET_FLAG, 121 122 /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx. 123 REP_STOS, 124 125 /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx. 126 REP_MOVS, 127 128 /// GlobalBaseReg - On Darwin, this node represents the result of the popl 129 /// at function entry, used for PIC code. 130 GlobalBaseReg, 131 132 /// Wrapper - A wrapper node for TargetConstantPool, 133 /// TargetExternalSymbol, and TargetGlobalAddress. 134 Wrapper, 135 136 /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP 137 /// relative displacements. 138 WrapperRIP, 139 140 /// MOVQ2DQ - Copies a 64-bit value from an MMX vector to the low word 141 /// of an XMM vector, with the high word zero filled. 142 MOVQ2DQ, 143 144 /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector 145 /// to an MMX vector. If you think this is too close to the previous 146 /// mnemonic, so do I; blame Intel. 147 MOVDQ2Q, 148 149 /// vector to a GPR. 150 MMX_MOVD2W, 151 152 /// MMX_MOVW2D - Copies a GPR into the low 32-bit word of a MMX vector 153 /// and zero out the high word. 154 MMX_MOVW2D, 155 156 /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to 157 /// i32, corresponds to X86::PEXTRB. 158 PEXTRB, 159 160 /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to 161 /// i32, corresponds to X86::PEXTRW. 162 PEXTRW, 163 164 /// INSERTPS - Insert any element of a 4 x float vector into any element 165 /// of a destination 4 x floatvector. 166 INSERTPS, 167 168 /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector, 169 /// corresponds to X86::PINSRB. 170 PINSRB, 171 172 /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector, 173 /// corresponds to X86::PINSRW. 174 PINSRW, MMX_PINSRW, 175 176 /// PSHUFB - Shuffle 16 8-bit values within a vector. 177 PSHUFB, 178 179 /// ANDNP - Bitwise Logical AND NOT of Packed FP values. 180 ANDNP, 181 182 /// PSIGNB/W/D - Copy integer sign. 183 PSIGNB, PSIGNW, PSIGND, 184 185 /// BLEND family of opcodes 186 BLENDV, 187 188 /// FHADD - Floating point horizontal add. 189 FHADD, 190 191 /// FHSUB - Floating point horizontal sub. 192 FHSUB, 193 194 /// FMAX, FMIN - Floating point max and min. 195 /// 196 FMAX, FMIN, 197 198 /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal 199 /// approximation. Note that these typically require refinement 200 /// in order to obtain suitable precision. 201 FRSQRT, FRCP, 202 203 // TLSADDR - Thread Local Storage. 204 TLSADDR, 205 206 // TLSCALL - Thread Local Storage. When calling to an OS provided 207 // thunk at the address from an earlier relocation. 208 TLSCALL, 209 210 // EH_RETURN - Exception Handling helpers. 211 EH_RETURN, 212 213 /// TC_RETURN - Tail call return. 214 /// operand #0 chain 215 /// operand #1 callee (register or absolute) 216 /// operand #2 stack adjustment 217 /// operand #3 optional in flag 218 TC_RETURN, 219 220 // VZEXT_MOVL - Vector move low and zero extend. 221 VZEXT_MOVL, 222 223 // VSHL, VSRL - Vector logical left / right shift. 224 VSHL, VSRL, 225 226 // CMPPD, CMPPS - Vector double/float comparison. 227 // CMPPD, CMPPS - Vector double/float comparison. 228 CMPPD, CMPPS, 229 230 // PCMP* - Vector integer comparisons. 231 PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ, 232 PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ, 233 234 // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results. 235 ADD, SUB, ADC, SBB, SMUL, 236 INC, DEC, OR, XOR, AND, 237 238 ANDN, // ANDN - Bitwise AND NOT with FLAGS results. 239 240 UMUL, // LOW, HI, FLAGS = umul LHS, RHS 241 242 // MUL_IMM - X86 specific multiply by immediate. 243 MUL_IMM, 244 245 // PTEST - Vector bitwise comparisons 246 PTEST, 247 248 // TESTP - Vector packed fp sign bitwise comparisons 249 TESTP, 250 251 // Several flavors of instructions with vector shuffle behaviors. 252 PALIGN, 253 PSHUFD, 254 PSHUFHW, 255 PSHUFLW, 256 PSHUFHW_LD, 257 PSHUFLW_LD, 258 SHUFPD, 259 SHUFPS, 260 MOVDDUP, 261 MOVSHDUP, 262 MOVSLDUP, 263 MOVSHDUP_LD, 264 MOVSLDUP_LD, 265 MOVLHPS, 266 MOVLHPD, 267 MOVHLPS, 268 MOVHLPD, 269 MOVLPS, 270 MOVLPD, 271 MOVSD, 272 MOVSS, 273 UNPCKLPS, 274 UNPCKLPD, 275 VUNPCKLPSY, 276 VUNPCKLPDY, 277 UNPCKHPS, 278 UNPCKHPD, 279 VUNPCKHPSY, 280 VUNPCKHPDY, 281 PUNPCKLBW, 282 PUNPCKLWD, 283 PUNPCKLDQ, 284 PUNPCKLQDQ, 285 PUNPCKHBW, 286 PUNPCKHWD, 287 PUNPCKHDQ, 288 PUNPCKHQDQ, 289 VPERMILPS, 290 VPERMILPSY, 291 VPERMILPD, 292 VPERMILPDY, 293 VPERM2F128, 294 VBROADCAST, 295 296 // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack, 297 // according to %al. An operator is needed so that this can be expanded 298 // with control flow. 299 VASTART_SAVE_XMM_REGS, 300 301 // WIN_ALLOCA - Windows's _chkstk call to do stack probing. 302 WIN_ALLOCA, 303 304 // SEG_ALLOCA - For allocating variable amounts of stack space when using 305 // segmented stacks. Check if the current stacklet has enough space, and 306 // falls back to heap allocation if not. 307 SEG_ALLOCA, 308 309 // Memory barrier 310 MEMBARRIER, 311 MFENCE, 312 SFENCE, 313 LFENCE, 314 315 // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG, 316 // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG - 317 // Atomic 64-bit binary operations. 318 ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE, 319 ATOMSUB64_DAG, 320 ATOMOR64_DAG, 321 ATOMXOR64_DAG, 322 ATOMAND64_DAG, 323 ATOMNAND64_DAG, 324 ATOMSWAP64_DAG, 325 326 // LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap. 327 LCMPXCHG_DAG, 328 LCMPXCHG8_DAG, 329 LCMPXCHG16_DAG, 330 331 // VZEXT_LOAD - Load, scalar_to_vector, and zero extend. 332 VZEXT_LOAD, 333 334 // FNSTCW16m - Store FP control world into i16 memory. 335 FNSTCW16m, 336 337 /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the 338 /// integer destination in memory and a FP reg source. This corresponds 339 /// to the X86::FIST*m instructions and the rounding mode change stuff. It 340 /// has two inputs (token chain and address) and two outputs (int value 341 /// and token chain). 342 FP_TO_INT16_IN_MEM, 343 FP_TO_INT32_IN_MEM, 344 FP_TO_INT64_IN_MEM, 345 346 /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the 347 /// integer source in memory and FP reg result. This corresponds to the 348 /// X86::FILD*m instructions. It has three inputs (token chain, address, 349 /// and source type) and two outputs (FP value and token chain). FILD_FLAG 350 /// also produces a flag). 351 FILD, 352 FILD_FLAG, 353 354 /// FLD - This instruction implements an extending load to FP stack slots. 355 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain 356 /// operand, ptr to load from, and a ValueType node indicating the type 357 /// to load to. 358 FLD, 359 360 /// FST - This instruction implements a truncating store to FP stack 361 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a 362 /// chain operand, value to store, address, and a ValueType to store it 363 /// as. 364 FST, 365 366 /// VAARG_64 - This instruction grabs the address of the next argument 367 /// from a va_list. (reads and modifies the va_list in memory) 368 VAARG_64 369 370 // WARNING: Do not add anything in the end unless you want the node to 371 // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be 372 // thought as target memory ops! 373 }; 374 } 375 376 /// Define some predicates that are used for node matching. 377 namespace X86 { 378 /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand 379 /// specifies a shuffle of elements that is suitable for input to PSHUFD. 380 bool isPSHUFDMask(ShuffleVectorSDNode *N); 381 382 /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand 383 /// specifies a shuffle of elements that is suitable for input to PSHUFD. 384 bool isPSHUFHWMask(ShuffleVectorSDNode *N); 385 386 /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand 387 /// specifies a shuffle of elements that is suitable for input to PSHUFD. 388 bool isPSHUFLWMask(ShuffleVectorSDNode *N); 389 390 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand 391 /// specifies a shuffle of elements that is suitable for input to SHUFP*. 392 bool isSHUFPMask(ShuffleVectorSDNode *N); 393 394 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand 395 /// specifies a shuffle of elements that is suitable for input to MOVHLPS. 396 bool isMOVHLPSMask(ShuffleVectorSDNode *N); 397 398 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form 399 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, 400 /// <2, 3, 2, 3> 401 bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N); 402 403 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand 404 /// specifies a shuffle of elements that is suitable for MOVLP{S|D}. 405 bool isMOVLPMask(ShuffleVectorSDNode *N); 406 407 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand 408 /// specifies a shuffle of elements that is suitable for MOVHP{S|D}. 409 /// as well as MOVLHPS. 410 bool isMOVLHPSMask(ShuffleVectorSDNode *N); 411 412 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand 413 /// specifies a shuffle of elements that is suitable for input to UNPCKL. 414 bool isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat = false); 415 416 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand 417 /// specifies a shuffle of elements that is suitable for input to UNPCKH. 418 bool isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat = false); 419 420 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form 421 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, 422 /// <0, 0, 1, 1> 423 bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N); 424 425 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form 426 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, 427 /// <2, 2, 3, 3> 428 bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N); 429 430 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand 431 /// specifies a shuffle of elements that is suitable for input to MOVSS, 432 /// MOVSD, and MOVD, i.e. setting the lowest element. 433 bool isMOVLMask(ShuffleVectorSDNode *N); 434 435 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand 436 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. 437 bool isMOVSHDUPMask(ShuffleVectorSDNode *N, const X86Subtarget *Subtarget); 438 439 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand 440 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. 441 bool isMOVSLDUPMask(ShuffleVectorSDNode *N, const X86Subtarget *Subtarget); 442 443 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand 444 /// specifies a shuffle of elements that is suitable for input to MOVDDUP. 445 bool isMOVDDUPMask(ShuffleVectorSDNode *N); 446 447 /// isVEXTRACTF128Index - Return true if the specified 448 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is 449 /// suitable for input to VEXTRACTF128. 450 bool isVEXTRACTF128Index(SDNode *N); 451 452 /// isVINSERTF128Index - Return true if the specified 453 /// INSERT_SUBVECTOR operand specifies a subvector insert that is 454 /// suitable for input to VINSERTF128. 455 bool isVINSERTF128Index(SDNode *N); 456 457 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle 458 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP* 459 /// instructions. 460 unsigned getShuffleSHUFImmediate(SDNode *N); 461 462 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle 463 /// the specified VECTOR_SHUFFLE mask with PSHUFHW instruction. 464 unsigned getShufflePSHUFHWImmediate(SDNode *N); 465 466 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle 467 /// the specified VECTOR_SHUFFLE mask with PSHUFLW instruction. 468 unsigned getShufflePSHUFLWImmediate(SDNode *N); 469 470 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle 471 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction. 472 unsigned getShufflePALIGNRImmediate(SDNode *N); 473 474 /// getExtractVEXTRACTF128Immediate - Return the appropriate 475 /// immediate to extract the specified EXTRACT_SUBVECTOR index 476 /// with VEXTRACTF128 instructions. 477 unsigned getExtractVEXTRACTF128Immediate(SDNode *N); 478 479 /// getInsertVINSERTF128Immediate - Return the appropriate 480 /// immediate to insert at the specified INSERT_SUBVECTOR index 481 /// with VINSERTF128 instructions. 482 unsigned getInsertVINSERTF128Immediate(SDNode *N); 483 484 /// isZeroNode - Returns true if Elt is a constant zero or a floating point 485 /// constant +0.0. 486 bool isZeroNode(SDValue Elt); 487 488 /// isOffsetSuitableForCodeModel - Returns true of the given offset can be 489 /// fit into displacement field of the instruction. 490 bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, 491 bool hasSymbolicDisplacement = true); 492 493 494 /// isCalleePop - Determines whether the callee is required to pop its 495 /// own arguments. Callee pop is necessary to support tail calls. 496 bool isCalleePop(CallingConv::ID CallingConv, 497 bool is64Bit, bool IsVarArg, bool TailCallOpt); 498 } 499 500 //===--------------------------------------------------------------------===// 501 // X86TargetLowering - X86 Implementation of the TargetLowering interface 502 class X86TargetLowering : public TargetLowering { 503 public: 504 explicit X86TargetLowering(X86TargetMachine &TM); 505 506 virtual unsigned getJumpTableEncoding() const; 507 getShiftAmountTy(EVT LHSTy)508 virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i8; } 509 510 virtual const MCExpr * 511 LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, 512 const MachineBasicBlock *MBB, unsigned uid, 513 MCContext &Ctx) const; 514 515 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC 516 /// jumptable. 517 virtual SDValue getPICJumpTableRelocBase(SDValue Table, 518 SelectionDAG &DAG) const; 519 virtual const MCExpr * 520 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 521 unsigned JTI, MCContext &Ctx) const; 522 523 /// getStackPtrReg - Return the stack pointer register we are using: either 524 /// ESP or RSP. getStackPtrReg()525 unsigned getStackPtrReg() const { return X86StackPtr; } 526 527 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 528 /// function arguments in the caller parameter area. For X86, aggregates 529 /// that contains are placed at 16-byte boundaries while the rest are at 530 /// 4-byte boundaries. 531 virtual unsigned getByValTypeAlignment(Type *Ty) const; 532 533 /// getOptimalMemOpType - Returns the target specific optimal type for load 534 /// and store operations as a result of memset, memcpy, and memmove 535 /// lowering. If DstAlign is zero that means it's safe to destination 536 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 537 /// means there isn't a need to check it against alignment requirement, 538 /// probably because the source does not need to be loaded. If 539 /// 'NonScalarIntSafe' is true, that means it's safe to return a 540 /// non-scalar-integer type, e.g. empty string source, constant, or loaded 541 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is 542 /// constant so it does not need to be loaded. 543 /// It returns EVT::Other if the type should be determined using generic 544 /// target-independent logic. 545 virtual EVT 546 getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, 547 bool NonScalarIntSafe, bool MemcpyStrSrc, 548 MachineFunction &MF) const; 549 550 /// allowsUnalignedMemoryAccesses - Returns true if the target allows 551 /// unaligned memory accesses. of the specified type. allowsUnalignedMemoryAccesses(EVT VT)552 virtual bool allowsUnalignedMemoryAccesses(EVT VT) const { 553 return true; 554 } 555 556 /// LowerOperation - Provide custom lowering hooks for some operations. 557 /// 558 virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const; 559 560 /// ReplaceNodeResults - Replace the results of node with an illegal result 561 /// type with new values built out of custom code. 562 /// 563 virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results, 564 SelectionDAG &DAG) const; 565 566 567 virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; 568 569 /// isTypeDesirableForOp - Return true if the target has native support for 570 /// the specified value type and it is 'desirable' to use the type for the 571 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16 572 /// instruction encodings are longer and some i16 instructions are slow. 573 virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const; 574 575 /// isTypeDesirable - Return true if the target has native support for the 576 /// specified value type and it is 'desirable' to use the type. e.g. On x86 577 /// i16 is legal, but undesirable since i16 instruction encodings are longer 578 /// and some i16 instructions are slow. 579 virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const; 580 581 virtual MachineBasicBlock * 582 EmitInstrWithCustomInserter(MachineInstr *MI, 583 MachineBasicBlock *MBB) const; 584 585 586 /// getTargetNodeName - This method returns the name of a target specific 587 /// DAG node. 588 virtual const char *getTargetNodeName(unsigned Opcode) const; 589 590 /// getSetCCResultType - Return the value type to use for ISD::SETCC. 591 virtual EVT getSetCCResultType(EVT VT) const; 592 593 /// computeMaskedBitsForTargetNode - Determine which of the bits specified 594 /// in Mask are known to be either zero or one and return them in the 595 /// KnownZero/KnownOne bitsets. 596 virtual void computeMaskedBitsForTargetNode(const SDValue Op, 597 const APInt &Mask, 598 APInt &KnownZero, 599 APInt &KnownOne, 600 const SelectionDAG &DAG, 601 unsigned Depth = 0) const; 602 603 // ComputeNumSignBitsForTargetNode - Determine the number of bits in the 604 // operation that are sign bits. 605 virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, 606 unsigned Depth) const; 607 608 virtual bool 609 isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const; 610 611 SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const; 612 613 virtual bool ExpandInlineAsm(CallInst *CI) const; 614 615 ConstraintType getConstraintType(const std::string &Constraint) const; 616 617 /// Examine constraint string and operand type and determine a weight value. 618 /// The operand object must already have been set up with the operand type. 619 virtual ConstraintWeight getSingleConstraintMatchWeight( 620 AsmOperandInfo &info, const char *constraint) const; 621 622 virtual const char *LowerXConstraint(EVT ConstraintVT) const; 623 624 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 625 /// vector. If it is invalid, don't add anything to Ops. If hasMemory is 626 /// true it means one of the asm constraint of the inline asm instruction 627 /// being processed is 'm'. 628 virtual void LowerAsmOperandForConstraint(SDValue Op, 629 std::string &Constraint, 630 std::vector<SDValue> &Ops, 631 SelectionDAG &DAG) const; 632 633 /// getRegForInlineAsmConstraint - Given a physical register constraint 634 /// (e.g. {edx}), return the register number and the register class for the 635 /// register. This should only be used for C_Register constraints. On 636 /// error, this returns a register number of 0. 637 std::pair<unsigned, const TargetRegisterClass*> 638 getRegForInlineAsmConstraint(const std::string &Constraint, 639 EVT VT) const; 640 641 /// isLegalAddressingMode - Return true if the addressing mode represented 642 /// by AM is legal for this target, for a load/store of the specified type. 643 virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const; 644 645 /// isTruncateFree - Return true if it's free to truncate a value of 646 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in 647 /// register EAX to i16 by referencing its sub-register AX. 648 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const; 649 virtual bool isTruncateFree(EVT VT1, EVT VT2) const; 650 651 /// isZExtFree - Return true if any actual instruction that defines a 652 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result 653 /// register. This does not necessarily include registers defined in 654 /// unknown ways, such as incoming arguments, or copies from unknown 655 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this 656 /// does not necessarily apply to truncate instructions. e.g. on x86-64, 657 /// all instructions that define 32-bit values implicit zero-extend the 658 /// result out to 64 bits. 659 virtual bool isZExtFree(Type *Ty1, Type *Ty2) const; 660 virtual bool isZExtFree(EVT VT1, EVT VT2) const; 661 662 /// isNarrowingProfitable - Return true if it's profitable to narrow 663 /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow 664 /// from i32 to i8 but not from i32 to i16. 665 virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const; 666 667 /// isFPImmLegal - Returns true if the target can instruction select the 668 /// specified FP immediate natively. If false, the legalizer will 669 /// materialize the FP immediate as a load from a constant pool. 670 virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const; 671 672 /// isShuffleMaskLegal - Targets can use this to indicate that they only 673 /// support *some* VECTOR_SHUFFLE operations, those with specific masks. 674 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask 675 /// values are assumed to be legal. 676 virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask, 677 EVT VT) const; 678 679 /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is 680 /// used by Targets can use this to indicate if there is a suitable 681 /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant 682 /// pool entry. 683 virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask, 684 EVT VT) const; 685 686 /// ShouldShrinkFPConstant - If true, then instruction selection should 687 /// seek to shrink the FP constant of the specified type to a smaller type 688 /// in order to save space and / or reduce runtime. ShouldShrinkFPConstant(EVT VT)689 virtual bool ShouldShrinkFPConstant(EVT VT) const { 690 // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more 691 // expensive than a straight movsd. On the other hand, it's important to 692 // shrink long double fp constant since fldt is very slow. 693 return !X86ScalarSSEf64 || VT == MVT::f80; 694 } 695 getSubtarget()696 const X86Subtarget* getSubtarget() const { 697 return Subtarget; 698 } 699 700 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is 701 /// computed in an SSE register, not on the X87 floating point stack. isScalarFPTypeInSSEReg(EVT VT)702 bool isScalarFPTypeInSSEReg(EVT VT) const { 703 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 704 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 705 } 706 707 /// createFastISel - This method returns a target specific FastISel object, 708 /// or null if the target does not support "fast" ISel. 709 virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const; 710 711 /// getStackCookieLocation - Return true if the target stores stack 712 /// protector cookies at a fixed offset in some non-standard address 713 /// space, and populates the address space and offset as 714 /// appropriate. 715 virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const; 716 717 SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot, 718 SelectionDAG &DAG) const; 719 720 protected: 721 std::pair<const TargetRegisterClass*, uint8_t> 722 findRepresentativeClass(EVT VT) const; 723 724 private: 725 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can 726 /// make the right decision when generating code for different targets. 727 const X86Subtarget *Subtarget; 728 const X86RegisterInfo *RegInfo; 729 const TargetData *TD; 730 731 /// X86StackPtr - X86 physical register used as stack ptr. 732 unsigned X86StackPtr; 733 734 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 735 /// floating point ops. 736 /// When SSE is available, use it for f32 operations. 737 /// When SSE2 is available, use it for f64 operations. 738 bool X86ScalarSSEf32; 739 bool X86ScalarSSEf64; 740 741 /// LegalFPImmediates - A list of legal fp immediates. 742 std::vector<APFloat> LegalFPImmediates; 743 744 /// addLegalFPImmediate - Indicate that this x86 target can instruction 745 /// select the specified FP immediate natively. addLegalFPImmediate(const APFloat & Imm)746 void addLegalFPImmediate(const APFloat& Imm) { 747 LegalFPImmediates.push_back(Imm); 748 } 749 750 SDValue LowerCallResult(SDValue Chain, SDValue InFlag, 751 CallingConv::ID CallConv, bool isVarArg, 752 const SmallVectorImpl<ISD::InputArg> &Ins, 753 DebugLoc dl, SelectionDAG &DAG, 754 SmallVectorImpl<SDValue> &InVals) const; 755 SDValue LowerMemArgument(SDValue Chain, 756 CallingConv::ID CallConv, 757 const SmallVectorImpl<ISD::InputArg> &ArgInfo, 758 DebugLoc dl, SelectionDAG &DAG, 759 const CCValAssign &VA, MachineFrameInfo *MFI, 760 unsigned i) const; 761 SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg, 762 DebugLoc dl, SelectionDAG &DAG, 763 const CCValAssign &VA, 764 ISD::ArgFlagsTy Flags) const; 765 766 // Call lowering helpers. 767 768 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 769 /// for tail call optimization. Targets which want to do tail call 770 /// optimization should implement this function. 771 bool IsEligibleForTailCallOptimization(SDValue Callee, 772 CallingConv::ID CalleeCC, 773 bool isVarArg, 774 bool isCalleeStructRet, 775 bool isCallerStructRet, 776 const SmallVectorImpl<ISD::OutputArg> &Outs, 777 const SmallVectorImpl<SDValue> &OutVals, 778 const SmallVectorImpl<ISD::InputArg> &Ins, 779 SelectionDAG& DAG) const; 780 bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const; 781 SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr, 782 SDValue Chain, bool IsTailCall, bool Is64Bit, 783 int FPDiff, DebugLoc dl) const; 784 785 unsigned GetAlignedArgumentStackSize(unsigned StackSize, 786 SelectionDAG &DAG) const; 787 788 std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, 789 bool isSigned) const; 790 791 SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl, 792 SelectionDAG &DAG) const; 793 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; 794 SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const; 795 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; 796 SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; 797 SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const; 798 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; 799 SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const; 800 SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const; 801 SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const; 802 SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const; 803 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; 804 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; 805 SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl, 806 int64_t Offset, SelectionDAG &DAG) const; 807 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; 808 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; 809 SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const; 810 SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const; 811 SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const; 812 SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; 813 SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; 814 SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const; 815 SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const; 816 SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const; 817 SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const; 818 SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const; 819 SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const; 820 SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const; 821 SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const; 822 SDValue LowerToBT(SDValue And, ISD::CondCode CC, 823 DebugLoc dl, SelectionDAG &DAG) const; 824 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; 825 SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const; 826 SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const; 827 SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const; 828 SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const; 829 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; 830 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; 831 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const; 832 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const; 833 SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const; 834 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; 835 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; 836 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; 837 SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const; 838 SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const; 839 SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; 840 SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; 841 SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const; 842 SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) const; 843 SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const; 844 SDValue LowerADD(SDValue Op, SelectionDAG &DAG) const; 845 SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) const; 846 SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const; 847 SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const; 848 SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) const; 849 850 SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const; 851 SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const; 852 SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const; 853 SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const; 854 SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const; 855 SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const; 856 857 // Utility functions to help LowerVECTOR_SHUFFLE 858 SDValue LowerVECTOR_SHUFFLEv8i16(SDValue Op, SelectionDAG &DAG) const; 859 860 virtual SDValue 861 LowerFormalArguments(SDValue Chain, 862 CallingConv::ID CallConv, bool isVarArg, 863 const SmallVectorImpl<ISD::InputArg> &Ins, 864 DebugLoc dl, SelectionDAG &DAG, 865 SmallVectorImpl<SDValue> &InVals) const; 866 virtual SDValue 867 LowerCall(SDValue Chain, SDValue Callee, 868 CallingConv::ID CallConv, bool isVarArg, bool &isTailCall, 869 const SmallVectorImpl<ISD::OutputArg> &Outs, 870 const SmallVectorImpl<SDValue> &OutVals, 871 const SmallVectorImpl<ISD::InputArg> &Ins, 872 DebugLoc dl, SelectionDAG &DAG, 873 SmallVectorImpl<SDValue> &InVals) const; 874 875 virtual SDValue 876 LowerReturn(SDValue Chain, 877 CallingConv::ID CallConv, bool isVarArg, 878 const SmallVectorImpl<ISD::OutputArg> &Outs, 879 const SmallVectorImpl<SDValue> &OutVals, 880 DebugLoc dl, SelectionDAG &DAG) const; 881 882 virtual bool isUsedByReturnOnly(SDNode *N) const; 883 884 virtual bool mayBeEmittedAsTailCall(CallInst *CI) const; 885 886 virtual EVT 887 getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT, 888 ISD::NodeType ExtendKind) const; 889 890 virtual bool 891 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, 892 bool isVarArg, 893 const SmallVectorImpl<ISD::OutputArg> &Outs, 894 LLVMContext &Context) const; 895 896 void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results, 897 SelectionDAG &DAG, unsigned NewOp) const; 898 899 /// Utility function to emit string processing sse4.2 instructions 900 /// that return in xmm0. 901 /// This takes the instruction to expand, the associated machine basic 902 /// block, the number of args, and whether or not the second arg is 903 /// in memory or not. 904 MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB, 905 unsigned argNum, bool inMem) const; 906 907 /// Utility functions to emit monitor and mwait instructions. These 908 /// need to make sure that the arguments to the intrinsic are in the 909 /// correct registers. 910 MachineBasicBlock *EmitMonitor(MachineInstr *MI, 911 MachineBasicBlock *BB) const; 912 MachineBasicBlock *EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const; 913 914 /// Utility function to emit atomic bitwise operations (and, or, xor). 915 /// It takes the bitwise instruction to expand, the associated machine basic 916 /// block, and the associated X86 opcodes for reg/reg and reg/imm. 917 MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter( 918 MachineInstr *BInstr, 919 MachineBasicBlock *BB, 920 unsigned regOpc, 921 unsigned immOpc, 922 unsigned loadOpc, 923 unsigned cxchgOpc, 924 unsigned notOpc, 925 unsigned EAXreg, 926 TargetRegisterClass *RC, 927 bool invSrc = false) const; 928 929 MachineBasicBlock *EmitAtomicBit6432WithCustomInserter( 930 MachineInstr *BInstr, 931 MachineBasicBlock *BB, 932 unsigned regOpcL, 933 unsigned regOpcH, 934 unsigned immOpcL, 935 unsigned immOpcH, 936 bool invSrc = false) const; 937 938 /// Utility function to emit atomic min and max. It takes the min/max 939 /// instruction to expand, the associated basic block, and the associated 940 /// cmov opcode for moving the min or max value. 941 MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr, 942 MachineBasicBlock *BB, 943 unsigned cmovOpc) const; 944 945 // Utility function to emit the low-level va_arg code for X86-64. 946 MachineBasicBlock *EmitVAARG64WithCustomInserter( 947 MachineInstr *MI, 948 MachineBasicBlock *MBB) const; 949 950 /// Utility function to emit the xmm reg save portion of va_start. 951 MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter( 952 MachineInstr *BInstr, 953 MachineBasicBlock *BB) const; 954 955 MachineBasicBlock *EmitLoweredSelect(MachineInstr *I, 956 MachineBasicBlock *BB) const; 957 958 MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI, 959 MachineBasicBlock *BB) const; 960 961 MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI, 962 MachineBasicBlock *BB, 963 bool Is64Bit) const; 964 965 MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI, 966 MachineBasicBlock *BB) const; 967 968 MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI, 969 MachineBasicBlock *BB) const; 970 971 /// Emit nodes that will be selected as "test Op0,Op0", or something 972 /// equivalent, for use with the given x86 condition code. 973 SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const; 974 975 /// Emit nodes that will be selected as "cmp Op0,Op1", or something 976 /// equivalent, for use with the given x86 condition code. 977 SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, 978 SelectionDAG &DAG) const; 979 }; 980 981 namespace X86 { 982 FastISel *createFastISel(FunctionLoweringInfo &funcInfo); 983 } 984 } 985 986 #endif // X86ISELLOWERING_H 987